JP2007111599A - Method for cleaning contaminated ground - Google Patents

Method for cleaning contaminated ground Download PDF

Info

Publication number
JP2007111599A
JP2007111599A JP2005303856A JP2005303856A JP2007111599A JP 2007111599 A JP2007111599 A JP 2007111599A JP 2005303856 A JP2005303856 A JP 2005303856A JP 2005303856 A JP2005303856 A JP 2005303856A JP 2007111599 A JP2007111599 A JP 2007111599A
Authority
JP
Japan
Prior art keywords
ground
injection
contaminated ground
underground
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005303856A
Other languages
Japanese (ja)
Other versions
JP4240497B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2005303856A priority Critical patent/JP4240497B2/en
Publication of JP2007111599A publication Critical patent/JP2007111599A/en
Application granted granted Critical
Publication of JP4240497B2 publication Critical patent/JP4240497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning a contaminated ground is characterized by using a biodegradable underground pipe upon cleaning a contaminated ground to be left buried permanently allowing it to decompose by virtue of microbes in the ground into harmless substances such as carbon dioxide so as not to hinder future ground excavation, which makes it possible to use the ground effectively. <P>SOLUTION: The method for cleaning a contaminated ground is characterized by comprising a step of burying a plurality of underground pipes 2 made from a biodegradable plastic in a contaminated ground, a step of cleaning the contaminated ground through the plurality of the underground pipes 2 using a specific grouting apparatus A and a subsequent step of permanently leaving the buried underground pipes 2 as they are to allow them to be decomposed by microbes in the ground to restore the once contaminated ground to an environmentally clean and natural state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は汚染地盤中に微生物分解される土中埋設管を複数本埋設し、この埋設管を通し、一台ないしは多数のポンプを備えた地盤注入装置を用いて地盤中に浄化材を注入して地盤汚染の浄化処理を施す汚染地盤の浄化方法に係り、特に浄化処理後、この複数本の土中埋設管を汚染地盤中に埋め殺しにすることにより該埋設管が土中の微生物によって分解されて炭酸ガス等の無害な物質となり、シールド工法のように地盤を掘削する工事に際しても、作業性を低下させたり、地下水に分解成分を溶出させたり等の心配のない汚染地盤の浄化方法に係り、土壌浄化後、注入管等の残存物が土壌から消滅して地盤を自然のままの状態に復元し、土地利用に供し得る汚染地盤の浄化方法に関する。   The present invention embeds a plurality of underground buried pipes which are microbially decomposed in the contaminated ground, and injects the purification material into the ground using the ground injecting apparatus equipped with one or a plurality of pumps. In particular, after the purification treatment, the buried pipes are decomposed by microorganisms in the soil by burying these underground pipes in the contaminated ground. It becomes a harmless substance such as carbon dioxide gas, and even when excavating the ground like the shield method, it can be used as a purification method for contaminated ground without worrying about reducing workability or eluting decomposition components into groundwater. In particular, the present invention relates to a method for purifying contaminated ground that can be used for land use by remnants such as injection pipes disappearing from the soil after soil purification and restoring the ground to a natural state.

近年、地盤は様々な原因により汚染の危機にさらされる。汚染地盤の浄化技術として、従来、種々の方法が知られている。例えば、「封じ込め技術」として、汚染地盤中にセメント等の固結材を注入して汚染物質を固化する技術、あるいは汚染地盤中に金属物質封鎖剤、反応剤等の化学物質を注入して汚染物質を不溶化させる技術、等が知られている。さらに、「浄化技術」として、汚染土壌や汚染地下水を抽出して化学分解、生物分解により浄化処理し、浄化された土壌や地下水を地盤中に注入する技術等が知られている。   In recent years, the ground is at risk of contamination due to various causes. Conventionally, various methods are known as a purification technique for contaminated ground. For example, as a “containment technology”, a technology that solidifies the pollutant by injecting cement or other solidified material into the contaminated ground, or a chemical material such as a metal sequestering agent or reactive agent in the contaminated ground is contaminated. Techniques for insolubilizing substances are known. Furthermore, as a “purification technology”, a technology is known in which contaminated soil or groundwater is extracted, purified by chemical decomposition or biodegradation, and the purified soil or groundwater is injected into the ground.

上述の「封じ込め技術」や「浄化技術」では、固結材や化学物質の汚染地盤中への注入に際し、あるいは汚染土壌や汚染地下水の抽出、注入に際し、塩化ビニール、ポリエチレン、ポリプロレン等、引張強度が大きく、かつ微生物によって分解されない材料からなる注入管が用いられている。   In the above-mentioned "containment technology" and "purification technology", tensile strength such as vinyl chloride, polyethylene, polyprolene, etc. is used when injecting caking materials and chemicals into the contaminated ground, or extracting and injecting contaminated soil and contaminated groundwater. An injection tube made of a material that is large and is not decomposed by microorganisms is used.

また、地下水を試験したり、採取するために、あるいは土層の浸水性を試験するために、地下に調査管を埋設したり、排水用のドレーン管を地下に設置したり、等が行われている。これらの調査管やドレーン管もまた、上述と同様、引張強度が大きく、かつ微生物によって分解されない材料から構成されている。   In addition, in order to test and collect groundwater, or to test the submergence of soil layers, survey pipes are buried underground, drainage drain pipes are installed underground, etc. ing. These survey tubes and drain tubes are also made of a material having a high tensile strength and not decomposed by microorganisms, as described above.

上述の「封じ込め技術」や「浄化技術」に用いられる注入管や、調査管、あるいはドレーン管は通常、地盤中に取り残すことが多く行われている。しかし、浄化後の地盤を掘削したり、あるいは、シールド工法のように、地盤を掘削する場合、残存した埋設管が邪魔になって作業性が低下し、あるいは上述管材料のプラスチックスからその成分が溶出して地下水を汚染する等の弊害が生じる。したがって、土壌浄化後、自然のままの状態でその後の土地利用が可能な技術が要求されている。   In many cases, the injection tube, the survey tube, or the drain tube used in the above-mentioned “containment technology” and “purification technology” are usually left in the ground. However, when excavating the ground after purification, or excavating the ground as in the shield method, the remaining buried pipe becomes an obstacle and the workability is reduced, or its components from the plastics of the above pipe material Elution will cause harmful effects such as contaminating groundwater. Therefore, there is a demand for a technology that can be used in the natural state after soil purification.

近年、微生物で分解される注入管の全部または一部を生物分解性プラスチックスで形成し、地盤中に注入材を注入して地盤改良を行った後、注入管を地盤中に取り残し、埋め殺しにして地中の微生物によって分解させる地盤注入工法が本出願人によって出願され、特許されている(特許第3406567号)。また、注入材を地盤に注入して地盤中の有害物を固定し、無害化する方法が本出願人によって出願され、特許されている(特許第3455952号)   In recent years, all or part of the injection tube that is decomposed by microorganisms is made of biodegradable plastics, and after injecting the injection material into the ground to improve the ground, the injection tube is left behind in the ground and buried. A ground injection method for decomposing by underground microorganisms has been filed and patented by the present applicant (Japanese Patent No. 3406567). In addition, a method for injecting an injection material into the ground to fix and detoxify harmful substances in the ground has been filed and patented by the present applicant (Japanese Patent No. 3455952).

