JP2007108045A - Device and method for measuring viscosity of liquid - Google Patents

Device and method for measuring viscosity of liquid Download PDF

Info

Publication number
JP2007108045A
JP2007108045A JP2005299993A JP2005299993A JP2007108045A JP 2007108045 A JP2007108045 A JP 2007108045A JP 2005299993 A JP2005299993 A JP 2005299993A JP 2005299993 A JP2005299993 A JP 2005299993A JP 2007108045 A JP2007108045 A JP 2007108045A
Authority
JP
Japan
Prior art keywords
liquid
container
viscosity
capillary viscometer
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005299993A
Other languages
Japanese (ja)
Other versions
JP5074683B2 (en
Inventor
Masato Kaneko
正人 金子
Tatsuo Jigo
健生 時合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005299993A priority Critical patent/JP5074683B2/en
Publication of JP2007108045A publication Critical patent/JP2007108045A/en
Application granted granted Critical
Publication of JP5074683B2 publication Critical patent/JP5074683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring viscosity of liquid optimum to directly measure the viscosity of a mixed liquid of a high-pressure cooling medium like carbon dioxide and a freezer oil, especially a lubricant by a capillary viscometer, and to provide a viscosity measuring method. <P>SOLUTION: The device and method include a container comprising a single crystal sapphire tube for housing the liquid becoming a viscosity measuring target in a hermetic closure and the capillary viscometer arranged in the container in a freely movable manner. In this case, the capillary viscometer contains a magnetic material and is provided with a magnetism producing means for moving the magnetic material from outside of the container in a non-contact state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体の粘度測定装置、さらに詳しくは、炭酸ガスのような高圧冷媒と潤滑油との混合液体の粘度を毛細管粘度計で直接測定するのに最適な液体の粘度測定装置および測定方法に関するものである。   The present invention relates to a liquid viscosity measuring apparatus, and more specifically, a liquid viscosity measuring apparatus and measuring method that are most suitable for directly measuring the viscosity of a mixed liquid of a high-pressure refrigerant such as carbon dioxide and a lubricating oil with a capillary viscometer. It is about.

液体の物性には、その粘性を表す粘度がある。粘度は、潤滑油にとっては、物性のなかで最も大切なものの一つであり、機械要素の潤滑における重要な因子となっている。ここで、液体の粘度を測定する装置としては、従来より、毛細管粘度計、高圧落球式粘度計および電磁振動式粘度計等の多様な形式のものが知られており、目的に応じて適宜な形式の粘度計が使用されている。毛細管粘度計は、毛細管中を流れる被測定液体の流量等に基づいて粘度を求めるものであり、被測定液体を溜める所定容量の液溜め部と、この液溜め部からの液体を流通させる毛細管とを有していれば、精度よく粘度(動粘度)を測定することができるようになっている。
高圧落球式粘度計は、高圧密閉容器内に、被測定液体および球を入れ、等速で自由落下する球の速度等に基づいて粘度(絶対粘度)を求めるものである。電磁振動式粘度計は、鉄片等の物体を被測定液体中に浸漬するとともに、電磁波で振動させ、被測定液体の粘性による物体の振動の減衰に基づいて粘度(絶対粘度)を求めるものである。
これらのうち、毛細管粘度計は、開放された空間において、簡単な操作で動粘度を精度よく測定することができる。このため、毛細管粘度計は、石油製品の粘度測定に広く利用されている。一方、高圧落球式粘度計および電磁振動式粘度計は、粘度計本体を密閉容器状に形成することが可能なため、高圧ガスの雰囲気下における液体の絶対粘度の測定にも使用することができる。
The physical property of a liquid has a viscosity that represents its viscosity. Viscosity is one of the most important physical properties for lubricating oils and is an important factor in the lubrication of machine elements. Here, as a device for measuring the viscosity of a liquid, various types of devices such as a capillary viscometer, a high-pressure falling ball type viscometer, an electromagnetic vibration type viscometer, and the like have been known. A type of viscometer is used. A capillary viscometer calculates viscosity based on the flow rate of the liquid to be measured flowing through the capillary, and has a predetermined volume of a liquid reservoir that stores the liquid to be measured, and a capillary that circulates the liquid from the liquid reservoir. The viscosity (kinematic viscosity) can be measured with high accuracy.
The high-pressure falling ball viscometer is to obtain a viscosity (absolute viscosity) based on the velocity of a sphere that freely falls at a constant speed and the liquid to be measured and the sphere placed in a high-pressure sealed container. The electromagnetic vibration type viscometer is to immerse an object such as an iron piece in a liquid to be measured and vibrate with an electromagnetic wave to obtain a viscosity (absolute viscosity) based on attenuation of the vibration of the object due to the viscosity of the liquid to be measured. .
Among these, the capillary viscometer can accurately measure the kinematic viscosity by a simple operation in an open space. For this reason, capillary viscometers are widely used for measuring the viscosity of petroleum products. On the other hand, the high-pressure falling ball viscometer and the electromagnetic vibration type viscometer can be used for measuring the absolute viscosity of a liquid in an atmosphere of high-pressure gas because the main body of the viscometer can be formed in a closed container shape. .

