JP4019069B2 - Method for accelerating disassembly of underground pipe, ground treatment and investigation method - Google Patents

Method for accelerating disassembly of underground pipe, ground treatment and investigation method Download PDF

Info

Publication number
JP4019069B2
JP4019069B2 JP2004171372A JP2004171372A JP4019069B2 JP 4019069 B2 JP4019069 B2 JP 4019069B2 JP 2004171372 A JP2004171372 A JP 2004171372A JP 2004171372 A JP2004171372 A JP 2004171372A JP 4019069 B2 JP4019069 B2 JP 4019069B2
Authority
JP
Japan
Prior art keywords
ground
underground
pipe
underground pipe
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004171372A
Other languages
Japanese (ja)
Other versions
JP2005350538A (en
Inventor
俊介 島田
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP2004171372A priority Critical patent/JP4019069B2/en
Publication of JP2005350538A publication Critical patent/JP2005350538A/en
Application granted granted Critical
Publication of JP4019069B2 publication Critical patent/JP4019069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、地盤注入の目的を達した後の生分解性プラスチックスで形成された注入管、土壌浄化管または、水質調査のための調査管等、微生物の殆ど生息していない地盤中に埋設された土木用土中埋設の急速分解法に係り、詳細には注入または調査の後、管を地盤中に取り残し、埋め殺しにしたままにしても、急速に地中の微生物によって分解されて水、炭酸ガス等の無害な物質となり、下水工事、シールド工法のように地盤を掘削する際にも作業性を低下させ、または地下水にその成分が溶出したり等の心配のない地中埋設管の分解促進方法に関する。   The present invention is buried in the ground where microorganisms hardly exist, such as an injection pipe formed of biodegradable plastics after the purpose of ground injection, a soil purification pipe, or a research pipe for water quality investigation. In particular, a method for rapid degradation of civil engineering soils, in particular, after injection or investigation, if pipes are left in the ground and left buried, they are rapidly degraded by underground microorganisms, Disassembly of underground pipes that become harmless substances such as carbon dioxide gas and reduce the workability even when excavating the ground, such as sewage construction and shield construction, or do not worry about the components leaching into the groundwater It relates to the promotion method.

地盤中に注入材を注入して該地盤を強化するに際して、従来、ストレーナー注入管装置、二重管ダブルパッカ注入管装置、複数の注入用細管を結束した注入管装置等を使用することが知られている。   In order to strengthen the ground by injecting an injection material into the ground, it is conventionally known to use a strainer injection tube device, a double tube double packer injection tube device, an injection tube device in which a plurality of injection thin tubes are bundled. ing.

また、地下水の採取や地下への注水あるいは土層の浸水性を試験するために調査管を埋設したり、排水用のドレーン管を設置したり、また、近年土壌浄化のための浄化材や空気等を汚染土壌や河川、沼地等の汚染された水中に注入して浄化処理する方法が知られている。   In addition, survey pipes have been buried to collect groundwater, inject water into the ground, or to test the submergence of soil layers, drainage drains have been installed, and recently, purification materials and air for soil purification have been installed. And the like are injected into contaminated water such as polluted soil, rivers, and swamps to purify them.

これら注入管や調査管は塩化ビニール、ポリエチレン、ポリプロピレン等、引張強度が大きく、かつ生物によって分解されない材料により構成されていたが、近年本出願人によって微生物で分解される注入管や調査管の全部または一部を生分解性プラスチックススで形成し、地盤内に注入材、浄化材、空気等を注入の後、注入管装置を地盤中や水中に取り残し、埋め殺しにしても、地中の微生物によって分解されて水、炭酸ガス等の無害な物質に変える方法が開発され特許となっている。(特許第3406567号)   These injection tubes and survey tubes were made of materials such as vinyl chloride, polyethylene, and polypropylene that have high tensile strength and are not degraded by living organisms. Alternatively, even if some parts are made of biodegradable plastic soot, and injection material, purification material, air, etc. are injected into the ground, the injection pipe device is left in the ground or in the water and buried, but the microorganisms in the ground A method has been developed and patented to convert it into harmless substances such as water and carbon dioxide gas. (Patent No. 3406567)

また、産業廃棄物、家庭廃棄物、一般廃棄物等、各種廃棄物に含まれる有機物の生分解促進剤および生分解方法として、従来、ポリアミノ酸を有効成分として含む生分解促進剤およびこれを含む生分解方法が知られている。(特開2001−270793号公報)   In addition, as a biodegradation accelerator and biodegradation method for organic substances contained in various types of waste such as industrial waste, household waste, general waste, and the like, conventionally, a biodegradation accelerator containing a polyamino acid as an active ingredient and the same are included. Biodegradation methods are known. (Japanese Patent Laid-Open No. 2001-270793)

しかし、上述の公知技術は紙くず、木くず、パルプ、木綿、羊毛等の産業廃棄物、廃棄食料品、生ゴミ等の家庭廃棄物、動物の糞尿、動物の死体等の一般廃棄物等、各種廃棄物をコンポスト処理施設等のゴミ処理施設内で分解処理するものであり、埋設注入管等の処理とは対象を著しく異にする。   However, the above-mentioned publicly known technologies are various types of waste such as paper waste, wood waste, pulp, cotton, wool and other industrial waste, waste food, household waste such as garbage, animal waste and animal waste, etc. The waste is decomposed in a garbage disposal facility such as a composting facility, and the target is markedly different from the treatment of buried injection pipes.