しかし、前者の特許では、注入材の地盤への注入に際し、微生物で分解される注入管を用いる技術であって、本発明はこの技術をさらに発展させ、汚染地盤を浄化後、地盤を自然のままの土地に復元させ、その後の土地利用を可能ならしめたものである。
特許第3406567号 特許第3455952号
However, in the former patent, when the injection material is injected into the ground, it is a technique using an injection tube that is decomposed by microorganisms, and the present invention further develops this technique, and after purifying the contaminated ground, It was restored to the land as it was and made possible to use the land afterwards.
Japanese Patent No. 3406567 Japanese Patent No. 3455952

本発明の解決しようとする課題は汚染地盤中に微生物で分解される土中埋設管を埋設し、この埋設管を通して地盤汚染の浄化処理を施すに当って、一台ないしは複数台のポンプを備えた地盤注入装置を用いて地盤中に浄化材を注入して地盤汚染の浄化処理し、特に、浄化処理後、土中埋設管を地盤中に埋め殺しにすることにより、該埋設管が土中の微生物によって分解されて炭酸ガス等の無害な物質となり、その後に地盤を掘削して建造物を構築したり、あるいはシールド工法のように地盤を掘削する工事に際しても、作業性を低下させたり、地下水に分解成分を溶出させたり等の心配がなく、土地の有効利用を可能とし、上述の公知技術に存する欠点を改良した汚染地盤の浄化法を提供することにある。   The problem to be solved by the present invention is that one or a plurality of pumps are provided for burying underground buried pipes that are decomposed by microorganisms in the contaminated ground, and performing purification treatment of ground pollution through the buried pipes. Injecting the purification material into the ground using a ground injection device, and purifying the soil contamination, in particular, after the purification treatment, the buried pipe is buried in the soil by burying it in the ground. It is decomposed by microorganisms and becomes harmless substances such as carbon dioxide, and after that, excavating the ground to build a building, or even when excavating the ground like the shield method, the workability is reduced, It is an object of the present invention to provide a method for purifying contaminated ground, which makes it possible to effectively use land without worrying about elution of decomposition components into groundwater, and which improves the above-described drawbacks of the known technology.

上述の課題を解決するため、本発明方法によれば、汚染地盤中に、生物分解性プラスチックスからなる複数本の土中埋設管を埋設し、この複数本の土中埋設管を通し、地盤注入装置を用いて、前記地盤中に浄化材を注入して地盤汚染の浄化処理を施し、次いで前記複数の土中埋設管をそのまま地盤中に埋め殺しにして土中微生物で分解し、汚染地盤を自然のままの地盤に復元してその後の土地の有効利用に供し得るようにすることを特徴とし、前記地盤注入装置が次の(A)または(B)からなることを特徴とする。   In order to solve the above-described problem, according to the method of the present invention, a plurality of underground pipes made of biodegradable plastics are embedded in a contaminated ground, and the ground is passed through the plurality of underground pipes. Using a pouring device, a purification material is injected into the ground to purify the soil contamination, and then the plurality of underground pipes are buried in the ground as they are and decomposed with soil microorganisms, It is characterized in that it can be restored to a natural ground so that it can be used for the subsequent effective use of the land, and the ground injection device comprises the following (A) or (B).

(A)浄化材を一台のポンプで所定の圧力に加圧する加圧部と、この加圧部に連通され、浄化材を前記土中埋設管に送る導管と、この導管に設けられた絞り部とからなり、浄化材を前記複数本の土中埋設管を通して一台のポンプで地盤中に注入する。 (A) A pressurizing unit that pressurizes the purifying material to a predetermined pressure with a single pump, a conduit that communicates with the pressurizing unit and sends the purifying material to the underground pipe, and a throttle provided in the conduit The purification material is injected into the ground with a single pump through the plurality of underground pipes.

(B)それぞれ独立した駆動源で作動し、かつ集中管理装置で制御される多数のユニットポンプを備えた多連装注入装置であって、これら多数のユニットポンプがそれぞれ導管を通して複数本の土中埋設管と接続され、多数のユニットポンプの作動により、浄化材を複数本の土中埋設管から地盤中の複数の注入ポイントを通して同時に多点注入する。 (B) A multi-injection apparatus having a large number of unit pumps each operated by an independent drive source and controlled by a centralized control device, each of which is buried in a plurality of soils through a conduit. A plurality of unit pumps are connected to the pipe, and a plurality of unit pumps are operated to simultaneously inject the purification material from a plurality of underground pipes through a plurality of injection points in the ground.

本発明は地盤汚染の浄化処理を施すに当って、微生物で分解される土中埋設管を用いることにより、特に、浄化処理後、土中埋設管を地盤中に埋め殺しにすることにより、該埋設管が土中の微生物によって分解されて炭酸ガス等の無害な物質となり、地盤を掘削して建造物を構築したり、シールド工法のように地盤を掘削する工事に際しても、作業性を低下させたり、地下水に分解成分を溶出させたり等の心配がない。   The present invention uses a soil buried pipe that is decomposed by microorganisms in performing a soil contamination purification treatment, and in particular, after the purification treatment, the soil buried pipe is buried in the ground. When buried pipes are decomposed by microorganisms in the soil and become harmless substances such as carbon dioxide gas, workability is reduced even when excavating the ground to construct buildings or excavating the ground like the shield method. And there is no worry of eluting decomposition components into groundwater.

さらに、本発明は地盤汚染の浄化処理を施すに当って、微生物で分解される複数本の土中埋設管を土中に埋設し、この埋設管を通し、一台ないしは多数のポンプを備えた地盤注入装置を用いて地盤中に浄化材を注入することにより、注入が速やかに、かつ複数の注入領域を同時に行うことが可能である。   Further, in the present invention, in performing the soil contamination purification treatment, a plurality of underground pipes that are decomposed by microorganisms are embedded in the soil, and one or a plurality of pumps are provided through the underground pipes. By injecting the purification material into the ground using the ground injection device, the injection can be performed quickly and a plurality of injection regions can be performed simultaneously.

以下、本発明を具体的に詳述する。
本発明は汚染地盤中に、生物分解性プラスチックスからなら複数本の土中埋設管を埋設し、この複数本の土中埋設管を通し、地盤注入装置を用いて地盤中に浄化材を注入して地盤汚染の浄化処理を施す。
Hereinafter, the present invention will be described in detail.
In the present invention, a plurality of underground pipes are buried in a contaminated ground from biodegradable plastics, and a purification material is injected into the ground using the ground injection apparatus through the plurality of underground pipes. Then, the soil contamination is purified.

上述の生物分解性プラスチックスは微生物により分解される高分子化合物であって、好ましくは熱可塑性である。本発明にかかる土中埋設管はこの生物分解性プラスチックスを素材とし、従来公知の押出成形等により、注入管としての機械的強度を有するように成形加工される。なお、水溶性プラスチックス、特に、アルカリ性の条件下で溶解するプラスチックスは、生物によっても分解され易く、本発明において好ましいものである。   The above-mentioned biodegradable plastics are high molecular compounds that are decomposed by microorganisms, and are preferably thermoplastic. The underground pipe according to the present invention is made of this biodegradable plastic material and is molded to have mechanical strength as an injection pipe by a conventionally known extrusion molding or the like. Water-soluble plastics, particularly plastics that dissolve under alkaline conditions, are easily decomposed by living organisms and are preferred in the present invention.

