JP2007108099A - Acoustic velocity measuring method and instrument of high resolution for fluid - Google Patents

Acoustic velocity measuring method and instrument of high resolution for fluid Download PDF

Info

Publication number
JP2007108099A
JP2007108099A JP2005301235A JP2005301235A JP2007108099A JP 2007108099 A JP2007108099 A JP 2007108099A JP 2005301235 A JP2005301235 A JP 2005301235A JP 2005301235 A JP2005301235 A JP 2005301235A JP 2007108099 A JP2007108099 A JP 2007108099A
Authority
JP
Japan
Prior art keywords
acoustic cavity
sound
sample
measuring
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005301235A
Other languages
Japanese (ja)
Other versions
JP4465473B2 (en
Inventor
Kenichi Touzaki
健一 東崎
Kalyan Sou
カリヤン スー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2005301235A priority Critical patent/JP4465473B2/en
Publication of JP2007108099A publication Critical patent/JP2007108099A/en
Application granted granted Critical
Publication of JP4465473B2 publication Critical patent/JP4465473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acoustic velocity measuring method and an instrument of high resolution capable of measuring an acoustic velocity at 1 ppm of resolution even under a pressurized condition, and capable of knowing clearly a delicate change in the volume or elasticity of a substance or a substance contained therein. <P>SOLUTION: A sound wave is generated and detected in a resonator by the same transducer, an acoustic cavity (acoustic resonator) is thereby compactified and a measuring system is thereby simplified. A required sample amount is reduced further (sound path length 3 mm, sample amount 10 μl), and a temperature is easily stabilized in addition thereto. When generating/detecting a signal compatibly by the same transducer, a sound wave signal propagated through a route other than an input signal or the sample is favorably removed to detect only a resonance sound wave signal in the sample. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体の高分解能音速測定方法および装置に関する。 The present invention relates to a high-resolution sound velocity measuring method and apparatus for fluid.

近年、新素材分野や生物科学分野で、物性研究・材料評価手法のため、物質の体積や弾性率の変化を、極めて高精度に測定することが求められている。例えば、0.1%蛋白質水溶液中の蛋白質分子が圧力や温度によって0.1%体積変化する様子を検出するには、1ppm程度の音速分解能が必要となる。高分解能が可能になると、非標識でのリアルタイムの抗原・抗体の相互作用などがリアルタイムで観測可能になる。その実現は有力な物性研究・材料評価手法となる。   In recent years, in the field of new materials and biological sciences, it has been required to measure changes in volume and elastic modulus of substances with extremely high accuracy for physical property research and material evaluation methods. For example, a sound velocity resolution of about 1 ppm is required to detect a state in which a protein molecule in a 0.1% protein aqueous solution changes in volume by 0.1% depending on pressure and temperature. When high resolution becomes possible, real-time interactions between antigens and antibodies without labeling can be observed. The realization is a powerful physical property research and material evaluation method.

そこで、現在、物質やその中に含有される物質の体積や弾性率の微妙な変化を測定するには様々な方法や装置が実施されている。高精度の測定には、音速測定による共鳴法が、通常用いられている。例えば、高分解能、高圧対応のための市販装置では、以下の例がある。
(1)Resonic社ResoScan型
試料量は0.2mL、分解能は10ppm、高圧対応は、特別な仕様で、250MPaまで可能で、使用温度は、5〜85℃である。
(2)Ultrasonic Scientific社HR-US102型
試料量は、1mL(特注0.03mL可)、分解能0.1ppm、高圧対応0.5MPaまで可能で、使用温度:-40〜+150℃である。
Therefore, various methods and apparatuses are currently being used to measure subtle changes in the volume and elastic modulus of a substance and the substance contained therein. For high-accuracy measurement, the resonance method based on sound velocity measurement is usually used. For example, a commercially available device for high resolution and high pressure has the following examples.
(1) Resonic ResoScan type sample volume is 0.2mL, resolution is 10ppm, high pressure support is a special specification, can be up to 250MPa, and the operating temperature is 5-85 ℃.
(2) Ultrasonic Scientific HR-US102 type sample volume is 1mL (custom order 0.03mL is acceptable), resolution 0.1ppm, high pressure 0.5MPa is possible, working temperature: -40 ~ + 150 ℃.

