JP2007111898A - Recording layer and sputtering target for optical information recording medium, and optical information recording medium - Google Patents

Recording layer and sputtering target for optical information recording medium, and optical information recording medium Download PDF

Info

Publication number
JP2007111898A
JP2007111898A JP2005303211A JP2005303211A JP2007111898A JP 2007111898 A JP2007111898 A JP 2007111898A JP 2005303211 A JP2005303211 A JP 2005303211A JP 2005303211 A JP2005303211 A JP 2005303211A JP 2007111898 A JP2007111898 A JP 2007111898A
Authority
JP
Japan
Prior art keywords
recording layer
recording
optical information
recording medium
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005303211A
Other languages
Japanese (ja)
Inventor
Hideo Fujii
秀夫 藤井
Tatewaki Ido
帯刀 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005303211A priority Critical patent/JP2007111898A/en
Priority to US12/090,569 priority patent/US20090046566A1/en
Priority to PCT/JP2006/320678 priority patent/WO2007046390A1/en
Priority to TW095143080A priority patent/TW200746124A/en
Publication of JP2007111898A publication Critical patent/JP2007111898A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recording layer for an optical information recording medium which is excellent in initial reflectance, the formability of a recording mark, etc., as a matter of course, and also extremely excellent in the durability in an environment of high temperature and high humidity and can be sufficiently applied to a next-generation optical disk for a bluish-purple laser. <P>SOLUTION: On the recording layer for the optical information recording medium, the recording mark is formed by irradiation with laser light. The recording layer contains at least one kind selected from the group consisting of Nd, Gd and La, in the range of 1.0-15 atom% in total. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光情報記録媒体用の記録層およびスパッタリングターゲット、並びに光情報記録媒体に関する。本発明の光情報記録媒体用記録層は、現行のCD(Compact Disc)やDVD(Digital Versatile Disc)だけでなく、次世代の光情報記録媒体(HD DVDやBlu−ray Disc)に用いられ、追記型の光情報記録媒体、特に、青紫色のレーザを用いる光情報記録媒体に好適に用いられる。   The present invention relates to a recording layer and a sputtering target for an optical information recording medium, and an optical information recording medium. The recording layer for an optical information recording medium of the present invention is used not only for the current CD (Compact Disc) and DVD (Digital Versatile Disc), but also for the next generation optical information recording medium (HD DVD and Blu-ray Disc), It is suitably used for a write once optical information recording medium, particularly an optical information recording medium using a blue-violet laser.

光情報記録媒体(光ディスク)は、記録再生方式により、再生専用型、書換型、および追記型の三種類に大別される。   Optical information recording media (optical discs) are roughly classified into three types according to recording / reproducing systems: a reproduction-only type, a rewritable type, and a write-once type.

このうち、追記型の光ディスクでは、主に、レーザ光が照射された記録層材料の物性の変化を利用してデータが記録されている。追記型の光ディスクは、記録はできるが消去や書き換えを行うことができないため、write-once(一度だけ書ける)などと呼ばれている。このような特性を利用し、追記型の光ディスクは、例えば、文書ファイルや画像ファイルなど、データの改竄防止が求められる用途で汎用されており、CD−R、DVD−R、DVD+R等が挙げられる。   Among these, in the write once type optical disc, data is recorded mainly by utilizing the change in physical properties of the recording layer material irradiated with the laser beam. A write-once optical disc is called write-once (which can be written once) because it can be recorded but cannot be erased or rewritten. Using such characteristics, write-once optical disks are widely used for applications that require prevention of data tampering, such as document files and image files, and examples include CD-R, DVD-R, and DVD + R. .

追記型の光ディスクに用いられる記録層材料として、例えば、シアニン系色素、フタロシアニン系色素、アゾ系色素などの有機色素材料が挙げられる。有機色素材料にレーザ光が照射されると、色素の熱吸収によって色素や基板が分解、溶融、蒸発するなどして記録マークが形成される。しかしながら、有機色素材料を用いる場合、有機溶媒中に色素を溶解してから、基板上に塗布しなければならず、生産性が低下する。また、記録信号の保存安定性などの点で問題がある。   Examples of the recording layer material used for the write-once optical disc include organic dye materials such as cyanine dyes, phthalocyanine dyes, and azo dyes. When the organic dye material is irradiated with a laser beam, the dye and the substrate are decomposed, melted and evaporated by heat absorption of the dye to form a recording mark. However, when an organic dye material is used, the dye must be dissolved in an organic solvent and then applied onto the substrate, which reduces productivity. There is also a problem in terms of storage stability of the recording signal.

そこで、有機色素材料の代わりに、無機材料の薄膜を記録層として用い、この薄膜にレーザ光を照射して穴(記録マーク)または変形(ピット)を形成することによって記録を行う方法(以下、「穴あけ記録方式」と呼ぶ場合がある。)が提案されている(非特許文献1、特許文献1から特許文献8)。   Therefore, a method of recording by using a thin film of an inorganic material as a recording layer instead of an organic dye material and irradiating the thin film with a laser beam to form holes (record marks) or deformations (pits) (hereinafter referred to as “recording layer”). (Sometimes called “drilling recording method”) has been proposed (Non-patent Document 1, Patent Document 1 to Patent Document 8).

非特許文献1は、融点および熱伝導率が低いTe薄膜を用い、低いパワーで穴をあける技術を開示している。   Non-Patent Document 1 discloses a technique of making a hole with low power using a Te thin film having a low melting point and low thermal conductivity.