その化学構造は(1)主鎖が脂肪族で、これにエーテル結合またはエステル結合を有するもの、(2)主鎖(または側鎖)に水酸基、カルボキシル基を有するもの、あるいは、(3)プラスチックスの光分解および微生物分解を誘因、促進する添加剤を含有することにより生物分解性が良好なプラスチックスであり、具体的には澱粉系、酢酸セルローズ系、ポリ乳酸系、脂肪族ポリエステル系、ポリビニルアルコール系等の生物分解性プラスチックスが挙げられる。これらの主原料には、性能の向上あるいは可撓性の付与等の目的で他の高分子化合物、例えばポリエチレン、ポリプロピレン等のプラスチックス、可塑剤、安定剤、着色剤等を必要に応じて添加することもできる。   The chemical structure is (1) the main chain is aliphatic and has an ether bond or ester bond, (2) the main chain (or side chain) has a hydroxyl group or a carboxyl group, or (3) plastic. It is a plastic with good biodegradability by containing additives that induce and accelerate photodegradation and microbial degradation of starch, specifically starch-based, cellulose acetate-based, polylactic acid-based, aliphatic polyester-based, Examples thereof include biodegradable plastics such as polyvinyl alcohol. To these main raw materials, other polymer compounds such as plastics such as polyethylene and polypropylene, plasticizers, stabilizers, colorants and the like are added as necessary for the purpose of improving performance or imparting flexibility. You can also

上記(2)の水酸基あるいはカルボキシル基を有する化合物としては、脂肪族化合物が好ましい。これらの生物分解性プラスチックスとしては具体的には、上記(1)の例として、「ピオノーレ」(ポリオールとジカルボン酸の脂肪族ポリエステル)(昭和高分子株式会社と昭和電工株式会社)、「セルグリーン」(酢酸セルローズ系、ポリカプロラクトン系)(ダイセル化学工業株式会社)、「ラクティ(乳酸系)」(株式会社島津製作所)、(2)の例として、「ポバール」(ポリビニルアルコール)(株式会社クラレ)、(3)の例として、「ワンダースターケン」(トウモロコシ澱粉とポリエチレン)(ワンダー株式会社)、等々が挙げられる。   The compound (2) having a hydroxyl group or a carboxyl group is preferably an aliphatic compound. Specific examples of these biodegradable plastics include “Pionore” (aliphatic polyester of polyol and dicarboxylic acid) (Showa Polymer Co., Ltd. and Showa Denko Co., Ltd.), “Cell” Examples of “green” (cellulose acetate, polycaprolactone) (Daicel Chemical Industries, Ltd.), “lacty (lactic acid)” (Shimadzu Corporation), (2), “Poval” (polyvinyl alcohol) (Ltd.) Examples of (Kuraray) and (3) include “Wonder Starken” (corn starch and polyethylene) (Wonder Corporation), and the like.

上記生物分解性プラスチックスには、ポリヒドロキシプチレート、ポリ乳酸、ポリグリコシド等の高融点生物分解性プラスチックスをブレンドすることにより、加工性を向上させ、織物、不織布とすることにより袋体としても使用できる。これらの主原料は、土中ではバクテリアにより、例えば90〜300日程度の日数で分解される。   By blending the above biodegradable plastics with high melting point biodegradable plastics such as polyhydroxypropylate, polylactic acid, polyglycoside, etc., the processability is improved, and a woven fabric or non-woven fabric is used as a bag. Can also be used. These main raw materials are decomposed in the soil by bacteria for, for example, about 90 to 300 days.

なお、生物分解性プラスチックスは、その成形品と微生物の体内より代謝される酵素の表面反応であるため、成形品の厚みが厚いほど分解時間は長くなる。他方、浄化材がアルカリ性の場合には、エステル結合を有する生物分解性プラスチックスが加水分解を受けやすい。また、注入地盤は、酸性からアルカリ性まで、あるいは海水浸透等、種々の異なる条件下にあり、さらに、注入材の注入によっても大きく変わってくる。したがって、注入管の分解速度は一概にはいえないが、掘削しない場合についてみると、1年といえども充分短時間といえる。また、注入後掘削する場合には、脆性のより大きな生物分解性プラスチックスを使用するのが好ましい。   Biodegradable plastics is a surface reaction between the molded product and an enzyme that is metabolized from the body of the microorganism. Therefore, the thicker the molded product, the longer the degradation time. On the other hand, when the purification material is alkaline, biodegradable plastics having an ester bond are susceptible to hydrolysis. Moreover, the injection | pouring ground exists in various different conditions, such as acidic to alkaline or seawater penetration, and also changes with injection | pouring of injection | pouring materials. Therefore, the decomposition rate of the injection pipe cannot be generally determined, but when it is not excavated, it can be said that it is sufficiently short even for one year. Also, when drilling after injection, it is preferable to use more brittle biodegradable plastics.

本発明にかかる生物分解性プラスチックスは必要に応じて耐候性を落とすことによって分解、あるいは強度の低下を促進させることもでき、そのような注入管を使用する場合には、特に、注入操作前の管理に配慮し、例えば直射日光に長時間曝すとか、雨中に放置することはできるだけ避けるのが好ましい。生物分解性プラスチックスとして強度、耐熱性の点から乳酸ポリマーや脂肪族ポリエステルが材料として利用される。従来のプラスチックスと本発明の生物分解性プラスチックスとの性質を比較し、結果を表1に示す。   The biodegradable plastics according to the present invention can be decomposed or reduced in strength by reducing the weather resistance as required. When such an injection tube is used, particularly before the injection operation. For example, it is preferable to avoid exposure to direct sunlight for a long time or leaving it in the rain as much as possible. As biodegradable plastics, lactic acid polymers and aliphatic polyesters are used as materials in terms of strength and heat resistance. The properties of the conventional plastics and the biodegradable plastics of the present invention were compared, and the results are shown in Table 1.

さらに、本発明は上述の生物分解性プラスチックスにセルローズ繊維を含有せしめて伸び率を低下させ、外圧がかかっても伸びずに粉砕されやすい樹脂とし、この樹脂を素材として押出し成型ないしは射出成型により土中埋設管を形成することもできる。   Furthermore, the present invention contains cellulose fibers in the above-described biodegradable plastics to reduce the elongation rate, and makes the resin easy to be crushed without being stretched even when external pressure is applied, and this resin is used as a raw material by extrusion molding or injection molding. Underground pipes can also be formed.

本発明に用いられるセルローズ繊維としては、古紙、木粉、麻、コットンパルプ、木材パルプ等の植物繊維を解繊した繊維が挙げられる。本発明では、このようなセルローズ繊維を水分率5〜40%で生物分解性プラスチックスに混練し、造粒する。あるいは、セルローズ繊維の水分率が下限値5%を切らない水の存在で、セルローズ繊維を生物分解性プラスチックスに混練し、得られた混練物をセルローズ繊維の水分率5〜40%の範囲で造粒する。   Examples of the cellulose fiber used in the present invention include fibers obtained by defusing plant fibers such as waste paper, wood flour, hemp, cotton pulp, and wood pulp. In the present invention, such cellulose fibers are kneaded and granulated in biodegradable plastics at a moisture content of 5 to 40%. Alternatively, the cellulose fiber is kneaded with biodegradable plastics in the presence of water whose moisture content of the cellulose fiber does not cut the lower limit of 5%, and the obtained kneaded product is in the range of 5 to 40% of the moisture content of the cellulose fiber. Granulate.

