JP2007109668A - Manufacturing method of back plate of plasma display panel - Google Patents

Manufacturing method of back plate of plasma display panel Download PDF

Info

Publication number
JP2007109668A
JP2007109668A JP2006337427A JP2006337427A JP2007109668A JP 2007109668 A JP2007109668 A JP 2007109668A JP 2006337427 A JP2006337427 A JP 2006337427A JP 2006337427 A JP2006337427 A JP 2006337427A JP 2007109668 A JP2007109668 A JP 2007109668A
Authority
JP
Japan
Prior art keywords
layer
dielectric layer
substrate
pattern
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006337427A
Other languages
Japanese (ja)
Inventor
Mamoru Shinoda
傅 篠田
Noriyuki Awaji
則之 淡路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plasma Patent Licensing Co Ltd
Original Assignee
Hitachi Plasma Patent Licensing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Patent Licensing Co Ltd filed Critical Hitachi Plasma Patent Licensing Co Ltd
Priority to JP2006337427A priority Critical patent/JP2007109668A/en
Publication of JP2007109668A publication Critical patent/JP2007109668A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of times of baking an AC-type plasma display panel. <P>SOLUTION: At the manufacture of the back plate of the plasma display panel having a plurality of address electrodes and a dielectric layer covering the address electrodes, and barrier ribs in row and column directions formed on the dielectric layer, demarcating a discharging space in a row and a column at every cell, a pattern of the address electrodes is formed on a substrate by using metal paste containing crystallized glass, a layer of low melting point glass serving as the dielectric layer is formed on the pattern of the address electrodes, and further, the pattern of the barrier ribs in the row and column directions is formed on the low melting point glass layer for the dielectric layer by using the low melting point glass, and a black material layer containing crystallized glass is formed between adjacent barrier rib patterns in a row direction corresponding to a part laid between rows of the address electrode pattern. Afterwards, a lamination body of the address electrodes, the dielectric layer, the barrier ribs, and the black material layer is formed on the substrate by baking the address electrode pattern, the low melting point glass layer, the barrier rib pattern and the black material layer, simultaneously. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ガス放電を利用して表示を行うプラズマディスプレイパネルの背面基板の製造方法に関する。   The present invention relates to a method of manufacturing a rear substrate of a plasma display panel that performs display using gas discharge.

フラットで大型のフルカラー表示装置としてAC面放電形プラズマディスプレイパネルが既に多方面で実用化されている。このパネルの一般的な構成は、前面基板と背面基板の間に放電用のガスを封入し、前面基板の表示ラインに沿って形成された表示電極対間の面放電によって発生した真空紫外線で背面基板に設けた蛍光体を発光させてカラー表示を行う形となっている。前面基板上の表示電極対は一般的には低融点ガラスからなる誘電体層で被覆され、通常、表示電極対間には、表示コントラストを向上させるために黒帯が配されており、背面基板上には上記蛍光体の下に延在して表示電極対と交差する方向に延びるアドレス電極や隣接アドレス電極間で放電を仕切る隔壁(バリアリブとも呼称される)が設けられている。
国際公開第01/54159号
An AC surface discharge type plasma display panel has already been put to practical use in various fields as a flat and large full color display device. The general configuration of this panel is that the discharge gas is sealed between the front substrate and the rear substrate, and the rear surface is exposed to vacuum ultraviolet rays generated by surface discharge between the display electrode pairs formed along the display lines of the front substrate. Color display is performed by emitting a phosphor provided on the substrate. The display electrode pairs on the front substrate are generally covered with a dielectric layer made of low-melting glass, and usually a black belt is provided between the display electrode pairs to improve display contrast. On the upper side, there are provided an address electrode extending under the phosphor and extending in a direction intersecting with the display electrode pair, and a partition wall (also referred to as a barrier rib) for partitioning discharge between adjacent address electrodes.
International Publication No. 01/54159