従来の毛細管粘度計では、その粘度計本体を密閉容器に入れると、その操作が著しく困難となることから、高圧ガスの雰囲気下における液体の粘度測定には、適さないという問題がある。
また、高圧落球式粘度計では、絶対粘度の直接測定は行えるが、動粘度を直接測定することができないうえ、低粘度の液体については、測定精度が良くないという問題がある。
さらに、電磁振動式粘度計では、高圧落球式粘度計と同様に、絶対粘度の直接測定は行えるが、動粘度を直接測定することができないうえ、物体の振動による摩擦熱により、温度が変化するため、測定精度が良くないという問題がある。
ここで、フロン等の冷媒を用いる冷凍機で使用される潤滑油は、圧縮された高圧の冷媒ガスが雰囲気となる環境下で使用される。このような高圧冷媒ガスの雰囲気下におかれた潤滑油には、冷媒ガスが溶け込むことから、その粘度が変化し、溶け込んだ冷媒ガスの量が多いと、潤滑油の性能に影響が及ぶことがある。このため、潤滑油、特に、冷凍機用の潤滑油に係る技術分野では、潤滑油が実際に使用される圧力および雰囲気下において、その動粘度の直接測定が行える粘度測定装置が要望されている。
The conventional capillary viscometer has a problem that it is not suitable for measuring the viscosity of a liquid in an atmosphere of high-pressure gas because the operation of the viscometer becomes extremely difficult if the main body of the viscometer is placed in a sealed container.
In addition, the high-pressure falling ball viscometer can directly measure the absolute viscosity, but cannot directly measure the kinematic viscosity, and has a problem that the measurement accuracy is not good for a low-viscosity liquid.
In addition, the electromagnetic vibration viscometer can directly measure the absolute viscosity as well as the high-pressure falling ball viscometer, but cannot directly measure the kinematic viscosity, and the temperature changes due to frictional heat caused by vibration of the object. Therefore, there is a problem that the measurement accuracy is not good.
Here, the lubricating oil used in a refrigerator using a refrigerant such as Freon is used in an environment where compressed high-pressure refrigerant gas is an atmosphere. Since the lubricant gas dissolves in the lubricating oil placed in such an atmosphere of high-pressure refrigerant gas, the viscosity of the lubricant changes, and if the amount of refrigerant gas dissolved increases, the performance of the lubricant will be affected. There is. For this reason, in the technical field related to lubricating oil, in particular, lubricating oil for refrigerators, there is a demand for a viscosity measuring device that can directly measure the kinematic viscosity under the pressure and atmosphere in which the lubricating oil is actually used. .