また、音響セル中の共鳴周波数を測定し、その値より音速と音響インピーダンスを決定する音響セルが提案されている。(特許文献1)
米国特許公開第2005/0043906A1号
In addition, there has been proposed an acoustic cell that measures the resonance frequency in the acoustic cell and determines the sound velocity and the acoustic impedance based on the measured values. (Patent Document 1)
US Patent Publication No. 2005 / 0043906A1

しかし、従来の方法、装置では、特に、高圧下で用いようとする場合、以下の課題があり、高精度の測定が極めて困難であった。
(1)高圧容器内の温度安定性・均一性を良くする事が難しい。
振動源と検出器が別のトランスデューサーで構成されている従来の市販装置では、分解能を上げるために、音波発生部および検出部が複雑となり、装置全体が大型化して、温度安定性が損なわれる結果となる。
However, the conventional methods and apparatuses have the following problems especially when trying to use them under high pressure, and it has been extremely difficult to measure with high accuracy.
(1) It is difficult to improve the temperature stability and uniformity in the high-pressure vessel.
In a conventional commercially available device in which the vibration source and the detector are composed of separate transducers, the sound wave generation unit and the detection unit become complicated in order to increase the resolution, the entire device becomes larger, and temperature stability is impaired. Result.

また、特許文献1の装置では、測定する共鳴周波数が試料単独の物ではなく容器を含んだ複合型音響セルであるが、音路長が固定であり、共鳴周波数を高次まで多数求め、容器壁での反射効果による共鳴周波数のずれが起こる周波数領域の特性から音速と音響インピーダンスを決定するには、管材料の音響インピーダンスを別途知る必要があり、高分解能の音速を求めることはできない。 Further, in the apparatus of Patent Document 1, the resonance frequency to be measured is a composite acoustic cell including a container, not a single sample, but the sound path length is fixed, and a large number of resonance frequencies are obtained up to higher order. In order to determine the sound velocity and the acoustic impedance from the characteristics of the frequency region where the resonance frequency shift occurs due to the reflection effect on the wall, it is necessary to separately know the acoustic impedance of the tube material, and it is not possible to obtain a high-resolution sound velocity.

(2)測定に多量の試料が必要である。
さらに、従来の方法・装置では、極微量の測定試料について高精度の測定が困難であるので、測定対象の試料が限定される。
(3)高圧により音響セルが変形する。
加えて、例えば、200MPa以上の超高圧下では、音響セルが変形して、高精度の測定が、困難となる。
(2) A large amount of sample is required for measurement.
Furthermore, in the conventional method / apparatus, since it is difficult to measure with high accuracy for a very small amount of measurement sample, the sample to be measured is limited.
(3) The acoustic cell is deformed by high pressure.
In addition, for example, under an ultrahigh pressure of 200 MPa or more, the acoustic cell is deformed, and high-precision measurement becomes difficult.

本発明はかかる事情に鑑みてなされたものであり、圧力下でも、1ppm分解能で音速を測定し、物質やその中に含有される物質の体積や弾性率の微妙な変化を明瞭に知る事を可能にする高分解能音速測定方法および装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to measure the speed of sound with 1 ppm resolution even under pressure, and to clearly know the subtle changes in the volume and elastic modulus of the substance and the substance contained therein. It is an object of the present invention to provide a high-resolution sound speed measurement method and apparatus that can be used.

上記目的を達成するため、本発明者は、鋭意研究した結果、以下の点に着目した。
(着目点)
音響キャビティー(音響共鳴器)内での音波の発生と検出を同一のトランスデューサーで行い、これにより音響キャビティーは小型にでき、計測システムはシンプルになる。音響キャビティーを小型にする事によって、測定に必要な試料量を減らす事ができ、また温度安定化が容易になる。そこで、信号の発生・検出を単一トランスデューサーで兼ねるため、入力信号や試料外の経路を伝播した音波信号をうまく取り除いて試料中の共鳴音波信号のみを検出できるように構成する。
In order to achieve the above object, the present inventor has paid attention to the following points as a result of intensive studies.
(Points of interest)
Sound waves are generated and detected in the acoustic cavity (acoustic resonator) by the same transducer, which makes the acoustic cavity small and simplifies the measurement system. By reducing the size of the acoustic cavity, the amount of sample required for measurement can be reduced, and temperature stabilization can be facilitated. Therefore, since the generation and detection of the signal is also performed by a single transducer, the configuration is such that only the resonance sound wave signal in the sample can be detected by successfully removing the input signal and the sound wave signal propagating through the path outside the sample.