なお、本発明において、セルローズ繊維を使用する際に、ペレット製造時のセルローズ繊維の挙動を充分考察することが肝要である。セルローズは典型的な親水高分子物質であって、水分の吸脱湿が大きく、吸脱湿の状態によってその特性が変化するものである。すなわち、吸湿によって膨潤して柔らかくなり、しなやかで変形し易くなる反面、脱湿によって角質化して堅くなり、脆く、変形し難くなる。   In the present invention, when cellulose fibers are used, it is important to fully consider the behavior of cellulose fibers during pellet production. Cellulose is a typical hydrophilic polymer substance that absorbs and desorbs moisture very much, and its properties change depending on the state of moisture absorption and desorption. That is, it swells and softens due to moisture absorption and becomes flexible and easily deformed, while it becomes keratinized and hardened by dehumidification, becomes brittle and difficult to deform.

本発明に使用する強化繊維は上述のような植物繊維であるが、これを解繊後、または直後、100℃前後、あるいはそれ以上の溶融または軟化状態の生物分解性プラスチックス中で、強い剪断力をかけながら均一に混練する。この条件下でセルローズを主成分とする植物繊維は殆ど水分を失い、絶乾状態となるため、角質化して堅く、脆くなる。したがって、この絶乾状態で強い剪断力をかけて混練すると、セルローズ繊維は生物分解性プラスチックス中に均一に分散するまでに粉砕されてしまって、繊維状をとどめない。   The reinforcing fiber used in the present invention is a vegetable fiber as described above, and after defibration or immediately after, it is subjected to strong shearing in biodegradable plastics in a molten or softened state at around 100 ° C. or higher. Knead uniformly while applying force. Under these conditions, the plant fiber mainly composed of cellulose loses moisture and becomes completely dry, so it becomes keratinized, hard and brittle. Therefore, when kneaded by applying a strong shearing force in this absolutely dry state, the cellulose fibers are pulverized until they are uniformly dispersed in the biodegradable plastics and do not remain in the fibrous form.

この傾向は溶融温度または軟化温度の高い生物分解性プラスチックスの場合ほど顕著であり、混練中に繊維が劣化して粉末化することにとどまらず、熱劣化がさらに進行し、炭化に至るほどに影響を受けることがある。本発明の土中埋設管はこの状態を避けるために、生物分解性プラスチックスに強化繊維を加えたものを金型により射出成型、または押出成型することにより成形される。表1に従来の注入管素材と、本発明注入管素材、すなわち、生物分解性プラスチックスに強化繊維を加えたものとの性質の比較を示す。   This tendency is more conspicuous as in the case of biodegradable plastics having a high melting temperature or softening temperature, and not only the fibers deteriorate during pulverization and become powdery, but also the thermal deterioration further progresses, leading to carbonization. May be affected. In order to avoid this state, the underground buried pipe of the present invention is formed by injection molding or extrusion molding of a biodegradable plastic with a reinforcing fiber added thereto using a mold. Table 1 shows a comparison of properties between the conventional injection tube material and the injection tube material of the present invention, that is, biodegradable plastics to which reinforcing fibers are added.

本発明は次いで、前記複数の土中埋設管をそのまま地盤中に埋め殺しにして土中微生物で分解し、汚染地盤を自然のままの地盤に復元してその後の土地の有効利用に供し得るようにすることを特徴とする。なお、本発明において、土中埋設管が地質や地下水の調査のための調査管であってもよい。   In the present invention, the plurality of underground pipes are then buried in the ground as they are, and then decomposed with microorganisms in the ground, so that the contaminated ground can be restored to the natural ground and used for subsequent effective use of the land. It is characterized by. In the present invention, the underground pipe may be a survey pipe for surveying geology and groundwater.

上述地盤汚染の浄化処理は次の(a)〜(f)のいずれか一つまたはこれら複数を組み合わせて行われる。
(a)土中埋設管を通して地盤中に固結材を注入し、土中の汚染物質を固化する。
(b)土中埋設管を通して地盤中に不溶化剤を注入する。
(c)土中埋設管を通して汚染地盤から汚染水を抽出し、洗浄の後、再度地盤中に注入する。
(d)土中埋設管を通して汚染地盤中に触媒浄化反応を起こさせる化学物質、あるいはバイオレメディエーションを起こさせる化学物質を注入し、浄化する。
(e)土中埋設管を通して汚染地盤中に水を注入し、洗浄して浄化する。
(f)土中埋設管を通して汚染地盤中に空気を注入し、エアレーションによって汚染物質を分解する。
The above-described soil contamination purification process is performed by any one of the following (a) to (f) or a combination of these.
(A) A caking material is injected into the ground through a buried pipe in the soil to solidify the pollutants in the soil.
(B) Insolubilizing agent is injected into the ground through the underground pipe.
(C) Extract the contaminated water from the contaminated ground through the underground pipe, wash it, and inject it into the ground again.
(D) A chemical substance that causes a catalyst purification reaction or a chemical substance that causes bioremediation is injected into the contaminated ground through the underground pipe and purified.
(E) Water is poured into the contaminated ground through underground pipes, washed and purified.
(F) Air is injected into the contaminated ground through the underground pipe and the pollutants are decomposed by aeration.

本発明の上述地盤汚染処理は次の(A)または(B)の地盤注入装置を用いて行われる。   The above-mentioned ground contamination treatment of the present invention is performed using the following ground injection device (A) or (B).

地盤注入装置(A)
浄化材を一台のポンプで所定の圧力に加圧する加圧部と、この加圧部に連通され、浄化材を前記土中埋設管に送る導管と、この導管に設けられた絞り部とからなり、浄化材を前記複数本の土中埋設管を通して一台のポンプで地盤中に注入する。具体的には、例えば、図1に示される装置である。
Ground injection device (A)
A pressurizing unit that pressurizes the purifying material to a predetermined pressure with a single pump, a conduit that communicates with the pressurizing unit and sends the purifying material to the underground pipe, and a throttling portion provided in the conduit Thus, the purification material is injected into the ground with a single pump through the plurality of underground pipes. Specifically, for example, the apparatus shown in FIG.

これを詳述すると、図1に示されるように、本発明地盤注入装置Aは浄化材5を地盤3中に設置された複数本の注入管路(土中埋設管)2、2・・・2を通して地盤3中に注入する装置であって、浄化材5を所定の圧力に加圧する加圧部1と、この加圧部1に連通され、浄化材5を注入管路2に送液する導管6と、この導管6に設けられた絞り部7とから基本的に構成される。なお、絞り部7は導管6の上端部、すなわち、送液系13と導管6の分岐点、あるいは後述の分配装置11から導管6への出口に設けてもよい。   In detail, as shown in FIG. 1, the ground injection device A of the present invention includes a plurality of injection pipes (underground pipes) 2, 2,... In which the purification material 5 is installed in the ground 3. 2 is a device for injecting into the ground 3 through a pressurizing unit 1 that pressurizes the purifying material 5 to a predetermined pressure, and communicates with the pressurizing unit 1 to send the purifying material 5 to the injection conduit 2. It is basically composed of a conduit 6 and a throttle portion 7 provided in the conduit 6. In addition, you may provide the throttle part 7 in the upper end part of the conduit | pipe 6, ie, the branch point of the liquid feeding system 13 and the conduit | pipe 6, or the exit from the distribution apparatus 11 mentioned later to the conduit | pipe 6.