しかしながら、従来の冷媒は、オゾン層破壊や地球温暖化等の環境での影響が懸念されることから、さらに環境保護に適した冷媒として炭化水素、アンモニア、炭酸ガスなどのいわゆる自然系冷媒が注目されている。
しかしながら炭化水素冷媒は可燃性の問題、アンモニア冷媒は臭気、毒性などの問題があるため、カーエアコンなどでは使用が難しく、毒性、可燃性がなく安全性には全く問題とならないと考えられている、炭酸ガスが次世代の冷媒として考えられており、炭酸ガスを冷媒とした冷媒圧縮式の冷凍設備が検討されている。
一方、炭酸ガスを冷媒として用いた場合には運転圧が非常に高くなるこという問題があり、従来のガラス製の容器(耐圧3MPa)では、炭酸ガスのような高圧冷媒(7.6MPa:測定温度31℃)には適用することができない。
また、ガラス製の密閉容器の中での毛細管粘度計による液体の粘度測定装置について検討されているが(例えば特許文献1)、炭酸ガスのような高圧冷媒の使用に関する開示はない。
However, since conventional refrigerants have concerns over environmental effects such as ozone depletion and global warming, so-called natural refrigerants such as hydrocarbons, ammonia, and carbon dioxide are attracting attention as refrigerants suitable for environmental protection. Has been.
However, hydrocarbon refrigerants have flammability problems, and ammonia refrigerants have problems such as odor and toxicity. Therefore, they are difficult to use in car air conditioners, etc. Carbon dioxide gas is considered as a next-generation refrigerant, and refrigerant compression type refrigeration equipment using carbon dioxide gas as a refrigerant is being studied.
On the other hand, when carbon dioxide is used as a refrigerant, there is a problem that the operating pressure becomes very high. In a conventional glass container (withstand pressure of 3 MPa), a high-pressure refrigerant like carbon dioxide (7.6 MPa: measurement) (Temperature 31 ° C.)
Further, a liquid viscosity measuring device using a capillary viscometer in a glass closed container has been studied (for example, Patent Document 1), but there is no disclosure regarding the use of a high-pressure refrigerant such as carbon dioxide.

特開平10−142139号公報Japanese Patent Laid-Open No. 10-142139

本発明は、このような状況下で、炭酸ガスのような高圧冷媒と潤滑油とくに冷凍機油との混合液体の粘度を毛細管粘度計で直接測定するのに最適な液体の粘度測定装置および測定方法を提供することを目的とするものである。   Under such circumstances, the present invention is a liquid viscosity measuring apparatus and measuring method that are most suitable for directly measuring the viscosity of a mixed liquid of a high-pressure refrigerant such as carbon dioxide gas and a lubricating oil, particularly a refrigerating machine oil, with a capillary viscometer. Is intended to provide.

本発明者らは、前記の好ましい粘度測定装置を開発すべく鋭意研究を重ねた結果、液体を密閉状態で収納する容器として、単結晶サファイア管を用いることによってその目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1) 粘度の測定対象となる液体を密閉状態で収納する単結晶サファイア管からなる容器と、この容器の内部に移動自在に配置された毛細管粘度計とを備えた液体の粘度測定装置であって、前記毛細管粘度計が磁性体を含んで構成され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられていることを特徴とする液体の粘度測定装置、
(2) 前記液体が、冷媒と潤滑油の混合液体である上記(1)の液体の粘度測定装置、
(3) 前記冷媒が炭酸ガスである上記(2)の液体の粘度測定装置、
(4) 前記容器が細長い密閉耐圧容器とされ、前記毛細管粘度計が前記容器の長手方向に沿って移動自在とされ、前記磁気発生手段が、内部に前記容器を挿通可能なリング状の永久磁石とされている上記(1)〜(3)の液体の粘度測定装置、
(5) 前記毛細管粘度計の内部の液体の液面位置を検出する近接センサが前記容器の外部に設けられている上記(1)〜(4)の液体の粘度測定装置、
(6) 前記容器が透明材料で形成されたものとされ、前記毛細管粘度計の少なくとも一部分が、その内部を視認可能とする透明材料で形成されている上記(1)〜(5)の液体の粘度測定装置、
(7) 前記容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つが前記容器に設けられている上記(1)〜(6)の液体の粘度測定装置、及び
(8) 粘度の測定対象となる液体を密閉状態で収納する容器と、この容器の内部に、磁性体を含んで構成された毛細管粘度計が移動自在に配置され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられている液体の粘度測定装置を用いて、前記液体の粘度を測定するための液体の粘度測定方法であって、前記磁気発生手段を操作することにより、前記容器に収納した測定対象の液体中に浸漬した前記毛細管粘度計を当該液体の上方へ移動した後、前記毛細管粘度計の内部の前記液体の液面が所定の二位置を通過するのに要する通過時間を計測することを特徴とする液体の粘度測定方法、
を提供するものである。
As a result of intensive studies to develop the preferred viscosity measuring device, the present inventors have found that the object can be achieved by using a single crystal sapphire tube as a container for containing a liquid in a sealed state. It was. The present invention has been completed based on such findings.
That is, the present invention
(1) A liquid viscosity measuring apparatus comprising a container made of a single crystal sapphire tube for containing a liquid whose viscosity is to be measured in a sealed state, and a capillary viscometer movably disposed inside the container. The capillary viscometer is configured to include a magnetic material, and magnetism generating means for moving the magnetic material of the capillary viscometer from the outside of the container in a non-contact manner is provided. Viscosity measuring device,
(2) The liquid viscosity measuring apparatus according to (1), wherein the liquid is a mixed liquid of a refrigerant and a lubricating oil.
(3) The liquid viscosity measuring apparatus according to (2), wherein the refrigerant is carbon dioxide gas,
(4) The container is an elongated sealed pressure-resistant container, the capillary viscometer is movable along the longitudinal direction of the container, and the magnetism generating means is a ring-shaped permanent magnet into which the container can be inserted. The liquid viscosity measuring device of (1) to (3) above,
(5) The liquid viscosity measuring device according to any one of (1) to (4), wherein a proximity sensor for detecting a liquid level position of the liquid inside the capillary viscometer is provided outside the container.
(6) The liquid of the above (1) to (5), wherein the container is formed of a transparent material, and at least a part of the capillary viscometer is formed of a transparent material that allows the inside to be visually recognized. Viscosity measuring device,
(7) In the above (1) to (6), at least one of a pressure sensor, a temperature sensor, a refractive index sensor, a density sensor, and a concentration sensor, whose liquid is the liquid inside the container, is provided in the container. A liquid viscosity measuring device, and (8) a container for containing a liquid whose viscosity is to be measured in a hermetically sealed state, and a capillary viscometer configured to contain a magnetic material is movably disposed inside the container, And the viscosity measurement of the liquid for measuring the viscosity of the liquid using a liquid viscosity measuring device provided with magnetism generating means for moving the magnetic body of the capillary viscometer from the outside of the container in a non-contact manner In the method, by operating the magnetism generating means, the capillary viscometer immersed in the liquid to be measured stored in the container is moved above the liquid, and then the inside of the capillary viscometer Viscosity measurement method of the liquid, characterized in that the liquid level of the liquid to measure the transit time required to pass through the predetermined two positions,
Is to provide.