特許文献1および特許文献2には、Alを含むCu基合金からなる反応層と、Siなどを含む反応層とが積層された記録層が開示されている。レーザ光の照射により、基板上には、各反応層に含まれる元素が混合された領域が部分的に形成され、反射率が大きく変化するため、青色レーザなどの短波長レーザを用いても、情報を高感度で記録することができる。   Patent Documents 1 and 2 disclose a recording layer in which a reaction layer made of a Cu-based alloy containing Al and a reaction layer containing Si or the like are laminated. By irradiation with laser light, a region where elements contained in each reaction layer are mixed is partially formed on the substrate, and the reflectance changes greatly. Therefore, even if a short wavelength laser such as a blue laser is used, Information can be recorded with high sensitivity.

特許文献3〜5は、穴あけ記録方式によるC/N(carrier to noise ratio、キャリアとノイズの出力レベルの比)の低下を防止し、高いC/Nと反射率とを備えた光記録媒体の技術に関する。ここでは、記録層として、Inを含むCu基合金(特許文献3)、Biなどを含むAg基合金(特許文献4)、Biなどを含むSn基合金(特許文献5)が用いられている。   Patent Documents 3 to 5 prevent the reduction of C / N (carrier to noise ratio, carrier to noise output level) due to the hole recording method, and the optical recording medium having high C / N and reflectivity. Regarding technology. Here, a Cu-based alloy containing In (Patent Document 3), an Ag-based alloy containing Bi or the like (Patent Document 4), or an Sn-based alloy containing Bi or the like (Patent Document 5) is used as the recording layer.

特許文献6〜8、および前述した特許文献5は、Sn基合金に関する。特許文献6は、金属合金層中に、熱処理時に少なくとも一部が凝集し得る元素を2種以上含む光学的記録媒体に関する。具体的には、例えば、BiやInを含むSn−Cu基合金層(厚さ1〜8nm)が開示されており、これにより、高融点および高熱伝導率を備えた記録媒体が得られる。特許文献7には、記録特性に優れたSn−Bi合金に、SnおよびBiよりも酸化されやすい被酸化物質を添加した記録層が開示されている。特許文献7によれば、特に、高温高湿環境下における耐久性(例えば、温度60℃、相対湿度90%の環境下で120時間保持)が高められた光記録媒体が得られる。特許文献8には、光記録層を構成する化合物の組成を、Snで、かつ30<x<70(原子%)、1<y<20(原子%)、20<z<60(原子%)に制御した光記録媒体が開示されている。特許文献8によれば、Snを記録材料として用い、開口数が0.8程度の対物レンズを使用して波長380nm〜420nm程度の短波長レーザ光を照射して情報の記録を行うときの問題点(良好な記録マークが形成されず、ジッターが大きくなる)を解決することができる。
特開2004−5922号公報 特開2004−234717号公報 特開2002−172861号公報 特開2002−144730号公報 特開2002−225433号公報 特開平2−117887号公報 特開2001−180114号公報 特開2004−90610号公報 Appl.Phys.Lett.,34(1979)、835頁
Patent Documents 6 to 8 and Patent Document 5 described above relate to an Sn-based alloy. Patent Document 6 relates to an optical recording medium in which a metal alloy layer contains two or more elements that can at least partially aggregate during heat treatment. Specifically, for example, a Sn—Cu base alloy layer (thickness of 1 to 8 nm) containing Bi or In is disclosed, whereby a recording medium having a high melting point and high thermal conductivity is obtained. Patent Document 7 discloses a recording layer in which an oxidizable substance that is more easily oxidized than Sn and Bi is added to an Sn—Bi alloy having excellent recording characteristics. According to Patent Document 7, in particular, an optical recording medium having improved durability under a high-temperature and high-humidity environment (for example, holding for 120 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%) can be obtained. In Patent Document 8, the composition of the compound constituting the optical recording layer is Sn x N y O z , 30 <x <70 (atomic%), 1 <y <20 (atomic%), 20 <z <. An optical recording medium controlled to 60 (atomic%) is disclosed. According to Patent Document 8, there is a problem in recording information by using Sn as a recording material and irradiating a short wavelength laser beam having a wavelength of about 380 nm to 420 nm using an objective lens having a numerical aperture of about 0.8. The point (a good recording mark is not formed and jitter increases) can be solved.
JP 2004-5922 A JP 2004-234717 A JP 2002-172861 A JP 2002-144730 A JP 2002-225433 A Japanese Patent Laid-Open No. 2-117878 JP 2001-180114 A Japanese Patent Laid-Open No. 2004-90610 Appl. Phys. Lett. , 34 (1979), 835 pages.

記録情報の高密度化への要求が益々高まるにつれ、特に、青紫色レーザなどの短波長レーザを用いて情報の記録および再生を行うことが望まれている。前述した穴あけ記録方式による情報記録技術により、記録特性(低熱伝導率、高初期反射率、記録マークの形成性など)は高められているが、高温高湿環境下での耐久性に劣っている。   As the demand for higher density recording information increases, it is particularly desirable to record and reproduce information using a short wavelength laser such as a blue-violet laser. Recording characteristics (low thermal conductivity, high initial reflectivity, record mark formation, etc.) have been improved by the information recording technology using the above-described hole recording method, but it is inferior in durability in a high-temperature and high-humidity environment. .

本発明は、上記事情に鑑みてなされたものであり、その目的は、初期反射率および記録マークの形成性などに優れていることはもちろんのこと、高温高湿環境下での耐久性にも極めて優れており、青紫色レーザを用いる次世代光ディスクに充分適用することが可能な光情報記録媒体用の記録層および当該記録層を形成する材料からなるスパッタリングターゲット、並びに当該記録層を備えた光情報記録媒体を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is not only excellent in initial reflectivity and formability of recording marks, but also in durability in a high temperature and high humidity environment. A recording layer for an optical information recording medium that is extremely excellent and can be sufficiently applied to a next-generation optical disk using a blue-violet laser, a sputtering target made of a material forming the recording layer, and light provided with the recording layer It is to provide an information recording medium.