しかしながら上記従来のプラズマディスプレイパネルは、図6と図7に前面基板と背面基板の製造プロセスのフローチャートに示すように、電極、誘電体層、隔壁等をそれぞれ形成しては、焼成を行っていたため、電極と誘電体層(2層構造)を有する前面基板では、焼成回数が3回必要であり、電極と誘電体層と隔壁とを有する背面基板では焼成回数が4回必要であった。なお図6のフローチャートでは誘電体層を下層、上層に分けているが、下層は電極と反応しないように誘電体材料の軟化点付近で焼成し、上層は表面を平滑にするために誘電体材料の軟化点よりも100℃程度高い温度で焼成を行う。この、誘電体層は電極材料等を変更することで単層で構成することも可能であり、この場合は前面基板の焼成回数が2回になる。以上のように従来のプラズマディスプレイパネル用基板構体(前面基板、背面基板)は、製造に際して焼成工程数が多く、しかもその焼成工程に4〜5時間の処理時間が必要であるために製造時間が長い、工程数が多いために製造歩留が悪いという問題点があった。   However, the conventional plasma display panel is fired after forming electrodes, dielectric layers, barrier ribs, etc., as shown in the flowchart of the manufacturing process of the front substrate and the rear substrate in FIGS. The front substrate having an electrode and a dielectric layer (two-layer structure) requires three times of firing, and the rear substrate having an electrode, a dielectric layer, and a partition wall requires four times of firing. In the flowchart of FIG. 6, the dielectric layer is divided into a lower layer and an upper layer, but the lower layer is fired near the softening point of the dielectric material so as not to react with the electrode, and the upper layer is a dielectric material to smooth the surface. Firing is performed at a temperature about 100 ° C. higher than the softening point. The dielectric layer can be formed as a single layer by changing the electrode material and the like. In this case, the number of times of firing the front substrate is two. As described above, the conventional plasma display panel substrate structure (front substrate, rear substrate) has a large number of firing steps in manufacturing, and the processing time of 4 to 5 hours is required for the firing step. There is a problem that the production yield is poor due to the long number of processes.

上記の問題点を鑑み、発明者らは、電極を形成する金属ペーストに結晶化ガラス粉末を混合することにより、焼成工程の低減を図る発明をするに至った。   In view of the above problems, the inventors have come to the invention of reducing the firing step by mixing the crystallized glass powder with the metal paste forming the electrode.

請求項1の発明は、基板上に複数本のアドレス電極とそれを覆う誘電体層を有し、さらに誘電体層上に放電空間をセル毎の行と列に区画する行方向および列方向の隔壁を設けてなるプラズマディスプレイパネル用背面基板の製造方法であって、前記基板上に結晶化ガラスを含む金属ペーストにより前記アドレス電極のパターンを形成し、前記アドレス電極パターン上に前記誘電体層となる低融点ガラスの層を形成し、さらに前記誘電体層用低融点ガラスの層上に低融点ガラスにより前記行方向および列方向の隔壁のパターンを形成するとともに、当該隔壁パターンの行間部分に対応した隣接する行方向隔壁パターン間に結晶化ガラスを含む黒色材料層を形成し、この後、前記アドレス電極パターンと低融点ガラスの層と隔壁パターンと黒色材料層を同時に焼成することにより、当該基板上にアドレス電極と誘電体層と隔壁と黒色材料層の積層体を形成するものである。   According to a first aspect of the present invention, a plurality of address electrodes and a dielectric layer covering the address electrodes are formed on a substrate, and a discharge space is partitioned on the dielectric layer in rows and columns for each cell. A method of manufacturing a rear substrate for a plasma display panel having a partition wall, wherein the address electrode pattern is formed on a metal paste containing crystallized glass on the substrate, and the dielectric layer and the address electrode pattern are formed on the substrate. A low melting point glass layer is formed, and the row and column barrier rib patterns are formed on the dielectric layer low melting point glass layer using the low melting point glass, and the barrier rib pattern corresponds to the inter-row portion. A black material layer containing crystallized glass is formed between adjacent row direction barrier rib patterns, and then the address electrode pattern, the low melting point glass layer, the barrier rib pattern, and the black material By firing the layers at the same time, it is to form a laminate of the address electrodes and the dielectric layer and the barrier rib and the black material layer on the substrate.

この発明によれば、従来、背面基板では4回必要であった焼成工程が2回で済むので、大幅な工程短縮が可能になる。それによって、高品質のプラズマディスプレイパネルを安価に提供することが可能になる。 According to the present invention, since the baking process that has been conventionally required four times for the back substrate is only required twice, the process can be greatly shortened. This makes it possible to provide a high-quality plasma display panel at a low cost.