本発明によれば、炭酸ガスのような高圧冷媒と潤滑油、特に冷凍機油との混合液体の動粘度について直接測定を簡単な操作で、かつ安全に行うことができる液体の粘度測定装置および測定方法を提供することができる。   According to the present invention, a liquid viscosity measuring apparatus and measurement capable of directly measuring the kinematic viscosity of a mixed liquid of a high-pressure refrigerant such as carbon dioxide and lubricating oil, particularly refrigeration oil, with a simple operation and safely. A method can be provided.

先ず、本発明の液体の粘度測定装置は、粘度の測定対象となる液体を密閉状態で収納する容器は単結晶サファイア管からなることを要する。
本発明に用いられる単結晶サファイアは、従来の石英ガラスに比べ化学的安定性、機械的特性、透過波長領域に優れ、硬度が高いため傷つきにくいなどの特徴を有している。なかでも使用圧力範囲がガラス管の0〜3MPaに対して、0〜30MPaと広く、高圧領域まで使用可能である。単結晶サファイア管の好ましい使用圧力範囲は3〜25MPa、より好ましくは5〜20MPaである。
単結晶サファイア管は、チョクラルスキー(CZ)法、ベルヌーイ法等の通常公的に用いられる方法を用いて製造することができるが、特開昭54−41281記載の方法によっても製造が可能である。
また、前記液体は潤滑油と冷媒との混合液体であることが好ましく、さらに該冷媒が、毒性、可燃性がなく安全性および環境問題には全く問題の無い炭酸ガスであることが好ましい。
上述のように、高圧領域まで使用可能な単結晶サファイア管を液体を密閉状態で収納する容器として用いることにより炭酸ガスを冷媒として用いることが可能となり、潤滑油との混合液体の動粘度について直接測定を簡単な操作でかつ安全に行うことができる。
First, in the liquid viscosity measuring apparatus of the present invention, the container for storing the liquid to be measured for viscosity in a sealed state is required to be composed of a single crystal sapphire tube.
The single crystal sapphire used in the present invention has characteristics such as excellent chemical stability, mechanical properties, and transmission wavelength region as compared with conventional quartz glass, and is hard to be damaged because of its high hardness. In particular, the working pressure range is as wide as 0 to 30 MPa with respect to 0 to 3 MPa of the glass tube, and it can be used up to a high pressure region. The preferable working pressure range of the single crystal sapphire tube is 3 to 25 MPa, more preferably 5 to 20 MPa.
The single crystal sapphire tube can be manufactured by a method that is usually used publicly such as the Czochralski (CZ) method or Bernoulli method, but can also be manufactured by the method described in JP-A-54-41281. is there.
The liquid is preferably a mixed liquid of a lubricating oil and a refrigerant, and the refrigerant is preferably carbon dioxide gas that is not toxic or flammable and has no problem in terms of safety and environmental problems.
As described above, by using a single crystal sapphire tube that can be used up to a high pressure region as a container for storing liquid in a sealed state, carbon dioxide gas can be used as a refrigerant, and the kinematic viscosity of the liquid mixture with lubricating oil is directly Measurement can be performed easily and safely.

