JP2007108129A - Device for detecting object to be measured - Google Patents

Device for detecting object to be measured Download PDF

Info

Publication number
JP2007108129A
JP2007108129A JP2005301827A JP2005301827A JP2007108129A JP 2007108129 A JP2007108129 A JP 2007108129A JP 2005301827 A JP2005301827 A JP 2005301827A JP 2005301827 A JP2005301827 A JP 2005301827A JP 2007108129 A JP2007108129 A JP 2007108129A
Authority
JP
Japan
Prior art keywords
measured
electromagnetic wave
radiation
radiation form
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005301827A
Other languages
Japanese (ja)
Inventor
Takashi Ito
孝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2005301827A priority Critical patent/JP2007108129A/en
Publication of JP2007108129A publication Critical patent/JP2007108129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate detection of an object to be measured in a short distance on the occasion of detecting the object to be measured by irradiation with an electromagnetic wave, and prevent lowering of detection sensitivity caused by interference objects being between the object to be measured and an object-to-be-measured detecting device. <P>SOLUTION: This object-to-be-measured detecting device 1 is provided with a light projecting unit 4 for diffusively radiating a pulse laser beam, a convex lens 9 for converting the laser beam radiated from the projecting unit 4 into parallel light, a light receiving unit 5 for receiving via the convex lens 9, a laser beam which is generated by the conversion with the convex lens 9, irradiates the object to be measured 14, and is reflected by the object 14, a PBS 6 which is interposed between the projecting unit 4 and the convex lens 9 and between the receiving unit 5 and the convex lens 9, guides the laser beam emitted from the projecting unit 4 to the convex lens 9, and moreover guides the laser beam reflected by the object 14 to the receiving unit 5 from the convex lens 9, and a distance detecting unit 13 which compares the laser beam emitted from the projecting unit 4 with the laser beam received by the receiving unit 5, and detects its distance up to the object 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被測定物に対して電磁波を放射し、被測定物で反射して戻ってきた電磁波に基づいて被測定物を検出する被測定物検出装置に関する。   The present invention relates to a device for detecting a measurement object that detects an object to be measured based on the electromagnetic wave that is radiated from the measurement object and reflected by the measurement object and returned.

周知のように、被測定物検出装置としては、放射手段から例えばレーザ光や電波等の電磁波を放射し、放射された電磁波を回転ミラーで反射しながら周囲空間に走査し、電磁波の走査により形成された走査領域で反射して戻ってきた電磁波を受波手段で受波し、この受波した電磁波に基づいて走査領域中の被測定物の有無や、被測定物までの距離を検出するものが一般的である。   As is well known, an object detection device is formed by radiating electromagnetic waves such as laser light or radio waves from a radiating means, scanning the radiated electromagnetic waves into a surrounding space while being reflected by a rotating mirror, and forming by scanning the electromagnetic waves. The electromagnetic wave reflected and returned from the scanning area is received by the wave receiving means, and based on the received electromagnetic wave, the presence or absence of the object to be measured in the scanning area and the distance to the object to be measured are detected. Is common.

この種の被測定物検出装置の一例としては、例えば下記の特許文献1に記載のものが挙げられる。同文献に記載の被測定物検出装置100は、図2に示すように、電磁波としてレーザ光を利用したもので、投光部101からレーザ光のスポット形状をライン(線)状に出射し、このライン状のレーザ光を被測定物に照射するようになっている。詳述すると、投光部101から出射されたライン状のレーザ光は、光軸上に配置された投光用レンズ102を介して回転ミラー103に入射される。回転ミラー103は、光軸に対して所定角度で傾斜しており、回転ミラー103に入射したライン状のレーザ光は所定方向に反射する。そして、この回転ミラー103は、前記光軸を中心として回転し、ライン状のレーザ光が周囲に走査されるようになっている。また、走査領域中の被測定物で反射したレーザ光は、同一の回転ミラー103で再び反射され、投光用レンズ102の回りにドーナツ状に別体に形成された受光用レンズ104によって集束され、受光部105で受光されるようになっている。   As an example of this type of device to be measured, there is a device described in Patent Document 1 below, for example. As shown in FIG. 2, the device under test 100 described in the document uses laser light as electromagnetic waves, and emits a spot shape of the laser light from the light projecting unit 101 into a line shape. An object to be measured is irradiated with this line-shaped laser beam. More specifically, the line-shaped laser light emitted from the light projecting unit 101 is incident on the rotating mirror 103 via the light projecting lens 102 disposed on the optical axis. The rotating mirror 103 is inclined at a predetermined angle with respect to the optical axis, and the line-shaped laser light incident on the rotating mirror 103 is reflected in a predetermined direction. The rotating mirror 103 is rotated about the optical axis, and a line-shaped laser beam is scanned around. The laser beam reflected by the object to be measured in the scanning region is reflected again by the same rotating mirror 103 and focused by the light receiving lens 104 separately formed in a donut shape around the light projecting lens 102. The light receiving unit 105 receives light.

米国特許第6759649号公報US Pat. No. 6,759,649

しかしながら、上記の特許文献1に記載の被測定物検出装置100は、投光部101及び投光用レンズ102が、受光用レンズ104の中心にあるため、被測定物が近接している場合には、受光部105で光を受光できないという問題がある。   However, in the measured object detection apparatus 100 described in Patent Document 1 described above, the light projecting unit 101 and the light projecting lens 102 are located at the center of the light receiving lens 104. Has a problem that the light receiving unit 105 cannot receive light.

また、走査領域中の被測定物に対してライン状のレーザ光が照射されるため、ドッド状のレーザ光を照射した場合に比してレーザ光の照射領域がレーザ光の長手方向に拡大するため、被測定物の検出を阻害するようなレーザ光の光路中に存在するゴミなどの阻害物体の影響を軽減し、走査領域中における被測定物の検出感度の向上が期待できる。   Further, since the line-shaped laser light is irradiated to the object to be measured in the scanning region, the laser light irradiation region is expanded in the longitudinal direction of the laser light as compared with the case where the dot-shaped laser light is irradiated. Therefore, it is possible to reduce the influence of an obstructing object such as dust existing in the optical path of the laser beam that hinders the detection of the object to be measured, and to improve the detection sensitivity of the object to be measured in the scanning region.

しかしながら、同文献に記載の被測定物検出装置100において、阻害物体の影響軽減能力は、レーザ光の長手方向のみに限定される。例えば、レーザ光の長手方向の長さを10mmとし、阻害物体のレーザ光照射方向に直交する断面形状を直径5mmの円とした場合、照射レーザ光が、被測定物検出装置と被測定物との間にある阻害物体を照射する場合、照射レーザ光の約半分は阻害物体から反射され、残りの約半分のみが被測定物から反射される。この場合、検出すべき被測定物を、正常に検出することが困難となる。   However, in the DUT 100 described in the same document, the ability to reduce the influence of the obstructing object is limited only to the longitudinal direction of the laser beam. For example, when the length of the laser beam in the longitudinal direction is 10 mm and the cross-sectional shape perpendicular to the laser beam irradiation direction of the obstructing object is a circle with a diameter of 5 mm, the irradiated laser beam is transmitted between the object detection device and the object to be measured. In the case of irradiating the obstructing object between the two, about half of the irradiated laser light is reflected from the obstructing object, and only the remaining half is reflected from the object to be measured. In this case, it is difficult to normally detect the object to be detected.