本発明を適用するAC3電極面放電形プラズマディスプレイパネルの分解斜視図を図1乃至図3にそれぞれ示す。図1に示したプラズマディスプレイパネルの構造はいわゆるストライプリブ構造と呼ばれている典型的な構造で、前面基板1は透明なガラス基板からなり、その内側の面には2本ずつペアになる複数の表示電極対2x、2yがそれぞれ仮想的な表示ラインに沿って配列され、表示電極対間のいわゆる逆スリットと呼ばれる部分には、その部分の光を遮蔽して表示コントラストを向上させるためのストライプ状の遮光層(以下黒帯と記す)12が配置されている。この黒帯は本発明の特徴に従って結晶化ガラスを含む黒色絶縁材料層により形成されており、その詳細は後述する。表示電極対2x、2yと黒帯12上は誘電体層5とMgOの表面保護層6で覆われている。各表示電極対はITOからなる透明電極3と金属層からなるバス電極4とで構成されている。このバス電極を構成する金属層は本発明の特徴に従って結晶化ガラスを含む金属ペーストにより形成されており、その詳細は後述する。なお透明電極3は図示のようなストレートパターンのみならず各放電セル領域毎のT字パターン、I字パターン、櫛歯パターン或いはラダーパターンをとる場合もある。また、図中では透明電極とバス電極の構成になっているが、透明電極部分もバス電極の材料のみで形成しても構わない。   An exploded perspective view of an AC3 electrode surface discharge type plasma display panel to which the present invention is applied is shown in FIGS. The structure of the plasma display panel shown in FIG. 1 is a typical structure called a so-called stripe rib structure. The front substrate 1 is made of a transparent glass substrate, and a plurality of pairs are formed in pairs on the inner surface. The display electrode pairs 2x and 2y are arranged along virtual display lines, and stripes for improving the display contrast by shielding the light in the so-called reverse slits between the display electrode pairs. A light-shielding layer (hereinafter referred to as a black belt) 12 is disposed. This black belt is formed of a black insulating material layer containing crystallized glass according to the characteristics of the present invention, and details thereof will be described later. The display electrode pairs 2x and 2y and the black belt 12 are covered with a dielectric layer 5 and a surface protective layer 6 of MgO. Each display electrode pair includes a transparent electrode 3 made of ITO and a bus electrode 4 made of a metal layer. The metal layer constituting the bus electrode is formed of a metal paste containing crystallized glass according to the characteristics of the present invention, and details thereof will be described later. The transparent electrode 3 may take not only a straight pattern as shown, but also a T-shaped pattern, an I-shaped pattern, a comb-shaped pattern, or a ladder pattern for each discharge cell region. Further, although the transparent electrode and the bus electrode are configured in the drawing, the transparent electrode portion may be formed only of the bus electrode material.

前面基板と同様のガラス基板からなる背面基板7の上面には上記表示電極対2x、2yと交差する方向に複数本のアドレス電極8が設けられ、低融点ガラスからなる誘電体層(以下、説明の便宜上背面側誘電体層と記す)9で被覆されている。ここで、このアドレス電極も本発明の特徴に従って結晶化ガラスを含む金属ペーストにより形成されている。さらに背面側誘電体層9上には隣接するアドレス電極の間の位置に対応してストライプ状の隔壁10が形成され、各隔壁で挟まれた溝状部分に赤、緑、青の三原色蛍光体層11R、11G、11Bがそれぞれ隔壁側面までカバーする形で塗布されている。   A plurality of address electrodes 8 are provided on the upper surface of a rear substrate 7 made of a glass substrate similar to the front substrate in a direction crossing the display electrode pairs 2x, 2y, and a dielectric layer made of low-melting glass (hereinafter described) (Referred to as a back side dielectric layer for convenience) 9. Here, this address electrode is also formed of a metal paste containing crystallized glass according to the feature of the present invention. Further, stripe-like barrier ribs 10 are formed on the back-side dielectric layer 9 corresponding to the positions between adjacent address electrodes, and the three primary color phosphors of red, green, and blue are formed in groove-like portions sandwiched between the barrier ribs. The layers 11R, 11G, and 11B are applied so as to cover the side surfaces of the partition walls.