また、図1に示されるように、浄化材5の絞り部7に至る送液系13に浄化材のリターンシステムRS、すなわち、送液流量計fおよび/または送液圧力計Pと、リターン装置RAを設け、所定の注入圧力Pを保つように流量圧力制御装置10によってリターン装置RAを制御し、浄化材の一部をリターン管路Rを通して浄化材槽4にリターンさせる。すなわち、リターンシステムRSは送液圧力計Pおよび/または送液流量計fからの信号情報を流量圧力制御装置10が受け、この信号をリターン装置RAに伝達する。リターン装置RAは送液圧力計Pおよび/または送液流量計fからの情報に基づき、送液系13中の浄化材を送液系13からリターン管路Rに分流して浄化材槽4にリターンさせることにより送液系13の液圧を所望の圧力に保持し、これにより絞り部7を通して導管6から注入管路2に送液される浄化材の吐出量を所定の量に保持する。 In addition, as shown in FIG. 1, the return system RS of the purification material, that is, the liquid flow meter f 0 and / or the liquid pressure gauge P 0 , is supplied to the liquid supply system 13 that reaches the throttle portion 7 of the purification material 5. A return device RA is provided, and the return device RA is controlled by the flow rate pressure control device 10 so as to maintain a predetermined injection pressure P 0, and a part of the purification material is returned to the purification material tank 4 through the return line R. That is, in the return system RS, the flow rate pressure control device 10 receives signal information from the liquid feeding pressure gauge P 0 and / or the liquid feeding flow meter f 0 , and transmits this signal to the return device RA. The return device RA diverts the purifying material in the liquid feeding system 13 from the liquid feeding system 13 to the return line R based on information from the liquid feeding pressure gauge P 0 and / or the liquid feeding flow meter f 0 , and a purifier tank. 4, the liquid pressure of the liquid feeding system 13 is maintained at a desired pressure, and thereby, the discharge amount of the purifying material fed from the conduit 6 to the injection conduit 2 through the throttle portion 7 is maintained at a predetermined amount. To do.

図1において、浄化材5は絞り部7の上流側の高い圧力部から下流側の低い圧力部に噴射される。この場合、加圧された浄化材5の注入圧力Pと注入される地盤3の注入圧力P1nの差圧を充分に大きくとれば、絞り部7より下流側の各導管6、6・・・6の注入圧力にばらつきがあっても、各導管6の吐出量(注入速度)は絞り部7の面積が同じであればほぼ同一量となる。そして、吐出量は注入圧力Pと絞り部7の孔の面積によって定まる。 In FIG. 1, the purification material 5 is injected from a high pressure portion on the upstream side of the throttle portion 7 to a low pressure portion on the downstream side. In this case, if the pressure difference between the injection pressure P 0 of the pressurized purification material 5 and the injection pressure P 1n of the ground 3 to be injected is sufficiently large, the respective conduits 6, 6. Even if the injection pressures of 6 vary, the discharge amount (injection speed) of each conduit 6 is almost the same if the area of the throttle portion 7 is the same. Then, the discharge amount is determined by the area of the holes of the injection pressure P 0 and the throttle portion 7.

しかし、図1において、浄化材5は注入の初めから終りまで常に全導管6、6・・・6から正確に同様に注入されるとは限らず、あるいは対象注入個所によっては早く完了して注入を終了する導管6もでてくる。ところが、導管6、6・・・6の一部が注入を終了すると、この注入量が残りの他の導管6、6・・・6に分配されるため、導管6内の圧力が高くなり、残りの導管6、6・・・6からの吐出量が増えてしまう。これを防ぐために、ポンプ14のインバータ(図示せず)を調節して回転数を調整し、圧力を落として流量を調整するか、リターンシステムを作動させる。このようにして、導管6の注入中の数の変動にもかかわらず、送液系13の圧力を所定値に保持し得、各導管6、6・・・6から所定流量の注入を自動的に継続することができる。   However, in FIG. 1, the purifier 5 is not always injected from all the conduits 6, 6... 6 exactly in the same way from the beginning to the end of the injection, or it is completed early depending on the target injection point. The conduit 6 that ends the process also comes out. However, when a part of the conduits 6, 6... 6 finishes the injection, the injection amount is distributed to the remaining other conduits 6, 6. The discharge amount from the remaining conduits 6, 6... 6 increases. In order to prevent this, an inverter (not shown) of the pump 14 is adjusted to adjust the rotation speed, and the pressure is dropped to adjust the flow rate or the return system is operated. In this way, the pressure of the liquid supply system 13 can be maintained at a predetermined value regardless of the fluctuation of the number during the injection of the conduit 6, and the injection of a predetermined flow rate from each conduit 6, 6,... Can continue to.

また、図1において、注入開始から完了まで、リターンシステムRSにより注入圧力Pを任意の値に設定して浄化材5を自動的にリターンさせ、注入圧力Pと、稼動している導管6、6・・・6の数とに対応した吐出量を任意に得ることもできる。さらに、ポンプ14に図示しないインバータを設けることにより、最も適切な流量範囲(圧力範囲)内で、所定の流量ないしは圧力に調整することもできる。このように、リターンシステムRSにより、あるいはインバータにより、さらにはこれらの併用により地盤注入液を所定圧力に加圧する加圧部1を本発明では、流量圧力制御機能を有する加圧部1と呼ぶ。なお、図1において、送液系13と、導管6との間に分配装置11を設け、導管6、6・・・6を分配装置11から伸長させてもよい。また、12は導管6と注入管路2の連結部である。さらに、導管6には図1に示すように、分岐バルブV、V・・・V、V、さらには、圧力計(圧力検出器)8、流量計(流量検出器)9を任意に設けることもできる。 Further, in FIG. 1, from the start to the end of injection, the return system RS sets the injection pressure P 0 to an arbitrary value to automatically return the purifying material 5, and the injection pressure P 0 and the operating conduit 6 , 6... 6 can be arbitrarily obtained. Furthermore, by providing an inverter (not shown) in the pump 14, it is possible to adjust to a predetermined flow rate or pressure within the most appropriate flow rate range (pressure range). Thus, in the present invention, the pressurizing unit 1 that pressurizes the ground injection liquid to a predetermined pressure by the return system RS, the inverter, or a combination thereof is referred to as a pressurizing unit 1 having a flow rate pressure control function. In FIG. 1, a distributor 11 may be provided between the liquid feeding system 13 and the conduit 6, and the conduits 6, 6... 6 may be extended from the distributor 11. Reference numeral 12 denotes a connecting portion between the conduit 6 and the injection conduit 2. Further, as shown in FIG. 1, the conduit 6 has branch valves V 1 , V 2 ... V 1 , V n , a pressure gauge (pressure detector) 8, and a flow meter (flow rate detector) 9. It can also be provided arbitrarily.

