JP2007110841A - Capacity adjusting device for battery pack - Google Patents

Capacity adjusting device for battery pack Download PDF

Info

Publication number
JP2007110841A
JP2007110841A JP2005299627A JP2005299627A JP2007110841A JP 2007110841 A JP2007110841 A JP 2007110841A JP 2005299627 A JP2005299627 A JP 2005299627A JP 2005299627 A JP2005299627 A JP 2005299627A JP 2007110841 A JP2007110841 A JP 2007110841A
Authority
JP
Japan
Prior art keywords
assembled battery
capacity
soc
predetermined current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005299627A
Other languages
Japanese (ja)
Other versions
JP4529864B2 (en
Inventor
Tomonaga Sugimoto
智永 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005299627A priority Critical patent/JP4529864B2/en
Publication of JP2007110841A publication Critical patent/JP2007110841A/en
Application granted granted Critical
Publication of JP4529864B2 publication Critical patent/JP4529864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity adjusting device for a battery pack capable of preventing the generation of wasteful discharge resulting from a capacity variation including errors. <P>SOLUTION: A CPU21 determines capacity variations of all cells s1 to s4 and controls the charging and discharging of a battery pack 1 by setting a target value SOC of the battery pack 1 so as to become higher as the capacity variations are larger. However, if the magnitude of a discharge current detected by a current sensor 6 is above a first predetermined current, a voltage drop by the internal resistance of a cell becomes large and exact capacity variations cannot be detected, thus causing the difficult determination of capacity variations. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、組電池を構成する複数のセル間の容量調整を行う装置に関する。   The present invention relates to an apparatus for adjusting capacity between a plurality of cells constituting an assembled battery.

組電池を構成する複数のセル間の電圧バラツキに応じて、組電池のSOC(充電率)を上昇させ、セル電圧がバイパス作動電圧を越えたセルの放電を行うことにより、セル間の容量調整を行う技術が知られている(特許文献1参照)。   Capacitance adjustment between cells by increasing the SOC (charge rate) of the assembled battery according to the voltage variation between multiple cells that make up the assembled battery, and discharging the cells whose cell voltage exceeds the bypass operating voltage A technique for performing is known (see Patent Document 1).

特開平10−322925号公報JP-A-10-322925

しかしながら、従来の技術において、組電池の放電電流が大きい場合には、電池の内部抵抗による電圧降下が大きくなるため、セル間の電圧バラツキを正確に検出することができず、容量調整のための無駄な放電が行われる可能性があった。   However, in the conventional technology, when the discharge current of the assembled battery is large, the voltage drop due to the internal resistance of the battery becomes large, so voltage variation between cells cannot be detected accurately, and capacity adjustment is not possible. There was a possibility that useless discharge was performed.

本発明による組電池の容量調整装置は、セル間の容量バラツキが大きいほど、組電池の目標SOCを高くして、セル電圧が所定の電圧を超えたセルの放電を行うことにより、セル間の容量調整を行うものであって、組電池の放電電流の大きさが第1の所定電流以上の場合には、容量バラツキの検出を行わないことを特徴とする。   The capacity adjustment device for an assembled battery according to the present invention increases the target SOC of the assembled battery as the capacity variation between the cells increases, and discharges the cells whose cell voltage exceeds a predetermined voltage. The capacity adjustment is performed, and when the magnitude of the discharge current of the assembled battery is equal to or larger than the first predetermined current, the capacity variation is not detected.

本発明による組電池の容量調整装置によれば、組電池の放電電流の大きさが第1の所定電流以上の場合には、容量バラツキの検出を行わないので、誤差を含んだ容量バラツキに基づいた無駄な放電が行われるのを防ぐことができる。   According to the battery pack capacity adjustment device of the present invention, when the magnitude of the discharge current of the battery pack is greater than or equal to the first predetermined current, the capacity variation is not detected, and therefore, based on the capacity variation including an error. It is possible to prevent unnecessary discharge.

図1は、一実施の形態における組電池の容量調整装置を電気自動車に適用したシステム構成を示す図である。図1では、強電ラインを太い実線で、弱電ラインを細い実線で、制御信号ラインを点線で示している。この電気自動車は、モータジェネレータ9(以下、単にモータ9と呼ぶ)を走行駆動源として走行する。   FIG. 1 is a diagram showing a system configuration in which an assembled battery capacity adjustment device according to an embodiment is applied to an electric vehicle. In FIG. 1, the strong electric line is indicated by a thick solid line, the weak electric line is indicated by a thin solid line, and the control signal line is indicated by a dotted line. This electric vehicle travels using a motor generator 9 (hereinafter simply referred to as a motor 9) as a travel drive source.

組電池1は、例えば、ニッケル水素電池であり、4個のセルs1〜s4を直列に接続して構成される。組電池1は、電流センサ6およびメインリレー8a,8bを介して、インバータ10および補機システム11に接続されており、インバータ10および補機システム11に直流電力を供給する。インバータ10は、組電池1から供給される直流電力を交流電力に変換して、変換した交流電力を交流モータ9に供給する。インバータ10はまた、車両の制動時に、モータ9が回生運転を行うことにより発電する交流電力を直流電力に変換する。変換された直流電力は、組電池1の充電に用いられる。   The assembled battery 1 is, for example, a nickel metal hydride battery, and is configured by connecting four cells s1 to s4 in series. The assembled battery 1 is connected to the inverter 10 and the auxiliary machine system 11 via the current sensor 6 and the main relays 8a and 8b, and supplies DC power to the inverter 10 and the auxiliary machine system 11. The inverter 10 converts the DC power supplied from the assembled battery 1 into AC power, and supplies the converted AC power to the AC motor 9. The inverter 10 also converts AC power generated by the motor 9 performing regenerative operation into DC power during braking of the vehicle. The converted DC power is used for charging the battery pack 1.

車両コントローラ3は、インバータ10および補機システム11を制御して、車両の走行および補機の作動を制御する。なお、補機システム11には、空調装置、灯火類、ワイパなどが含まれる。車両コントローラ3および後述するバッテリコントローラ2には、メインスイッチ4を介して、補助電池5から制御電源が供給される。メインスイッチ4は、エンジンを走行駆動源とする自動車のイグニッションスイッチに相当するものであり、電気自動車のメインキー(不図示)が走行位置に設定されるとオン(閉路)する。   The vehicle controller 3 controls the inverter 10 and the auxiliary machine system 11 to control the running of the vehicle and the operation of the auxiliary machine. The auxiliary machine system 11 includes an air conditioner, lights, and a wiper. Control power is supplied from the auxiliary battery 5 to the vehicle controller 3 and a battery controller 2 described later via the main switch 4. The main switch 4 corresponds to an ignition switch of an automobile that uses an engine as a travel drive source, and is turned on (closed) when a main key (not shown) of the electric vehicle is set to a travel position.

電流センサ6は、組電池1からインバータ10に流れる放電電流と、インバータ10から組電池1に流れる充電電流とを検出し、後述するバッテリコントローラ2のCPU21に出力する。なお、電流センサ6は、充電電流を正の値として検出し、放電電流を負の値として検出する。メインリレー8a,8bは、CPU21により開閉され、強電ライン、すなわち、組電池1とインバータ10との間の接続/開放を行う。電圧センサ7は、組電池1の総電圧を検出し、CPU21に出力する。   The current sensor 6 detects a discharge current flowing from the assembled battery 1 to the inverter 10 and a charging current flowing from the inverter 10 to the assembled battery 1 and outputs the detected current to the CPU 21 of the battery controller 2 described later. The current sensor 6 detects the charging current as a positive value and detects the discharging current as a negative value. The main relays 8a and 8b are opened / closed by the CPU 21 to connect / release the high-power line, that is, the assembled battery 1 and the inverter 10. The voltage sensor 7 detects the total voltage of the assembled battery 1 and outputs it to the CPU 21.