一般に微生物は地表よりほぼ1m以内の、植物に起因する有機物が多く存在する植土中に多く存在する。しかし、注入管や、調査井戸や、土壌浄化管等の土木用管は有機物の殆ど存在しない土中にあり、5〜10m以上あるいはそれ以上の深さにおよぶこともある。このためこのような条件下では、生分解性プラスチックスを用いても分解に有効に働く微生物の生存が少なく、長年月埋設しても分解されにくい。
特許第3406567号公報 特開2001−270793号公報
In general, many microorganisms are present in the soil, which is within about 1 m from the surface of the earth and has a lot of organic matter derived from plants. However, civil engineering pipes such as injection pipes, survey wells, and soil purification pipes are in the soil where there is almost no organic matter, and may reach a depth of 5 to 10 m or more. For this reason, under such conditions, even if biodegradable plastics are used, there is little survival of microorganisms that work effectively for degradation, and even if buried for many years, it is difficult to be degraded.
Japanese Patent No. 3406567 JP 2001-270793 A

そこで本発明の課題は、微生物の殆ど存在していない地中に埋設する生分解性プラスチックスで形成された注入管、調査井戸、土壌浄化管、土中の給水管等の土中埋設管を使用目的の達した後、そのままの位置で微生物が有効成分とする材料を上記土中埋設管中に注入または填充することにより急速に分解をさせ、上述の公知技術に存する欠点を改良した地中埋設管の分解促進方法を得ることを課題とする。   Therefore, an object of the present invention is to provide underground pipes such as injection pipes, survey wells, soil purification pipes, and water supply pipes in the soil, which are formed of biodegradable plastics that are buried in the ground where almost no microorganisms exist. After the purpose of use is reached, the material in which microorganisms are the active ingredient is injected into the soil buried pipes or filled in the soil, and then rapidly decomposed to improve the above-mentioned disadvantages of the known technology. It is an object to obtain a method for promoting the decomposition of buried pipes.

上記の課題を達成するため、本発明によれば、土中に埋設された使用目的を達したあとの全部または一部が生分解性プラスチックスで形成された注入管、調査井戸用管体あるいは土壌浄化管に微生物が存在しているコンポストや、土や、堆肥成分や、埴土や汚泥や、ラクトバチルス菌等の嫌気性菌や、その他微生物を含む材料を注入あるいは填充したり、あるいはこれらを有効成分とする分散液を注入または填充することを特徴とする。   In order to achieve the above-described problems, according to the present invention, an injection tube, a survey well tube, or a survey well formed entirely or partially after being used for use buried in the soil, is formed of biodegradable plastics. Inject or fill with compost containing soil microorganisms, soil, compost components, dredged soil, sludge, anaerobic bacteria such as Lactobacillus, and other materials containing microorganisms, or It is characterized by injecting or filling a dispersion liquid as an active ingredient.

本発明は微生物が殆ど存在していない地中深くに埋設された注入管、土壌浄化管、地下水観測管等の生分解性地中埋設管に使用目的を達成の後、微生物が存在しているコンポスト、土、堆肥成分、埴土、微生物を含む分散液等を注入あるいは填充するようにしたから、地中埋設管が地中のそのままの位置で急速に分解される。このため、土中深く埋設された地中埋設管を掘り返したり、引き抜いたりして、産業廃棄物として処理する必要がなく、地中のそのままの位置で分解処理される。   The present invention achieves the purpose of use in biodegradable underground buried pipes such as injection pipes, soil purification pipes, groundwater observation pipes, etc. buried deep in the ground where there are almost no microorganisms, and then the microorganisms exist. Since compost, soil, compost components, dredged soil, and a dispersion liquid containing microorganisms are injected or filled, the underground pipe is rapidly decomposed at the position in the ground. For this reason, it is not necessary to dig up or pull out underground pipes deeply buried in the soil and treat them as industrial waste, and they are decomposed at the same position in the ground.

以下、本発明を具体的に詳述する。
地盤中に埋設される地中埋設管は地盤固結材を注入したり、汚染浄化のための浄化材を注入したり、エアレーションのための空気を導入したり、等に利用され、さらに地下水観測のための観測井戸として利用される。
Hereinafter, the present invention will be described in detail.
Underground pipes buried in the ground are used for injecting ground consolidation materials, injecting purification materials for contamination purification, introducing air for aeration, etc. Used as an observation well for.

上述の地中埋設管は地盤固結材を注入したり、土壌浄化剤を注入して注入目的を達成し、さらには地下水調査を行って目的を達成し、その後は地下の利用に供するため、あるいは、自然環境保持のためにこれら地中埋設管は撤去されることが望ましい。しかし、現実には、これら埋設管を撤去することは地中深く掘り返えさなければならず、殆ど不可能に近い。ましてや、地盤固結材を注入した地盤では、注入管は固結材によって地盤に固着されており、引き抜くことは困難である。   In order to achieve the purpose of injection of the above-mentioned underground pipes by injecting ground consolidation material or by injecting a soil purification agent, and further by conducting groundwater surveys to achieve the purpose, and then for underground use, Alternatively, it is desirable to remove these underground pipes in order to preserve the natural environment. However, in reality, it is almost impossible to remove these buried pipes because they must be dug deep underground. Furthermore, in the ground into which the ground consolidation material has been injected, the injection pipe is fixed to the ground by the consolidation material, and it is difficult to pull out.