上記に着目した結果、本発明を以下のように構成する。請求項1に係る発明は、測定対象の試料を既知の長さの音響キャビティーに充填し、該音響キャビティーの両端に配置した音波発生手段により音響キャビティー内を振動させ、該振動の周波数を掃引して、音波検出手段により音響キャビティー内の共鳴が発生する共鳴周波数を検出して、該音響キャビティー長を変調する手段により音響キャビティーの音路長を変調して、該共鳴周波数と該変調された音路長により音速を測定することを特徴とする試料中の音速測定方法を提案する。   As a result of focusing on the above, the present invention is configured as follows. According to the first aspect of the present invention, an acoustic cavity having a known length is filled with a sample to be measured, the inside of the acoustic cavity is vibrated by sound wave generating means disposed at both ends of the acoustic cavity, and the frequency of the vibration is The resonance frequency at which resonance in the acoustic cavity is generated is detected by the sound wave detection means, the sound path length of the acoustic cavity is modulated by the means for modulating the acoustic cavity length, and the resonance frequency is And a method of measuring the speed of sound in a sample, characterized by measuring the speed of sound based on the modulated sound path length.

請求項2に係る発明は、上記音響キャビティーに配置した音波発生手段と上記音波検出手段を同一のトランスデューサーで行うことを特徴とする請求項1記載の試料中の音速測定方法を提案する。   The invention according to claim 2 proposes a method of measuring the speed of sound in a sample according to claim 1, wherein the sound wave generating means and the sound wave detecting means arranged in the acoustic cavity are performed by the same transducer.

請求項3に係る発明は
上記音響キャビティーの反射壁を低周波で振動させ、音響キャビティー容器長を変調し、出力信号を変調周波数で同期検波することを特徴とする請求項1または2記載の試料中の音速測定方法を提案する。
The invention according to claim 3 is characterized in that the reflection wall of the acoustic cavity is vibrated at a low frequency, the acoustic cavity container length is modulated, and the output signal is synchronously detected at the modulation frequency. We propose a method for measuring the speed of sound in a sample.

請求項4に係る発明は、 上記音響キャビティー容器長の変調に、たわみ型ピエゾトランスデューサーを反射板として用いることを特徴とする請求項1ないしは3いずれかに記載の試料中の音速測定方法を提案する。   According to a fourth aspect of the invention, there is provided the method for measuring a sound velocity in a sample according to any one of the first to third aspects, wherein a flexible piezo transducer is used as a reflector for the modulation of the acoustic cavity container length. suggest.

請求項5に係る発明は、上記音響キャビティーを高圧容器内に配置して、該音響キャビティーと該高圧容器の圧力差を解消することを特徴とする請求項1ないしは4いずれかに記載の試料中の音速測定方法を提案する。   The invention according to claim 5 is characterized in that the acoustic cavity is disposed in a high-pressure vessel to eliminate a pressure difference between the acoustic cavity and the high-pressure vessel. A method for measuring the speed of sound in a sample is proposed.

請求項6 に係る発明は、測定対象の試料を充填する音響キャビティーと、該音響キャビティーの両端に配置した音波発生させるトランスデューサーと、該音波発生させるトランスデューサーにより発生した音波の周波数を掃引する手段と、該音響キャビティー内の共鳴が発生する共鳴周波数を検出する手段と、該音響キャビティーの長さを変調する手段とを備え、該検出された共鳴周波数と該変調された音響キャビティーの長さにより音速を測定することを特徴とする試料中の音速測定装置を提案する。   The invention according to claim 6 sweeps the acoustic cavities filled with the sample to be measured, transducers for generating sound waves disposed at both ends of the acoustic cavities, and the frequencies of sound waves generated by the transducers for generating sound waves. Means for detecting the resonance frequency at which resonance in the acoustic cavity occurs, and means for modulating the length of the acoustic cavity, the detected resonance frequency and the modulated acoustic cavity being included. We propose a device for measuring the speed of sound in a sample characterized by measuring the speed of sound by the length of a tee.

請求項7から10に係る発明は、請求項6に係る試料中の音速測定装置に関して、請求項2から6いずれかに記載の試料中の音速測定方法を実施する試料中の音速測定装置である。   The invention according to claims 7 to 10 relates to the sound speed measuring device in the sample according to claim 6, and is a sound speed measuring device in the sample that performs the sound speed measuring method in the sample according to any of claims 2 to 6. .

上記のように構成した本発明により、以下にようにして上記課題を解決する。 According to the present invention configured as described above, the above-described problems are solved as follows.