温度センサ13は、組電池1の温度を検出し、CPU21に出力する。警告灯12は、例えば、組電池1が過充電状態または過放電状態となる等、電気自動車に何らかの異常が発生した時に点灯して、乗員に異常発生を報知する。   The temperature sensor 13 detects the temperature of the assembled battery 1 and outputs it to the CPU 21. The warning lamp 12 is turned on when an abnormality occurs in the electric vehicle, for example, when the assembled battery 1 is overcharged or overdischarged, and notifies the occupant of the occurrence of the abnormality.

CPU21は、図示しないコンパレータを備えており、各セルs1〜s4の電圧と第1の所定電圧V1とを比較して、セル電圧が第1の所定電圧V1以下に低下したセルを検出する。また、CPU21は、各セルs1〜s4の電圧と第2の所定電圧V2とを比較して、セル電圧が第2の所定電圧V2以上に上昇したセルを検出する。なお、第1の所定電圧V1は、セル電圧が低電圧側にばらついているセルを検出するためのしきい値電圧であり、第2の所定電圧V2(V2>V1)は、セル電圧が高電圧側にばらついているセルを検出するためのしきい値電圧である。   The CPU 21 includes a comparator (not shown), and compares the voltage of each of the cells s1 to s4 with the first predetermined voltage V1 to detect a cell whose cell voltage has dropped below the first predetermined voltage V1. Further, the CPU 21 compares the voltage of each of the cells s1 to s4 with the second predetermined voltage V2, and detects a cell whose cell voltage has risen to the second predetermined voltage V2 or higher. The first predetermined voltage V1 is a threshold voltage for detecting a cell whose cell voltage varies on the low voltage side, and the second predetermined voltage V2 (V2> V1) is a high cell voltage. This is a threshold voltage for detecting cells that vary on the voltage side.

また、CPU21は、セル間の電圧バラツキ(容量バラツキ)に基づいて、組電池の目標SOCを決定し、決定した目標SOCに基づいて、組電池1の充放電を制御する。さらに、セルの高電圧側の容量バラツキに基づいて、組電池1のSOC上限値を設定し、組電池1のSOCがSOC上限値を超えないように、組電池1の充放電を制御する。   Moreover, CPU21 determines the target SOC of an assembled battery based on the voltage variation (capacity variation) between cells, and controls charging / discharging of the assembled battery 1 based on the determined target SOC. Furthermore, the SOC upper limit value of the assembled battery 1 is set based on the capacity variation on the high voltage side of the cell, and charging / discharging of the assembled battery 1 is controlled so that the SOC of the assembled battery 1 does not exceed the SOC upper limit value.

直列に接続された抵抗R1およびツェナーダイオードD1は、セルs1と並列に接続されている。同様に、直列に接続された抵抗R2およびツェナーダイオードD2は、セルs2と、抵抗R3およびツェナーダイオードD3はセルs3と、抵抗R4およびツェナーダイオードD4はセルs4とそれぞれ並列に接続されている。抵抗R1〜R4およびツェナーダイオードD1〜D4は、容量調整回路を構成している。例えば、セルs1の電圧がツェナーダイオードD1のツェナー電圧Vzより高くなると、ツェナーダイオードD1に電流が流れ始める。これにより、セルs1から抵抗R1に電流が流れるため、セルs1の電圧は低下する。   The resistor R1 and the Zener diode D1 connected in series are connected in parallel with the cell s1. Similarly, the resistor R2 and the Zener diode D2 connected in series are connected in parallel to the cell s2, the resistor R3 and the Zener diode D3 are connected to the cell s3, and the resistor R4 and the Zener diode D4 are connected to the cell s4 in parallel. The resistors R1 to R4 and the Zener diodes D1 to D4 constitute a capacity adjustment circuit. For example, when the voltage of the cell s1 becomes higher than the Zener voltage Vz of the Zener diode D1, current starts to flow through the Zener diode D1. As a result, since a current flows from the cell s1 to the resistor R1, the voltage of the cell s1 decreases.

図2は、一実施の形態における組電池の容量調整装置によって行われる処理内容を示すフローチャートである。図示しない車両のメインキーがオンされると、CPU21は、ステップS10の処理を開始する。   FIG. 2 is a flowchart showing the contents of processing performed by the battery pack capacity adjustment device in one embodiment. When the main key of the vehicle (not shown) is turned on, the CPU 21 starts the process of step S10.

ステップS10では、容量劣化補正係数βおよび内部抵抗劣化補正係数γを求める。容量劣化補正係数βは、組電池1の劣化時の放電容量と、初期状態(新品)の時の放電容量との比で表される係数であり、組電池1の劣化が進行するほど、値は小さくなる。初期状態の時の放電容量は予め求めておいて、メモリ22に格納しておく。また、劣化時の放電容量は、電流センサ6によって検出される電流値、および、電圧センサ7によって検出される電圧値に基づいて求める。なお、容量劣化補正係数βの算出方法は既知であるため、ここでは、詳しい説明は省略する。   In step S10, a capacity deterioration correction coefficient β and an internal resistance deterioration correction coefficient γ are obtained. The capacity deterioration correction coefficient β is a coefficient represented by a ratio between the discharge capacity when the assembled battery 1 is deteriorated and the discharge capacity when the assembled battery 1 is in the initial state (new), and the value increases as the deterioration of the assembled battery 1 progresses. Becomes smaller. The discharge capacity in the initial state is obtained in advance and stored in the memory 22. Further, the discharge capacity at the time of deterioration is obtained based on the current value detected by the current sensor 6 and the voltage value detected by the voltage sensor 7. Since the method for calculating the capacity deterioration correction coefficient β is known, detailed description thereof is omitted here.

内部抵抗劣化補正係数γは、組電池1の初期状態(新品)の時の内部抵抗と、劣化時の内部抵抗との比で表される係数であり、組電池1の劣化が進行するほど、値は小さくなる。初期状態の時の内部抵抗は予め求めておいて、メモリ22に格納しておく。また、劣化時の内部抵抗は、電流センサ6によって検出される電流値、および、電圧センサ7によって検出される電圧値に基づいて求める。なお、内部抵抗劣化補正係数γの算出方法は既知であるため、ここでは、詳しい説明は省略する。   The internal resistance deterioration correction coefficient γ is a coefficient represented by the ratio between the internal resistance when the assembled battery 1 is in the initial state (new) and the internal resistance at the time of deterioration, and as the deterioration of the assembled battery 1 proceeds, The value becomes smaller. The internal resistance in the initial state is obtained in advance and stored in the memory 22. Further, the internal resistance at the time of deterioration is obtained based on the current value detected by the current sensor 6 and the voltage value detected by the voltage sensor 7. In addition, since the calculation method of internal resistance deterioration correction coefficient (gamma) is known, detailed description is abbreviate | omitted here.