本発明はこのような観点から開発されたものであって、地中埋設管中に注入ないしは填充された微生物は生分解性プラスチックスに付着し微生物のもつ加水分解酵素によって、ポリマーの高分子を結合していた鎖(エステル結合)が切られ、低分子量化された分解生成物となり、微生物に取り込まれる。(一次分解)   The present invention was developed from this point of view. Microorganisms injected or filled in underground underground pipes adhere to biodegradable plastics and polymer polymers are converted by hydrolytic enzymes of the microorganisms. The bound chain (ester bond) is cut, resulting in a low molecular weight degradation product that is taken up by microorganisms. (Primary decomposition)

取り込まれた分解生成物は、微生物内でさらに分解され、一部(10−15%)は微生物の栄養源等の生体物となり、大部分(85.90%)は水と炭酸ガスとなって排出される。(二次分解)   The incorporated decomposition products are further decomposed in microorganisms, and some (10-15%) become living organisms such as microorganism nutrients, and most (85.90%) become water and carbon dioxide. Discharged. (Secondary decomposition)

本発明に用いられる生分解性プラスチックスは微生物により分解される高分子化合物であって、好ましくは熱可塑性であり、従来公知の押出成形により加工でき、注入管としての機械的強度を有するものが好ましい。なお、水溶性プラスチックス、特にアルカリ性の条件下で溶解するプラスチックスは、生物によっても分解され易く、本発明において好ましいものである。   The biodegradable plastic used in the present invention is a polymer compound that is decomposed by microorganisms, preferably thermoplastic, and can be processed by conventionally known extrusion molding and has mechanical strength as an injection tube. preferable. Water-soluble plastics, particularly plastics that dissolve under alkaline conditions, are easily decomposed by living organisms and are preferred in the present invention.

その化学構造は(1)主鎖が脂肪族で、これにエーテル結合またはエステル結合を有するもの、(2)主鎖(または側鎖)に水酸基、カルボキシル基を有するもの、あるいは、(3)プラスチックスの光分解および微生物分解を誘因、促進する添加剤を含有することにより生物分解性が良好なプラスチックスであり、具体的には澱粉系、酢酸セルロース系、ポリ乳酸系、脂肪族ポリエステル系、ポリビニルアルコール系等の生分解性プラスチックスが挙げられる。これらの主原料には、性能の向上あるいは可撓性の付与等の目的で他の高分子化合物、例えばポリエチレン、ポリプロピレン等のプラスチックス、可塑剤、安定剤、着色剤等を必要に応じて添加することもできる。   The chemical structure is (1) the main chain is aliphatic and has an ether bond or ester bond, (2) the main chain (or side chain) has a hydroxyl group or a carboxyl group, or (3) plastic. It is a plastic with good biodegradability by containing additives that induce and promote photodegradation and microbial degradation of starch, specifically starch-based, cellulose acetate-based, polylactic acid-based, aliphatic polyester-based, Examples thereof include biodegradable plastics such as polyvinyl alcohol. To these main raw materials, other polymer compounds such as plastics such as polyethylene and polypropylene, plasticizers, stabilizers, colorants and the like are added as necessary for the purpose of improving performance or imparting flexibility. You can also

上記(2)の水酸基あるいはカルボキシル基を有する化合物としては、脂肪族化合物が好ましい。これらの生分解性プラスチックスとしては、具体的には、上記(1)の例として、「ピオノーレ」(ポリオールとジカルボン酸の脂肪族ポリエステル)(昭和高分子株式会社と昭和電工株式会社)、「セルグリーン」(酢酸セルロース系、ポリカプロラクトン系)(ダイセル化学工業株式会社)、「ラクティ(乳酸系)」(株式会社島津製作所)、(2)の例として、「ポバール」(ポリビニルアルコール)(株式会社クラレ)、(3)の例として、「ワンダースターン」(トウモロコシ澱粉とポリエチレン)(ワンダー株式会社)等々が挙げられる。   The compound (2) having a hydroxyl group or a carboxyl group is preferably an aliphatic compound. As these biodegradable plastics, specifically, as an example of the above (1), “Pionore” (aliphatic polyester of polyol and dicarboxylic acid) (Showa Polymer Co., Ltd. and Showa Denko Co., Ltd.), “ Examples of “Cell Green” (cellulose acetate, polycaprolactone) (Daicel Chemical Industries, Ltd.), “Lacty (lactic acid)” (Shimadzu Corporation), (2) “Poval” (polyvinyl alcohol) (stock) Examples of (Kuraray), (3) include “Wonder Stern” (corn starch and polyethylene) (Wonder Corporation) and the like.

上記生分解性プラスチックスには、ポリヒドロキシブチレート、ポリ乳酸、ポリグリコシド等の高融点生分解性プラスチックスをブレンドすることにより、加工性を向上させ、織物、不織布とすることにより袋体としても使用できる。これらの主原料は、土中ではバクテリアにより、例えば90〜300日程度の日数で分解される。   By blending the biodegradable plastics with high melting point biodegradable plastics such as polyhydroxybutyrate, polylactic acid, polyglycoside, etc., the processability is improved, and a woven fabric or non-woven fabric is used as a bag. Can also be used. These main raw materials are decomposed in the soil by bacteria for, for example, about 90 to 300 days.