(1)課題1、2の解決
本方法では共鳴器内での音波の発生と検出を同一のトランスデューサーで行う。これにより音響キャビティー小型にでき、計測システムはシンプルになる。音響キャビティーを極めて小型にする事によって測定に必要な試料量を減らす事ができ(実施例では音路長3mm,試料量100μl )、また温度安定化が容易になる。
(1) Resolution of issues 1 and 2
In this method, generation and detection of sound waves in the resonator are performed by the same transducer. This allows for a smaller acoustic cavity and simplifies the measurement system. By making the acoustic cavity extremely small, the amount of sample required for measurement can be reduced (in the embodiment, the sound path length is 3 mm, the sample amount is 100 μl), and temperature stabilization is facilitated.

しかし、信号の発生・検出を単一トランスデューサーで兼ねる場合、入力信号や試料外の経路を伝播した音波信号をうまく取り除いて試料中の共鳴音波信号のみを検出する必要がある。このため、共鳴容器の反射壁を低周期で振動させて音響キャビティーを変調し、出力信号を変調周波数で同期検波する方法を採用した。これによりSNが改善され、信号の選択性が向上した。音響キャビティーの変調には、反射板にたわみ型ピエゾトランスデューサーを用いた。 However, when the signal generation / detection is also performed by a single transducer, it is necessary to detect only the resonance sound wave signal in the sample by successfully removing the input signal and the sound wave signal propagating through the path outside the sample. For this reason, a method is adopted in which the acoustic cavity is modulated by vibrating the reflecting wall of the resonant container at a low period, and the output signal is synchronously detected at the modulation frequency. This improved the SN and improved the signal selectivity. For the modulation of the acoustic cavity, a flexible piezo transducer was used as the reflector.

(2)課題3の解決
高圧下で用いる本発明に係る音響キャビティーには、内外をつなぐ流通孔が存在する。この構造により音響キャビティーの内外には、静的な圧力差が生じず、共鳴器を肉薄に製作することが可能で、高圧容器内に設置して、超高圧下においても、音響キャビティーの変形は最小限に押さえられ且つ温度制御が容易である。
(3)まとめ
このように、本発明によれば、音響キャビティー内での音波の発生と検出を同一のトランスデューサーで行い、かつ入力信号や試料外の経路を伝播した音波信号をうまく取り除いて、試料中の共鳴音波信号のみを検出する。このため、共鳴容器の反射壁を低周期で振動させて音響キャビティーを変調し、出力信号を変調周波数で同期検波する方法・装置を採用したことにより、極めて簡単な構成により、上記課題を解決することができる。
(2) Solution to Problem 3
The acoustic cavity according to the present invention used under high pressure has a flow hole connecting the inside and the outside. With this structure, there is no static pressure difference between the inside and outside of the acoustic cavity, and it is possible to manufacture the resonator thinly. Deformation is minimized and temperature control is easy.
(3) Summary As described above, according to the present invention, the generation and detection of sound waves in the acoustic cavity are performed by the same transducer, and the input signals and the sound wave signals propagated through the path outside the sample are successfully removed. Only the resonant sound wave signal in the sample is detected. For this reason, the above problem is solved with a very simple configuration by adopting a method and apparatus that modulates the acoustic cavity by vibrating the reflecting wall of the resonant container at a low period and synchronously detects the output signal at the modulation frequency. can do.

以下に、この発明の実施形態(以下本発明という)を図面により説明する。 Embodiments of the present invention (hereinafter referred to as the present invention) will be described below with reference to the drawings.

本発明の第1の実施例を図により示す。
(1)全体構成
本発明に係る高分解能音速測定方法および装置の構成図(ブロックダイアグラム)を図1に示す。共鳴法を用いる。図2の音響キャビティーのサンプルチャンバー5に試料を充填し、信号発生器SGで、音響キャビティーの一端の壁を周波数fで振動させ、該音響キャビティー内の振動状態を検出する。周波数fを掃引して音響キャビティー内で共鳴が起こる周波数frを、ロックインアンプで測定する。測定された共鳴周波数と筒長より音速を決定する。このための、電気回路構成は、以下に述べる(3)に説明する。
A first embodiment of the present invention is shown in the figure.
(1) Overall Configuration FIG. 1 shows a configuration diagram (block diagram) of a high-resolution sound velocity measuring method and apparatus according to the present invention. Use the resonance method. The sample is filled in the sample chamber 5 of the acoustic cavity shown in FIG. 2, and the signal generator SG vibrates one end wall of the acoustic cavity at the frequency f to detect the vibration state in the acoustic cavity. A frequency fr at which resonance occurs in the acoustic cavity by sweeping the frequency f is measured by a lock-in amplifier. The speed of sound is determined from the measured resonance frequency and tube length. The electrical circuit configuration for this purpose will be described in (3) below.