ステップS10に続くステップS20では、後述する電流しきい値I1およびI2を補正するための補正係数KcおよびKrを求める。図3は、容量劣化率(%)と、補正係数Kcとの関係を示す図である。容量劣化率は、容量劣化の進行度合を示す値であり、容量劣化が進むほど、大きい値を示す。図3に示すように、容量劣化が進むほど、補正係数Kcの値は小さくなる。上述したように、容量劣化が進むほど、容量劣化補正係数βの値は小さくなるため、容量劣化補正係数βが小さいほど、補正係数Kcの値は小さくなる。図3では、容量劣化率(%)と補正係数Kcとの関係を示しているが、容量劣化補正係数βと補正係数Kcとの関係を示すマップを予め用意して、メモリ22に格納しておき、ステップS10で求めた容量劣化補正係数βと、メモリ22に格納しておいたマップとに基づいて、補正係数Kcを求めることができる。   In step S20 following step S10, correction coefficients Kc and Kr for correcting current threshold values I1 and I2 described later are obtained. FIG. 3 is a diagram showing the relationship between the capacity deterioration rate (%) and the correction coefficient Kc. The capacity deterioration rate is a value indicating the degree of progress of capacity deterioration, and indicates a larger value as the capacity deterioration progresses. As shown in FIG. 3, the value of the correction coefficient Kc decreases as the capacity deterioration progresses. As described above, as the capacity deterioration progresses, the value of the capacity deterioration correction coefficient β decreases. Therefore, the value of the correction coefficient Kc decreases as the capacity deterioration correction coefficient β decreases. FIG. 3 shows the relationship between the capacity deterioration rate (%) and the correction coefficient Kc. A map showing the relationship between the capacity deterioration correction coefficient β and the correction coefficient Kc is prepared in advance and stored in the memory 22. The correction coefficient Kc can be obtained based on the capacity deterioration correction coefficient β obtained in step S10 and the map stored in the memory 22.

図4は、内部抵抗劣化率(%)と、補正係数Krとの関係を示す図である。内部抵抗劣化率は、内部抵抗劣化の進行度合を示す値であり、内部抵抗劣化が進むほど、大きい値を示す。図4に示すように、内部抵抗劣化が進むほど、補正係数Krの値は小さくなる。上述したように、内部抵抗劣化が進むほど、内部抵抗劣化補正係数γの値は小さくなるため、内部抵抗劣化補正係数γが小さいほど、補正係数Kcの値は小さくなる。図4では、内部抵抗劣化率(%)と補正係数Krとの関係を示しているが、内部抵抗劣化補正係数γと補正係数Krとの関係を示すマップを予め用意して、メモリ22に格納しておき、ステップS10で求めた内部抵抗劣化補正係数γと、メモリ22に格納しておいたマップとに基づいて、補正係数Krを求めることができる。   FIG. 4 is a diagram showing the relationship between the internal resistance deterioration rate (%) and the correction coefficient Kr. The internal resistance deterioration rate is a value indicating the degree of progress of internal resistance deterioration, and shows a larger value as the internal resistance deterioration progresses. As shown in FIG. 4, the value of the correction coefficient Kr decreases as the internal resistance deterioration proceeds. As described above, the value of the internal resistance deterioration correction coefficient γ decreases as the internal resistance deterioration progresses. Therefore, the value of the correction coefficient Kc decreases as the internal resistance deterioration correction coefficient γ decreases. FIG. 4 shows the relationship between the internal resistance deterioration rate (%) and the correction coefficient Kr, but a map showing the relationship between the internal resistance deterioration correction coefficient γ and the correction coefficient Kr is prepared in advance and stored in the memory 22. In addition, the correction coefficient Kr can be obtained based on the internal resistance deterioration correction coefficient γ obtained in step S10 and the map stored in the memory 22.

ステップS20に続くステップS30では、温度センサ13によって検出される組電池1の温度を取得して、ステップS40に進む。ステップS40では、ステップS30で取得した組電池1の温度に基づいて、後述する電流しきい値I1およびI2を補正するための補正係数Ktを求める。図5は、組電池1の温度と補正係数Ktとの関係を示す図である。図5に示すように、組電池1の温度が20℃の時の補正係数Ktの値を1とし、温度が20℃より高くなるほど、補正係数Ktの値は大きく、温度が20℃より低くなるほど、補正係数Ktの値は小さい。ここでは、図5に示すような関係のマップを予め用意してメモリ22に格納しておき、ステップS30で求めた温度と、メモリ22に格納しておいたマップとに基づいて、補正係数Ktを求める。   In step S30 following step S20, the temperature of the assembled battery 1 detected by the temperature sensor 13 is acquired, and the process proceeds to step S40. In step S40, based on the temperature of the assembled battery 1 acquired in step S30, a correction coefficient Kt for correcting current threshold values I1 and I2 described later is obtained. FIG. 5 is a diagram showing the relationship between the temperature of the assembled battery 1 and the correction coefficient Kt. As shown in FIG. 5, the value of the correction coefficient Kt when the temperature of the assembled battery 1 is 20 ° C. is 1. As the temperature is higher than 20 ° C., the value of the correction coefficient Kt is larger and the temperature is lower than 20 ° C. The value of the correction coefficient Kt is small. Here, a map of the relationship as shown in FIG. 5 is prepared in advance and stored in the memory 22, and the correction coefficient Kt is calculated based on the temperature obtained in step S30 and the map stored in the memory 22. Ask for.

ステップS40に続くステップS50では、次式(1)および(2)より、第1の電流しきい値I1および第2の電流しきい値I2を算出する。
I1=Ia×Kc×Kr×Kt (1)
I2=Ib×Kc×Kr×Kt (2)
ただし、Iaは、組電池の放電時に検出される電流値と比較するための所定の電流値(負の値)であり、Ibは、組電池の充電時に検出される電流値と比較するための所定の電流値(正の値)である。また、KcおよびKrはステップS20で求めた補正係数であり、Ktはステップ40で求めた補正係数である。第1の電流しきい値I1および第2の電流しきい値I2を算出すると、ステップS60に進む。
In step S50 following step S40, the first current threshold value I1 and the second current threshold value I2 are calculated from the following equations (1) and (2).
I1 = Ia × Kc × Kr × Kt (1)
I2 = Ib × Kc × Kr × Kt (2)
However, Ia is a predetermined current value (negative value) for comparison with the current value detected when the battery pack is discharged, and Ib is for comparing with the current value detected when the battery pack is charged. It is a predetermined current value (positive value). Kc and Kr are the correction coefficients obtained in step S20, and Kt is the correction coefficient obtained in step 40. When the first current threshold value I1 and the second current threshold value I2 are calculated, the process proceeds to step S60.

ステップS60では、平均SOC上限値を確認する。平均SOC上限値の初期値は70%であり、後述するステップS150において設定される。平均SOC上限値を確認すると、ステップS70に進む。ステップS70では、電流センサ6によって検出される電流値に基づいて、組電池1が放電中であるか充電中であるかを判定する。組電池1が放電中であると判定すると、ステップS80に進み、充電中であると判定すると、ステップS120に進む。   In step S60, the average SOC upper limit value is confirmed. The initial value of the average SOC upper limit value is 70%, and is set in step S150 described later. When the average SOC upper limit value is confirmed, the process proceeds to step S70. In step S70, based on the current value detected by the current sensor 6, it is determined whether the assembled battery 1 is being discharged or being charged. If it determines with the assembled battery 1 being discharging, it will progress to step S80, and if it determines with charging, it will progress to step S120.

ステップS80では、セル電圧が第1の所定電圧V1以下となっているセルが存在するか否かを判定する。上述したように、CPU21は随時、各セルの電圧と第1の所定電圧V1とを比較して、セル電圧が第1の所定電圧V1以下となっているセルが存在するか否かを監視している。セル電圧が第1の所定電圧V1以下となっているセルが存在しないと判定するとステップS10に戻り、セル電圧が第1の所定電圧V1以下となっているセルが存在すると判定するとステップS90に進む。   In step S80, it is determined whether or not there is a cell whose cell voltage is equal to or lower than the first predetermined voltage V1. As described above, the CPU 21 compares the voltage of each cell with the first predetermined voltage V1 as needed to monitor whether there is a cell whose cell voltage is equal to or lower than the first predetermined voltage V1. ing. If it is determined that there is no cell whose cell voltage is equal to or lower than the first predetermined voltage V1, the process returns to step S10. If it is determined that there is a cell whose cell voltage is equal to or lower than the first predetermined voltage V1, the process proceeds to step S90. .