図2はいわゆるワッフルまたは井桁リブと呼ばれる隔壁構造を備えたプラズマディスプレイパネルで、図1のストライプリブに代えて背面基板7のアドレス電極8を覆う背面側誘電体層9上に各放電セル部分に対応して個別の放電空間15を画定する井桁状の隔壁帯13を設けている。前述の放電空間15は表示電極対2x、2yとアドレス電極8との交差部に対応していて放電キャビティ若しくは放電セルとなるものであり、その内壁には赤、緑、青の三原色蛍光体層11R、11G、11Bが表示電極対2x、2yの長手方向に繰り返して塗布されている。このパネルのバス電極およびアドレス電極は、本発明の特徴に従って結晶化ガラスを含む金属層によって形成されている。また、黒帯も本発明の特徴に従って結晶化ガラスを含む黒色絶縁材料層によって形成されている。   FIG. 2 shows a plasma display panel having a barrier rib structure called a waffle or a cross rib, and each discharge cell portion is formed on the back side dielectric layer 9 covering the address electrode 8 of the back substrate 7 instead of the stripe rib of FIG. Correspondingly, a grid-like partition band 13 is provided to define individual discharge spaces 15. The aforementioned discharge space 15 corresponds to the intersection of the display electrode pair 2x, 2y and the address electrode 8 and becomes a discharge cavity or discharge cell, and the inner wall has three primary color phosphor layers of red, green and blue. 11R, 11G, and 11B are repeatedly applied in the longitudinal direction of the display electrode pairs 2x and 2y. The bus electrodes and address electrodes of this panel are formed by a metal layer containing crystallized glass according to a feature of the present invention. The black belt is also formed by a black insulating material layer containing crystallized glass according to the feature of the present invention.

図3は、インターレース方式でのフルピッチ表示を可能にしたいわゆるALIS方式と呼ばれるプラズマディスプレイパネルの構造である。前面基板1の内面には表示ラインの方向に沿って複数のバス電極21が等間隔で配置され、所定の間隔で両側に分岐するT字形の透明電極22a、22bが設けられている。対向して隣接するT字形電極領域毎に放電セルを画定するように背面基板7には井桁状の隔壁帯13が設けられている。この隔壁帯13は各放電セル毎に三原色の蛍光体層11R、11G、11Bを塗り分け、隣接する隔壁帯の間、すなわち各バス電極21に対応する部分に出来た溝状領域に黒色材料層14を配置し、表示コントラストを向上させるものである。特に黒色材料層14を設けなくても構わない。このパネルにおいても、前面基板上のバス電極および背面基板上のアドレス電極が本発明の特徴に従って結晶化ガラスを含む金属層によって形成されており、また背面基板上の黒色材料層が本発明の特徴に従って結晶化ガラスを含む黒色絶縁材料層によって形成されている。   FIG. 3 shows the structure of a so-called ALIS system plasma display panel that enables full pitch display in an interlace system. A plurality of bus electrodes 21 are arranged at equal intervals along the direction of the display line on the inner surface of the front substrate 1, and T-shaped transparent electrodes 22a and 22b branching to both sides at a predetermined interval are provided. The rear substrate 7 is provided with a grid-like partition band 13 so as to delimit discharge cells for each opposing T-shaped electrode region. The barrier ribs 13 are separately coated with three primary color phosphor layers 11R, 11G, and 11B for each discharge cell, and a black material layer is formed between adjacent barrier ribs, that is, in a groove-like region formed in a portion corresponding to each bus electrode 21. 14 is arranged to improve display contrast. In particular, the black material layer 14 may not be provided. Also in this panel, the bus electrodes on the front substrate and the address electrodes on the rear substrate are formed by a metal layer containing crystallized glass according to the characteristics of the present invention, and the black material layer on the rear substrate is a characteristic of the present invention. Accordingly, the black insulating material layer containing crystallized glass is formed.

図4に示した本発明に係る前面基板の製造プロセスのフローチャートに従って、本発明の前面基板の製造プロセスを説明する。   The front substrate manufacturing process of the present invention will be described with reference to the flowchart of the front substrate manufacturing process according to the present invention shown in FIG.

工程(1)ではガラス基板上にITO膜をスパッタリング等の方法によって、0.1〜0.3μmの膜厚で成膜した後に、フォトリソグラフィー技術を用いて、所定の透明電極パターンを形成する。バス電極材料のみで表示電極対を構成する場合には工程(1)を省略する。   In step (1), an ITO film is formed on the glass substrate with a thickness of 0.1 to 0.3 μm by a method such as sputtering, and then a predetermined transparent electrode pattern is formed using a photolithography technique. Step (1) is omitted when the display electrode pair is composed only of the bus electrode material.