また、レーザ光の長手方向の長さは、投光用レンズ102の大きさにより制限を受ける。しかも、投光用レンズ102の大きさは、周囲に形成された受光用レンズ104の大きさによる制限を受ける。したがって、レーザ光の長手方向の長さを10mm以上とすることが困難となる場合もある。   The length of the laser beam in the longitudinal direction is limited by the size of the light projection lens 102. In addition, the size of the light projecting lens 102 is limited by the size of the light receiving lens 104 formed around it. Therefore, it may be difficult to set the length of the laser beam in the longitudinal direction to 10 mm or more.

なお、上記の問題は、レーザ光以外の電磁波を使用した場合であっても同様に生じ得る。   Note that the above problem can occur in the same manner even when electromagnetic waves other than laser light are used.

本発明の課題は、電磁波の照射による被測定物を検出する際の近距離における被測定物の検出を容易にすると共に、被測定物検出装置と被測定物との間にある阻害物体による検出感度の低下を改善することにある。   It is an object of the present invention to facilitate the detection of an object to be measured at a short distance when detecting the object to be measured by irradiation with electromagnetic waves, and to detect by an obstructing object between the object to be measured and the object to be measured. The purpose is to improve the decrease in sensitivity.

上記課題を解決するために創案された本発明に係る被測定物検出装置は、パルス状の電磁波を拡散的に放射する放射手段と、放射手段から拡散的に放射された電磁波の放射形態を、平行直進的放射形態に変換する第一放射形態変換手段と、第一放射形態変換手段で変換された電磁波が被測定物に照射され、被測定物から反射された電磁波を、第一放射形態変換手段を経由して受波する受波手段と、放射手段と第一放射手段変換手段との間、及び受波手段と第一放射手段変換手段との間に介在し、放射手段から放射された電磁波を第一放射形態変換手段に導くと共に、被測定物から反射された電磁波を第一放射形態変換手段から受波手段に導く分波手段と、放射手段から放射された電磁波と、受波手段で受波された電磁波とを比較して、放射手段又は受波手段から被測定物までの距離を検出する距離検出手段とを備えたものである。なお、上記の「平行直進的放射形態」には、電磁波の放射形態が幾何学的に完全に平行に直進する放射形態のみならず、電磁波の放射形態が実質的に平行に直進する放射形態とみなせる場合も含む。   An object detection apparatus according to the present invention, which was created to solve the above-described problems, includes a radiation means for radiating pulsed electromagnetic waves in a diffuse manner, and a radiation form of the electromagnetic waves emitted from the radiation means in a diffuse manner. First radiation form conversion means for converting into a parallel straight radiation form, and the electromagnetic wave converted by the first radiation form conversion means is irradiated on the object to be measured, and the electromagnetic wave reflected from the object to be measured is converted to the first radiation form. Between the receiving means for receiving the wave via the means, the radiating means and the first radiating means converting means, and between the receiving means and the first radiating means converting means, and radiated from the radiating means. A demultiplexing means for guiding the electromagnetic wave to the first radiation form converting means, and a electromagnetic wave reflected from the object to be measured from the first radiation form converting means to the wave receiving means, an electromagnetic wave radiated from the radiation means, and a wave receiving means Compared with the electromagnetic wave received by the It is obtained by a distance detecting means for detecting a distance to the object to be measured or from reception means. The above-mentioned "parallel straight radiation form" includes not only a radiation form in which the electromagnetic wave radiation form travels in parallel in a geometrical manner, but also a radiation form in which the electromagnetic radiation form travels substantially in parallel. Including cases that can be considered.

このような構成によれば、放射手段から拡散的に放射された電磁波は、第一放射形態変換手段を通過することで、第一放射形態変換手段の有効断面形状を持った平行直進的放射形態に変換される。例えば、第一放射形態変換手段の有効断面形状を直径30mmの円とする。この場合、第一放射形態変換手段を通過して被測定物に照射される電磁波の直径は、30mmの円となる。このことは、本発明に係る被測定物検出装置が、特許文献1における投光用レンズ102の大きさに対する重大な制約から解放されたことにより、容易に実現可能となったものである。ここで、特許文献1の説明で例示したのと同様に、本発明に係る被測定物検出装置と被測定物との間に、直径が10mmの阻害物体がある場合を考察する。この場合、第一放射形態変換手段を介して被測定物に照射される電磁波は、直径が30mmの円であるので、その面積は約707mmである。他方、直径が10mmなる阻害物体の面積は、約79mmである。従って、阻害物体からは、照射した電磁波の79/707=0.11分のみが反射され、他の1−0.11=0.89分は検出目標である被測定物から反射される。特許文献1に係る被測定物検出装置は、直径が5mmの阻害物体の影響を容易に受けたのに対し、本発明に係る被測定物検出装置では、例えば直径が10mmなる阻害物体による影響を大幅に低減することができる。 According to such a configuration, the electromagnetic waves radiated diffusely from the radiating means pass through the first radiating form converting means, so that the parallel rectilinear radiating form having the effective cross-sectional shape of the first radiating form converting means. Is converted to For example, the effective cross-sectional shape of the first radiation form converting means is a circle having a diameter of 30 mm. In this case, the diameter of the electromagnetic wave irradiated to the object to be measured through the first radiation form converting means is a circle of 30 mm. This can be easily realized by releasing the device under test according to the present invention from the serious restriction on the size of the projection lens 102 in Patent Document 1. Here, as exemplified in the description of Patent Document 1, a case is considered in which there is an obstructing object having a diameter of 10 mm between the measured object detection apparatus according to the present invention and the measured object. In this case, since the electromagnetic wave irradiated to the object to be measured through the first radiation form converting means is a circle having a diameter of 30 mm, its area is about 707 mm 2 . On the other hand, the area of the obstruction object having a diameter of 10 mm is about 79 mm 2 . Therefore, only 79/707 = 0.11 minutes of the irradiated electromagnetic wave is reflected from the obstructing object, and the other 1-0.11 = 0.89 minutes is reflected from the object to be measured which is the detection target. The measured object detection apparatus according to Patent Document 1 is easily affected by the obstruction object having a diameter of 5 mm, whereas the measurement object detection apparatus according to the present invention is influenced by the obstruction object having a diameter of 10 mm, for example. It can be greatly reduced.