ステップS90では、電流センサ6によって検出される放電電流値が第1の電流しきい値I1以下であるか否かを判定する。第1の電流しきい値I1は、ステップS50で求めた値を用いる。電流センサ6によって検出される電流値が第1の電流しきい値I1より大きいと判定すると、セル間の容量バラツキを算出するために、ステップS100に進む。   In step S90, it is determined whether or not the discharge current value detected by the current sensor 6 is equal to or less than the first current threshold value I1. As the first current threshold value I1, the value obtained in step S50 is used. If it is determined that the current value detected by the current sensor 6 is greater than the first current threshold value I1, the process proceeds to step S100 in order to calculate the capacity variation between the cells.

一方、ステップS90において、電流センサ6によって検出される電流値が第1の所定電流I1以下の場合には、セル間の容量バラツキを正確に算出することができないと判断して、ステップS10に戻る。すなわち、組電池1の放電電流が大きい場合には、組電池1の内部抵抗による電圧降下が大きくなり、セル間の容量バラツキを正確に算出することができないため、後述する容量バラツキ算出処理を行わずに、ステップS10に戻る。   On the other hand, if the current value detected by the current sensor 6 is equal to or smaller than the first predetermined current I1 in step S90, it is determined that the capacity variation between cells cannot be accurately calculated, and the process returns to step S10. . That is, when the discharge current of the assembled battery 1 is large, the voltage drop due to the internal resistance of the assembled battery 1 becomes large and the capacity variation between cells cannot be accurately calculated. Without returning to step S10.

ステップS100では、セルの平均SOCと、容量が最も低いセルのSOC(以下、MINSOCと呼ぶ)との差を算出する。まず、電圧センサ7によって検出される組電池の総電圧Vtをセルの数で除算することにより、セルの平均電圧Vaveを求める。メモリ22には、セルの電圧とSOCとの関係を対応付けた電圧−SOCマップが格納されているので、求めた平均電圧Vaveと電圧−SOCマップとに基づいて、セルの平均SOCを求める。また、ステップS80において、セル電圧が第1の所定電圧V1以下となっているセルが存在することが確認されているため、第1の所定電圧V1と電圧−SOCマップとに基づいて、MINSOCを算出(推定)する。最後に、求めた平均SOCと、MINSOCとの差を算出する。   In step S100, the difference between the average SOC of the cell and the SOC of the cell having the lowest capacity (hereinafter referred to as MINSOC) is calculated. First, the average voltage Vave of the cells is obtained by dividing the total voltage Vt of the assembled battery detected by the voltage sensor 7 by the number of cells. Since the memory 22 stores a voltage-SOC map in which the relationship between the voltage of the cell and the SOC is associated, the average SOC of the cell is obtained based on the obtained average voltage Vave and the voltage-SOC map. In step S80, since it is confirmed that there is a cell whose cell voltage is equal to or lower than the first predetermined voltage V1, MINSOC is calculated based on the first predetermined voltage V1 and the voltage-SOC map. Calculate (estimate). Finally, the difference between the obtained average SOC and MINSOC is calculated.

ステップS110では、ステップS100で算出した平均SOCとMINSOCとの差に基づいて、組電池1を充電する際の目標充電率を意味するSOC目標値を算出する。図6は、平均SOCおよびMINSOCの差と、SOC目標値との関係を示す図である。図6に示すように、平均SOCおよびMINSOCの差が0の時のSOC目標値を50%とし、平均SOCおよびMINSOCの差が大きいほど、SOC目標値を大きくする。平均SOCおよびMINSOCの差が大きいほど、SOC目標値を高くすることにより、充電時に各セルの電圧値が上昇するので、セル電圧がツェナー電圧Vzを越えたセルの放電を行うことができる。すなわち、他のセルに比べて電圧が高いセルの放電を行うことにより、セル間の容量バラツキを低減させることができる。   In step S110, based on the difference between the average SOC and MINSOC calculated in step S100, an SOC target value that means a target charging rate when charging the assembled battery 1 is calculated. FIG. 6 is a diagram showing the relationship between the difference between the average SOC and MINSOC and the SOC target value. As shown in FIG. 6, the SOC target value when the difference between the average SOC and MINSOC is 0 is set to 50%, and the SOC target value is increased as the difference between the average SOC and MINSOC increases. By increasing the SOC target value as the difference between the average SOC and MINSOC increases, the voltage value of each cell increases at the time of charging, so that the cell whose cell voltage exceeds the zener voltage Vz can be discharged. That is, by discharging a cell having a higher voltage than other cells, it is possible to reduce the capacity variation between the cells.

なお、ここでは、図6に示すような関係のマップを予め用意してメモリ22に格納しておき、ステップS100で算出したSOCの差と、メモリ22に格納しておいたマップとに基づいて、SOC目標値を算出する。   Here, a relationship map as shown in FIG. 6 is prepared in advance and stored in the memory 22, and based on the SOC difference calculated in step S 100 and the map stored in the memory 22. The SOC target value is calculated.

なお、CPU21は、充電時に組電池1の充電率(または、セルの平均SOC)がSOC上限値以下であるか否かを確認し、組電池1の充電率がSOC上限値に達すると、組電池1の充電を制御する。すなわち、組電池1のSOCがSOC上限値を超えないように、組電池1の充電を制御する。   The CPU 21 checks whether or not the charging rate of the assembled battery 1 (or the average SOC of the cell) is equal to or lower than the SOC upper limit value at the time of charging, and when the charging rate of the assembled battery 1 reaches the SOC upper limit value, The charging of the battery 1 is controlled. That is, the charging of the assembled battery 1 is controlled so that the SOC of the assembled battery 1 does not exceed the SOC upper limit value.

ステップS70において、組電池1が充電中であると判定した後に進むステップS120では、セル電圧が第2の所定電圧V2以上となっているセルが存在するか否かを判定する。上述したように、CPU21は随時、各セルの電圧と第2の所定電圧V2とを比較して、セル電圧が第2の所定電圧V2以上となっているセルが存在するか否かを監視している。セル電圧が第2の所定電圧V2以上となっているセルが存在しないと判定するとステップS10に戻り、セル電圧が第2の所定電圧V2以上となっているセルが存在すると判定するとステップS130に進む。   In step S <b> 120, which proceeds after it is determined that the assembled battery 1 is being charged in step S <b> 70, it is determined whether there is a cell whose cell voltage is equal to or higher than the second predetermined voltage V <b> 2. As described above, the CPU 21 compares the voltage of each cell with the second predetermined voltage V2 as needed to monitor whether there is a cell whose cell voltage is equal to or higher than the second predetermined voltage V2. ing. If it is determined that there is no cell whose cell voltage is equal to or higher than the second predetermined voltage V2, the process returns to step S10. If it is determined that there is a cell whose cell voltage is equal to or higher than the second predetermined voltage V2, the process proceeds to step S130. .

ステップS130では、電流センサ6によって検出される電流値(充電電流値)が第2の電流しきい値I2以上であるか否かを判定する。電流センサ6によって検出される電流値が第2の電流しきい値I2未満であると判定すると、セル間の容量バラツキを算出するために、ステップS140に進む。   In step S130, it is determined whether or not the current value (charging current value) detected by the current sensor 6 is equal to or greater than the second current threshold value I2. If it is determined that the current value detected by the current sensor 6 is less than the second current threshold value I2, the process proceeds to step S140 in order to calculate the capacity variation between the cells.