さらに、本発明の液体の粘度測定装置は、サファイア管からなる容器の内部に移動自在に配置された毛細管粘度計とを備えた液体の粘度測定装置であって、前記毛細管粘度計が磁性体を含んで構成され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられていることが必要である。
また、前記容器が細長い密閉耐圧容器とされ、前記毛細管粘度計が前記容器の長手方向に沿って移動自在とされ、前記磁気発生手段が、内部に前記容器を挿通可能なリング状の永久磁石とされていることが好ましい。
また、前記毛細管粘度計の内部の液体の液面位置を検出する近接センサが前記容器の外部に設けられていることが望ましい。
さらに、前記容器が透明材料で形成されたものとされ、前記毛細管粘度計の少なくとも一部分が、その内部を視認可能とする透明材料で形成されていることが好ましい。
さらにまた、前記容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つが前記容器に設けられていることが望ましい。
Furthermore, the liquid viscosity measuring apparatus of the present invention is a liquid viscosity measuring apparatus provided with a capillary viscometer movably disposed inside a container made of a sapphire tube, wherein the capillary viscometer includes a magnetic substance. In addition, it is necessary that a magnetism generating means for moving the magnetic body of the capillary viscometer from the outside of the container in a non-contact manner is provided.
Further, the container is an elongated hermetic pressure-resistant container, the capillary viscometer is movable along the longitudinal direction of the container, and the magnetism generating means includes a ring-shaped permanent magnet into which the container can be inserted. It is preferable that
Moreover, it is desirable that a proximity sensor for detecting a liquid level position of the liquid inside the capillary viscometer is provided outside the container.
Furthermore, it is preferable that the container is formed of a transparent material, and at least a part of the capillary viscometer is formed of a transparent material that allows the inside to be visually recognized.
Furthermore, it is desirable that at least one of a pressure sensor, a temperature sensor, a refractive index sensor, a density sensor, and a concentration sensor, which measure the liquid inside the container, is provided in the container.

また、本発明の液体の粘度測定方法は、前記の液体の粘度測定装置を用いる粘度測定方法であって、前記磁気発生手段を操作することにより、前記容器に収納した測定対象の液体中に浸漬した前記毛細管粘度計を当該液体の上方へ移動した後、前記毛細管粘度計の内部の前記液体の液面が所定の二位置を通過するのに要する通過時間を計測することを要する。   The liquid viscosity measuring method of the present invention is a viscosity measuring method using the liquid viscosity measuring device, and is immersed in the liquid to be measured stored in the container by operating the magnetism generating means. After moving the capillary viscometer above the liquid, it is necessary to measure the passage time required for the liquid level of the liquid inside the capillary viscometer to pass through two predetermined positions.