上記課題を解決することのできた本発明の光情報記録媒体用記録層は、レーザ光の照射によって記録マークが形成される記録層であって、該記録層は、Nd、Gd、およびLaよりなる群から選択される少なくとも一種を合計で1.0%以上15%以下の範囲で含有するSn基合金からなることに要旨が存在する。   The recording layer for an optical information recording medium of the present invention that has solved the above problems is a recording layer on which a recording mark is formed by irradiation with laser light, and the recording layer is made of Nd, Gd, and La. The gist lies in that it is made of an Sn-based alloy containing at least one selected from the group in a total range of 1.0% to 15%.

好ましい実施形態において、前記記録層の厚さは、10nm〜50nmの範囲内である。   In a preferred embodiment, the recording layer has a thickness in the range of 10 nm to 50 nm.

好ましい実施形態において、前記レーザ光の波長は、380nm〜450nmの範囲内である。   In a preferred embodiment, the wavelength of the laser beam is in the range of 380 nm to 450 nm.

本発明の光情報記録媒体用スパッタリングターゲットは、Nd、Gd、およびLaよりなる群から選択される少なくとも一種を合計で1.0%〜15%の範囲で含有するSn基合金からなることに要旨が存在する。   The sputtering target for optical information recording media of the present invention is composed of an Sn-based alloy containing at least one selected from the group consisting of Nd, Gd, and La in a total range of 1.0% to 15%. Exists.

本発明の光情報記録媒体は、上記のいずれかの光情報記録媒体用記録層を備えている。   The optical information recording medium of the present invention includes any one of the recording layers for optical information recording media described above.

本発明の記録層は、上記のように構成されているため、当該記録層を備えた光情報記録媒体は、初期反射率、および記録マークの形成性などの記録特性に優れているだけでなく、高温高湿環境下での耐久性にも極めて優れている。そのため、本発明の記録層は、高密度かつ高速度で情報の記録再生ができる追記型の光ディスクに好適に用いられ、特に、青紫色レーザを用いる次世代光ディスクに好適に用いられる。   Since the recording layer of the present invention is configured as described above, the optical information recording medium provided with the recording layer is not only excellent in recording characteristics such as initial reflectivity and recording mark formability. In addition, it is extremely excellent in durability under a high temperature and high humidity environment. Therefore, the recording layer of the present invention is suitably used for a write-once optical disc capable of recording and reproducing information at a high density and at a high speed, and particularly suitably for a next generation optical disc using a blue-violet laser.

本発明者は、穴あけ記録方式によって情報を記録することができ、特に、高温高湿環境下での耐久性(反射率の低下量が少ないこと)に極めて優れた記録層を提供するため、Sn基合金に着目して検討を行った。その結果、Snに、Nd、Gd、およびLaよりなる群から選択される少なくとも一種を所定量含むSn基合金を用いれば、所期の目的が達成されることを見出し、本発明を完成した。   The present inventor can record information by a punching recording method, and in particular, provides a recording layer that is extremely excellent in durability under a high-temperature and high-humidity environment (the amount of decrease in reflectance is small). A study was conducted focusing on the base alloy. As a result, the inventors have found that the intended purpose can be achieved by using a Sn-based alloy containing a predetermined amount of at least one selected from the group consisting of Nd, Gd, and La, and the present invention has been completed.

まず、本発明に到達した経緯を説明する。   First, how the present invention is reached will be described.

本発明において、Sn基合金に着目した理由は以下のとおりである。反射率の点では、SnよりもAl、Ag、Cuの方が優れているが、レーザ光照射による記録マークの形成性は、Snの方が優れている。Snの融点は約232℃であり、Al(融点約660℃)、Ag(融点約962℃)、Cu(融点約1085℃)に比べて非常に低いため、Sn中に合金元素を添加したSn基合金の薄膜は、レーザ光の照射によって容易に溶融し、記録特性が向上すると考えられる。本発明のように、青紫色レーザを用いる次世代光ディスクへの適用を主目的とする場合、Alなどを用いると記録マークが容易に形成され難くなる恐れがあることを考慮し、Sn基合金を採用することにした。   In the present invention, the reason for focusing on the Sn-based alloy is as follows. In terms of reflectivity, Al, Ag, and Cu are superior to Sn, but Sn is superior in the formation of recording marks by laser light irradiation. Sn has a melting point of about 232 ° C., which is very low compared to Al (melting point of about 660 ° C.), Ag (melting point of about 962 ° C.), and Cu (melting point of about 1085 ° C.). It is considered that the thin film of the base alloy is easily melted by laser light irradiation and the recording characteristics are improved. When the main purpose is to apply to a next generation optical disk using a blue-violet laser as in the present invention, it is difficult to form a recording mark when Al or the like is used. I decided to adopt it.