一方、電流センサ6によって検出される電流値が第2の電流しきい値I2以上であると判定すると、セル間の容量バラツキを正確に算出することができないと判断して、ステップS10に戻る。すなわち、電流値が大きい場合には、組電池1の内部抵抗による電圧降下が大きくなり、セル間の容量バラツキを正確に算出することができないため、後述する容量バラツキ算出処理を行わずに、ステップS10に戻る。   On the other hand, if it is determined that the current value detected by the current sensor 6 is greater than or equal to the second current threshold value I2, it is determined that the capacity variation between the cells cannot be accurately calculated, and the process returns to step S10. That is, when the current value is large, the voltage drop due to the internal resistance of the assembled battery 1 becomes large, and the capacity variation between the cells cannot be calculated accurately. Return to S10.

ステップS140では、容量が最も高いセルのSOC(以下、MAXSOCと呼ぶ)と、セルの平均SOCとの差を算出する。まず、電圧センサ7によって検出される組電池の総電圧Vtをセルの数で除算することにより、セルの平均電圧Vaveを求める。メモリ22には、セルの電圧とSOCとの関係を対応付けた電圧−SOCマップが格納されているので、求めた平均電圧Vaveと電圧−SOCマップとに基づいて、セルの平均SOCを求める。また、ステップS120において、セル電圧が第2の所定電圧V2以上となっているセルが存在することが確認されているため、第2の所定電圧V2と電圧−SOCマップとに基づいて、MAXSOCを算出(推定)する。最後に、MAXSOCと平均SOCとの差を算出する。MAXSOCと平均SOCとの差を算出すると、ステップS150に進む。   In step S140, the difference between the SOC of the cell having the highest capacity (hereinafter referred to as MAXSOC) and the average SOC of the cell is calculated. First, the average voltage Vave of the cells is obtained by dividing the total voltage Vt of the assembled battery detected by the voltage sensor 7 by the number of cells. Since the memory 22 stores a voltage-SOC map in which the relationship between the voltage of the cell and the SOC is associated, the average SOC of the cell is obtained based on the obtained average voltage Vave and the voltage-SOC map. In step S120, since it is confirmed that there is a cell whose cell voltage is equal to or higher than the second predetermined voltage V2, MAXSOC is calculated based on the second predetermined voltage V2 and the voltage-SOC map. Calculate (estimate). Finally, the difference between the MAXSOC and the average SOC is calculated. When the difference between the MAXSOC and the average SOC is calculated, the process proceeds to step S150.

ステップS150では、ステップS140で算出したMAXSOCと平均SOCとの差に基づいて、組電池1のSOCを制限するためのSOC上限値を求める。図7は、MAXSOCおよび平均SOCの差と、SOC上限値との関係を示す図である。図7に示すように、MAXSOCおよび平均SOCの差が0の時のSOC上限値を70%とし、MAXSOCおよび平均SOCの差が大きいほど、SOC上限値を小さくする。すなわち、充電時に、電圧の高いセルが過充電となるのを防ぐために、MAXSOCおよび平均SOCの差が大きいほど、SOC上限値を小さくする。SOC上限値を求めると、ステップS10に戻る。   In step S150, an SOC upper limit value for limiting the SOC of the assembled battery 1 is obtained based on the difference between the MAX SOC calculated in step S140 and the average SOC. FIG. 7 is a diagram showing the relationship between the difference between MAX SOC and average SOC and the SOC upper limit value. As shown in FIG. 7, the SOC upper limit value when the difference between the MAXSOC and the average SOC is 0 is 70%, and the SOC upper limit value is decreased as the difference between the MAXSOC and the average SOC is larger. That is, in order to prevent a cell having a high voltage from being overcharged during charging, the SOC upper limit value is decreased as the difference between the MAX SOC and the average SOC increases. When the SOC upper limit value is obtained, the process returns to step S10.

図8は、組電池1の充放電を行っている際に変動する組電池1の電圧V、組電池1の充放電電流I、SOC上限値の算出を行わない期間、および、SOC目標値の算出を行わない期間をそれぞれ示す図である。上述したように、電流センサ6によって検出される電流値が第1の電流しきい値I1以下の場合には、容量バラツキの算出を行わないため、SOC目標値の算出も行わない(SOC目標値の算出を禁止する)。また、電流センサ6によって検出される電流値が第2の電流しきい値I1以上の場合には、SOC上限値の算出を行わない。   FIG. 8 shows the voltage V of the assembled battery 1 that varies when the assembled battery 1 is being charged, the charging / discharging current I of the assembled battery 1, the period during which the SOC upper limit value is not calculated, and the SOC target value It is a figure which shows each period which does not calculate. As described above, when the current value detected by the current sensor 6 is equal to or smaller than the first current threshold value I1, the calculation of the SOC target value is not performed because the capacity variation is not calculated (the SOC target value). Is prohibited). When the current value detected by the current sensor 6 is equal to or greater than the second current threshold value I1, the SOC upper limit value is not calculated.

一実施の形態における組電池の容量調整装置によれば、セル間の容量バラツキが大きいほど、組電池1の目標SOCを高くして、セル電圧が所定の電圧を超えたセルの放電を行うことにより、セル間の容量調整を行う装置において、組電池の放電電流の大きさが第1の所定電流以上の場合には、容量バラツキの検出を行わないので、誤差を含んだ容量バラツキに基づいた無駄な放電が行われるのを防ぐことができる。上述したように、組電池1の放電電流の大きさが第1の所定電流以上の場合には、電池の内部抵抗による電圧降下が大きくなるため、セル間の容量バラツキを正確に検出することができなくなる。従って、組電池1の放電電流の大きさが第1の所定電流以上の場合に、容量バラツキの検出を行わないことにより、常に正確な容量バラツキ量を検出し、正確な容量バラツキ量に基づいて、適正な容量調整を行うことができる。   According to the assembled battery capacity adjusting apparatus in one embodiment, the larger the capacity variation between cells, the higher the target SOC of the assembled battery 1, and the discharge of the cells whose cell voltage exceeds a predetermined voltage. Thus, in the apparatus for adjusting the capacity between cells, when the magnitude of the discharge current of the assembled battery is equal to or larger than the first predetermined current, the capacity variation is not detected, and therefore, based on the capacity variation including an error. It is possible to prevent unnecessary discharge. As described above, when the magnitude of the discharge current of the battery pack 1 is greater than or equal to the first predetermined current, the voltage drop due to the internal resistance of the battery becomes large, so that the capacity variation between cells can be accurately detected. become unable. Therefore, when the magnitude of the discharge current of the assembled battery 1 is greater than or equal to the first predetermined current, the capacity variation is not detected, so that the accurate capacity variation amount is always detected, and the accurate capacity variation amount is determined. Appropriate capacity adjustment can be performed.

また、一実施の形態における組電池の容量調整装置によれば、組電池の状態、特に、容量劣化度合、内部抵抗劣化度合、および、電池温度に基づいて、第1の所定電流の値を補正するので、容量バラツキの検出を行わない条件を適切に設定することができる。   In addition, according to the assembled battery capacity adjusting apparatus in one embodiment, the value of the first predetermined current is corrected based on the state of the assembled battery, in particular, the capacity deterioration degree, the internal resistance deterioration degree, and the battery temperature. Therefore, it is possible to appropriately set conditions for not detecting the capacity variation.