工程(2)では結晶化ガラス粉末、銀もしくは銀−パラジウム粉末、有機バインダ、有機溶剤で構成される金属ペーストを用いて10μm程度の膜厚でバス電極を形成する。バス電極の形成方法は、金属ペーストをスクリーン印刷でパターン印刷を行う方法、基板の全面もしくは一部分に金属ペーストを塗布した後にフォトリソグラフィー技術でパターン形成を行う方法等、既存の形成プロセスで形成する。後者の方法の場合には金属ペーストに感光性材料を添加することが好ましい。このバス電極の形成後、隣接する電極対の各バス電極間の基板上に黒帯を形成する。   In step (2), a bus electrode is formed with a film thickness of about 10 μm using a metal paste composed of crystallized glass powder, silver or silver-palladium powder, an organic binder, and an organic solvent. The bus electrode is formed by an existing forming process such as a method of performing pattern printing by screen printing of a metal paste or a method of forming a pattern by photolithography after applying the metal paste to the entire surface or a part of the substrate. In the case of the latter method, it is preferable to add a photosensitive material to the metal paste. After this bus electrode is formed, a black belt is formed on the substrate between the bus electrodes of the adjacent electrode pair.

黒帯形成は、バス電極形成と同様に、結晶化ガラス粉末、有機バインダ、有機溶剤、鉄、クロム、ニッケル、マンガン等の酸化物粉末もしくは前記金属の複合酸化物粉末とを混合した黒色絶縁材料ペーストを用いて形成する。形成方法もバス電極形成と同様の方法を用いる。黒色絶縁材料ペーストに含有させる結晶化ガラス粉末は、バス電極を形成する金属ペーストに含有させるものと同じ組成のガラス材料を使うことが好ましい。   Black band formation is a black insulating material mixed with crystallized glass powder, organic binder, organic solvent, oxide powder of iron, chromium, nickel, manganese, etc., or composite oxide powder of the above metal, similar to bus electrode formation Form with paste. The formation method is the same as the bus electrode formation. As the crystallized glass powder contained in the black insulating material paste, it is preferable to use a glass material having the same composition as that contained in the metal paste forming the bus electrode.

工程(3)では、バス電極、黒帯を形成した基板上に低融点ガラス粉末、有機バインダ、有機溶剤で構成される低融点ガラスペーストを塗布する。塗布方法は、スクリーン印刷、グリーンシート法、ロールコータ法、ダイコータ法等の方法を用いて形成する。この低融点ガラス粉末の特性としては、軟化点が560〜590℃程度の材料を用いることが好ましく、前記金属ペースト中の結晶化ガラスの結晶化ピーク温度は、この低融点ガラス粉末の軟化点よりも低い材料を用いる方が好ましい。すなわち、低融点ガラス粉末が軟化する前に金属ペースト中の結晶化ガラスを結晶化させて金属ペースト中の金属粉末同士を繋ぎあわせると同時に、背面基板とも繋ぎあわせてバス電極を基板に固着させることにより、その後で誘電体層が軟化しても、バス電極の蛇行、断線、浮き上がりを防止することが出来る。これは黒帯についても同様である。これによって、工程(4)のバス電極、黒帯、誘電体層の同時焼成が可能になる。従来の、金属ペーストでは結晶化ガラスではない非晶質のガラス粉末を使用していたため、焼成温度の上昇とともに金属ペースト中のガラスも軟化するために、バス電極の蛇行、断線、浮き上がりという問題点があったが、結晶化ガラスを使用すれば、結晶化ガラスの軟化点を超えて結晶化ピーク温度に近づくに従って結晶化するために逆にガラスが固まるという性質を持っている。金属ペーストに混合される結晶化ガラスの結晶が大きく成長し過ぎると導電率が低くなるため、結晶粒径をガラス材料と焼成条件でコントロールすることが必要である。   In step (3), a low-melting glass paste composed of a low-melting glass powder, an organic binder, and an organic solvent is applied onto the substrate on which the bus electrode and the black belt are formed. The coating method is formed using a method such as screen printing, a green sheet method, a roll coater method, or a die coater method. As a characteristic of the low melting point glass powder, it is preferable to use a material having a softening point of about 560 to 590 ° C. The crystallization peak temperature of the crystallized glass in the metal paste is higher than the softening point of the low melting point glass powder. It is preferable to use a lower material. That is, before the low melting point glass powder is softened, the crystallized glass in the metal paste is crystallized so that the metal powders in the metal paste are connected to each other, and at the same time, the bus electrode is fixed to the substrate by connecting with the back substrate. Thus, even if the dielectric layer is subsequently softened, it is possible to prevent meandering, disconnection, and lifting of the bus electrode. The same applies to the black belt. This enables simultaneous firing of the bus electrode, black belt, and dielectric layer in step (4). The conventional metal paste uses amorphous glass powder that is not crystallized glass, so the glass in the metal paste softens as the firing temperature rises. However, if crystallized glass is used, the glass crystallizes as it goes beyond the softening point of the crystallized glass and approaches the crystallization peak temperature. When the crystallized glass crystal mixed in the metal paste grows too much, the conductivity is lowered, so it is necessary to control the crystal grain size by the glass material and firing conditions.