さらに、本発明に係る被測定物検出装置においては、第一放射形態変換手段と被測定物との距離が、例えば1cmのように極端に短い場合においても、被測定物で反射された電磁波は第一放射形態変換手段と分波手段とを経て、確実に受波手段に到達することができる。これは、特許文献1における被測定物検出装置100においては、被測定物からの反射光が受波手段に至る光路の中心に、投光部101と、投光用レンズ102が存在したのに対し、本発明に係る被測定物検出装置においては、被測定物で反射した電磁波が受波手段に至るまでの電磁波の導波経路を阻害する物体がないために得られた効果である。   Further, in the device under test according to the present invention, even when the distance between the first radiation pattern changing means and the device under test is extremely short, for example, 1 cm, the electromagnetic wave reflected by the device under test is It is possible to reliably reach the wave receiving means through the first radiation form converting means and the demultiplexing means. This is because, in the measured object detection apparatus 100 in Patent Document 1, the light projecting unit 101 and the light projecting lens 102 exist in the center of the optical path where the reflected light from the measured object reaches the wave receiving means. On the other hand, in the device under test apparatus according to the present invention, the effect obtained because there is no object that obstructs the waveguide path of the electromagnetic wave until the electromagnetic wave reflected by the device under test reaches the wave receiving means.

また、本発明における請求項2に係る被測定物検出装置においては、放射手段と分波手段との間、又は分波手段と第一放射形態変換手段との間に配置され、第一放射形態変換手段を通過した電磁波の波軸と直交する断面形状が円形となるように、放射手段から拡散的に放射された電磁波の放射形態を整形する第二放射形態変換手段を更に備えている。なお、上記の「円形」には、真円形のみならず、実質的に円形とみなせる楕円形等も含まれる。   In the device under test according to claim 2 of the present invention, the device is disposed between the radiating means and the demultiplexing means, or between the demultiplexing means and the first radiation form converting means, and the first radiation form. Second radiation form conversion means for shaping the radiation form of the electromagnetic wave diffusively radiated from the radiation means so that the cross-sectional shape orthogonal to the wave axis of the electromagnetic wave that has passed through the conversion means is circular. The “circular shape” includes not only a true circular shape but also an elliptical shape that can be regarded as a substantially circular shape.

このようにすれば、放射手段から放射された電磁波は、第一放射形態変換手段に入る段階で、第二放射形態変換手段によって円錐状の放射形態に整形され、第一放射形態変換手段を通過した電磁波は、円柱状の放射形態となる。これにより、放射手段から放射される電磁波が、円錐状でない場合であっても、被測定物検出装置と被測定物との間に阻害物体がある場合の影響を軽減させる本発明の効果を、最大限に発揮することが可能となる。具体的には、放射手段として半導体レーザ(LD:Laser Diode)を用いた場合には、半導体レーザから出射されるレーザ光は、光軸(波軸)に対する広がり角が例えば5°〜30°の範囲で順次変化し、その放射形態の光軸と直交する断面形状が楕円形状を示すものが多い。そこで、第二放射形態変化手段として例えばシリンドリカルレンズを用いて、かかるレーザ光の光軸に対する広がり角を、例えば30°にほぼ一定化することが可能となる。   If it does in this way, the electromagnetic wave radiated | emitted from the radiation | emission means will be shape | molded by the 2nd radiation | emission form conversion means at the step which enters the 1st radiation | emission form conversion means, and will pass through the 1st radiation form conversion means. The electromagnetic wave thus obtained has a cylindrical radiation form. Thereby, even if the electromagnetic wave radiated from the radiating means is not conical, the effect of the present invention to reduce the influence when there is an obstructing object between the measured object detection device and the measured object, It is possible to make the most of it. Specifically, when a semiconductor laser (LD: Laser Diode) is used as the radiating means, the laser beam emitted from the semiconductor laser has a divergence angle with respect to the optical axis (wave axis) of, for example, 5 ° to 30 °. In many cases, the cross-sectional shape changes sequentially in the range, and the cross-sectional shape orthogonal to the optical axis of the radiation form is elliptical. Therefore, for example, a cylindrical lens is used as the second radiation form changing means, and the spread angle of the laser light with respect to the optical axis can be made substantially constant, for example, 30 °.

本発明の請求項3に係る被測定物検出装置においては、放射手段と第一放射形態変換手段との間に配置され、電磁波の波面を制御する波面制御手段を更に備えている。   The device under test according to claim 3 of the present invention further includes wavefront control means that is disposed between the radiation means and the first radiation form conversion means and controls the wavefront of the electromagnetic wave.

このようにすれば、放射手段から放射される電磁波が、被測定物にて反射され、効率良く受波手段に到達することが可能となる。放射手段としてLDを用い、分波手段として特定の直線偏波面を有する光のみを効率良く反射し、且つこの偏波面と垂直な偏波面を有する光のほとんどを透過する偏光ビームスプリッタ(PBS:Polarizing Beam Splitter)を用いた場合を例にとって説明する。半導体レーザからは、特定方向の直線偏波面をもつ光が放射される。この偏波面を偏光ビームスプリッタが効率良く光を反射する方向に設定し、偏光ビームスプリッタと第一放射形態変換手段であるレンズとの間に、波面制御手段の一種であるλ/4板を配置する。半導体レーザから放射された後、偏光ビームスプリッタで反射されるレーザ光は特定方向の直線偏波面をもつが、λ/4板を通過したレーザ光は円偏波となる。このレーザ光は、検出対象である被測定物で反射すると、光の進行方向に対する回転方向が、上記の円偏波に対して逆転した円偏波となる。この回転方向が逆転した円偏波をもつレーザ光が再びλ/4板を通過すると、上記の特定方向の直線偏波面と90°異なる偏波面の直線偏波のレーザ光となる。このような偏波面を持つレーザ光が偏光ビームスプリッタに入射すると、入射したレーザ光のほとんどが偏光ビームスプリッタを透過し、受波手段に到達する。   In this way, the electromagnetic wave radiated from the radiating means is reflected by the object to be measured and can efficiently reach the wave receiving means. A polarization beam splitter (PBS: Polarizing) that uses an LD as a radiation means, efficiently reflects only light having a specific linear polarization plane as a branching means, and transmits most of light having a polarization plane perpendicular to the polarization plane. A case where Beam Splitter is used will be described as an example. The semiconductor laser emits light having a linear polarization plane in a specific direction. This polarization plane is set in the direction in which the polarization beam splitter efficiently reflects light, and a λ / 4 plate, which is a kind of wavefront control means, is arranged between the polarization beam splitter and the lens that is the first radiation form conversion means. To do. The laser light emitted from the semiconductor laser and reflected by the polarization beam splitter has a linear polarization plane in a specific direction, but the laser light that has passed through the λ / 4 plate is circularly polarized. When this laser beam is reflected by the object to be detected, it becomes a circularly polarized wave whose rotational direction with respect to the traveling direction of the light is reversed with respect to the circularly polarized wave. When the circularly polarized laser beam whose rotation direction is reversed passes through the λ / 4 plate again, it becomes a linearly polarized laser beam having a polarization plane different by 90 ° from the linear polarization plane in the specific direction. When laser light having such a polarization plane enters the polarization beam splitter, most of the incident laser light passes through the polarization beam splitter and reaches the wave receiving means.