また、一実施の形態における組電池の容量調整装置によれば、電圧が最も高いセルのSOCと全セルの平均SOCとの差に基づいて、組電池のSOC上限値を設定するので、組電池の充電時に、電圧が最も高いセルが過充電状態となるのを防ぐことができる。ただし、組電池1の充電電流の大きさが第2の所定電流以上の場合には、電圧が最も高いセルのSOCと全セルの平均SOCとの差を算出しない。すなわち、充電電流が大きい場合には、電池の内部抵抗による電圧降下が大きくなり、上記SOC差を正確に求めることができなくなるため、誤ったSOC差に基づいたSOC上限値が設定されるのを防ぐことができる。   Further, according to the assembled battery capacity adjustment device in one embodiment, the SOC upper limit value of the assembled battery is set based on the difference between the SOC of the cell having the highest voltage and the average SOC of all the cells. During charging, it is possible to prevent the cell having the highest voltage from being overcharged. However, when the magnitude of the charging current of the assembled battery 1 is equal to or greater than the second predetermined current, the difference between the SOC of the cell having the highest voltage and the average SOC of all cells is not calculated. That is, when the charging current is large, the voltage drop due to the internal resistance of the battery becomes large and the SOC difference cannot be obtained accurately. Therefore, the SOC upper limit value based on the erroneous SOC difference is set. Can be prevented.

また、一実施の形態における組電池の容量調整装置によれば、組電池の状態、特に、容量劣化度合、内部抵抗劣化度合、および、電池温度に基づいて、第2の所定電流の値を補正するので、高電圧側の容量バラツキの検出を行わない条件を適切に設定することができる。   Further, according to the assembled battery capacity adjusting apparatus in one embodiment, the second predetermined current value is corrected based on the state of the assembled battery, in particular, the capacity deterioration degree, the internal resistance deterioration degree, and the battery temperature. Therefore, it is possible to appropriately set a condition for not detecting the capacitance variation on the high voltage side.

本発明は、上述した一実施の形態に限定されることはない。例えば、第1の電流しきい値I1および第2の電流しきい値I2は、所定の電流値を電池の容量劣化、内部抵抗劣化度合、および、電池温度の3つのパラメータに基づいて補正したが、いずれか1つまたは2つのパラメータに基づいて補正することもできるし、上記3つのパラメータ以外のパラメータを用いて補正することもできる。   The present invention is not limited to the embodiment described above. For example, the first current threshold value I1 and the second current threshold value I2 are obtained by correcting predetermined current values based on three parameters of battery capacity deterioration, internal resistance deterioration degree, and battery temperature. The correction can be performed based on any one or two parameters, or can be performed using a parameter other than the above three parameters.

上述した一実施の形態では、電流センサ6が放電電流値を負の値として検出し、電流センサ6によって検出される放電電流値が第1の電流しきい値I1以下であれば、容量バラツキの検出を行わないものとした。電流センサ6が放電電流値を正の値として検出するシステムでは、第1の電流しきい値を正の値として設定しておき、電流センサ6によって検出される放電電流値が第1の電流しきい値I1以上であれば、容量バラツキの検出を行わないようにすればよい。すなわち、放電電流値の大きさが第1の電流しきい値I1以上であれば、容量バラツキの検出を行わないようにする。   In the above-described embodiment, if the current sensor 6 detects the discharge current value as a negative value and the discharge current value detected by the current sensor 6 is equal to or less than the first current threshold value I1, the capacity variation will be reduced. Detection was not performed. In a system in which the current sensor 6 detects the discharge current value as a positive value, the first current threshold is set as a positive value, and the discharge current value detected by the current sensor 6 is the first current. If the threshold value is equal to or greater than I1, it is sufficient not to detect the capacity variation. That is, if the magnitude of the discharge current value is greater than or equal to the first current threshold value I1, the capacity variation is not detected.

なお、上述した一実施の形態では、放電電流値の大きさが第1の電流しきい値I1以上であれば、容量バラツキの検出を行わないようにした。しかし、放電電流値の大きさが第1の電流しきい値I1以上の場合に容量バラツキの検出は行うが、検出した容量バラツキ量に基づいた目標SOCの設定を行わないシステムや、検出した容量バラツキ量に基づいた容量調整を行わないシステムも本発明の技術的範囲に含まれる。   In the embodiment described above, the variation in capacity is not detected if the magnitude of the discharge current value is equal to or greater than the first current threshold value I1. However, when the magnitude of the discharge current value is equal to or greater than the first current threshold value I1, the capacity variation is detected, but the target SOC is not set based on the detected capacity variation amount. A system that does not perform capacity adjustment based on the amount of variation is also included in the technical scope of the present invention.

上述した一実施の形態では、電流センサ6によって組電池1の充放電電流を検出したが、電流センサ6を設けない構成とすることもできる。この場合、モータ9の発電指令値や放電指令値に基づいて、充放電電流値を推定し、推定した電流値を電流検出値として代用することができる。   In the above-described embodiment, the charge / discharge current of the assembled battery 1 is detected by the current sensor 6, but the current sensor 6 may not be provided. In this case, the charge / discharge current value can be estimated based on the power generation command value or the discharge command value of the motor 9, and the estimated current value can be used as the current detection value.

上述した一実施の形態では、組電池の容量調整装置を電気自動車に適用したシステムを例に挙げて説明したが、ハイブリッド自動車に適用することもできるし、車両以外のシステムに適用することもできる。   In the above-described embodiment, a system in which the assembled battery capacity adjustment device is applied to an electric vehicle has been described as an example. However, the system can be applied to a hybrid vehicle or a system other than a vehicle. .

組電池1は、4つのセルから構成されるものとして説明したが、組電池を構成するセルの数によって本発明が限定されることはない。   Although the assembled battery 1 has been described as being composed of four cells, the present invention is not limited by the number of cells constituting the assembled battery.

特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、バッテリコントローラ2が容量バラツキ量検出手段、目標SOC設定手段、充放電制御手段、第1の所定電流補正手段、容量劣化度合検出手段、内部抵抗劣化度合検出手段、SOC上限値算出手段、および、第2の所定電流補正手段を、抵抗R1〜R4およびツェナーダイオードD1〜D4が放電手段を、電流センサ6が電流検出手段を、温度センサ13が温度検出手段をそれぞれ構成する。なお、以上の説明はあくまで一例であり、発明を解釈する上で、上記の実施形態の構成要素と本発明の構成要素との対応関係に何ら限定されるものではない。   The correspondence between the constituent elements of the claims and the constituent elements of the embodiment is as follows. That is, the battery controller 2 includes a capacity variation amount detection means, a target SOC setting means, a charge / discharge control means, a first predetermined current correction means, a capacity deterioration degree detection means, an internal resistance deterioration degree detection means, an SOC upper limit value calculation means, and The resistors R1 to R4 and the Zener diodes D1 to D4 constitute discharge means, the current sensor 6 constitutes current detection means, and the temperature sensor 13 constitutes temperature detection means. In addition, the above description is an example to the last, and when interpreting invention, it is not limited to the correspondence of the component of said embodiment and the component of this invention at all.