地盤注入装置(B)
それぞれ独立した駆動源で作動し、かつ集中管理装置で制御される多数のユニットポンプを備えた多連装注入装置(多点地盤注入装置)であって、これら多数のユニットポンプがそれぞれ導管を通して複数本の土中埋設管と接続され、多数のユニットポンプの作動により、浄化材を複数本の土中埋設管から地盤中の複数の注入ポイントを通して同時に多点注入する。具体的には、例えば図2に示される装置である。
Ground injection device (B)
A multi-unit injection device (multi-point ground injection device) that is operated by an independent drive source and is controlled by a centralized control device. By connecting a plurality of unit pumps, the purification material is simultaneously injected at a plurality of points through a plurality of injection points in the ground. Specifically, for example, the apparatus shown in FIG.

これを詳述すると、図2の地盤注入装置Bは多連装注入装置15であって、浄化材槽4と、一プラント中にそれぞれモータ等の独立した駆動源16、16・・・16で作動し、かつ集中管理装置17に接続されて制御される多数のユニットポンプ18、18・・・18を備えた、浄化材槽4に各導管6、6・・・6を通して連結される多連装注入装置15と、地盤3中の注入ポイント19中に埋設され、配置された、それぞれが各ユニットポンプ18、18・・・18と導管6、6・・・6を通して接続された、吐出口20、20・・・20を有する複数の注入管路(土中埋設管)2、2・・・2を備える。   More specifically, the ground injection device B in FIG. 2 is a multiple-injection injection device 15 that operates with the purification material tank 4 and independent drive sources 16, 16,... And a plurality of unit pumps 18, 18... 18 connected to and controlled by the central control device 17 and connected to the purifier tank 4 through the respective conduits 6, 6. A discharge port 20, which is embedded and arranged in an injection point 19 in the ground 15 with the device 15, each connected through a respective unit pump 18, 18... 18 and conduits 6, 6. A plurality of injection pipes (underground pipes) 2, 2.

さらに、前述の独立した多数のユニットポンプ18、18・・・18には集中管理装置17に接続して制御される、インバータ等の回転数変速機21、21・・・21が備えられ、さらにまた、ユニットポンプ18、18・・・18と注入管路2、2・・・2を連結する導管6、6・・・6には上述と同様にそれぞれ集中管理装置17に接続して制御される流量圧力検出器22が備えられる。注入管路2、2・・・2は例えば、Y字管ロッドが用いられる。23はバルブである。   Further, the above-described independent unit pumps 18, 18,... 18 are provided with rotational speed transmissions 21, 21,. In addition, the conduits 6, 6... 6 connecting the unit pumps 18, 18... 18 and the injection pipes 2, 2. A flow pressure detector 22 is provided. For example, Y-shaped tube rods are used for the injection conduits 2, 2. 23 is a valve.

上述の構成により、本発明では、流量圧力検出器22からの流量/およびまたは圧力データの信号を集中管理装置17に送信し、浄化材槽4中の浄化材を各ユニットポンプ18、18・・・18の作動により任意の注入速度、注入圧力あるいは注入量で各注入管路2、2・・・2に圧送し、複数の吐出口20、20・・・20から同時に地盤3中の注入ポイント19、19・・・19に多点注入し、注入領域24を形成する。   With the above configuration, in the present invention, a flow rate / and / or pressure data signal from the flow pressure detector 22 is transmitted to the central control device 17, and the purification material in the purification material tank 4 is transferred to each unit pump 18, 18,. 18 is pumped to each injection pipe 2, 2... 2 at an arbitrary injection speed, injection pressure or injection volume by the operation of 18, and the injection point in the ground 3 from a plurality of discharge ports 20, 20. 19, 19... 19 are implanted at multiple points to form an implantation region 24.

本発明に用いられるユニットポンプ3としては、ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプ、スクイズポンプ、スネクポンプ等が挙げられる。これらのポンプはピストンポンプを除いて、いずれも小型で、かつ、構造が簡単で、さらに故障しにくく、このため、溶液型のみならず懸濁型のグラウトも使用でき、本発明のユニットポンプとして適している。   Examples of the unit pump 3 used in the present invention include a piston pump, a plunger pump, a diaphragm pump, a squeeze pump, and a snake pump. These pumps, except for the piston pump, are all small in size, simple in structure, and less likely to break down. Therefore, not only solution type but also suspension type grout can be used. Is suitable.

地盤汚染の浄化処理を施すに当って、微生物で分解される土中埋設管を用いることにより、特に、浄化処理後、土中埋設間を地盤中に埋め殺しにすることにより、該埋設管が土中の微生物によって分解されて炭酸ガス等の無害な物質となり、シールド工法のように地盤を掘削する工事に際しても、作業性を低下させたり、地下水に分解成分を溶出させたり等の心配がない。したがって、本発明工法は土木建築分野において、高い利用可能性を有する。   In the purification treatment of soil contamination, by using underground pipes that are decomposed by microorganisms, in particular, after the purification treatment, the buried pipes are buried by burying them in the ground. It is decomposed by microorganisms in the soil and becomes a harmless substance such as carbon dioxide gas, and there is no worry of degrading workability and elution of decomposition components into groundwater when excavating the ground like the shield method. . Therefore, the construction method of the present invention has high applicability in the field of civil engineering and construction.

本発明に用いられる地盤注入装置(A)の一具体例のフローシートである。It is a flow sheet of one specific example of the ground injection device (A) used in the present invention. 本発明に用いられる地盤注入装置(B)の一具体例のフローシートである。It is a flow sheet of one specific example of the ground injection device (B) used in the present invention.

符号の説明Explanation of symbols

A 地盤注入装置
B 地盤注入装置
1 加圧部
2 注入管路
3 地盤
4 浄化材槽
5 浄化材
6 導管
7 絞り部
8 圧力計
9 流量計
10 流量圧力制御装置
11 分配装置
12 連結部
13 送液系
14 ポンプ
15 多連装注入装置
16 駆動源
17 集中管理装置
18 ユニットポンプ
19 注入ポイント
20 吐出口
21 回転数変速機
22 流量圧力検出器
23 バルブ
24 注入領域
A Ground injection device B Ground injection device 1 Pressurization unit 2 Injection pipeline 3 Ground 4 Purification material tank 5 Purification material 6 Conduit 7 Throttle unit 8 Pressure gauge 9 Flow meter 10 Flow pressure control device 11 Distribution device 12 Connection unit 13 Liquid feeding System 14 Pump 15 Multiple injection device 16 Drive source 17 Centralized control device 18 Unit pump 19 Injection point 20 Discharge port 21 Rotational speed transmission 22 Flow rate pressure detector 23 Valve 24 Injection region

Claims (17)