なお、生分解性プラスチックスは、その成形品と微生物の体内より代謝される酵素の表面反応であるため、成形品の厚みが厚いほど分解時間は長くなる。他方、注入材がアルカリ性の場合には、エステル結合を有する生分解性プラスチックスが加水分解を受けやすい。また、注入地盤は、酸性からアルカリ性まで、あるいは海水浸透等種々の異なる条件下にあり、さらに、注入材の注入によっても大きく変わってくる。したがって、注入管の分解速度は一概にはいえないが、掘削しない場合についてみると、1年といえども十分短期間といえる。また、注入後掘削する場合には、脆性のより大きな、生分解性プラスチックスを使用するのが好ましい。   In addition, since biodegradable plastics is a surface reaction of the molded product and the enzyme metabolized from the body of microorganisms, the thicker the molded product, the longer the degradation time. On the other hand, when the injection material is alkaline, biodegradable plastics having an ester bond are susceptible to hydrolysis. Moreover, the injection | pouring ground exists in various different conditions, such as acidic to alkaline, or seawater osmosis | permeation, and also changes greatly also by injection | pouring of an injection material. Therefore, the decomposition rate of the injection pipe cannot be generally determined, but when it is not excavated, it can be said that one year is a sufficiently short period. In addition, when excavating after injection, it is preferable to use biodegradable plastics that are more brittle.

本発明にかかる生分解性プラスチックスは必要に応じて耐候性を落とすことによって分解、あるいは強度の低下を促進させることもでき、そのような注入管装置を使用する場合には、特に、注入操作前の管理に配慮し、例えば直射日光に長期間曝すとか、雨中に放置することはできるだけ避けるのが好ましい。   The biodegradable plastics according to the present invention can be decomposed or reduced in strength by lowering the weather resistance as necessary. Especially when such an injection tube apparatus is used, an injection operation is performed. Considering the previous management, it is preferable to avoid exposure to direct sunlight for a long time or leaving it in the rain as much as possible.

生分解性プラスチックス製注入管としては強度、耐熱性から乳酸ポリマーや脂肪族ポリエステルを材質にしたものが利用されている。表1に従来のプラスチックスと生物分解性プラスチックスの性質の比較を表す。   A biodegradable plastic injection tube made of lactic acid polymer or aliphatic polyester is used because of its strength and heat resistance. Table 1 compares the properties of conventional plastics and biodegradable plastics.

Figure 0004019069
Figure 0004019069

本発明に用いられる使用目的を達したあとに生分解性プラスチック管内に注入または填充する材料には、有機物を分解する細菌や糸状菌等の微生物を多く含む醗酵堆肥を用いる。醗酵堆肥としては、腐葉土、鶏糞等の微生物を多く含む材料を混入し、高湿度にて十分に微生物を培養させた土を用いる。また、堆肥を混ぜ流動性を持たせた微生物を含む分散液を、地盤固結材を注入の後、引きつづいて注入地盤付近の土に、注入することで、注入管内のみならず、注入管の外側にも生分解しやすい環境をつくって一層分解を促進することができる。なお、注入以外に管内に押し込む等して填充してもよい。また、微生物が生分解しやすいように時々空気を管内に送り込むことが好ましい。   As the material to be injected or filled into the biodegradable plastic tube after the purpose of use used in the present invention is reached, fermentation compost containing a large amount of microorganisms such as bacteria and filamentous fungi that decompose organic matter is used. As fermentation compost, a soil in which a material containing a large amount of microorganisms such as humus and chicken manure is mixed and microorganisms are sufficiently cultured at high humidity is used. In addition, by injecting a dispersion containing microorganisms mixed with compost and having fluidity into the soil near the injection ground after injecting the ground consolidation material, not only in the injection pipe but also in the injection pipe Degradation can be further promoted by creating an environment that is easy to biodegrade on the outside. In addition to filling, it may be filled by pushing into the tube. Moreover, it is preferable to send air into the pipe from time to time so that microorganisms can be easily biodegraded.

一般の土壌には10兆個以上の微生物が存在しており、菌、細菌、真菌、藻類、原生動物、藻等が挙げられるが、そのうち生分解性プラスチックスに有効に働く微生物としては糖、脂肪族、乳酸のエーテル結合やエステル結合を加水分解する酵素をもつセルロース分解菌が特に有効である。   There are more than 10 trillion microorganisms in general soil, including fungi, bacteria, fungi, algae, protozoa, algae, etc. Among them, microorganisms that work effectively on biodegradable plastics include sugar, Cellulolytic bacteria having enzymes that hydrolyze aliphatic and lactic acid ether bonds and ester bonds are particularly effective.

地中にて活性化する微生物としては爆気、攪拌による空気を送る必要のない通性嫌気性菌である醗酵菌、腐敗菌を用いることもできる。特に酵母菌、乳酸菌はアンモニア、メタン等の有毒物質を生成せず、同時に注入する堆肥中の有機物を用いて増殖し生物分解性プラスチックスの分解を促進する働きを持つ。   As microorganisms activated in the ground, fermentative bacteria and spoilage bacteria that are facultative anaerobic bacteria that do not need to send air by explosion or agitation can be used. In particular, yeast and lactic acid bacteria do not produce toxic substances such as ammonia and methane, and have the function of accelerating the decomposition of biodegradable plastics by using organic substances in compost to be injected at the same time.