一方、本発明では、耐久性の指標を、「波長405nmの青色レーザ光を照射して記録マークが形成された記録層を、温度80℃、相対湿度85%の環境下で96時間保持したときの反射率の変化が15%未満、好ましくは10%未満を満足すること」と定めた。青色レーザは、赤色レーザよりも波長が短いため、膜劣化に対する反射率の変化はより顕著である。そのため、青色レーザを使用して記録や再生が行われた光ディスクの耐久性は、赤色レーザを使用した場合よりも低下することが予想される。すなわち、青色レーザの光ディスクに適用するには、従来より、一層高い耐久性が求められている。そこで、本発明では、保護膜を設けず、上記のように温度80℃、相対湿度85%という高温高湿環境下で96時間と長い時間保持するという、極めて過酷な条件下に曝したとしても、反射が殆ど低下しないことを、耐久性の指標として掲げた。なお、前述した特許文献1および特許文献7においても、光ディスクの耐久性を調べているが、本発明で定める条件よりも緩やかな環境下での耐久性を調べているに過ぎない。特許文献7では、本発明よりも低温下での耐久性試験を実施しており(温度60℃、相対湿度90%で120時間保持)、特許文献1では、本発明よりも短時間の耐久性試験を実施しており(温度80℃、相対湿度85%で50時間保持)、いずれも、本発明のように、高温長時間の環境下での耐久性試験を行ったものではない。   On the other hand, in the present invention, the durability index is “when a recording layer on which a recording mark is formed by irradiating a blue laser beam having a wavelength of 405 nm is held for 96 hours in an environment of a temperature of 80 ° C. and a relative humidity of 85% The change in the reflectance of the light source is less than 15%, preferably less than 10% ”. Since the wavelength of the blue laser is shorter than that of the red laser, the change in reflectance with respect to film deterioration is more remarkable. For this reason, it is expected that the durability of an optical disk recorded and reproduced using a blue laser will be lower than that when a red laser is used. That is, in order to apply to a blue laser optical disk, higher durability is required than before. Therefore, in the present invention, even if it is exposed to extremely severe conditions such as holding a long time of 96 hours in a high temperature and high humidity environment with a temperature of 80 ° C. and a relative humidity of 85% as described above without providing a protective film. In addition, the fact that the reflection hardly decreases was listed as an indicator of durability. In Patent Document 1 and Patent Document 7 described above, the durability of the optical disk is examined, but only the durability under a milder environment than the conditions defined in the present invention is examined. In Patent Document 7, a durability test at a lower temperature than that of the present invention is performed (temperature maintained at 60 ° C. and relative humidity of 90% for 120 hours). In Patent Document 1, durability is shorter than that of the present invention. Tests are carried out (temperature is kept at 80 ° C. and relative humidity is 85% for 50 hours), and none of them is a durability test under a high temperature and long time environment as in the present invention.

次に、Sn中に種々の合金成分を添加したSn基合金の記録層を試作し、波長405nmの青色レーザ光を照射したときの記録マークの形成性などを調べるとともに、高温高湿環境下に曝したときの反射率の変化(耐久性)を調べた。   Next, an Sn-based alloy recording layer in which various alloy components are added to Sn is made as a prototype, and the formation of recording marks when irradiated with blue laser light having a wavelength of 405 nm is examined, and in a high temperature and high humidity environment. The change in reflectance (durability) upon exposure was examined.

その結果、後記する実施例の欄で詳述するように、Nd、Gd、およびLaの少なくとも一種を所定量添加したSn基合金を用いると、記録マーク形成性や反射率などの優れた記録特性を維持しつつ、本発明で定める耐久性の指標を満足し得ることを突き止めた。   As a result, as will be described in detail in the Examples section that will be described later, when an Sn-based alloy to which at least one of Nd, Gd, and La is added in a predetermined amount is used, excellent recording characteristics such as recording mark forming property and reflectance. It was found that the durability index defined in the present invention can be satisfied while maintaining the above.

以下、本発明の記録層を詳しく説明する。   Hereinafter, the recording layer of the present invention will be described in detail.

本発明の記録層は、Nd、Gd、およびLaよりなる群から選択される少なくとも一種を合計で1.0%〜15%の範囲で含有するSn基合金からなる。後記する実験例に示すように、Snは、記録マークの形成性などの記録特性に優れているが、高温環境下の耐久性に劣っている。Nd、Gd、およびLaよりなる群から選択される少なくとも一種の元素を所定量添加することにより、優れた記録特性を維持しつつ、耐久性が著しく高められる。このような作用が得られる理由は、詳細には不明であるが、Snよりも酸化し易い上記元素を添加することによってSnの酸化が抑制されるため、耐久性が向上することなどが考えられる。   The recording layer of the present invention is made of a Sn-based alloy containing at least one selected from the group consisting of Nd, Gd, and La in a total range of 1.0% to 15%. As shown in the experimental examples to be described later, Sn is excellent in recording characteristics such as the formability of recording marks, but is inferior in durability under a high temperature environment. By adding a predetermined amount of at least one element selected from the group consisting of Nd, Gd, and La, durability is remarkably enhanced while maintaining excellent recording characteristics. The reason why such an action can be obtained is unknown in detail, but the addition of the above-mentioned element that is easier to oxidize than Sn suppresses the oxidation of Sn, which may improve durability. .

Nd、Gd、およびLaは、それぞれ、単独で添加しても良いし、併用してもよい。   Nd, Gd, and La may be added alone or in combination.

上記元素の添加量は、後記する実施例のデータに基づき、合計で、1.0%以上15%以下とする。添加量の合計が1.0%未満では、所望の耐久性が得られない。ただし、上記元素を過剰に添加すると、初期反射率が低下するため、上記元素の添加量の合計の上限を15%とした。上記元素の添加量は、合計で、3%以上12%以下であることが好ましく、5%以上10%以下であることがより好ましい。   Based on the data of the Example mentioned later, the addition amount of the said element shall be 1.0% or more and 15% or less in total. If the total amount added is less than 1.0%, the desired durability cannot be obtained. However, since the initial reflectance is reduced when the element is added excessively, the upper limit of the total amount of the element added is set to 15%. The total amount of the elements added is preferably 3% or more and 12% or less, and more preferably 5% or more and 10% or less.