当然のことながら、半導体レーザから放射される光の偏波面と、偏光ビームスプリッタが特徴的に持つ偏波面の方向を整合させるため、半導体レーザから放射される光の偏波面を適宜回転させる光学素子を放射手段と分波手段との間に配置してもよい。   Naturally, an optical element that appropriately rotates the polarization plane of the light emitted from the semiconductor laser in order to align the polarization plane of the light emitted from the semiconductor laser and the direction of the polarization plane characteristic of the polarization beam splitter. May be arranged between the radiating means and the demultiplexing means.

本発明の請求項4に係る被測定物検出装置においては、分波手段と被測定物との間に配置され、分波手段を介して放射される電磁波を所定方向に反射する反射手段と、分波手段を介して反射部材に至る電磁波の波軸を回転中心として、反射部材を回転駆動する回転駆動手段と、反射部材の角度位置を検出する角度検出手段とを更に備え、距離検出手段を、被測定物までの距離と反射部材の角度位置に基づいて、前記被測定物の位置を検出するように構成したものである。   In the measured object detection apparatus according to claim 4 of the present invention, a reflecting means that is disposed between the demultiplexing means and the measured object and reflects electromagnetic waves radiated through the demultiplexing means in a predetermined direction; A rotation driving means for rotating the reflecting member around the wave axis of the electromagnetic wave reaching the reflecting member via the branching means, and an angle detecting means for detecting the angular position of the reflecting member; The position of the object to be measured is detected based on the distance to the object to be measured and the angular position of the reflecting member.

このようにすれば、被測定物までの距離のみならず、被測定物が存在する位置を検出することが可能となる。   In this way, not only the distance to the object to be measured but also the position where the object to be measured exists can be detected.

本発明の請求項5に係る被測定物検出装置においては、電磁波を透過する透過窓を備えたハウジングで最外部を覆ったものである。   In the measured object detection apparatus according to claim 5 of the present invention, the outermost part is covered with a housing provided with a transmission window that transmits electromagnetic waves.

このようにすれば、電磁波の導波経路を妨げることなく、ハウジング内部へのゴミ等の阻害物体の侵入を防止することが可能となり、被測定物の検出を安定して行うことが可能となる。また、仮に、このハウジングの透過窓自体に阻害物体が付着した場合であっても、電磁波の放射形態が、第一放射形態変換手段の有効断面形状を持った平行直進的放射形態とされているため、大部分の電磁波が阻害物体の影響を受けることなく透過窓を往来するので、被測定物の検出感度を良好に維持することが可能となる。したがって、透過窓のクリーニング作業を低減することができ、結果として装置の長期間の連続使用が可能となる。   In this way, it is possible to prevent the entry of obstructing objects such as dust into the housing without interfering with the electromagnetic wave waveguide path, and it becomes possible to stably detect the object to be measured. . In addition, even if an obstructing object is attached to the transmission window of the housing, the radiation form of the electromagnetic wave is a parallel straight radiation form having an effective sectional shape of the first radiation form conversion means. Therefore, most of the electromagnetic wave travels through the transmission window without being affected by the obstructing object, so that the detection sensitivity of the object to be measured can be maintained well. Accordingly, it is possible to reduce the cleaning operation of the transmission window, and as a result, the apparatus can be used continuously for a long period of time.

以上の構成において、前記放射手段から放射された電磁波としては、例えばレーザ光又は電波を使用することができる。   In the above configuration, for example, laser light or radio waves can be used as the electromagnetic waves radiated from the radiating means.

以上のような本発明によれば、放射手段から拡散的に放射された電磁波は、第一放射形態変換手段を通過することで、第一放射形態変換手段の有効断面形状を持って平行に直進する放射形態に変換されるため、電磁波の導波経路上にゴミ等の阻害物体が存在する場合であっても、かかる阻害物体の影響を大幅に低減しつつ、検出対象となる被測定物を確実に検出することが可能となる。加えて、被測定物で反射された電磁波は、第一放射形態変換手段と分波手段とを経て、確実に受波手段に到達するため、被測定物が近距離に存在する場合であっても、被測定物の検出を容易に行うことが可能となる。   According to the present invention as described above, the electromagnetic wave diffusively radiated from the radiating means passes straight through the first radiation form converting means, and travels straight in parallel with the effective sectional shape of the first radiation form converting means. Therefore, even if there is an inhibitory object such as dust on the electromagnetic wave guide path, the influence of the inhibitory object is greatly reduced and the object to be detected is detected. It becomes possible to detect reliably. In addition, since the electromagnetic wave reflected by the object to be measured reliably reaches the wave receiving means through the first radiation form converting means and the demultiplexing means, the object to be measured exists in a short distance. In addition, the object to be measured can be easily detected.

以下、本発明の一実施形態を添付図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る被測定物検出装置の全体構成を示す概略縦断面図である。この被測定物検出装置1は、電磁波としてレーザ光を利用したもので、円筒状の投受光窓(透過窓)2を備えたハウジング3の内部に、投光部(放射手段)4と、受光部(受波手段)5と、偏光ビームスプリッタ(分波手段)6と、シリンドリカルレンズ(第二放射形態変換手段)7と、λ/4板(波面制御手段)8と、凸レンズ(第一放射形態変換手段)9と、回転ミラー(反射部材)10と、回転駆動部11と、角度検出部12と、距離検出部13とを基本的な構成要素として備えた被測定物検出装置本体が格納されている。   FIG. 1 is a schematic longitudinal sectional view showing the overall configuration of a device under test detection apparatus according to an embodiment of the present invention. This device under test 1 uses laser light as an electromagnetic wave, and includes a light projecting part (radiating means) 4 and a light receiving part inside a housing 3 provided with a cylindrical light projecting / receiving window (transmission window) 2. Unit (wave receiving means) 5, polarization beam splitter (demultiplexing means) 6, cylindrical lens (second radiation form converting means) 7, λ / 4 plate (wavefront control means) 8, and convex lens (first radiation) A measuring object detecting device main body including a shape converting means) 9, a rotating mirror (reflecting member) 10, a rotation driving unit 11, an angle detecting unit 12, and a distance detecting unit 13 as basic components is stored. Has been.