特に、ラクトバチルス(乳酸菌)のような嫌気性菌は全て無胞子の嫌気性菌であって、酸素を消耗しない状態でアルコールや有機酸を生成する。好気性担子菌や、糸状菌は地表面から1〜10cm位にある土中の草木を腐らす。また、ラクトバチルス菌群は表層、中層、下層に分布される。したがって、生分解性プラスチック製埋設管がたとえ空気が殆どない地中5〜10m、あるいはそれ以深に埋設されていても、その内部にこれらの嫌気性菌を注入し、あるいは填充することにより、埋設管は容易に分解される。上述菌として、具体的には、ラクトバチルスで醗酵させた植物性有機物(油かす、米ぬか)、動物性有機物、あるいは埴土、汚泥、コンポスト等、植物繊維の腐蝕したもの、あるいは醗酵したもの等が使用される。   In particular, all anaerobic bacteria such as Lactobacillus (lactic acid bacteria) are non-spore anaerobic bacteria that produce alcohol and organic acids without consuming oxygen. Aerobic basidiomycetes and filamentous fungi rot the soil plants in the soil about 1-10 cm from the ground surface. The Lactobacillus group is distributed in the surface layer, the middle layer, and the lower layer. Therefore, even if the biodegradable plastic burial pipe is buried in the underground 5-10m or deeper than there is almost no air, it can be buried by injecting or filling these anaerobic bacteria. The tube is easily disassembled. Specific examples of the above-mentioned bacteria include plant organic matter fermented with Lactobacillus (oil cake, rice bran), animal organic matter, soil, sludge, compost, etc., plant fiber that has been corroded, or fermented. used.

なお、本発明では、土中埋設管には、このほかに水中埋設管をも含むものとする。また、本発明に用いられる土中埋設管は必ずしも断面円形状とは限らず角状等、任意の形状のものも含む。   In the present invention, the underground pipe includes an underwater pipe. Moreover, the underground pipe | tube used for this invention does not necessarily need to be a cross-sectional circular shape, and includes things of arbitrary shapes, such as square shape.

本発明に用いられる生分解性プラスチック管は土壌の浄化にも利用される。例えば、6価クロムで汚染された地盤に注入管を挿入し、この注入管を通して酸化鉄等の還元剤を注入して無毒化したり、あるいは有害有機物で汚染された地下水を、地盤中に挿入した吸水管を通して地上に吸い出し、無害化したり等である。また、地盤中に複数本の管を埋設し、一方の埋設管から土壌浄化剤を注入して汚染物質を無害化する一方、他方の埋設管から地下水を吸水して地下水中に含まれる汚染物質の濃度を測定し、浄化効果を確認する。   The biodegradable plastic tube used in the present invention is also used for soil purification. For example, an injection pipe is inserted into the ground contaminated with hexavalent chromium, and a reducing agent such as iron oxide is injected through the injection pipe to detoxify it, or groundwater contaminated with harmful organic substances is inserted into the ground. It sucks out to the ground through a water absorption pipe and makes it harmless. In addition, a plurality of pipes are buried in the ground, and a soil purification agent is injected from one buried pipe to make the pollutant harmless, while the other buried pipe absorbs groundwater and is contained in the groundwater. Measure the concentration and confirm the purification effect.

上述の埋設管として、生分解性プラスチック製のものを用い、上述のとおりの土壌浄化を行ったのち、生分解性プラスチックスを分解する微生物を有効成分とする材料を上記埋設管中に填充したり、注入したりすることによって、原位置のまま、地盤中で、かつ、短時間で埋設管を分解する。これにより、汚染物質も、埋設管も消滅し、もと通りの地盤に復旧される。また、使用済の埋設管を地盤かつ掘り出して産業廃棄物として処理する手間もなくなる。   After using the biodegradable plastic made of the above-mentioned buried pipe and conducting soil purification as described above, the buried pipe is filled with a material containing as an active ingredient a microorganism that decomposes the biodegradable plastics. By injecting or injecting, the buried pipe is disassembled in the ground and in a short time in its original position. As a result, both pollutants and buried pipes disappear, and the original ground is restored. In addition, there is no need to dig up used underground pipes and treat them as industrial waste.

また、本発明に用いられる生分解性プラスチック管は地下水調査にも利用される。地下水調査として、従来、地盤強化のための地盤注入の際に、周辺地盤に埋設管による観測井戸を設け、ここから採水を行って地下水の変化の有無を確認していた。本発明では、上述埋設管を生分解性プラスチック管に代え、観測終了後、微生物を有効成分とする材料を埋設管中に填充ないしは注入して埋設管を分解消滅する。   The biodegradable plastic pipe used in the present invention is also used for groundwater investigation. Conventionally, as groundwater surveys, when injecting ground to strengthen the ground, observation wells with buried pipes were set up in the surrounding ground, and water was collected from here to check for changes in groundwater. In the present invention, the buried pipe is replaced with a biodegradable plastic pipe, and after the observation is completed, a material containing microorganisms as an active ingredient is filled or injected into the buried pipe to decompose and extinguish the buried pipe.