本発明の記録層は、上記成分を含有し、残部Snであるが、本発明の作用を損なわない範囲で、他の成分を添加しても良い。例えば、スパッタリング法を用いて上記記録層を作製する際に不可避的に導入されるガス成分(O,N等)や、溶解原料として用いられるSn基合金中に予め含まれている不純物が含まれていても構わない。 The recording layer of the present invention contains the above components and the remaining Sn, but other components may be added as long as the effects of the present invention are not impaired. For example, gas components (O 2 , N 2, etc.) that are inevitably introduced when the recording layer is produced using a sputtering method, and impurities that are previously contained in an Sn-based alloy used as a melting raw material are included. It may be included.

上記記録層の厚さは、10nm〜50nmの範囲内であることが好ましい。後記する実験例に示すように、記録層の厚さを10nm以上にすると、初期反射率が高められる。一方、記録層の厚さは、初期反射率の観点からは制限されないが、記録マークの形成性を考慮すると、50nm以下にすることが好ましい。記録層の厚さは、15nm以上40nm以下であることがより好ましく、20nm以上35nm以下であることがより好ましい。   The thickness of the recording layer is preferably in the range of 10 nm to 50 nm. As shown in an experimental example to be described later, when the thickness of the recording layer is 10 nm or more, the initial reflectance is increased. On the other hand, the thickness of the recording layer is not limited from the viewpoint of the initial reflectivity, but is preferably 50 nm or less in consideration of the formation of recording marks. The thickness of the recording layer is more preferably 15 nm or more and 40 nm or less, and more preferably 20 nm or more and 35 nm or less.

本発明の光情報記録媒体は、上記のSn基合金記録層を備えている。上記の記録層以外の構成は特に限定されず、光情報記録媒体の分野に公知の構成を採用することができる。   The optical information recording medium of the present invention includes the above Sn-based alloy recording layer. The configuration other than the recording layer is not particularly limited, and a configuration known in the field of optical information recording media can be employed.

図1に、本発明による光情報記録媒体(光ディスク)の好ましい実施形態の構成を模式的に示す。図1は、波長が約380nmから450nm、好ましくは約405nmの青色レーザ光を記録層に照射し、データの記録および再生を行うことが可能な追記型の光ディスク10である。光ディスク10は、支持基板1と、光学調整層2と、誘電体層3、5と、誘電体層3、5の間に挟まれた記録層4と、光透過層6とを備えている。誘電体層3、5は、記録層4を保護するために設けられており、これにより、記録情報を長時間保存することができる。   FIG. 1 schematically shows a configuration of a preferred embodiment of an optical information recording medium (optical disc) according to the present invention. FIG. 1 shows a write-once optical disc 10 that can record and reproduce data by irradiating a recording layer with blue laser light having a wavelength of about 380 nm to 450 nm, preferably about 405 nm. The optical disk 10 includes a support substrate 1, an optical adjustment layer 2, dielectric layers 3 and 5, a recording layer 4 sandwiched between the dielectric layers 3 and 5, and a light transmission layer 6. The dielectric layers 3 and 5 are provided in order to protect the recording layer 4, whereby recording information can be stored for a long time.

本実施形態の光ディスクは、記録層4の材料として、前述した要件を満足するSn基合金を用いることに特徴があり、記録層4以外の支持基板1や、層(光学調整層2、誘電体層3、5)の材料は、特に限定されず、通常汎用されているものを適宜選択することができる。光学調整層2の材料として、例えば、Ag合金などを用いると反射率を高めることができる。なお、本発明の記録層を用いれば、誘電体層3、5を省略することもできる。   The optical disk of the present embodiment is characterized in that an Sn-based alloy that satisfies the above-described requirements is used as the material of the recording layer 4, and the support substrate 1 other than the recording layer 4 and the layers (the optical adjustment layer 2, the dielectric) The materials for the layers 3 and 5) are not particularly limited, and those commonly used can be appropriately selected. As a material for the optical adjustment layer 2, for example, an Ag alloy or the like can be used to increase the reflectance. If the recording layer of the present invention is used, the dielectric layers 3 and 5 can be omitted.

上記Sn基合金の薄膜は、スパッタリング法によって作製されることが好ましい。本発明に用いられる合金元素(Nd,Gd、La)は、平衡状態ではSnに対する固溶限は10原子%以下であるが、スパッタリング法によって形成された薄膜は、スパッタリング法に特有の気相急冷によって強制固溶が可能になる。そのため、スパッタリング法以外の薄膜形成法でSn基合金薄膜を形成した場合に比べ、上記合金元素がSnマトリックス中に均一に存在する結果、耐久性などが著しく向上する。   The Sn-based alloy thin film is preferably produced by a sputtering method. The alloy elements (Nd, Gd, La) used in the present invention have a solid solubility limit with respect to Sn of 10 atomic% or less in an equilibrium state, but a thin film formed by sputtering is vapor-phase quenching peculiar to sputtering. Makes it possible to forcibly dissolve. Therefore, as compared with the case where the Sn-based alloy thin film is formed by a thin film forming method other than the sputtering method, the alloy elements are uniformly present in the Sn matrix, so that the durability and the like are remarkably improved.

また、スパッタリングの際には、スパッタリングターゲット材として、溶解・鋳造法などによって作製されたSn基合金(以下、「溶製Sn基合金ターゲット材」という)を用いることが好ましい。溶製Sn基合金ターゲット材の組織は均一であり、スパッタ率及び出射角度が均一な為、成分組成と膜厚が均一なSn基合金薄膜の記録層が安定して得られる結果、より高性能の光ディスクが作製される。尚、上記溶製Sn基合金ターゲット材の酸素含有量を100ppm以下に制御すれば、膜形成速度を一定に保持し易くなり、Sn基合金薄膜の酸素量も低くなる為、Sn基合金薄膜の反射率及び耐久性が一層高められる。   In sputtering, it is preferable to use an Sn-based alloy (hereinafter referred to as “melted Sn-based alloy target material”) produced by a melting / casting method or the like as a sputtering target material. Since the structure of the melted Sn-based alloy target material is uniform and the sputtering rate and the emission angle are uniform, the recording layer of the Sn-based alloy thin film having a uniform composition and film thickness can be stably obtained, resulting in higher performance. An optical disc is manufactured. If the oxygen content of the molten Sn-based alloy target material is controlled to 100 ppm or less, the film formation rate can be easily maintained, and the oxygen content of the Sn-based alloy thin film is also reduced. Reflectivity and durability are further enhanced.