汚染地盤中に、生物分解性プラスチックスからなる複数本の土中埋設管を埋設し、この複数本の土中埋設管を通し、地盤注入装置を用いて、前記地盤中に浄化材を注入して地盤汚染の浄化処理を施し、次いで前記複数の土中埋設管をそのまま地盤中に埋め殺しにして土中微生物で分解し、汚染地盤を自然のままの地盤に復元してその後の土地の有効利用に供し得るようにすることを特徴とし、前記地盤注入装置が次の(A)または(B)からなる汚染地盤の浄化方法。
(A)浄化材を一台のポンプで所定の圧力に加圧する加圧部と、この加圧部に連通され、浄化材を前記埋設管に送る導管と、この導管に設けられた絞り部とからなり、浄化材を前記複数本の土中埋設管を通して一台のポンプで地盤中に注入する。
(B)それぞれ独立した駆動源で作動し、かつ集中管理装置で制御される多数のユニットポンプを備えた多連装注入装置であって、これら多数のユニットポンプがそれぞれ導管を通して複数本の土中埋設管と接続され、多数のユニットポンプの作動により、浄化材を複数本の土中埋設管から地盤中の複数の注入ポイントを通して同時に多点注入する。
A plurality of underground pipes made of biodegradable plastics are buried in the contaminated ground, and the purification material is injected into the ground using the ground injection device through the plurality of underground pipes. The soil contamination is then purified, and then the multiple underground pipes are buried in the ground as they are, and then decomposed with soil microorganisms. A method for purifying contaminated ground, characterized in that the ground injecting device comprises the following (A) or (B).
(A) A pressurizing unit that pressurizes the purifying material to a predetermined pressure with a single pump, a conduit that communicates with the pressurizing unit and sends the purifying material to the buried pipe, and a throttling portion provided in the conduit; The purification material is injected into the ground with a single pump through the plurality of underground pipes.
(B) A multi-injection apparatus having a large number of unit pumps each operated by an independent drive source and controlled by a centralized control device, each of which is buried in a plurality of soils through a conduit. A plurality of unit pumps are connected to the pipe, and a plurality of unit pumps are operated to simultaneously inject the purification material from a plurality of underground pipes through a plurality of injection points in the ground.
請求項1において、前記土中埋設管が生物分解性プラスチックスにセルローズ繊維を含有せしめて粉砕されやすい樹脂とし、この樹脂を素材として形成されてなる請求項1に記載の汚染地盤の浄化方法。   2. The method for purifying contaminated ground according to claim 1, wherein the buried pipe in soil is made of biodegradable plastics containing cellulose fibers to be easily pulverized resin, and the resin is used as a raw material. 請求項2において、セルローズ繊維が古紙、木粉、麻、コットンパルプおよび木材パルプの群から選択される一種または複数種の植物繊維を解繊した繊維である請求項2に記載の汚染地盤の浄化方法。   The polluted ground purification according to claim 2, wherein the cellulose fiber is a fiber obtained by defibrating one or more kinds of plant fibers selected from the group of waste paper, wood flour, hemp, cotton pulp and wood pulp. Method. 請求項1において、生物分解性プラスチックスが微生物により分解される熱可塑性高分子化合物である請求項1に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to claim 1, wherein the biodegradable plastics is a thermoplastic polymer compound that is decomposed by microorganisms. 請求項1において、生物分解性プラスチックスがアルカリ性の条件下で溶解するプラスチックスである請求項1に記載の汚染地盤の浄化方法。   2. The method for purifying contaminated ground according to claim 1, wherein the biodegradable plastics are plastics that dissolve under alkaline conditions. 請求項1において、生物分解性プラスチックスが次の1、2または3である請求項1に記載の土中埋設管。
(1)主鎖が脂肪族で、これにエーテル結合またはエステル結合を有するもの、
(2)主鎖または側鎖に水酸基またはカルボキシル基を有するもの、
(3)プラスチックスの光分解および微生物分解を誘因、促進する添加剤を含有することにより生物分解性が良好なプラスチックスであって、澱粉系、酢酸セルローズ系、ポリ乳酸系、脂肪族ポリエステル系およびポリビニルアルコール系の群から選択される生物分解性プラスチックス。
The underground pipe according to claim 1, wherein the biodegradable plastics is 1, 2 or 3 below.
(1) The main chain is aliphatic and has an ether bond or an ester bond.
(2) Those having a hydroxyl group or a carboxyl group in the main chain or side chain,
(3) Plastics with good biodegradability by containing additives that induce and promote photodegradation and microbial degradation of plastics, starch-based, cellulose acetate-based, polylactic acid-based, aliphatic polyester-based And biodegradable plastics selected from the group of polyvinyl alcohols.
請求項1において、地盤汚染の浄化処理が以下の(a)〜(f)のいずれかまたは複数の組み合わせである請求項1に記載の汚染地盤の浄化方法。
(a)土中埋設管を通して地盤中に固結材を注入し、土中の汚染物質を固化する。
(b)土中埋設管を通して地盤中に不溶化剤を注入する。
(c)土中埋設管を通して汚染地盤から汚染水を抽出し、洗浄の後、再度地盤中に注入する。
(d)土中埋設管を通して汚染地盤中に触媒浄化反応を起こさせる化学物質、あるいはバイオレメディエーションを起こさせる化学物質を注入し、浄化する。
(e)土中埋設管を通して汚染地盤中に水を注入し、洗浄して浄化する。
(f)土中埋設管を通して汚染地盤中に空気を注入し、エアレーションによって汚染物質を分解する。
The method for purifying contaminated ground according to claim 1, wherein the purification treatment for ground contamination is any one or a combination of the following (a) to (f).
(A) A caking material is injected into the ground through a buried pipe in the soil to solidify the pollutants in the soil.
(B) Insolubilizing agent is injected into the ground through the underground pipe.
(C) Extract the contaminated water from the contaminated ground through the underground pipe, wash it, and inject it into the ground again.
(D) A chemical substance that causes a catalyst purification reaction or a chemical substance that causes bioremediation is injected into the contaminated ground through the underground pipe and purified.
(E) Water is poured into the contaminated ground through underground pipes, washed and purified.
(F) Air is injected into the contaminated ground through the underground pipe and the pollutants are decomposed by aeration.
請求項1において、地盤注入装置(A)の加圧部は浄化材の流量圧力制御機能を有するリターン装置および/またはインバータを備えてなる請求項1に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to claim 1, wherein the pressurizing unit of the ground injection device (A) comprises a return device and / or an inverter having a function of controlling the flow rate and pressure of the purifying material. 請求項1において、地盤注入装置(A)の絞り部よりも下流側の前記導管にさらに、圧力計および/または流量計を設け、前記絞り部は圧力計および/または流量計からの情報に基づき、絞りを調整することにより、前記導管から土中埋設管に送られる浄化材の吐出量および/または吐出圧力を調整するようにした請求項1に記載の汚染地盤の浄化方法。   2. The pressure gauge and / or flow meter is further provided in the conduit downstream of the throttle portion of the ground injection device (A) according to claim 1, and the throttle portion is based on information from the pressure gauge and / or flow meter. The method for purifying contaminated ground according to claim 1, wherein the discharge amount and / or discharge pressure of the purifier sent from the conduit to the underground pipe is adjusted by adjusting the throttle. 請求項1において、地盤注入装置(A)の絞り部は流量面積を所定の値に設定したオリフイスまたは流量制御弁である請求項1に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to claim 1, wherein the throttle portion of the ground injection device (A) is an orifice or a flow control valve having a flow area set to a predetermined value. 請求項1において、地盤注入装置(A)の絞り部はリバーシブルモータおよびこのリバーシブルモータに連結され、このモータの稼動によって上下に連動するシャフトを備え、このシャフトを先端から前記導管管路内に挿入し、上下に連動させることによって前記導管管路の横断面の絞りを調整する請求項1に記載の汚染地盤の浄化方法。   2. The throttle unit of the ground injection device (A) according to claim 1, comprising a reversible motor and a shaft that is connected to the reversible motor and interlocks vertically by operation of the motor, and the shaft is inserted into the conduit line from the tip. The method for purifying contaminated ground according to claim 1, wherein the restriction of the cross section of the conduit pipe is adjusted by being interlocked vertically. 請求項1において、地盤注入装置(B)のユニットポンプがそれぞれ集中管理装置で制御される回転数変速機を備えた請求項1に記載の汚染地盤の浄化方法。   2. The method for purifying contaminated ground according to claim 1, wherein each unit pump of the ground injection device (B) includes a rotational speed transmission controlled by a centralized management device. 請求項1において、前記複数の土中埋設管の各吐出口が平面方向の異なる注入ポイントに設置されてなる請求項1に記載の汚染地盤の浄化方法。   2. The method for purifying contaminated ground according to claim 1, wherein the discharge ports of the plurality of underground pipes are installed at different injection points in a planar direction. 請求項1において、前記複数の土中埋設管の各吐出口が深度方向の異なる注入ポイントに設置されてなる請求項1に記載の汚染地盤の浄化方法。   2. The method for purifying contaminated ground according to claim 1, wherein the discharge ports of the plurality of underground pipes are installed at different injection points in the depth direction. 請求項1において、前記複数の土中埋設管に通じる導管に流量圧力検出器を設け、これら検出器から検出された浄化材の流量および/または圧力データの信号を集中管理装置に送信し、この情報に基づき、浄化材を前記各ユニットポンプから複数の土中埋設管の吐出口を通して地盤中の複数の注入ポイントに多点注入する請求項1に記載の汚染地盤の浄化方法。   In claim 1, flow rate pressure detectors are provided in the conduits that lead to the plurality of underground pipes, and the flow rate and / or pressure data signals of the purifiers detected from these detectors are transmitted to the central control device. 2. The method for purifying contaminated ground according to claim 1, wherein the purification material is injected at multiple points from the unit pumps to the plurality of injection points in the ground through the discharge ports of the plurality of underground pipes based on the information. 請求項15において、前記各ユニットポンプがそれぞれ注入監視盤を備えた集中管理装置で制御される回転数変速機を備え、流量圧力検出器から検出されたデータ信号に基づいて回転数変速機を作動し、浄化材を所望の圧力および/または流量に保って各土中埋設管に送液する請求項15に記載の汚染地盤の浄化方法。   16. The unit pump according to claim 15, wherein each unit pump includes a rotation speed transmission controlled by a centralized management device having an injection monitoring panel, and operates the rotation speed transmission based on a data signal detected from a flow pressure detector. The method for purifying contaminated ground according to claim 15, wherein the purification material is fed to each underground pipe while maintaining a desired pressure and / or flow rate. 請求項15において、前記流量圧力検出器から検出された浄化材の流量および/または圧力データの信号を注入監視盤に画面表示することにより注入状況の一括監視を行って、土中埋設管におけるそれぞれの注入圧力および/または流量を所定の範囲に維持しながら注入するとともに、上記データの情報に基づき、注入の完了、中止、継続あるいは再注入を行う請求項15に記載の汚染地盤の浄化方法。
In Claim 15, collective monitoring of the injection | pouring condition is performed by displaying on the injection | pouring monitoring board the signal of the flow volume and / or pressure data of the purification material which were detected from the said flow pressure detector, and each in an underground pipe | tube The method for purifying contaminated ground according to claim 15, wherein the injection is carried out while maintaining the injection pressure and / or flow rate within a predetermined range, and the completion, suspension, continuation or reinjection of injection is performed based on the information of the data.
JP2005303856A 2005-10-19 2005-10-19 Purification method for contaminated ground Active JP4240497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303856A JP4240497B2 (en) 2005-10-19 2005-10-19 Purification method for contaminated ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303856A JP4240497B2 (en) 2005-10-19 2005-10-19 Purification method for contaminated ground