さらに、本発明に用いられる生分解性プラスチック管は地盤中の脱水(排水)にも利用される。例えば、軟弱地盤に瞬結グラウトや、可塑性グラウトや、スランプゼロのモルタルや、砂等を圧入し、周辺に土砂を押しやって土の密度を増大することにより、あるいは粘性土を圧蜜することにより地盤の改良が行われている。これらの圧入領域の間に透水管を埋設し、圧入によって間隙圧の上昇した地下水を脱水して地盤改良を促進する。このとき、脱水管(排水管)として本発明の生分解性プラスチック管を用い、脱水が進行してのち、脱水管中に微生物含有土砂を填充することにより、脱水管を分解消滅するとともに、脱水機能も消滅させ、周辺地盤とほぼ同じ土質に改良する。これにより、地盤改良後、いつまでも脱水による地盤沈下が続くことがない。なお、埋設管を地盤中に設置する際、はじめから透水性の砂と微生物含有材料を混合して填充することもできる。埋設管の材料と、厚さと、微生物の種類によって、あらかじめ埋設管の分解期間が想定できる。このため、脱水効果を必要とする期間と、埋設管が分解消滅する期間とを同じくして通常の地盤にもどすことができる。   Furthermore, the biodegradable plastic pipe used in the present invention is also used for dehydration (drainage) in the ground. For example, by pressing inset ground grout, plastic grout, slump-free mortar, sand, etc. into soft ground, pushing the earth around and increasing the density of the earth, or by condensing the clay The ground has been improved. Permeation pipes are buried between these press-fitting areas, and groundwater whose pore pressure has increased by press-fitting is dehydrated to promote ground improvement. At this time, using the biodegradable plastic pipe of the present invention as a dehydrating pipe (drainage pipe), after dehydration proceeds, the dehydrating pipe is filled with microorganism-containing earth and sand, so that the dehydrating pipe is decomposed and extinguished. The function will disappear, and the soil will be improved to the same soil quality as the surrounding ground. Thereby, after the ground improvement, the land subsidence due to dehydration will not continue. In addition, when installing a buried pipe in the ground, water-permeable sand and a microorganism-containing material can be mixed and filled from the beginning. Depending on the material of the buried pipe, the thickness, and the type of microorganism, a period for decomposing the buried pipe can be assumed in advance. For this reason, the period in which the dehydration effect is required and the period in which the buried pipe is decomposed and extinguished can be returned to the normal ground.

さらにまた、透水性管(あるいはドレーン材)に本発明に用いられる生分解性プラスチック管を用い、これを軟弱地盤に埋設し、圧蜜効果による地盤改良を行ってのち、前記透水性管(あるいはドレーン材)中に微生物を有効成分とする材料を填充あるいは注入することにより、透水性管(あるいはドレーン材)を分解消滅させる。この際、土砂等とともに微生物を填充すれば、最終的には周辺地盤とほぼ同一の土質となり、いつまでも排水効果による地盤沈下が起こることはない。   Furthermore, the biodegradable plastic pipe used in the present invention is used for the water permeable pipe (or drain material), which is buried in a soft ground, and after the ground improvement by the compaction effect, the water permeable pipe (or By filling or injecting a material containing microorganisms as an active ingredient into the drain material), the water permeable tube (or drain material) is decomposed and extinguished. At this time, if soil and sand etc. are filled with microorganisms, the soil will eventually have almost the same soil quality as the surrounding ground, and ground subsidence due to the drainage effect will never occur.

以下、塩化ビニール、紙と乳酸ポリマーの混合物、脂肪族ポリマーを素材とした注入管の埋設試験の結果を示す。
地中1〜10mに埋設することから、地表近く微生物の多く住む土壌を想定した(イ)農業用堆肥に埋設したもの、地下5m以深の砂を多く含む土壌を想定した(ロ)豊浦標準砂に埋設したもの、本発明の地下5m以深の砂を多く含む土壌を想定した(ハ)豊浦標準砂に埋設したものであって、その内部に微生物を多く含む材料を注入または填充することを想定した管内に農業用堆肥を詰めたもの、以上3条件で行った。
The results of the burying test of the injection tube made of vinyl chloride, a mixture of paper and lactic acid polymer, and an aliphatic polymer are shown below.
Since it is buried in the ground 1 to 10m, it is assumed that soil where a lot of microorganisms live near the surface (i) It is buried in agricultural compost, and soil that contains a lot of sand 5m deep below the ground (b) Toyoura standard sand (C) It is embedded in the Toyoura standard sand, and it is assumed that the material containing a lot of microorganisms is injected or filled in the soil. A tube filled with agricultural compost, and the above three conditions.

注入管としては、比較として従来の塩化ビニールを素材とする注入管、本発明の土中埋設管、生分解性プラスチックス管として紙と乳酸ポリマーの混合物を素材とする注入管と脂肪族ポリエステルを素材とする注入管の2点、合計3点を用意した。   As an injection tube, for comparison, a conventional injection tube made of vinyl chloride, an underground tube of the present invention, an injection tube made of a mixture of paper and lactic acid polymer as a biodegradable plastics tube and aliphatic polyester are used. A total of 3 points were prepared, 2 for the injection tube as the material.