(2)音響キャビティーの構成
さらに、音響キャビティーの模式図を図2に示す。周波数fの音波の発生・検出にXカット水晶圧電素子1(実施例では基本振動数10MHz、直径7mm、厚み0.3mm、電極直径3mm)を使用した。圧電たわみ金属板2(村田製作所Ltd. 7BB-12-9、直径12mm、厚み0.2mm)を反射板として使用した。
音響キャビティーは、金属共鳴筒(外形13mm、内径6mm、長さ0.30mm)よりなり、その片側端に、電極3により駆動する音波発生・検出素子として該Xカット水晶圧電素子1を取り付け、他端に、反射板として圧電たわみ金属板2を取り付ける。該圧電たわみ金属板2は外部からの電圧によりたわみ変形し、それによって音響セルの音路長を変化させることができる。実施例では、該圧電たわみ金属板2に交流電圧(周波数fm=1kHz,電圧0.1Vpp)を加え、音路長を変調している。音響キャビティーの胴体には小さな穴(実施例では直径0.6mm)4が開いていて、サンプルチャンバー内5へ測定する試料の出入りができるようになっている。
(2) Configuration of acoustic cavity Further, a schematic diagram of the acoustic cavity is shown in FIG. An X-cut quartz piezoelectric element 1 (in the example, a fundamental frequency of 10 MHz, a diameter of 7 mm, a thickness of 0.3 mm, and an electrode diameter of 3 mm) was used for generation and detection of a sound wave having a frequency f. A piezoelectric flexible metal plate 2 (Murata Manufacturing Co., Ltd. 7BB-12-9, diameter 12 mm, thickness 0.2 mm) was used as a reflector.
The acoustic cavity consists of a metal resonance tube (outer diameter 13 mm, inner diameter 6 mm, length 0.30 mm). At one end, the X-cut quartz piezoelectric element 1 is attached as a sound wave generating / detecting element driven by the electrode 3. A piezoelectric flexible metal plate 2 is attached to the end as a reflection plate. The piezoelectric flexible metal plate 2 is bent and deformed by an external voltage, thereby changing the sound path length of the acoustic cell. In the embodiment, an AC voltage (frequency f m = 1 kHz, voltage 0.1 V pp ) is applied to the piezoelectric flexible metal plate 2 to modulate the sound path length. A small hole (diameter 0.6 mm in the embodiment) 4 is opened in the body of the acoustic cavity so that the sample to be measured can enter and exit from the sample chamber 5.

(3)電気信号系の構成
本発明の電気的接続図を図3に示す。水晶振動子R(本実施例では、Xカット水晶圧電素子1)に周波数fの電圧を加えるために、信号発生器SGを用いる。コイルLは信号発生器SGと水晶振動子Rとの間の電気的整合をとる。上記音響キャビティーから出る電圧のうち高周波の音響周波数を、ダイオードDで検波する。検波後の信号は音路長の変調周波数fmで同期検波し電圧と位相を測定する。この測定に市販のロックインアンプLA(本実施例では、NF Co. LI-575型)を用いた。図1で示すように、励振周波数fの掃引と検出信号の記録、温度制御を1台のPCで制御する。
(3) Configuration of electrical signal system FIG. 3 shows an electrical connection diagram of the present invention. A signal generator SG is used to apply a voltage of frequency f to the crystal resonator R (X-cut crystal piezoelectric element 1 in this embodiment). The coil L establishes electrical matching between the signal generator SG and the crystal resonator R. A high frequency acoustic frequency in the voltage output from the acoustic cavity is detected by a diode D. The detected signal is synchronously detected at the modulation frequency f m of the sound path length, and the voltage and phase are measured. For this measurement, a commercially available lock-in amplifier LA (NF Co. LI-575 type in this example) was used. As shown in FIG. 1, sweep of the excitation frequency f, recording of the detection signal, and temperature control are controlled by one PC.

(4)高圧容器
高圧下の測定または圧力を変化させて測定を行う際には、音響キャビティーを、図示はしないが、高圧容器内に設置する。音響キャビティー胴体の孔4を通して、流体が出入りできるため、高圧下でも音響キャビティー内外に圧力差は生じない。
(4) When performing measurement under high pressure or changing the pressure, an acoustic cavity is installed in the high pressure container (not shown). Since the fluid can enter and exit through the holes 4 of the acoustic cavity body, no pressure difference is generated inside and outside the acoustic cavity even under high pressure.