Publications (2)

Publication Number Publication Date
JP2007111599A true JP2007111599A (en) 2007-05-10
JP4240497B2 JP4240497B2 (en) 2009-03-18

Family

ID=38094264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303856A Active JP4240497B2 (en) 2005-10-19 2005-10-19 Purification method for contaminated ground

Country Status (1)

Country Link
JP (1) JP4240497B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177294A (en) * 2011-01-31 2012-09-13 Katekkusu:Kk Underground buried material
JP5569618B1 (en) * 2013-04-12 2014-08-13 強化土株式会社 In-situ purification method by multi-point injection
JP2014188481A (en) * 2013-03-28 2014-10-06 Panasonic Corp Injection device of nutrient for microbe
WO2015179416A1 (en) * 2014-05-19 2015-11-26 Presby Patent Trust Modular liquid waste treatment system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177294A (en) * 2011-01-31 2012-09-13 Katekkusu:Kk Underground buried material
JP2014188481A (en) * 2013-03-28 2014-10-06 Panasonic Corp Injection device of nutrient for microbe
JP5569618B1 (en) * 2013-04-12 2014-08-13 強化土株式会社 In-situ purification method by multi-point injection
JP2014205112A (en) * 2013-04-12 2014-10-30 強化土株式会社 Original-position decontamination method by multi-point injection
WO2015179416A1 (en) * 2014-05-19 2015-11-26 Presby Patent Trust Modular liquid waste treatment system and method
CN106536424A (en) * 2014-05-19 2017-03-22 普莱思贝专利信托公司 Modular liquid waste treatment system and method
US9783439B2 (en) 2014-05-19 2017-10-10 Presby Patent Trust Modular liquid waste treatment system and method

Also Published As

Publication number Publication date
JP4240497B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP5360578B2 (en) Ground injection method
CN101967835B (en) Landfill anti-seepage system, landfill structure and landfill method
DE60120152T2 (en) METHOD FOR TREATING A CONTAMINATED MATERIAL
JP4240497B2 (en) Purification method for contaminated ground
CN106734178A (en) Comprehensive restoration system and method for polluted site
DE3901050A1 (en) METHOD FOR MICROBIOLOGICAL GROUND DECONTAMINATION
EP1874492B1 (en) The transformer aerobic degestion method
JPWO2005113901A1 (en) Improvement method for soft ground
CN113182335A (en) Extraction driving in-situ oxidation repair system
JP3406567B2 (en) Ground injection method
CN105220679A (en) Controlled degradation caves in plastic draining board
Ivanov et al. Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials
CN112317532A (en) Biological pile for repairing petroleum hydrocarbon polluted soil
JP5156988B1 (en) Ground improvement method
CN110366896A (en) Side slope vegetation ecological recovery method
DD146982A5 (en) METHOD FOR INCREASING THE STRENGTH AND WATER-IMPOSSIBLE MATERIALS
US8256994B2 (en) Biosealing
JP3975239B2 (en) Contaminated groundwater purification method and apparatus
CN112374692B (en) Repairing device and method for underground water petroleum hydrocarbon pollution
JP4019069B2 (en) Method for accelerating disassembly of underground pipe, ground treatment and investigation method
JP3491949B2 (en) Contaminated groundwater purification methods, contaminated groundwater purification structures, hazardous waste disposal sites and hazardous waste storage sites
TW201226664A (en) Structure of water permeable brick (block) featuring ecological environment protection
CN1312137A (en) Method for removing contaminant from soil
JP2006130401A (en) Method for decontaminating contaminated ground
JP2010126942A (en) Observation well for environment monitoring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250