工程(4)の同時焼成では、低融点ガラス粉末の軟化点に応じて焼成温度を570〜600℃程度の温度に設定する。昇温時の温度上昇率は、焼成温度に達する前に、バス電極と黒帯の結晶化ガラス粉末の結晶化が終了もしくはバス電極および黒帯の蛇行、断線、浮き上がりが無いレベルまで結晶化ガラス粉末が結晶化するように調節する。調整方法は、温度上昇率を下げるもしくは、昇温途中に温度を一定に保つキープを設ける方法がある。焼成温度を保持する時間は10乃至60分程度に設定する。   In the simultaneous firing in the step (4), the firing temperature is set to a temperature of about 570 to 600 ° C. according to the softening point of the low-melting glass powder. The temperature rise rate at the time of temperature rise is the level of the crystallized glass until the crystallization of the bus electrode and black belt crystallized glass powder is completed or the bus electrode and black belt meander, disconnection, and lift are not reached before reaching the firing temperature. Adjust the powder to crystallize. As an adjustment method, there is a method of decreasing the temperature increase rate or providing a keep for keeping the temperature constant during the temperature increase. The time for holding the firing temperature is set to about 10 to 60 minutes.

次に図5に示した本発明に係る背面基板の製造プロセスのフローチャートに従って、本発明の背面基板の製造プロセスを説明する。図4で説明した内容と重複する内容は省略する。   Next, according to the flowchart of the manufacturing process of the back substrate according to the present invention shown in FIG. 5, the manufacturing process of the back substrate of the present invention will be described. Content that overlaps with the content described in FIG. 4 is omitted.

工程(5)のアドレス電極形成では、図4の工程(2)で説明したバス電極の形成方法と同様の方法、材料によって、背面基板上にアドレス電極を形成する。   In the address electrode formation in step (5), an address electrode is formed on the back substrate by the same method and material as the bus electrode formation method described in step (2) of FIG.

工程(6)の背面側誘電体層形成では、図4R>4の工程(3)で説明した誘電体層の形成方法と同様の方法によって、アドレス電極上に背面側誘電体層形成を行う。背面側誘電体層を形成するための低融点ガラスペーストには、輝度を向上させるためや、背面側誘電体層上に蓄積した過剰電荷を逃がすための一般的に知られているフィラ材料を混合する。   In the back side dielectric layer formation in the step (6), the back side dielectric layer is formed on the address electrodes by the same method as the dielectric layer forming method described in the step (3) of FIG. Low melting point glass paste for forming the back side dielectric layer is mixed with commonly known filler materials to improve brightness and to release excess charge accumulated on the back side dielectric layer. To do.

工程(7)の隔壁形成は、背面側誘電体に使用する低融点ガラス粉末と同じ材料を用いることが好ましく、隔壁の形状を保つために、アルミナ、シリカ等のフィラ材料を混合することが好ましい。形成方法は、一般的に知られているスクリーン印刷法、サンドブラスト法、転写法、型押し法等の方法を用いて形成する。また、転写法、型押し法を用いる場合には、前述の背面側誘電体層形成と隔壁形成を同時に行っても構わない。その際には、背面側誘電体と隔壁の材料を同じ組成のペーストを用いる。   For the partition formation in the step (7), it is preferable to use the same material as the low-melting glass powder used for the back side dielectric, and in order to maintain the shape of the partition, it is preferable to mix a filler material such as alumina or silica. . As a forming method, a generally known method such as a screen printing method, a sand blasting method, a transfer method, or an embossing method is used. Further, when using the transfer method or the stamping method, the above-mentioned back side dielectric layer formation and partition wall formation may be performed simultaneously. In this case, a paste having the same composition is used for the back side dielectric and the partition material.