(5)温度制御
本発明者等の研究によれば、1ppm分解能で音速を測定するためには試料と音響キャビティーの温度を±0.01K以内に安定化する必要がある。本装置は小型であるので、恒温槽内に設置することにより、±1mKの温度安定度を容易に達成できる(下記(7)参考文献1)。
(5) Temperature control According to the study by the present inventors, it is necessary to stabilize the temperature of the sample and the acoustic cavity within ± 0.01 K in order to measure the sound velocity with 1 ppm resolution. Since this device is small, a temperature stability of ± 1 mK can be easily achieved by installing it in a constant temperature bath ((7) Reference 1 below).

(6)測定結果例
上記のように構成した本発明において、周波数を掃引した場合の測定件の変調信号強度Aのグラフを図4に示す。この図には水晶−水複合共振系の6個の共振スペクトル(共振周波数fr:9.1633、9.3911、9.6056、9.810、10.015、10.235MHz)が示されている。これらの共振周波数を用いて、Miller と Bolefによって導かれた複合共振子モデルの解析式(参考文献2)から文献値と一致する水の音速(1500m/s)を決定することができた。共振周波数frの値を分解能10Hzで決定する事によって1ppmの音速変化を検出可能となる。ただし、測定音速の確度を向上させるためには音路長の有効桁数を増やす必要がある。
(7)参考文献
上記(5)および(6)に関連した参考文献を以下に提示する。
1)K. Tozaki, C Ishii, O. Izuhara,
N. Tsuda, Y. Yoshimura, H. Iwasaki, Y. Noda and A. Kojima: Rev. Sci. Instrum. 69
(1998) 3298.
2)
J.G.Miller and J.G.Bolef: J. Appl. Phys., 39 (1968) 4589.
(6) Measurement Result Example In the present invention configured as described above, FIG. 4 shows a graph of the modulation signal intensity A of the measurement results when the frequency is swept. This figure shows six resonance spectra (resonance frequencies fr: 9.1633, 9.3911, 9.6056, 9.810, 10.015, and 10.235 MHz) of the crystal-water composite resonance system. Using these resonance frequencies, we were able to determine the sound velocity of water (1500 m / s) that was consistent with the literature value from the analytical formula of the composite resonator model derived by Miller and Bolef (reference document 2). By determining the value of the resonance frequency fr with a resolution of 10 Hz, a change in sound velocity of 1 ppm can be detected. However, in order to improve the accuracy of the measured sound speed, it is necessary to increase the number of effective digits of the sound path length.
(7) References References related to the above (5) and (6) are presented below.
1) K. Tozaki, C Ishii, O. Izuhara,
N. Tsuda, Y. Yoshimura, H. Iwasaki, Y. Noda and A. Kojima: Rev. Sci. Instrum. 69
(1998) 3298.
2)
JGMiller and JGBolef: J. Appl.Phys., 39 (1968) 4589.

(応用について)
本実施例においては、超音波を用いた高分解能音速測定方法および装置に関して説明したが、同様な構成によって、可聴域音波による音響キャビティー内に水または低濃度の水溶液を満たした水中音速計や、高精度の容積計として応用することができる。また、極めて小型にできるので、音響キャビティーを小型容器に入れ、ICタグのように遠隔操作・測定を行い、あるいは、磁場と組み合わせて流体中物質のNMR信号の音響的検出に使用可能性がある。このように、各種測定装置や制御装置へ適用することができる。
(About application)
In the present embodiment, a high-resolution sound velocity measuring method and apparatus using ultrasonic waves have been described. However, with a similar configuration, an underwater sound velocity meter in which water or a low-concentration aqueous solution is filled in an acoustic cavity formed by audible sound waves, It can be applied as a high-precision volume meter. In addition, since it can be made extremely small, the acoustic cavity can be put into a small container and remotely operated and measured like an IC tag, or it can be used for acoustic detection of NMR signals of substances in fluids in combination with a magnetic field. is there. Thus, it can be applied to various measuring devices and control devices.

上記のように、本発明によれば、圧力下で、また、圧力を変化させながら、極めて高精度の分解能で音速を測定することができる。物質やその中に含有される物質の体積や弾性率の微妙な変化を明瞭に知る事を可能にし、有力な物性研究・材料評価手法が可能になり、極めて有用性が高い。   As described above, according to the present invention, the speed of sound can be measured with very high resolution under pressure and while changing the pressure. This makes it possible to clearly know the subtle changes in the volume and elastic modulus of a substance and the substance contained in it, enabling powerful physical property research and material evaluation methods, and is extremely useful.