一実施の形態における組電池の容量調整装置を電気自動車に適用したシステム構成を示す図The figure which shows the system configuration which applied the capacity adjustment apparatus of the assembled battery in one embodiment to the electric vehicle 一実施の形態における組電池の容量調整装置によって行われる処理内容を示すフローチャートThe flowchart which shows the processing content performed by the capacity adjustment apparatus of the assembled battery in one embodiment 容量劣化率(%)と、補正係数Kcとの関係を示す図The figure which shows the relationship between capacity degradation rate (%) and the correction coefficient Kc 内部抵抗劣化率(%)と、補正係数Krとの関係を示す図The figure which shows the relationship between internal resistance deterioration rate (%) and the correction coefficient Kr 組電池の温度と補正係数Ktとの関係を示す図The figure which shows the relationship between the temperature of an assembled battery, and the correction coefficient Kt 平均SOCおよびMINSOCの差と、SOC目標値との関係を示す図The figure which shows the relationship between the difference of average SOC and MINSOC, and SOC target value MAXSOCおよび平均SOCの差と、SOC上限値との関係を示す図The figure which shows the relationship between the difference of MAXSOC and average SOC, and SOC upper limit 組電池の充放電を行っている際に変動する組電池の電圧V、組電池の充放電電流I、SOC上限値の算出を行わない期間、および、SOC目標値の算出を行わない期間をそれぞれ示す図The voltage V of the battery pack, the battery charge / discharge current I, the period during which the SOC upper limit value is not calculated, and the period during which the SOC target value is not calculated are as follows. Illustration

符号の説明Explanation of symbols

1…組電池、2…バッテリコントローラ、3…車両コントローラ、4…メインスイッチ、5…補助電池、6…電流センサ、7…電圧センサ、8a,8b…メインリレー、9…モータ、10…インバータ、11…補機システム、12…警告灯、13…温度センサ、21…CPU、22…メモリ DESCRIPTION OF SYMBOLS 1 ... Battery assembly, 2 ... Battery controller, 3 ... Vehicle controller, 4 ... Main switch, 5 ... Auxiliary battery, 6 ... Current sensor, 7 ... Voltage sensor, 8a, 8b ... Main relay, 9 ... Motor, 10 ... Inverter, DESCRIPTION OF SYMBOLS 11 ... Auxiliary machine system, 12 ... Warning light, 13 ... Temperature sensor, 21 ... CPU, 22 ... Memory

Claims (15)

複数のセルを直列に接続して構成される組電池の容量調整装置において、
セルの電圧が所定の電圧を超えると、該セルの放電を行う放電手段と、
セルの容量バラツキの大きさを検出する容量バラツキ量検出手段と、
前記容量バラツキ量検出手段によって検出された容量バラツキ量が大きいほど、組電池の目標SOCを高くする目標SOC設定手段と、
前記目標SOC設定手段によって設定された目標SOCに基づいて、組電池の充放電を制御する充放電制御手段と、
組電池の充放電電流を検出する電流検出手段とを備え、
前記容量バラツキ量検出手段は、前記電流検出手段によって検出された放電電流の大きさが第1の所定電流以上の場合には、前記容量バラツキ量の検出を行わないことを特徴とする組電池の容量調整装置。
In a battery pack capacity adjustment device configured by connecting a plurality of cells in series,
Discharging means for discharging the cell when the voltage of the cell exceeds a predetermined voltage;
Capacity variation amount detecting means for detecting the size of the cell capacity variation;
Target SOC setting means for increasing the target SOC of the assembled battery as the capacity variation amount detected by the capacity variation amount detection means increases;
Charge / discharge control means for controlling charge / discharge of the assembled battery based on the target SOC set by the target SOC setting means;
Current detection means for detecting the charge / discharge current of the assembled battery,
The capacity variation amount detection means does not detect the capacity variation amount when the magnitude of the discharge current detected by the current detection means is equal to or greater than a first predetermined current. Capacity adjustment device.
請求項1に記載の組電池の容量調整装置において、
前記容量バラツキ量検出手段は、前記容量バラツキ量として、全セルの平均SOCと、電圧が最も低いセルのSOCとの差を求めることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus for an assembled battery according to claim 1,
The capacity variation amount detecting unit obtains a difference between an average SOC of all cells and an SOC of a cell having the lowest voltage as the capacity variation amount.
請求項1または2に記載の組電池の容量調整装置において、
組電池の状態に基づいて、前記第1の所定電流を補正する第1の所定電流補正手段をさらに備えることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus of the assembled battery according to claim 1 or 2,
An assembled battery capacity adjusting device, further comprising: a first predetermined current correcting unit that corrects the first predetermined current based on a state of the assembled battery.
請求項3に記載の組電池の容量調整装置において、
組電池の容量劣化度合を検出する容量劣化度合検出手段をさらに備え、
前記第1の所定電流補正手段は、前記容量劣化度合検出手段によって検出される容量劣化度合が大きいほど、前記第1の所定電流を小さくすることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus of the assembled battery according to claim 3,
Further comprising a capacity deterioration degree detecting means for detecting the capacity deterioration degree of the assembled battery,
The capacity adjustment device for an assembled battery, wherein the first predetermined current correction means decreases the first predetermined current as the capacity deterioration degree detected by the capacity deterioration degree detection means increases.
請求項3または4に記載の組電池の容量調整装置において、
組電池の内部抵抗劣化度合を検出する内部抵抗劣化度合検出手段をさらに備え、
前記第1の所定電流補正手段は、前記内部抵抗劣化度合検出手段によって検出される内部抵抗劣化度合が大きいほど、前記第1の所定電流を小さくすることを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery according to claim 3 or 4,
An internal resistance deterioration degree detecting means for detecting the internal resistance deterioration degree of the assembled battery;
The capacity adjustment device for a battery pack according to claim 1, wherein the first predetermined current correction means decreases the first predetermined current as the internal resistance deterioration degree detected by the internal resistance deterioration degree detection means increases.
請求項3〜5のいずれかに記載の組電池の容量調整装置において、
組電池の温度を検出する温度検出手段をさらに備え、
前記第1の所定電流補正手段は、前記温度検出手段によって検出される組電池の温度が低いほど、前記第1の所定電流を小さくすることを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery in any one of Claims 3-5,
It further comprises temperature detection means for detecting the temperature of the assembled battery,
The assembled battery capacity adjusting apparatus, wherein the first predetermined current correcting means reduces the first predetermined current as the temperature of the assembled battery detected by the temperature detecting means is lower.
請求項6に記載の組電池の容量調整装置において、
前記第1の所定電流補正手段は、前記温度検出手段によって検出される組電池の温度が高いほど、前記第1の所定電流を大きくすることを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 6,
The capacity adjustment device for an assembled battery, wherein the first predetermined current correcting means increases the first predetermined current as the temperature of the assembled battery detected by the temperature detecting means is higher.
請求項1〜3のいずれかに記載の組電池の容量調整装置において、
電圧が最も高いセルのSOCと全セルの平均SOCとの差を求めるSOC差算出手段と、
前記SOC差算出手段によって算出されたSOCの差に基づいて、組電池のSOC上限値を算出するSOC上限値算出手段とをさらに備え、
前記充放電制御手段は、組電池のSOCが前記SOC上限値算出手段によって算出されるSOC上限値を超えないように、前記組電池の充放電を制御することを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery in any one of Claims 1-3,
SOC difference calculating means for obtaining a difference between the SOC of the cell having the highest voltage and the average SOC of all the cells;
SOC upper limit value calculating means for calculating the SOC upper limit value of the assembled battery based on the SOC difference calculated by the SOC difference calculating means,
The charge / discharge control means controls the charge / discharge of the assembled battery so that the SOC of the assembled battery does not exceed the SOC upper limit calculated by the SOC upper limit calculating means. apparatus.
請求項8に記載の組電池の容量調整装置において、
前記SOC上限値算出手段は、前記電流検出手段によって検出された充電電流の大きさが第2の所定電流以上の場合には、前記SOC上限値の算出を行わないことを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus of the assembled battery according to claim 8,
The SOC upper limit calculating means does not calculate the SOC upper limit value when the magnitude of the charging current detected by the current detecting means is equal to or greater than a second predetermined current. Capacity adjustment device.
請求項9に記載の組電池の容量調整装置において、
組電池の状態に基づいて、前記第2の所定電流を補正する第2の所定電流補正手段をさらに備えることを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 9,
An assembled battery capacity adjusting device, further comprising: a second predetermined current correcting unit that corrects the second predetermined current based on a state of the assembled battery.
請求項10に記載の組電池の容量調整装置において、
組電池の容量劣化度合を検出する容量劣化度合検出手段をさらに備え、
前記第2の所定電流補正手段は、前記容量劣化度合検出手段によって検出される容量劣化度合が大きいほど、前記第2の所定電流を小さくすることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus of the assembled battery according to claim 10,
Further comprising a capacity deterioration degree detecting means for detecting the capacity deterioration degree of the assembled battery,
The assembled battery capacity adjusting device, wherein the second predetermined current correcting means decreases the second predetermined current as the capacity deterioration degree detected by the capacity deterioration degree detecting means is larger.
請求項10または11に記載の組電池の容量調整装置において、
組電池の内部抵抗劣化度合を検出する内部抵抗劣化度合検出手段をさらに備え、
前記第2の所定電流補正手段は、前記内部抵抗劣化度合検出手段によって検出される内部抵抗劣化度合が大きいほど、前記第2の所定電流を小さくすることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus of the assembled battery according to claim 10 or 11,
An internal resistance deterioration degree detecting means for detecting the internal resistance deterioration degree of the assembled battery;
The battery pack capacity adjustment apparatus according to claim 2, wherein the second predetermined current correction unit decreases the second predetermined current as the internal resistance deterioration degree detected by the internal resistance deterioration degree detection unit increases.
請求項10〜12のいずれかに記載の組電池の容量調整装置において、
組電池の温度を検出する温度検出手段をさらに備え、
前記第2の所定電流補正手段は、前記温度検出手段によって検出される組電池の温度が低いほど、前記第2の所定電流を小さくすることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus for an assembled battery according to any one of claims 10 to 12,
It further comprises temperature detection means for detecting the temperature of the assembled battery,
The assembled battery capacity adjusting apparatus, wherein the second predetermined current correcting means reduces the second predetermined current as the temperature of the assembled battery detected by the temperature detecting means is lower.
請求項13に記載の組電池の容量調整装置において、
前記第2の所定電流補正手段は、前記温度検出手段によって検出される組電池の温度が高いほど、前記第2の所定電流を大きくすることを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 13,
The capacity adjustment device for an assembled battery, wherein the second predetermined current correcting means increases the second predetermined current as the temperature of the assembled battery detected by the temperature detecting means is higher.
請求項1〜14のいずれかに記載の組電池の容量調整装置において、
前記電流検出手段は、前記充放電制御手段によって組電池の充放電を制御する際の電流指令値を電流検出値として用いることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus of the assembled battery according to any one of claims 1 to 14,
The battery pack capacity adjustment apparatus, wherein the current detector uses a current command value when charging / discharging of the battery pack is controlled by the charge / discharge controller as a current detection value.
JP2005299627A 2005-10-14 2005-10-14 Battery pack capacity adjustment device Active JP4529864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299627A JP4529864B2 (en) 2005-10-14 2005-10-14 Battery pack capacity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299627A JP4529864B2 (en) 2005-10-14 2005-10-14 Battery pack capacity adjustment device