1.試料
(1) 塩化ビニールを素材とする注入管
(2) 紙と乳酸ポリマーの混合物を素材とする注入管(生分解性プラスチック管)
(3) 脂肪族ポリエステルを素材とする注入管(生分解性プラスチック管)
1. sample
(1) Injection tube made of vinyl chloride
(2) Injection tube made of a mixture of paper and lactic acid polymer (biodegradable plastic tube)
(3) Injection tube made of aliphatic polyester (biodegradable plastic tube)

2.試料サイズ
長さ500mm、外径50mm、管厚2.5mmのサイズの試料。(注入管)
2. Sample size A sample having a length of 500 mm, an outer diameter of 50 mm, and a tube thickness of 2.5 mm. (Injection tube)

3.試験条件
(イ)農業用堆肥に埋設
(ロ)豊浦標準砂に埋設
(ハ)管内に農業用堆肥を詰めたものを豊浦標準砂に埋設
埋設条件:58℃一定・水分含有60%・暗所・静置
埋設期間:約120日
3. Test conditions (a) Buried in agricultural compost (b) Buried in Toyoura standard sand
(C) Agricultural compost filled in pipes is buried in Toyoura standard sand Embedding conditions: constant 58 ° C, moisture content 60%, dark place, stationary Embedding period: about 120 days

4.実験結果
実験結果より、本発明の地下5m以深の砂を多く土壌に微生物を多く含む注入材を注入することを想定した(ハ)管内に農業用堆肥を詰めたものを豊浦標準砂に埋設した条件下では、紙と乳酸ポリマーの混合物を素材とする注入管、脂肪族ポリエステルを素材とする注入管共に84日〜119日で力を加えると崩壊するか、形状がなくなるまでに分解が進んだ。実験結果を表2に示す。
4). Experimental results Based on the experimental results, it was assumed that the sand of the present invention was deeper than 5m deep and the injecting material containing a lot of microorganisms was injected into the soil. Under the conditions, both the injection tube made of a mixture of paper and lactic acid polymer, and the injection tube made of an aliphatic polyester material collapsed when force was applied in 84 to 119 days, or the decomposition progressed until the shape disappeared . The experimental results are shown in Table 2.

Figure 0004019069
Figure 0004019069

(イ)の実験結果より、従来の注入管では農業用堆肥中でも殆ど変化がないことが判る。それに対して生分解性プラスチック管は用意に短期間のうちに分解されることが判る。 From the experimental results of (a), it can be seen that the conventional injection tube has almost no change even during agricultural compost. On the other hand, it can be seen that the biodegradable plastic tube is readily decomposed in a short period of time.

(ロ)の実験結果より、生分解性プラスチックスでも豊浦標準砂中では分解が極めて遅いことが判る。 The results of (b) show that biodegradable plastics decompose very slowly in Toyoura standard sand.

(ハ)の実験結果より、微生物を含有する堆肥を含む材料を生分解性プラスチック管に注入または填充した場合、微生物の殆どない土中でも急速に分解が進むことが判った。 From the experimental results of (c), it was found that when a material containing compost containing microorganisms was injected or filled into a biodegradable plastic tube, the decomposition proceeded rapidly even in soil with almost no microorganisms.

本発明にかかる地中埋設管の分解促進方法によれば、
1.注入管、調査管、土壌浄化管、排水管、等の埋設管がその目的を達したあと、土中で分解され短期間に元に戻るため環境への影響が少ない。
2.微生物により注入管の分解が促進されるため、その後の地下掘削等の工事においても注入管が工事の作業性を損なうことがない。
という利点を生じ、産業上の利用可能性が大きい。
According to the method for promoting the decomposition of underground pipes according to the present invention,
1. Since buried pipes such as injection pipes, survey pipes, soil purification pipes, drain pipes, etc. reach their purpose, they are decomposed in the soil and returned to their original state in a short period of time, so there is little impact on the environment.
2. Since the decomposition of the injection pipe is promoted by microorganisms, the injection pipe does not impair the workability in the subsequent construction such as underground excavation.
The industrial applicability is great.

Claims (7)