装置の構成図Device configuration diagram 音響キャビティーAcoustic cavity 電気的接続図Electrical connection diagram 測定結果例(励起周波数fに対する測定信号強度の図)Example of measurement results (figure of measurement signal intensity with respect to excitation frequency f)

符号の説明Explanation of symbols

1…水晶圧電素子
2…圧電たわみ金属板
3…電極
4…音響キャビティーの孔
5…サンプルチャンバー
SG…信号発生器
L…コイル
D…ダイオード
LA…ロックインアンプ
R…水晶振動子
DESCRIPTION OF SYMBOLS 1 ... Quartz piezoelectric element 2 ... Piezoelectric flexible metal plate 3 ... Electrode 4 ... Sound cavity hole 5 ... Sample chamber
SG ... Signal generator
L ... Coil
D ... Diode
LA ... Lock-in amplifier R ... Quartz crystal

Claims (10)

試料を音響キャビティーに充填し、
該音響キャビティーに配置した音波発生手段により該試料中に音波を発生させ、
音波の振動の周波数を掃引して、
音波検出手段により掃引された周波数の共鳴周波数を検出して、
該音響キャビティー長を変調する手段により音響キャビティーの音路長を変調して、
該共鳴周波数と該変調された音路長により音速を測定することを特徴とする試料中の音速測定方法。
Fill the acoustic cavity with the sample,
A sound wave is generated in the sample by a sound wave generating means disposed in the acoustic cavity;
Sweep the frequency of sound wave vibration,
Detect the resonance frequency of the frequency swept by the sound wave detection means,
Modulating the acoustic path length of the acoustic cavity by means for modulating the acoustic cavity length;
A method of measuring sound speed in a sample, characterized by measuring sound speed based on the resonance frequency and the modulated sound path length.
上記音響キャビティーに配置した音波発生手段と上記音波検出手段は、同一のトランスデューサーで行うことを特徴とする請求項1記載の試料中の音速測定方法。 2. The method of measuring sound velocity in a sample according to claim 1, wherein the sound wave generating means and the sound wave detecting means arranged in the acoustic cavity are performed by the same transducer. 上記音響キャビティーの壁面を低周波で振動させて該音響キャビティー長を変調し、
上記トランスデューサーからの出力信号を、該変調による周波数で同期検波することを特徴とする請求項1または2記載の試料中の音速測定方法。
The acoustic cavity length is modulated by vibrating the wall of the acoustic cavity at a low frequency,
3. The method of measuring the speed of sound in a sample according to claim 1, wherein the output signal from the transducer is synchronously detected at a frequency by the modulation.
上記音響キャビティー長の変調手段は、たわみ型ピエゾトランスデューサーを反射板として用いることを特徴とする請求項1ないしは3いずれかに記載の試料中の音速測定方法。 4. The method for measuring the speed of sound in a sample according to claim 1, wherein said means for modulating the acoustic cavity length uses a flexible piezo transducer as a reflecting plate. 上記音響キャビティーを高圧容器内に配置して、
該音響キャビティーと該高圧容器を流通させて、該音響キャビティーと該高圧容器の圧力差を解消することを特徴とする請求項1ないしは4いずれかに記載の試料中の音速測定方法。
Place the acoustic cavity in a high pressure vessel,
The method for measuring the speed of sound in a sample according to any one of claims 1 to 4, wherein a pressure difference between the acoustic cavity and the high-pressure vessel is eliminated by circulating the acoustic cavity and the high-pressure vessel.
試料を充填する音響キャビティーと、
該音響キャビティーの両端に配置した音波発生させるトランスデューサーと、
該音波を発生させるトランスデューサーにより発生する音波の周波数を掃引する手段と、
該音波を発生させるトランスデューサーにより掃引した周波数の共鳴周波数を検出する手段と、
該音響キャビティーの長さを変調する手段とを備え、
該検出された共鳴周波数と該変調された音響キャビティーの長さにより音速を測定することを特徴とする試料中の音速測定装置。
An acoustic cavity to fill the sample;
Transducers for generating sound waves disposed at both ends of the acoustic cavity;
Means for sweeping the frequency of the sound wave generated by the transducer for generating the sound wave;
Means for detecting a resonance frequency of a frequency swept by a transducer for generating the sound wave;
Means for modulating the length of the acoustic cavity,
An apparatus for measuring the speed of sound in a sample, wherein the speed of sound is measured based on the detected resonance frequency and the length of the modulated acoustic cavity.
上記音波を発生させるトランスデューサーと該音響キャビティー内の共鳴が発生する共鳴周波数を検出する手段とが同一であることを特徴とする請求項6記載の試料中の音速測定装置。 7. The sound velocity measuring apparatus in a sample according to claim 6, wherein the transducer for generating the sound wave and the means for detecting the resonance frequency at which the resonance in the acoustic cavity is generated are the same. 上記音響キャビティーの壁面を低周波で振動させ、音響キャビティー長を変調し、上記トランスデューサーからの出力信号を、該変調による周波数で同期検波する手段を有することを特徴とする請求項6ないしは7いずれかに記載の試料中の音速測定装置。 7. The apparatus according to claim 6, further comprising means for vibrating the wall surface of the acoustic cavity at a low frequency, modulating the acoustic cavity length, and synchronously detecting an output signal from the transducer at a frequency by the modulation. 7. An apparatus for measuring the speed of sound in a sample according to any one of 7 above. 上記音響キャビティー長の変調手段は、たわみ型ピエゾトランスデューサーを用いた反射板であることを特徴とする請求項8記載の試料中の音速測定装置。 9. A sound velocity measuring apparatus in a sample according to claim 8, wherein said means for modulating the acoustic cavity length is a reflector using a flexible piezo transducer. 上記音響キャビティーは高圧容器内に配置され、
該音響キャビティーに、該音響キャビティーと該高圧容器の圧力差を解消する流通孔が配設されていることを特徴とする請求項6ないし9記載の試料中の音速測定装置。
The acoustic cavity is placed in a high pressure vessel,
10. The sound velocity measuring device in a sample according to claim 6, wherein a flow hole for eliminating a pressure difference between the acoustic cavity and the high-pressure vessel is disposed in the acoustic cavity.
JP2005301235A 2005-10-17 2005-10-17 High resolution sound velocity measuring method and apparatus for fluid Active JP4465473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301235A JP4465473B2 (en) 2005-10-17 2005-10-17 High resolution sound velocity measuring method and apparatus for fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301235A JP4465473B2 (en) 2005-10-17 2005-10-17 High resolution sound velocity measuring method and apparatus for fluid