以下、実施例に基づいて本発明を詳述する。ただし、下記の実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で適宜変更することは、本発明の技術範囲内に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention, and modifications within the technical scope of the present invention are made as appropriate without departing from the spirit of the preceding and following descriptions.

(試作例)
以下のようにして表1に示す種々のSn基合金薄膜(Sn−Nd合金薄膜、Sn−Gd合金薄膜、およびSn−La合金薄膜)を試作し、これらの初期反射率、記録マーク形成性、および耐久性を調べた。比較のため、純Sn薄膜の上記特性も同様に調べた。
(Prototype example)
Various Sn-based alloy thin films (Sn—Nd alloy thin film, Sn—Gd alloy thin film, and Sn—La alloy thin film) shown in Table 1 were made as trial samples, and their initial reflectivity, recording mark forming property, And the durability was examined. For comparison, the above properties of pure Sn thin films were also examined.

(Sn基合金薄膜および純Sn薄膜の形成)
純Snのスパッタリングターゲットを用い、透明ポリカーボネート樹脂基板(厚さ0.6mm、直径120mm)の上に純Sn薄膜またはSn基合金薄膜を形成した。Sn基合金薄膜は、添加する合金元素のチップを純Snのスパッタリングターゲットに乗せた複合スパッタリングターゲットを用いて形成した。スパッタリング条件は、Ar流量30sccm、Arガス分圧2mTorr、成膜パワーDC 50W、到達真空度:10−5Torr以下とした。なお、Sn基合金薄膜の厚さは、スパッタ時間を5秒から45秒の間で変えることによって表1に示す範囲内に変化させた。このようにして得られたSn基合金薄膜の組成は、ICP質量分析法で求めた。
(Formation of Sn-based alloy thin film and pure Sn thin film)
Using a pure Sn sputtering target, a pure Sn thin film or Sn-based alloy thin film was formed on a transparent polycarbonate resin substrate (thickness 0.6 mm, diameter 120 mm). The Sn-based alloy thin film was formed using a composite sputtering target in which a chip of an alloy element to be added was placed on a pure Sn sputtering target. The sputtering conditions were an Ar flow rate of 30 sccm, an Ar gas partial pressure of 2 mTorr, a film formation power of DC 50 W, and an ultimate vacuum of 10 −5 Torr or less. Note that the thickness of the Sn-based alloy thin film was changed within the range shown in Table 1 by changing the sputtering time from 5 seconds to 45 seconds. The composition of the Sn-based alloy thin film thus obtained was determined by ICP mass spectrometry.

(記録マークの形成性)
上記試料に対し、レーザパワーの大きさを変えながら、青色レーザ光を以下のように照射し、記録マークを形成した。レーザ光は、Sn基合金薄膜側から照射した。
光源:波長405nmの半導体レーザ
レーザのスポットサイズ:直径0.8μm
線速度:10m/s
(Record mark formation)
The sample was irradiated with blue laser light as follows while changing the laser power, thereby forming a recording mark. Laser light was irradiated from the Sn-based alloy thin film side.
Light source: Semiconductor laser with a wavelength of 405 nm Laser spot size: Diameter 0.8 μm
Linear velocity: 10 m / s

このようにして形成された記録マークの形状を光学顕微鏡(倍率:1000倍)で観察し、レーザ光の照射面積に対する記録マーク形成の面積の比(面積比)を算出した。本発明では、面積率85%以上の試料(◎と○)を合格とし、下記基準に基づいて記録マークの形成性を評価した。
◎:10mW以上15mW以下の低いレーザパワーでレーザ光を照射しても
85%以上の面積率が得られる
○:15mW超え25mW以下のレーザパワーでレーザ光を照射したとき、
85%以上の面積率が得られる
×:25mW超えのレーザパワーでレーザ光を照射しても
85%以上の面積率は得られない。
The shape of the recording mark thus formed was observed with an optical microscope (magnification: 1000 times), and the ratio (area ratio) of the recording mark formation area to the laser light irradiation area was calculated. In the present invention, samples with an area ratio of 85% or more (◎ and ○) were accepted and the formation of recording marks was evaluated based on the following criteria.
A: An area ratio of 85% or more can be obtained even when laser light is irradiated at a low laser power of 10 mW to 15 mW. ○: When laser light is irradiated at a laser power of more than 15 mW and 25 mW or less.
An area ratio of 85% or more is obtained. X: An area ratio of 85% or more cannot be obtained even when laser light is irradiated with a laser power exceeding 25 mW.

(初期反射率の測定)
スパッタリングで成膜した直後の薄膜(記録マークが形成される前)について、日本分光株式会社製の可視・紫外分光光度計「V−570」を用い、測定波長:1000〜250nmの範囲における分光絶対反射率を測定した。本発明では、波長405nmの初期反射率が30%超の試料を合格とした。
(Measurement of initial reflectance)
For a thin film immediately after film formation by sputtering (before recording marks are formed), using a visible / ultraviolet spectrophotometer “V-570” manufactured by JASCO Corporation, a spectral wavelength in the range of 1000 to 250 nm is measured. The reflectance was measured. In the present invention, a sample having an initial reflectance of more than 30% at a wavelength of 405 nm is regarded as acceptable.