詳述すると、投光部4は、レーザ発光素子の持つ広がり角(例えば半値幅:5°〜30°)でパルス状のレーザ光を拡散しながら水平方向(図1の左右方向)に放射するようになっている。この投光部4から放射されたレーザ光は、光軸Xと直交する断面形状(スポット形状)が楕円となる略円錐状の放射形態とされる。具体的には、本実施形態では、投光部4として半導体レーザを利用している。一般的に、半導体レーザ4から放射されるレーザ光の偏波面は、上記楕円の短径方向に平行となっている。なお、ここでいうパルス状のレーザ光には、いわゆる孤立パルスのみならず、断続的に放射される所定の強度変調が施されたレーザ光も含まれる。   More specifically, the light projecting unit 4 emits a pulsed laser beam in the horizontal direction (left-right direction in FIG. 1) while diffusing the pulsed laser beam at a spread angle (for example, half-value width: 5 ° to 30 °) of the laser light emitting element. It is like that. The laser light emitted from the light projecting unit 4 has a substantially conical radiation form in which a cross-sectional shape (spot shape) orthogonal to the optical axis X is an ellipse. Specifically, in the present embodiment, a semiconductor laser is used as the light projecting unit 4. Generally, the plane of polarization of laser light emitted from the semiconductor laser 4 is parallel to the minor axis direction of the ellipse. Note that the pulsed laser light here includes not only so-called isolated pulses but also laser light subjected to predetermined intensity modulation that is emitted intermittently.

そして、半導体レーザ4から出射されたレーザ光は、光軸X上に配置されたシリンドリカルレンズ7に入射する。シリンドリカルレンズ7は、半導体レーザ4から放射される楕円状の断面形状の短径方向の広がり角を、約5°から約30°に調整し、この方向と直交する上記楕円の長径方向の広がり角には影響を与えない。すなわち、シリンドリカルレンズ7を通過したレーザ光は、広がり角が約30°でほぼ一定化された断面形状が実質的に円形となる円錐状の放射形態となる。   Then, the laser light emitted from the semiconductor laser 4 is incident on the cylindrical lens 7 disposed on the optical axis X. The cylindrical lens 7 adjusts the divergence angle in the minor axis direction of the elliptical cross-sectional shape radiated from the semiconductor laser 4 from about 5 ° to about 30 °, and the divergence angle in the major axis direction of the ellipse orthogonal to this direction. Has no effect. In other words, the laser light that has passed through the cylindrical lens 7 has a conical radiation form in which the divergence angle is approximately 30 ° and the cross-sectional shape that is substantially constant is substantially circular.

また、シリンドリカルレンズ7を通過したレーザ光は、偏光ビームスプリッタ6に入射する。この偏光ビームスプリッタ6は、レーザ光を反射しやすい方向の偏波面が鉛直方向(図1の上下方向)を向くように配置される。この際、半導体レーザ4から放射されるレーザ光の楕円状の断面形状の短径方向を、これと同一方向に予め設定しておく。すると、半導体レーザ4から放射されたレーザ光は、シリンドリカルレンズ7を経由し、偏光ビームスプリッタ6にて、その大半が鉛直方向上向きに反射される。凸レンズ9は、偏光ビームスプリッタ6によって鉛直方向上向きに反射されたレーザ光の放射形態を円錐状から円柱状に変換して鉛直方向上向きに誘導するようになっている。この凸レンズ9を通過したレーザ光は、光軸Yと直交する断面形状が実質的に円形となる。なお、本実施形態では、凸レンズ9は、単焦点距離の有効直径が10mm以上となる単一のレンズから構成されている。   The laser light that has passed through the cylindrical lens 7 is incident on the polarization beam splitter 6. The polarization beam splitter 6 is arranged such that the polarization plane in the direction in which the laser beam is easily reflected faces in the vertical direction (vertical direction in FIG. 1). At this time, the minor axis direction of the elliptical cross-sectional shape of the laser light emitted from the semiconductor laser 4 is set in advance in the same direction. Then, most of the laser light emitted from the semiconductor laser 4 is reflected upward in the vertical direction by the polarizing beam splitter 6 via the cylindrical lens 7. The convex lens 9 converts the radiation form of the laser beam reflected upward in the vertical direction by the polarization beam splitter 6 from a conical shape to a cylindrical shape and guides it upward in the vertical direction. The laser beam that has passed through the convex lens 9 has a substantially circular cross-sectional shape orthogonal to the optical axis Y. In this embodiment, the convex lens 9 is composed of a single lens having an effective diameter of a single focal length of 10 mm or more.

回転ミラー10は、鉛直方向上向きに誘導された円柱状の放射形態を示すレーザ光の光軸Yに対して約45度で傾斜すると共に、この光軸Yを中心として回転駆動部11により回転駆動されるようになっており、凸レンズ9で円柱状の放射形態とされたレーザ光を水平方向に反射しながら回転し、ハウジング3の投受光窓2を介して光軸Yを中心とするハウジング3外部の周囲空間にレーザ光を走査するようになっている。   The rotating mirror 10 is tilted at about 45 degrees with respect to the optical axis Y of the laser beam showing a columnar radiation shape guided upward in the vertical direction, and is rotationally driven by the rotational driving unit 11 around the optical axis Y. The housing 3 is rotated with the convex lens 9 reflecting the cylindrical radiation beam in the horizontal direction while being horizontally reflected, and the optical axis Y is centered through the light projecting / receiving window 2 of the housing 3. Laser light is scanned in an external surrounding space.

一方、ハウジング3の投受光窓2を介してハウジング3内部へほぼ水平方向に導入されたレーザ光は、回転ミラー10で鉛直下向きに反射され、半導体レーザ4から放射されたレーザ光とほぼ同じ光路を逆向きに通って、同一の凸レンズ9で円錐状の放射形態に集束され、偏光ビームスプリッタ6を透過して受光部5の位置に焦点として結像されるようになっている。この受光部5としては、例えばフォトダイオード等の光センサが利用される。   On the other hand, the laser light introduced into the housing 3 in the substantially horizontal direction through the light projecting / receiving window 2 of the housing 3 is reflected vertically downward by the rotating mirror 10 and is almost the same optical path as the laser light emitted from the semiconductor laser 4. The light is focused in the conical radiation form by the same convex lens 9, passes through the polarization beam splitter 6, and is focused on the position of the light receiving unit 5. As the light receiving unit 5, for example, an optical sensor such as a photodiode is used.

また、回転ミラー10の走査角度を検出する角度検出部12は、本実施形態では、回転ミラー10と同期して回転し、且つ、径方向に伸びる光学的スリットを周方向に複数配列してなるスリット板12aと、スリット板12aの回転経路上に配置固定されたフォトインタラプタ12bによって構成されており、このフォトインタラプタ12bによって検出された回転ミラー10の走査角度が距離検出部13に入力される。   In the present embodiment, the angle detection unit 12 that detects the scanning angle of the rotary mirror 10 rotates in synchronization with the rotary mirror 10 and has a plurality of optical slits extending in the radial direction arranged in the circumferential direction. The slit plate 12a and the photo interrupter 12b arranged and fixed on the rotation path of the slit plate 12a are configured, and the scanning angle of the rotary mirror 10 detected by the photo interrupter 12b is input to the distance detection unit 13.