このような本発明では、サファイア管よりなる耐圧の容器の内部に入れた毛細管粘度計が測定対象となる液体に浸からない空間が残るように、容器の内部に所定量の潤滑油を入れるとともに、当該容器内に毛細管粘度計および所定量の高圧冷媒の炭酸ガスを入れ、この状態で容器を密閉すれば、高圧の雰囲気ガスの下に測定対象の潤滑油と冷媒の混合液体がおかれることとなる。ここで、密閉された容器の内部に入れた毛細管粘度計の磁性体が磁気発生手段の磁力を受け、磁気発生手段を容器の外部で操作することにより、毛細管粘度計を非接触で移動することができるようになっている。
このため、液体の液面下に完全に浸かる位置に毛細管粘度計を移動し、毛細管粘度計を測定対象の液体で満たした後、液体の液面から上方へ完全に脱した位置に毛細管粘度計を移動し、毛細管粘度計から前述の液体を滴下させれば、毛細管粘度計内の液体の液面が所定の二位置を通過するのに要する通過こととなり、これらの二位置間を通過する時間を計測することにより、動粘度の直接測定が行えるようになる。従って、高圧ガスの雰囲気下で混合液体の動粘度について直接測定が簡単な操作で行えるようになり、これにより前記目的が達成される。
In the present invention, a predetermined amount of lubricating oil is put inside the container so that the capillary viscometer placed in the pressure resistant container made of the sapphire tube leaves a space that is not immersed in the liquid to be measured. If a capillary viscometer and a predetermined amount of high-pressure refrigerant carbon dioxide are placed in the container, and the container is sealed in this state, a mixed liquid of the lubricant to be measured and the refrigerant is placed under the high-pressure atmosphere gas. It becomes. Here, the capillary viscometer is moved in a non-contact manner by operating the magnetism generating means outside the container by receiving the magnetic force of the magnetism generating means when the magnetic material of the capillary viscometer placed inside the sealed container is received. Can be done.
Therefore, after moving the capillary viscometer to a position where it is completely immersed under the liquid level, after filling the capillary viscometer with the liquid to be measured, the capillary viscometer is completely removed upward from the liquid level. If the above-mentioned liquid is dropped from the capillary viscometer, the liquid level of the liquid in the capillary viscometer is required to pass through two predetermined positions, and the time required to pass between these two positions. By measuring, the kinematic viscosity can be directly measured. Therefore, it becomes possible to directly measure the kinematic viscosity of the mixed liquid in a high-pressure gas atmosphere with a simple operation, thereby achieving the object.

そして、液体を入れる容器を細長い密閉耐圧容器とし、容器の長手方向に沿って毛細管粘度計を移動自在とし、かつ、磁気発生手段としてリング状の永久磁石を採用し、このリング状の永久磁石の内部に前述の容器を挿通させれば、磁気発生手段と毛細管粘度計との距離が短縮されるとともに、磁気発生手段の磁力線が毛細管粘度計の近傍に集中するようになり、毛細管粘度計の磁性体に有効に作用する磁気発生手段の磁力が増大され、容器外部の磁気発生手段で容器内部の毛細管粘度計を確実に移動できるようになる。   Then, the container into which the liquid is placed is an elongated hermetic pressure-resistant container, the capillary viscometer is movable along the longitudinal direction of the container, and a ring-shaped permanent magnet is adopted as the magnetism generating means. If the container is inserted inside, the distance between the magnetism generating means and the capillary viscometer is shortened, and the magnetic lines of the magnetism generating means are concentrated in the vicinity of the capillary viscometer. The magnetic force of the magnetic generating means that effectively acts on the body is increased, and the capillary viscometer inside the container can be reliably moved by the magnetic generating means outside the container.

また、毛細管粘度計の内部の液体の液面位置を検出する近接センサを容器の外部に設ければ、毛細管粘度計内の液体の液面が所定の二位置を通過するのに要する通過時間を自動計測することが可能となり、これにより、液体の動粘度測定の自動化が可能となる。さらに、容器を透明材料で形成されたものとし、毛細管粘度計の少なくとも一部分を、その内部が視認可能となる透明材料で形成し、毛細管粘度計内の液体の液面が、所定位置から所定距離低下するのを目視で観察できるようにすれば、さらに簡単な構造で動粘度の直接測定が可能となる。
また、容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つを容器に設ければ、圧力、温度、屈折率、密度および濃度の測定値が動粘度の測定と同時に得られるようになり、得られた動粘度の測定値についての補正等が速やかに行える。
In addition, if a proximity sensor for detecting the liquid level position of the liquid inside the capillary viscometer is provided outside the container, the passage time required for the liquid level of the liquid in the capillary viscometer to pass through two predetermined positions can be reduced. It is possible to perform automatic measurement, which makes it possible to automate the measurement of the kinematic viscosity of the liquid. Further, the container is formed of a transparent material, and at least a part of the capillary viscometer is formed of a transparent material that allows the inside to be visually recognized, and the liquid level in the capillary viscometer is a predetermined distance from a predetermined position. If the decrease can be observed visually, the kinematic viscosity can be directly measured with a simpler structure.
If the container is provided with at least one of a pressure sensor, a temperature sensor, a refractive index sensor, a density sensor and a concentration sensor for measuring the liquid inside the container, the pressure, temperature, refractive index, density and concentration can be measured. The measured value can be obtained simultaneously with the measurement of the kinematic viscosity, and the obtained kinematic viscosity can be corrected quickly.