地盤中に生分解性プラスチック管を埋設し、目的を達成した後の中埋設管に、微生物を有効成分とする材料を充填または注入してなり、これにより前記地中埋設管が地中のそのままの位置で分解促進されることを特徴とする地中埋設管の分解促進方法。 Buried biodegradable plastic pipe in the ground, on the ground during buried pipe after achieving the purpose, microorganisms become filled or injected material comprising as an active ingredient, whereby said underground pipe underground A method for promoting the decomposition of underground pipes , characterized in that the decomposition is promoted at the same position. 請求項1において、微生物を有効成分とする材料が微生物を含むコンポスト、土、堆肥、埴土、泥およびこれらの分散液の群から選択される請求項1に記載の地中埋設管の分解促進方法。 According to claim 1, compost material as an active ingredient the microorganism containing microorganisms, soil, compost, clay, sludge and accelerated degradation of underground pipe according to claim 1 selected from the group of these dispersions Method. 請求項1において、微生物を有効成分とする材料が嫌気性菌を有効成分として含有するる請求項1に記載の地中埋設管の分解促進方法。   The method according to claim 1, wherein the material containing microorganisms as an active ingredient contains anaerobic bacteria as an active ingredient. 地盤中に埋設した地中埋設管を通して注入材を注入して地盤を改良する地盤処理方法であって、前記地中埋設管が生分解性プラスチック管であり、この地中埋設管を通して地盤中に注入材を注入の後、微生物を有効成分とする材料を前記地中埋設管に充填または注入してなり、これにより前記地中埋設管が地中のそのままの位置で分解促進されることを特徴とする地中埋設管を用いた地盤処理方法。 A ground treatment method for improving a ground by injecting an injection material through a underground pipe buried in the ground , wherein the underground pipe is a biodegradable plastic pipe, and is inserted into the ground through the underground pipe. after the grout injection, becomes a material containing, as an active ingredient, a microorganism is filled or injected into the underground pipe, thereby characterized in that said underground pipe is accelerated degradation in situ of underground Ground treatment method using underground pipes. 請求項4において、注入材が地盤固結材、地盤浄化材、または空気である請求項4に記載の地盤処理方法。   5. The ground treatment method according to claim 4, wherein the injection material is a ground consolidation material, a ground purification material, or air. 地盤中に埋設した地中埋設管を通して地盤または地下水を調査する地中調査方法において、前記地中埋設管が生分解性プラスチックであり、前記調査を実施した後に微生物を有効成分とする材料を前記地中埋設管に充填または注入してなり、これにより前記地中埋設管が地中のそのままの位置で分解促進されることを特徴とする地中調査方法。 In the underground survey method for investigating the ground or groundwater through the underground pipe buried in the ground , the underground pipe is a biodegradable plastic pipe , and after conducting the investigation, a material containing microorganisms as an active ingredient is used. underground searching method in the now filled or injected into the underground pipe, thereby characterized in that said underground pipe is accelerated degradation in situ of underground. 地盤中に埋設した地中埋設管を通して地盤を浄化し、または地下水を調査する地盤処理方法において、前記地中埋設管が生分解性プラスチック管であり、この地中埋設管を通して土壌浄化剤を注入し、あるいは地下水の水質を調査するために地下水を吸い上げた後、前記地中埋設管に微生物を有効成分とする材料を充填または注入してなり、これにより前記地中埋設管が地中のそのままの位置で分解促進されることを特徴とする地盤処理方法。 In a ground treatment method for purifying the ground through underground pipes buried in the ground or investigating groundwater, the underground pipe is a biodegradable plastic pipe, and a soil purification agent is injected through the underground pipe. Alternatively, after the groundwater is sucked up to investigate the quality of the groundwater, the underground pipe is filled or injected with a material containing microorganisms as an active ingredient, so that the underground pipe is left in the ground. The ground treatment method is characterized in that decomposition is promoted at the position of.
JP2004171372A 2004-06-09 2004-06-09 Method for accelerating disassembly of underground pipe, ground treatment and investigation method Expired - Lifetime JP4019069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171372A JP4019069B2 (en) 2004-06-09 2004-06-09 Method for accelerating disassembly of underground pipe, ground treatment and investigation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171372A JP4019069B2 (en) 2004-06-09 2004-06-09 Method for accelerating disassembly of underground pipe, ground treatment and investigation method

Publications (2)

Publication Number Publication Date
JP2005350538A JP2005350538A (en) 2005-12-22
JP4019069B2 true JP4019069B2 (en) 2007-12-05

Family

ID=35585281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171372A Expired - Lifetime JP4019069B2 (en) 2004-06-09 2004-06-09 Method for accelerating disassembly of underground pipe, ground treatment and investigation method

Country Status (1)

Country Link
JP (1) JP4019069B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827910B2 (en) * 2008-11-26 2011-11-30 強化土エンジニヤリング株式会社 Observation well for environmental monitoring
JP5360578B2 (en) * 2009-10-06 2013-12-04 強化土株式会社 Ground injection method
EP2425904A1 (en) * 2010-09-07 2012-03-07 P&J Holding B.V. Stand pipe for environmental monitoring made of biodegradable material

Also Published As

Publication number Publication date
JP2005350538A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
CA2320542C (en) Sequential aerobic/anaerobic solid waste landfill operation
Ivanov et al. Construction biotechnology: biogeochemistry, microbiology and biotechnology of construction materials and processes
Kale et al. Microbial degradation of plastic: a review
Stabnikov et al. Construction Biotechnology: a new area of biotechnological research and applications
Ivanov et al. Basics of construction microbial biotechnology
Ivanov et al. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ
EP1874492B1 (en) The transformer aerobic degestion method
CN106424075A (en) Novel coverage system for in-situ treatment of aerobic repair landfilling gas of landfill
Ivanov et al. Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials
JP2011080224A (en) Grouting method
JP4019069B2 (en) Method for accelerating disassembly of underground pipe, ground treatment and investigation method
Khatua et al. Myco-remediation of plastic pollution: current knowledge and future prospects
CN211538968U (en) In-situ bioremediation system for petroleum-polluted soil and underground water
Plocoste et al. Effect of leachate recirculation on landfill methane production in a tropical insular area
JP4240497B2 (en) Purification method for contaminated ground
CN110294580A (en) A kind of method of biotic population and artificial swamp combination processing Sediments
CN216175226U (en) Aerobic microorganism stabilizing system for refuse landfill
CN106799385B (en) Urban garbage environmental protection processing system
JP4801015B2 (en) Soil infiltration water purification ground and purification method
CN113578912A (en) System and method for stabilizing aerobic microorganisms in refuse landfill
Singh et al. Toxicity and treatability of leachate: application of UASB reactor for leachate treatment from Okhla landfill, New Delhi
Saxena et al. Estimation of possible biodegradation of polythene by fungal isolates growing on polythene debris
CN110280561B (en) Centralized landfill pit for urban domestic garbage and landfill method thereof
JP4827910B2 (en) Observation well for environmental monitoring
RU2407725C1 (en) Method for production of humus at dumps

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070921

R150 Certificate of patent or registration of utility model

Ref document number: 4019069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250