工程(8)のアドレス電極、背面側誘電体、隔壁の同時焼成は、図4の工程(4)と同様であるが、背面基板の焼成では、焼成温度を保持する時間が長くなると隔壁の形状が保てなくなることが起こるために、前面基板の焼成時間よりも短く設定することが好ましい。   The simultaneous firing of the address electrode, the back-side dielectric, and the partition in the step (8) is the same as the step (4) in FIG. 4, but in the firing of the back substrate, the shape of the partition becomes longer when the firing temperature is maintained longer. Therefore, it is preferable to set the time shorter than the firing time of the front substrate.

工程(9)、工程(10)は、従来の工程と同様に、蛍光体ペースト及びシールペーストをスクリーン印刷やディスペンサによって所定の位置に塗布した後に、焼成を行い背面基板が完成する。   In the step (9) and the step (10), the phosphor paste and the seal paste are applied at predetermined positions by screen printing or a dispenser as in the conventional step, and then baked to complete the rear substrate.

なお、図3で示したALIS方式のプラズマディスプレイパネルに適用する場合には、図4の工程(2)で黒帯の形成を行わず、図5の工程(7)に引き続いて黒色材料層を形成して、アドレス電極、背面側誘電体層、隔壁とともに同時焼成しても良いし、図5の工程(9)の蛍光体形成と同じ工程で、黒色材料層を形成しても良い。なおこの黒色材料層は無くても構わない。   In the case of application to the ALIS plasma display panel shown in FIG. 3, the black band is not formed in the step (2) of FIG. 4, and the black material layer is formed following the step (7) of FIG. It may be formed and fired together with the address electrode, the back-side dielectric layer, and the barrier ribs, or the black material layer may be formed in the same step as the phosphor formation in step (9) in FIG. This black material layer may be omitted.

本発明を適用するAC3電極面放電形プラズマディスプレイパネルの分解斜視図。The exploded perspective view of the AC3 electrode surface discharge type plasma display panel to which the present invention is applied. 本発明を適用する井桁リブ構造のプラズマディスプレイパネルの分解斜視図。The disassembled perspective view of the plasma display panel of the cross-girder rib structure to which this invention is applied. 本発明を適用するALIS方式のプラズマディスプレイパネルの分解斜視図。1 is an exploded perspective view of an ALIS plasma display panel to which the present invention is applied. 本発明に係る前面基板の製造プロセスのフローチャート。The flowchart of the manufacturing process of the front substrate which concerns on this invention. 本発明に係る背面基板の製造プロセスのフローチャート。The flowchart of the manufacturing process of the back substrate which concerns on this invention. 従来の前面基板の製造プロセスのフローチャート。The flowchart of the manufacturing process of the conventional front substrate. 従来の背面基板の製造プロセスのフローチャート。The flowchart of the manufacturing process of the conventional back substrate.

符号の説明Explanation of symbols

1 前面基板
2x、2y 表示電極対
3 透明電極
4 バス電極
5 誘電体層
6 表面保護層
7 背面基板
8 アドレス電極
9 背面側誘電体層
10 隔壁
11B 青色蛍光体層
11G 緑色蛍光体層
11R 赤色蛍光体層
12 黒帯
13 隔壁帯
14 黒色材料層
DESCRIPTION OF SYMBOLS 1 Front substrate 2x, 2y Display electrode pair 3 Transparent electrode 4 Bus electrode 5 Dielectric layer 6 Surface protective layer 7 Rear substrate 8 Address electrode 9 Back side dielectric layer 10 Partition 11B Blue phosphor layer 11G Green phosphor layer 11R Red fluorescence Body layer 12 Black belt 13 Bulkhead belt 14 Black material layer

Claims (1)