(耐久性の測定)
上記のようにして初期反射率を測定した試料について、温度80℃、相対湿度85%の大気雰囲気中で48時間保持または96時間保持する高温高湿試験を行った後、上記と同様にして分光絶対反射率を測定した。上記高温高湿試験前後の波長405nmでの反射率の差(試験終了後の反射率の減少量)を算出し、下記基準に基づき、耐久性を評価した。本発明では、96時間保持したときの高温高湿試験の結果が○、◎、および●のものを合格とした。
●:反射率の減少量10%未満
◎:反射率の減少量10%以上15%未満
○:反射率の減少量15%以上20%未満
×:反射率の減少量20%以上
(Durability measurement)
The sample whose initial reflectivity was measured as described above was subjected to a high-temperature and high-humidity test that was held in an air atmosphere at a temperature of 80 ° C. and a relative humidity of 85% for 48 hours or 96 hours. Absolute reflectance was measured. A difference in reflectance at a wavelength of 405 nm before and after the high-temperature and high-humidity test (reduction amount of reflectance after completion of the test) was calculated, and durability was evaluated based on the following criteria. In the present invention, the results of the high-temperature and high-humidity test when held for 96 hours are evaluated as “good”, “good”, and “good”.
●: Less than 10% decrease in reflectance
◎: Reflection decrease 10% or more and less than 15% ○: Reflection decrease 15% or more and less than 20% ×: Reflection decrease 20% or more

表1に、これらの結果を併記する。   Table 1 shows these results together.

表1中、試料1は純Sn薄膜を、試料2〜12はSn−Nd薄膜を、試料13〜20はSn−Gd薄膜を、試料21〜27はSn−La薄膜を、夫々、用いた結果である。   In Table 1, Sample 1 is a pure Sn thin film, Samples 2 to 12 are Sn-Nd thin films, Samples 13 to 20 are Sn-Gd thin films, and Samples 21 to 27 are Sn-La thin films. It is.

Figure 2007111898
Figure 2007111898

表1より、以下のように考察することができる。   From Table 1, it can be considered as follows.

本発明の要件を満足するSn−Nd薄膜(試料3〜5、試料8〜11)、Sn−Gd薄膜(試料14〜19)、およびSn−La薄膜(試料22〜26)は、いずれも、初期反射率および記録マークの形成性に優れており、良好な記録特性を備えているだけでなく、耐久性にも優れている。   Sn-Nd thin films (samples 3 to 5, samples 8 to 11), Sn-Gd thin films (samples 14 to 19), and Sn-La thin films (samples 22 to 26) satisfying the requirements of the present invention are all It has excellent initial reflectivity and formability of recording marks, and not only has good recording characteristics, but also has excellent durability.

これに対し、純Sn薄膜の試料1は、耐久性に劣っている。   In contrast, the pure Sn thin film sample 1 is inferior in durability.

また、Ndの添加量が少ない試料2、Gdの添加量が少ない試料13、Laの添加量が少ない試料21は、いずれも、耐久性に劣っている。   Moreover, the sample 2 with a small amount of Nd added, the sample 13 with a small amount of Gd added, and the sample 21 with a small amount of La added are inferior in durability.

一方、Ndの添加量が多い試料12、Gdの添加量が多い試料20、Laの添加量が多い試料27は、いずれも、初期反射率が低下した。   On the other hand, the sample 12 with a large amount of Nd added, the sample 20 with a large amount of Gd added, and the sample 27 with a large amount of La added had a low initial reflectance.

更に、Sn−Nd薄膜について、薄膜の厚さが厚い試料6は、記録マークの形成性が低下し、薄膜の厚さが薄い試料7は、初期反射率が低下した。表1には、Sn−Nd薄膜の厚さを変化させた実験結果のみを示しているが、同様の実験結果は、Sn−Gd薄膜およびSn−La薄膜についても認められたことを確認している(表には示さず)。   Further, with respect to the Sn—Nd thin film, the sample 6 having a thick thin film has a low recording mark formability, and the sample 7 having a thin thin film has a low initial reflectance. Table 1 shows only the experimental results obtained by changing the thickness of the Sn—Nd thin film. It was confirmed that similar experimental results were also observed for the Sn—Gd thin film and the Sn—La thin film. (Not shown in the table).

図1は、本発明による光情報記録媒体の実施形態の構成を模式的に説明する断面図である。FIG. 1 is a cross-sectional view schematically illustrating the configuration of an embodiment of an optical information recording medium according to the present invention.

符号の説明Explanation of symbols

1 支持基板
2 光学調整層
3、5 誘電体層
4 記録層
6 光透過層
10 光ディスク
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Optical adjustment layer 3, 5 Dielectric layer 4 Recording layer 6 Light transmission layer 10 Optical disk

Claims (5)