Publications (2)

Publication Number Publication Date
JP2007110841A true JP2007110841A (en) 2007-04-26
JP4529864B2 JP4529864B2 (en) 2010-08-25

Family

ID=38036248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299627A Active JP4529864B2 (en) 2005-10-14 2005-10-14 Battery pack capacity adjustment device

Country Status (1)

Country Link
JP (1) JP4529864B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116044A (en) * 2008-11-13 2010-05-27 Mitsubishi Motors Corp Deterioration determination device of vehicle-mounted battery
JP2010141956A (en) * 2008-12-09 2010-06-24 Denso Corp Capacity regulator for battery packs
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
JP2011072157A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Capacity adjusting device for assembled battery
US10065509B2 (en) 2014-10-30 2018-09-04 Hyundai Motor Company Circuit for controlling low power DC-DC converter of hybrid vehicle and method for controlling low power DC-DC converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289734A (en) * 1996-09-05 1998-10-27 Nissan Motor Co Ltd Battery characteristic correction method and estimation method for battery residual capacity
JP2000209782A (en) * 1999-01-12 2000-07-28 Toyota Motor Corp Charge/discharge controller for combined battery
JP2004080909A (en) * 2002-08-19 2004-03-11 Honda Motor Co Ltd Apparatus for equalizing remaining capacity of combined battery pack
JP2004222438A (en) * 2003-01-16 2004-08-05 Toshiba Corp Voltage balance equalization circuit for electric double-layer capacitor
JP2005117722A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Charge/discharge control device of battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289734A (en) * 1996-09-05 1998-10-27 Nissan Motor Co Ltd Battery characteristic correction method and estimation method for battery residual capacity
JP2000209782A (en) * 1999-01-12 2000-07-28 Toyota Motor Corp Charge/discharge controller for combined battery
JP2004080909A (en) * 2002-08-19 2004-03-11 Honda Motor Co Ltd Apparatus for equalizing remaining capacity of combined battery pack
JP2004222438A (en) * 2003-01-16 2004-08-05 Toshiba Corp Voltage balance equalization circuit for electric double-layer capacitor
JP2005117722A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Charge/discharge control device of battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116044A (en) * 2008-11-13 2010-05-27 Mitsubishi Motors Corp Deterioration determination device of vehicle-mounted battery
JP2010141956A (en) * 2008-12-09 2010-06-24 Denso Corp Capacity regulator for battery packs
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
JP2011072157A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Capacity adjusting device for assembled battery
US10065509B2 (en) 2014-10-30 2018-09-04 Hyundai Motor Company Circuit for controlling low power DC-DC converter of hybrid vehicle and method for controlling low power DC-DC converter

Also Published As

Publication number Publication date
JP4529864B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP5159498B2 (en) Charge / discharge control method for battery in power supply device of hybrid car
JP5621818B2 (en) Power storage system and equalization method
JP4543714B2 (en) Capacity adjustment device and capacity adjustment method for battery pack
US20030030414A1 (en) Apparatus for and method of calculating output deterioration in secondary battery
JP2008064496A (en) Battery control apparatus, electric vehicle, and program for making computer execute processing for estimation for charged condition of secondary battery
US11554687B2 (en) Power supply system and management device capable of determining current upper limit for supressing cell deterioration and ensuring safety
JP2000357541A (en) Battery management device
JP2009042071A (en) Voltage sensor diagnosing device and battery pack controller
JP6904226B2 (en) Power control system and method
WO2019176395A1 (en) Management device, power storage system
JP2005278241A (en) Capacity adjustment device and adjusting method of battery pack
WO2018061449A1 (en) Battery control device, battery system, and vehicle
JP4529864B2 (en) Battery pack capacity adjustment device
JP2005037230A (en) Battery degradation detection device and method
JP2005114401A (en) Device and method for determining abnormality of battery pack
JP2005278242A (en) Device and method for adjusting capacity of battery pack
JP2000069606A (en) Battery control unit
JP2019149921A (en) Vehicle control device
JP2018050373A (en) Battery system
JP2006115640A (en) Adjusting device for capacity of battery pack
KR101888974B1 (en) Control system for battery
JP2019174118A (en) Battery deterioration determination device
JP2006338995A (en) Capacity adjustment device of battery pack and capacity adjustment method of battery pack
JP2013160539A (en) Power storage system
JP7342759B2 (en) Battery diagnostic device, method, program and vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3