Publications (2)

Publication Number Publication Date
JP2007108099A true JP2007108099A (en) 2007-04-26
JP4465473B2 JP4465473B2 (en) 2010-05-19

Family

ID=38034058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301235A Active JP4465473B2 (en) 2005-10-17 2005-10-17 High resolution sound velocity measuring method and apparatus for fluid

Country Status (1)

Country Link
JP (1) JP4465473B2 (en)

Also Published As

Publication number Publication date
JP4465473B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
US8166801B2 (en) Non-invasive fluid density and viscosity measurement
US5837885A (en) Method and device for measuring the characteristics of an oscillating system
Leighton et al. Acoustic bubble sizing by combination of subharmonic emissions with imaging frequency
Fatemi et al. Application of radiation force in noncontact measurement of the elastic parameters
JPH08506979A (en) Positioning of interventional medical devices by ultrasound
JP2012525584A (en) Fluid density measuring device
JP2008026099A (en) Resonance vibrator mass detector
JP2009541745A (en) Method and apparatus for vibrating a sample to be tested
Cai et al. Increasing ranging accuracy of aluminum nitride PMUTs by circuit coupling
JPH03500213A (en) Acoustic scanning microscope that inspects objects in the near field of a resonant acoustic oscillator
JP4465473B2 (en) High resolution sound velocity measuring method and apparatus for fluid
CN107389794B (en) Method and system for measuring rock attenuation coefficient
JP2004012149A (en) Liquid physical property measuring apparatus
AU2014218392B2 (en) Noninvasive fluid density and viscosity measurement
JP4680196B2 (en) Method and apparatus for exciting non-contact torsional vibrations in a spring cantilever with one side fixed in an atomic force microscope
KR101842350B1 (en) The measurement apparatus for capacitive membrane sensor using mechanical resonance characteristics of membrane and the method thereof
Kaduchak et al. A non-contact technique for evaluation of elastic structures at large stand-off distances: applications to classification of fluids in steel vessels
JP2005156355A (en) Method and apparatus for measuring young&#39;s modulus
JP4500965B2 (en) Acoustic cavity and resonant acoustic spectroscopy apparatus for fluids using the same
RU2735315C1 (en) Liquid surface parameters gage
JP2005201816A (en) Elastic constant measuring instrument and method for measuring elastic constant of sample
Leighton et al. Bubble sizing by the nonlinear scattering of two acoustic frequencies
JP4672879B2 (en) Vibration measuring method and ultrasonic microscope system
JP2003207390A (en) Method and device for detecting resonance mode of solid, and method and device for measuring elastic constant of solid
JP3432415B2 (en) Vibrating tube density meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150