距離検出部13は、投光部4から出射されたレーザ光と、受光部5で受光されたレーザ光とを比較して、被測定物14までの距離を演算するようになっている。さらに、距離検出部13は、演算された被測定物14までの距離と角度検出部12によって検出された回転ミラー10の走査角度とを組み合わせて被測定物14の位置を検出するようにもなっている。   The distance detection unit 13 compares the laser light emitted from the light projecting unit 4 and the laser light received by the light receiving unit 5 to calculate the distance to the object to be measured 14. Further, the distance detector 13 detects the position of the object 14 by combining the calculated distance to the object 14 and the scanning angle of the rotating mirror 10 detected by the angle detector 12. ing.

次に、以上のように構成した被測定物検出装置1の動作について説明する。   Next, the operation of the DUT 1 configured as described above will be described.

投光部4から出射された断面形状が楕円形状の略円錐状の放射形態を示すレーザ光は、シリンドリカルレンズ7にて、断面形状が円形状の略円錐状の放射形態となる。また、該レーザ光の波面は、鉛直方向に平行となっている。このレーザ光の大半が偏光ビームスプリッタ6で鉛直方向上向きに反射された後、λ/4板8に導入される。λ/4板8を経由したレーザ光は、例えば放射方向に対し右方向に回転する円偏波となる。このレーザ光は、凸レンズ9へ入射し、この凸レンズ9で放射形態を円錐状から円柱状に変換される。そして、この円柱状の放射形態を示すレーザ光が、回転ミラー10に鉛直上向きに入射した後、回転ミラー10で水平方向に反射される。この際、回転ミラー10は回転駆動部11により回転駆動され、高速回転しているので、投光部4から出射されて回転ミラー10で水平方向に反射されたレーザ光は、図1に示すように、ハウジング3の投受光窓2を介して、光軸Yを中心とする例えば周囲約360度の走査領域に連続的に走査される。   The laser light having a substantially conical radiation shape with an elliptical cross-sectional shape emitted from the light projecting unit 4 becomes a substantially conical radiation shape with a circular cross-sectional shape at the cylindrical lens 7. The wavefront of the laser beam is parallel to the vertical direction. Most of the laser light is reflected upward in the vertical direction by the polarization beam splitter 6 and then introduced into the λ / 4 plate 8. The laser beam that has passed through the λ / 4 plate 8 is, for example, circularly polarized light that rotates in the right direction with respect to the radiation direction. This laser light is incident on the convex lens 9, and the radiation form is converted from a conical shape to a cylindrical shape by the convex lens 9. Then, the laser beam indicating the cylindrical radiation pattern is incident on the rotary mirror 10 vertically upward, and then reflected by the rotary mirror 10 in the horizontal direction. At this time, since the rotary mirror 10 is rotationally driven by the rotary drive unit 11 and is rotated at a high speed, the laser beam emitted from the light projecting unit 4 and reflected in the horizontal direction by the rotary mirror 10 is as shown in FIG. In addition, the scanning is continuously performed, for example, in a scanning region around 360 degrees around the optical axis Y through the light projecting / receiving window 2 of the housing 3.

そして、この走査領域の被測定物14で反射して戻ってきたレーザ光は、光の進行方向に対し、左方向に回転する円偏波となっている。このようなレーザ光は、投受光窓2を介してハウジング3の内部に導入され、回転ミラー10にほぼ水平方向から入射する。その後、回転ミラー10で鉛直下向きに反射され、凸レンズ9で略円錐状の放射形態に集束されながら、再びλ/4板8に導入される。λ/4板8に導入された反射光は、放射光とは逆の左旋回の円偏波となっているので、λ/4板8を透過した反射光は、放射光の直線偏波面と直交する直線偏波面を持つ光となっている。このため、この光は、偏光ビームスプリッタ6で反射されずに透過して受光部5で受光される。そして、距離検出部13は、投光部4から出射されたレーザ光と、受光部5で受光されたレーザ光とを比較して、被測定物14までの距離を演算すると、角度検出部12によって検出された回転ミラー10の走査角度に基づいて、被測定物14の位置を検出する。   The laser beam reflected and returned by the measurement object 14 in the scanning region is circularly polarized light that rotates in the left direction with respect to the traveling direction of the light. Such laser light is introduced into the housing 3 through the light projecting / receiving window 2 and is incident on the rotating mirror 10 from a substantially horizontal direction. Thereafter, the light is reflected vertically downward by the rotating mirror 10 and is again introduced into the λ / 4 plate 8 while being focused into a substantially conical radiation form by the convex lens 9. Since the reflected light introduced into the λ / 4 plate 8 is a left-handed circularly polarized wave opposite to the radiated light, the reflected light transmitted through the λ / 4 plate 8 has a linear polarization plane of the radiated light. The light has orthogonal linear polarization planes. Therefore, this light is transmitted without being reflected by the polarization beam splitter 6 and received by the light receiving unit 5. The distance detection unit 13 compares the laser light emitted from the light projecting unit 4 with the laser light received by the light receiving unit 5 and calculates the distance to the object to be measured 14. The position of the DUT 14 is detected based on the scanning angle of the rotating mirror 10 detected by the above.

以上のように、本実施形態に係る被測定物検出装置1によれば、投光部4から拡散的に放射されたレーザ光は、シリンドリカルレンズ7によって光軸Xと直交する断面形状が実質的に円形となるように整形され後、凸レンズ9を通過することで、凸レンズ9の有効断面形状をもって平行に直進する円柱状の放射形態に変換される。したがって、かかる円柱状の放射形態を呈するレーザ光を回転ミラー10で周囲に走査すれば、レーザ光の光路上にゴミ等の阻害物体が存在する場合であっても、かかる阻害物体の影響を大幅に低減しつつ、検出対象となる被測定物14を確実に検出することが可能となる。加えて、被測定物14で反射されたレーザ光は、投光部4から放射されたレーザ光と同一の凸レンズ9を通過した後、偏光ビームスプリッタ6を経て、確実に受光部5に到達するため、被測定物14が近距離に存在する場合であっても、被測定物14の検出を容易に行うことが可能となる。   As described above, according to the DUT 1 according to the present embodiment, the laser light diffusely emitted from the light projecting unit 4 has a substantially cross-sectional shape orthogonal to the optical axis X by the cylindrical lens 7. After being shaped into a circular shape and passing through the convex lens 9, it is converted into a cylindrical radial form that goes straight in parallel with the effective cross-sectional shape of the convex lens 9. Therefore, if the laser beam having such a cylindrical radiation form is scanned around by the rotating mirror 10, even if there is an obstacle such as dust on the optical path of the laser light, the influence of the obstacle is greatly increased. Thus, it is possible to reliably detect the object to be measured 14 as a detection target. In addition, the laser beam reflected by the object to be measured 14 passes through the same convex lens 9 as the laser beam emitted from the light projecting unit 4, and then reliably reaches the light receiving unit 5 through the polarization beam splitter 6. Therefore, even when the device under test 14 is present at a short distance, the device under test 14 can be easily detected.