基板上に複数本のアドレス電極とそれを覆う誘電体層を有し、さらに誘電体層上に放電空間をセル毎の行と列に区画する行方向および列方向の隔壁を設けてなるプラズマディスプレイパネル用背面基板の製造方法であって、
前記基板上に結晶化ガラスを含む金属ペーストにより前記アドレス電極のパターンを形成し、前記アドレス電極パターン上に前記誘電体層となる低融点ガラスの層を形成し、さらに前記誘電体層用低融点ガラスの層上に低融点ガラスにより前記行方向および列方向の隔壁のパターンを形成するとともに、当該隔壁パターンの行間部分に対応した隣接する行方向隔壁パターン間に結晶化ガラスを含む黒色材料層を形成し、この後、前記アドレス電極パターンと低融点ガラスの層と隔壁パターンと黒色材料層を同時に焼成することにより、当該基板上にアドレス電極と誘電体層と隔壁と黒色材料層の積層体を形成する
ことを特徴とするプラズマディスプレイパネル用背面基板の製造方法。
A plasma display having a plurality of address electrodes on a substrate and a dielectric layer covering the address electrodes, and further provided with row-direction and column-direction partition walls that divide a discharge space into rows and columns for each cell on the dielectric layer. A method for manufacturing a rear substrate for a panel,
A pattern of the address electrode is formed on the substrate with a metal paste containing crystallized glass, a layer of a low melting point glass serving as the dielectric layer is formed on the address electrode pattern, and the low melting point for the dielectric layer is further formed. A black material layer containing crystallized glass is formed between adjacent row direction barrier rib patterns corresponding to the inter-row portions of the barrier rib pattern while forming the row direction and column direction barrier rib patterns on the glass layer using low melting point glass. After that, the address electrode pattern, the low melting point glass layer, the barrier rib pattern, and the black material layer are fired at the same time, so that a laminate of the address electrode, the dielectric layer, the barrier rib, and the black material layer is formed on the substrate. A method for producing a rear substrate for a plasma display panel, comprising: forming a rear substrate for a plasma display panel.
JP2006337427A 2006-12-14 2006-12-14 Manufacturing method of back plate of plasma display panel Withdrawn JP2007109668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337427A JP2007109668A (en) 2006-12-14 2006-12-14 Manufacturing method of back plate of plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337427A JP2007109668A (en) 2006-12-14 2006-12-14 Manufacturing method of back plate of plasma display panel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002022464A Division JP3918992B2 (en) 2002-01-30 2002-01-30 Method for manufacturing rear substrate for plasma display panel

Publications (1)

Publication Number Publication Date
JP2007109668A true JP2007109668A (en) 2007-04-26

Family

ID=38035335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337427A Withdrawn JP2007109668A (en) 2006-12-14 2006-12-14 Manufacturing method of back plate of plasma display panel

Country Status (1)

Country Link
JP (1) JP2007109668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009805A (en) * 2008-06-25 2010-01-14 Nippon Electric Glass Co Ltd Material for plasma display panel, manufacturing method of rear-face glass substrate for plasma display panel, and rear-face glass substrate for plasma display panel manufactured by the method
CN102194537A (en) * 2010-03-19 2011-09-21 第一毛织株式会社 Paste for solar cell electrode and solar cell using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009805A (en) * 2008-06-25 2010-01-14 Nippon Electric Glass Co Ltd Material for plasma display panel, manufacturing method of rear-face glass substrate for plasma display panel, and rear-face glass substrate for plasma display panel manufactured by the method
CN102194537A (en) * 2010-03-19 2011-09-21 第一毛织株式会社 Paste for solar cell electrode and solar cell using the same

Similar Documents

Publication Publication Date Title
JP3918992B2 (en) Method for manufacturing rear substrate for plasma display panel
JP2003068212A (en) Plasma display panel
JPH1092325A (en) Gas discharge display panel, and manufacture of the same
JP3933480B2 (en) Plasma display panel
JP3565740B2 (en) Gas discharge display panel and method of manufacturing display panel
US8231422B2 (en) Plasma display panel and manufacturing method thereof
JP2007109668A (en) Manufacturing method of back plate of plasma display panel
WO2003075301A1 (en) Plasma display
JP4297188B2 (en) Method for manufacturing plasma display panel
US20090091236A1 (en) Plasma display panel having alignment structures and method of fabricating the same
JP4179345B2 (en) Method for manufacturing plasma display panel
JP4195997B2 (en) Plasma display panel and manufacturing method thereof
JP2005332599A (en) Plasma display panel and its manufacturing method
JP4259190B2 (en) Method for manufacturing plasma display panel
US20070158687A1 (en) Base substrate, method of separating the base substrate and plasma display panel using the same
JPH11195375A (en) Manufacture of plasma display panel
JP2002163989A (en) Plasma display panel and its manufacturing method
JPWO2008032355A1 (en) Plasma display panel and phosphor layer forming method thereof
JP2007103148A (en) Plasma display panel
JP2009070791A (en) Plasma display panel and its manufacturing method
JP2003178671A (en) Method of manufacturing for plasma display panel
US20080090482A1 (en) Method of manufacturing plasma display panel
JPH0831326A (en) Plasma display panel
US20080231551A1 (en) Discharge Display Device
JP2007122994A (en) Method of manufacture of plasma display panel

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090603