レーザ光の照射によって記録マークが形成される記録層であって、
該記録層は、Nd、Gd、およびLaよりなる群から選択される少なくとも一種を合計で1.0%〜15%(原子%の意味、以下、同じ)の範囲で含有するSn基合金からなることを特徴とする光情報記録媒体用記録層。
A recording layer in which a recording mark is formed by laser light irradiation,
The recording layer is made of a Sn-based alloy containing at least one selected from the group consisting of Nd, Gd, and La in a total range of 1.0% to 15% (meaning atomic%, hereinafter the same). A recording layer for an optical information recording medium.
前記記録層の厚さは、10nm〜50nmの範囲内である請求項1に記載の光情報記録媒体用記録層。   The recording layer for an optical information recording medium according to claim 1, wherein the recording layer has a thickness in a range of 10 nm to 50 nm. 前記レーザ光の波長は、380nm〜450nmの範囲内である請求項1または2に記載の光情報記録媒体用記録層。   The recording layer for an optical information recording medium according to claim 1 or 2, wherein the wavelength of the laser beam is in a range of 380 nm to 450 nm. Nd、Gd、およびLaよりなる群から選択される少なくとも一種を合計で1.0%以上15%以下の範囲で含有するSn基合金からなることを特徴とする光情報記録媒体用スパッタリングターゲット。   A sputtering target for optical information recording media, comprising a Sn-based alloy containing at least one selected from the group consisting of Nd, Gd, and La in a total range of 1.0% to 15%. 請求項1〜3のいずれかに記載の光情報記録媒体用記録層を備えたことを特徴とする光情報記録媒体。   An optical information recording medium comprising the recording layer for an optical information recording medium according to claim 1.
JP2005303211A 2005-10-18 2005-10-18 Recording layer and sputtering target for optical information recording medium, and optical information recording medium Withdrawn JP2007111898A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005303211A JP2007111898A (en) 2005-10-18 2005-10-18 Recording layer and sputtering target for optical information recording medium, and optical information recording medium
US12/090,569 US20090046566A1 (en) 2005-10-18 2006-10-17 Recording layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
PCT/JP2006/320678 WO2007046390A1 (en) 2005-10-18 2006-10-17 Recording layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
TW095143080A TW200746124A (en) 2005-10-18 2006-11-21 Recording layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303211A JP2007111898A (en) 2005-10-18 2005-10-18 Recording layer and sputtering target for optical information recording medium, and optical information recording medium

Publications (1)

Publication Number Publication Date
JP2007111898A true JP2007111898A (en) 2007-05-10

Family

ID=38094531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303211A Withdrawn JP2007111898A (en) 2005-10-18 2005-10-18 Recording layer and sputtering target for optical information recording medium, and optical information recording medium

Country Status (1)

Country Link
JP (1) JP2007111898A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050639A (en) * 2006-08-23 2008-03-06 Idemitsu Kosan Co Ltd Neodymium oxide-containing oxide target
WO2010089840A1 (en) * 2009-02-06 2010-08-12 Dewaki Kenji Product having gadolinium-containing metal layer
JP4531128B1 (en) * 2009-07-31 2010-08-25 謙治 出分 Tin-containing alloy plating bath, electrolytic plating method using the same, and substrate on which the electrolytic plating is deposited
US9574281B2 (en) 2009-02-06 2017-02-21 M-Tech Japan Co., Ltd. Silver-containing alloy plating bath and method for electrolytic plating using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050639A (en) * 2006-08-23 2008-03-06 Idemitsu Kosan Co Ltd Neodymium oxide-containing oxide target
WO2010089840A1 (en) * 2009-02-06 2010-08-12 Dewaki Kenji Product having gadolinium-containing metal layer
JPWO2010089840A1 (en) * 2009-02-06 2012-08-09 謙治 出分 Products with gadolinium-containing metal layers
US9574281B2 (en) 2009-02-06 2017-02-21 M-Tech Japan Co., Ltd. Silver-containing alloy plating bath and method for electrolytic plating using same
JP4531128B1 (en) * 2009-07-31 2010-08-25 謙治 出分 Tin-containing alloy plating bath, electrolytic plating method using the same, and substrate on which the electrolytic plating is deposited
WO2011013252A1 (en) * 2009-07-31 2011-02-03 株式会社Mテック・ジャパン Tin-containing alloy plating bath, electroplating method using same, and base having electroplated material deposited thereon
US9080247B2 (en) 2009-07-31 2015-07-14 Shinji Dewaki Tin-containing alloy plating bath, electroplating method using same, and substrate with the electroplating deposited thereon

Similar Documents

Publication Publication Date Title
KR100445083B1 (en) Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium
JP3907666B2 (en) Read-only optical information recording medium for laser marking
JP4527624B2 (en) Optical information medium having Ag alloy reflective film
JP4377861B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
JP4377877B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
JP2007062108A (en) Recording layer for optical information recording medium, sputtering target and optical information recording medium
JP2006054032A5 (en)
JP2007035104A (en) Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM AND Ag ALLOY SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM
JP2006523913A (en) Alloys for reflective or semi-reflective layers of light storage media
JP2002015464A (en) Reflecting layer or translucent reflecting layer for optical information recording medium, optical information recording medium and sputtering target for the medium
KR100685061B1 (en) Optical recording medium and process for producing the same, method for recording data on optical recording medium and method for reproducing data from optical recording medium
KR20060033027A (en) Optical recording medium and process for producing the same, and data recording method and data reproducing method for optical recording medium
US20090046566A1 (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
KR100770806B1 (en) Optical recording medium, method for producing the same, and data recording method and data reproducing method for optical recording medium
KR100770807B1 (en) Optical recording medium and process for producing the same, data recording method and data reproducing method for optical recording medium
JP2007111898A (en) Recording layer and sputtering target for optical information recording medium, and optical information recording medium
JP2009076129A (en) Read-only optical information recording medium
JP2007230207A (en) Recording layer for optical information recording medium, optical information recording medium, and spattering target
JP3924308B2 (en) Ag alloy sputtering target for forming Ag alloy reflective film for read-only optical information recording medium for laser marking
JP4540687B2 (en) Read-only optical information recording medium
JP2007293983A (en) Optical information recording medium
JP2007196683A (en) Recording layer for optical information recording medium, optical information recording medium and sputtering target
JP2008217957A (en) Optical information recording medium
JP2007301761A (en) Recording layer for optical information recording medium and optical information recording medium
JP2007118463A (en) Recording layer and spattering target for optical information recording medium, and optical information recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090929