なお、本発明は上記の実施形態に限定されることなく、種々の変形が可能である。例えば、上記の実施形態では、偏光ビームスプリッタ6と回転ミラー10との間に、凸レンズ9を配置したものを例示したが、凸レンズ9をハウジング3の投受光窓2の位置に取り付けると共に、かかるハウジング3を回転ミラー10と一体に回転するように構成してもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, an example in which the convex lens 9 is disposed between the polarization beam splitter 6 and the rotating mirror 10 is illustrated. However, the convex lens 9 is attached to the position of the light projecting / receiving window 2 of the housing 3, and the housing 3 may be configured to rotate integrally with the rotating mirror 10.

また、上記の実施形態では、投光部4から放射されたレーザ光を回転ミラー10によって、周囲に走査する走査型の被測定物検出装置を例示したが、検出対象となる被測定物14の状況に応じて、回転ミラー10を所定の走査角度で固定したり、或いは回転ミラー10自体を省略して、所定方向のみにレーザ光を投光し、その方向に存在する被測定物14で反射したレーザ光を受光するように構成し、非走査型の被測定物検出装置としてもよい。   In the above-described embodiment, the scanning-type measurement object detection device that scans the laser light emitted from the light projecting unit 4 around the rotation mirror 10 is exemplified. However, the measurement object 14 to be detected is detected. Depending on the situation, the rotating mirror 10 is fixed at a predetermined scanning angle, or the rotating mirror 10 itself is omitted, and laser light is projected only in a predetermined direction, and reflected by the measurement object 14 existing in that direction. The laser beam may be received so as to be a non-scanning type object detection device.

また、上記の実施形態における被測定物14までの距離を測定する方式は特に限定されるものではないが、例えば、投光部4から出射される測距光を孤立パルスに強度変調して、投光部4からレーザ光を放射してから受光部5でレーザ光を受光するまでの時間差から被測定物14までの距離を求めるTOF(Time Of Flight)方式や、投光部4から放射されるレーザ光をある一定の周波数で強度変調して、投光部4から放射されたレーザ光と、受光部5で受光されたレーザ光との位相差から被測定物14までの距離を求めるAM(Amplitude Modulation)方式や、投光部4から出射される測距光を三角波の形で波長変調し、投光部4から出射さらた測距光と、受光部5で受光された測距光との干渉光の周波数信号から被測定物14までの距離を求めるFM(Frequency Modulation)方式などを問題なく適用することができる。   Further, the method for measuring the distance to the DUT 14 in the above embodiment is not particularly limited. For example, the distance measuring light emitted from the light projecting unit 4 is intensity-modulated into an isolated pulse, A TOF (Time Of Flight) method for obtaining a distance from the time difference from when the laser beam is emitted from the light projecting unit 4 to when the laser beam is received by the light receiving unit 5, or from the light projecting unit 4. AM that obtains the distance to the DUT 14 from the phase difference between the laser light emitted from the light projecting unit 4 and the laser light received by the light receiving unit 5 (Amplitude Modulation) method, ranging light emitted from the light projecting unit 4 is wavelength-modulated in the form of a triangular wave, and ranging light emitted from the light projecting unit 4 and distance measuring light received by the light receiving unit 5 Interference light frequency with It can be applied without problems such as FM (Frequency Modulation) method for determining the distance from the signal to the measured object 14.

本発明の一実施形態に係る被測定物検出装置の全体構成を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the whole structure of the to-be-measured object detection apparatus which concerns on one Embodiment of this invention. 従来の被測定物検出装置の一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the conventional to-be-measured object detection apparatus.

符号の説明Explanation of symbols

1 被測定物検出装置
2 投受光窓
3 ハウジング
4 投光部
5 受光部
6 偏光ビームスプリッタ
7 シリンドリカルレンズ
8 λ/4板
9 凸レンズ
10 回転ミラー
11 回転駆動部
12 角度検出部
13 距離検出部
DESCRIPTION OF SYMBOLS 1 Measured object detection apparatus 2 Light projection / reception window 3 Housing 4 Light projection part 5 Light reception part 6 Polarizing beam splitter 7 Cylindrical lens 8 λ / 4 plate 9 Convex lens 10 Rotation mirror 11 Rotation drive part 12 Angle detection part 13 Distance detection part

Claims (6)

パルス状の電磁波を拡散的に放射する放射手段と、
前記放射手段から拡散的に放射された電磁波の放射形態を、平行直進的放射形態に変換する第一放射形態変換手段と、
前記第一放射形態変換手段で変換された電磁波が被測定物に照射され、前記被測定物から反射された電磁波を、前記第一放射形態変換手段を経由して受波する受波手段と、
前記放射手段と前記第一放射手段変換手段との間、及び前記受波手段と前記第一放射手段変換手段との間に介在し、前記放射手段から放射された電磁波を前記第一放射形態変換手段に導くと共に、前記被測定物から反射された電磁波を前記第一放射形態変換手段から前記受波手段に導く分波手段と、
前記放射手段から放射された電磁波と、前記受波手段で受波された電磁波とを比較して、前記放射手段又は前記受波手段から前記被測定物までの距離を検出する距離検出手段とを備えたことを特徴とする被測定物検出装置。
A radiation means for diffusingly emitting pulsed electromagnetic waves;
First radiation form converting means for converting the radiation form of the electromagnetic wave diffusively radiated from the radiation means into a parallel straight radiation form;
A receiving means for irradiating the object to be measured with the electromagnetic wave converted by the first radiation form converting means and receiving the electromagnetic wave reflected from the object to be measured via the first radiation form converting means;
The electromagnetic wave radiated from the radiating means is converted to the first radiation form between the radiating means and the first radiating means converting means and between the receiving means and the first radiating means converting means. Demultiplexing means for guiding the electromagnetic wave reflected from the object to be measured from the first radiation form converting means to the wave receiving means,
A distance detecting means for comparing the electromagnetic wave radiated from the radiating means with the electromagnetic wave received by the receiving means to detect the distance from the radiating means or the receiving means to the object to be measured; A device for detecting an object to be measured.
前記放射手段と前記分波手段との間、又は前記分波手段と前記第一放射形態変換手段との間に配置され、前記第一放射形態変換手段を通過した電磁波の波軸と直交する断面形状が円形となるように、前記放射手段から拡散的に放射された電磁波を整形する第二放射形態変換手段を更に備えたことを特徴とする請求項1に記載の被測定物検出装置。   A cross section that is arranged between the radiating means and the demultiplexing means or between the demultiplexing means and the first radiation form converting means and is orthogonal to the wave axis of the electromagnetic wave that has passed through the first radiation form converting means. The device for detecting an object to be measured according to claim 1, further comprising second radiation form conversion means for shaping the electromagnetic wave diffusively radiated from the radiation means so that the shape is circular. 前記放射手段と前記第一放射形態変換手段との間に配置され、前記被測定物にて反射された電磁波の波面を制御する波面制御手段を更に備えたことを特徴とする請求項1又は2に記載の被測定物検出装置。   3. A wavefront control unit that is disposed between the radiation unit and the first radiation form conversion unit and controls a wavefront of an electromagnetic wave reflected by the object to be measured. 2. A device for detecting an object to be measured. 前記分波手段と前記被測定物との間に配置され、前記分波手段を介して放射される電磁波を所定方向に反射する反射手段と、
前記分波手段を介して前記反射部材に至る電磁波の波軸を回転中心として、前記反射部材を回転駆動する回転駆動手段と、
前記反射部材の角度位置を検出する角度検出手段とを更に備え、
前記距離検出手段が、前記被測定物までの距離と前記反射部材の角度位置とに基づいて、前記被測定物の位置を検出することを特徴とする請求項1〜3のいずれかに記載の被測定物検出装置。
Reflecting means disposed between the demultiplexing means and the object to be measured, and reflecting electromagnetic waves radiated through the demultiplexing means in a predetermined direction;
Rotation driving means for rotationally driving the reflecting member around the wave axis of the electromagnetic wave reaching the reflecting member through the branching means;
Angle detecting means for detecting the angular position of the reflecting member;
The said distance detection means detects the position of the said to-be-measured object based on the distance to the to-be-measured object, and the angular position of the said reflection member, The one of Claims 1-3 characterized by the above-mentioned. Device to be measured.
電磁波を透過する透過窓を備えたハウジングで最外部を覆ったことを特徴とする請求項1〜4のいずれかに記載の被測定物検出装置。   The device under test according to claim 1, wherein the outermost portion is covered with a housing having a transmission window that transmits electromagnetic waves. 前記放射手段から放射される電磁波が、レーザ光又は電波であることを特徴とする請求項1〜5のいずれかに記載の被測定物検出装置。
The device under test according to claim 1, wherein the electromagnetic wave radiated from the radiating means is a laser beam or a radio wave.
JP2005301827A 2005-10-17 2005-10-17 Device for detecting object to be measured Pending JP2007108129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301827A JP2007108129A (en) 2005-10-17 2005-10-17 Device for detecting object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301827A JP2007108129A (en) 2005-10-17 2005-10-17 Device for detecting object to be measured

Publications (1)

Publication Number Publication Date
JP2007108129A true JP2007108129A (en) 2007-04-26

Family

ID=38034084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301827A Pending JP2007108129A (en) 2005-10-17 2005-10-17 Device for detecting object to be measured

Country Status (1)

Country Link
JP (1) JP2007108129A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085936A (en) * 2007-10-02 2009-04-23 Hyundai Motor Co Ltd Radio wave transmitter/receiver for vehicle
JP2009144973A (en) * 2007-12-13 2009-07-02 Ihi Aerospace Co Ltd Target tracking guidance device and method
JP2011226977A (en) * 2010-04-22 2011-11-10 Topcon Corp Laser scanner
JP2014059222A (en) * 2012-09-18 2014-04-03 Denso Corp Optical radar device
JP2017190960A (en) * 2016-04-11 2017-10-19 株式会社デンソーウェーブ Object detection device and object detection program
CN109696683A (en) * 2017-10-24 2019-04-30 夏普株式会社 Pulsed light irradiates light receiving device and optical radar device
JP2019100919A (en) * 2017-12-05 2019-06-24 シャープ株式会社 Light reception element, time-of-flight measurement device, and optical radar device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085936A (en) * 2007-10-02 2009-04-23 Hyundai Motor Co Ltd Radio wave transmitter/receiver for vehicle
JP2009144973A (en) * 2007-12-13 2009-07-02 Ihi Aerospace Co Ltd Target tracking guidance device and method
JP2011226977A (en) * 2010-04-22 2011-11-10 Topcon Corp Laser scanner
JP2014059222A (en) * 2012-09-18 2014-04-03 Denso Corp Optical radar device
JP2017190960A (en) * 2016-04-11 2017-10-19 株式会社デンソーウェーブ Object detection device and object detection program
US10649084B2 (en) 2016-04-11 2020-05-12 Denso Wave Incorporated Object detection apparatus and object detection program
CN109696683A (en) * 2017-10-24 2019-04-30 夏普株式会社 Pulsed light irradiates light receiving device and optical radar device
JP2019078631A (en) * 2017-10-24 2019-05-23 シャープ株式会社 Pulse light irradiation/reception device and light radar device
US11609311B2 (en) 2017-10-24 2023-03-21 Sharp Kabushiki Kaisha Pulsed light irradiation/detection device, and optical radar device
JP2019100919A (en) * 2017-12-05 2019-06-24 シャープ株式会社 Light reception element, time-of-flight measurement device, and optical radar device
JP7120756B2 (en) 2017-12-05 2022-08-17 シャープ株式会社 Photodetector, time-of-flight measuring device and optical radar device
US11726192B2 (en) 2017-12-05 2023-08-15 Sharp Kabushiki Kaisha Photoreceptor, flight time measurement device, and optical radar

Similar Documents

Publication Publication Date Title
JP6111617B2 (en) Laser radar equipment
JP2007108129A (en) Device for detecting object to be measured
JP4819403B2 (en) Distance measuring device
US20080316463A1 (en) Laser radar apparatus that measures direction and distance of an object
US10816663B2 (en) Distance measuring device and distance measuring method
JP2007170902A (en) Distance measuring method and instrument
JP2006349449A (en) Scanning range sensor
WO2016047158A1 (en) Laser radar device
JP2014059222A (en) Optical radar device
JP2009236774A (en) Three dimensional ranging device
JP2007170917A (en) Light scanning device and device for detecting object to be measured
KR20200009059A (en) Lidar apparatus with increased scanning frequency, and scanning method of scanning area
JP2014089069A (en) Rader system
US20210141062A1 (en) Distance measurement device
JP6749192B2 (en) Scanner and surveying equipment
JP7170251B2 (en) distance measuring device
JP2007101404A (en) Wave transmitting/receiving apparatus and ranging apparatus
JP2017138304A (en) Optical sensor
JP2017125765A (en) Object detection device
JP6015367B2 (en) Radar equipment
JP6631659B2 (en) Optical scanning device and laser radar device
KR101698910B1 (en) Detection probe and probe-type detection apparatus
US10969577B2 (en) Optical scanning equipment
JP6522896B2 (en) Optical scanning device and laser radar device
KR20180003234A (en) Optical System for Transmitting and Receiving Laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902