次に、図面を参照して本発明の一実施態様を詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
図1には、本実施形態に係る粘度測定装置1が示されている。この粘度測定装置1は、粘度の測定対象となる液体2を密閉状態で収納するサファイア管からなる容器10と、この容器10の内部に配置された毛細管粘度計20と、容器10を収納する恒温槽3とを備えたものである。なお、測定対象となる液体2は、特定しないが、動粘度測定の機会が多い潤滑油と冷媒との混合液体を想定するのが好ましい。恒温槽3は、水又はアルコール等の液体からなる冷媒又は熱媒体4に満たされたものである。
この恒温槽3には、熱媒体4を常に所定の温度に保つために、温度調節手段5が設けられている。温度調節手段5は、図には示されていないが、加熱装置および冷却装置と、冷媒又は熱媒体4の温度を検出する温度センサと、この温度センサの検出した温度に基づいて加熱装置および冷却装置をコントロールするコントローラとを備えたものとなっている。
Next, an embodiment of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these examples.
FIG. 1 shows a viscosity measuring apparatus 1 according to this embodiment. The viscosity measuring apparatus 1 includes a container 10 made of a sapphire tube that stores a liquid 2 to be measured for viscosity in a sealed state, a capillary viscometer 20 disposed inside the container 10, and a constant temperature that stores the container 10. A tank 3 is provided. In addition, although the liquid 2 used as a measuring object is not specified, it is preferable to assume the liquid mixture of lubricating oil and a refrigerant | coolant with many opportunities of kinematic viscosity measurement. The thermostatic chamber 3 is filled with a refrigerant or a heat medium 4 made of a liquid such as water or alcohol.
The thermostat 3 is provided with temperature adjusting means 5 in order to keep the heat medium 4 at a predetermined temperature. Although not shown in the figure, the temperature adjusting means 5 includes a heating device and a cooling device, a temperature sensor for detecting the temperature of the refrigerant or the heat medium 4, and a heating device and a cooling device based on the temperature detected by the temperature sensor. And a controller for controlling the apparatus.

容器10は、細長い管状に形成されたガラス製等の透明なサファイア管よりなる密閉耐圧容器である。容器10の図中下端は、閉じられている一方、図中上端には、蓋11で密閉可能な開口が設けられている。容器10の蓋11を介して炭酸ガスのような高圧冷媒を容器10内に導入する手段として、耐圧仕様のT字型ジョイント24、ニードル弁25、安全弁26及び耐圧ホース27を設けておくことが好ましい。
この開口から測定対象となる液体2が容器10の内部に入れられるようになっている。また、蓋11には、ガス6を含む冷媒を容器10の内部に導入するための導入管12が挿通されている。この導入管12の図中上方の端部には、容器10の内部に入れたガス6が外部に漏れないようにする、チェック弁等の逆止装置13が設けられている。なお、ガス6は、気化しやすい冷媒の蒸気等が想定される。
例えば、水素、アンモニア、プロパン、フロンおよび炭酸ガス等が用いられる。
容器10の周囲には、リング状の永久磁石14と、端面を互いに対向させて配置された二対の光ファイバ15とが配置されている。永久磁石14は、毛細管粘度計20を容器10の外部から非接触で移動させるための磁気発生手段である。
リング状の永久磁石14の内部には、容器10が挿通されている。この状態で永久磁石14は、容器10の図中下端近傍の位置、および、容器10の中間部分の所定位置の二位置の間を、容器10の側面に沿って移動可能となっている。永久磁石14の移動は、当該磁石14に取付けられたアーム14A を介して、電動機等の駆動手段により自動的に行われるようになっている。
The container 10 is a hermetic pressure resistant container made of a transparent sapphire tube made of glass or the like formed in an elongated tubular shape. While the lower end of the container 10 in the figure is closed, an opening that can be sealed with a lid 11 is provided at the upper end in the figure. As means for introducing a high-pressure refrigerant such as carbon dioxide gas into the container 10 through the lid 11 of the container 10, a pressure-resistant T-shaped joint 24, a needle valve 25, a safety valve 26 and a pressure-resistant hose 27 may be provided. preferable.
The liquid 2 to be measured is put into the container 10 from this opening. Further, an introduction pipe 12 for introducing a refrigerant containing the gas 6 into the container 10 is inserted into the lid 11. A check device 13 such as a check valve is provided at the upper end of the introduction pipe 12 in the drawing so that the gas 6 contained in the container 10 does not leak to the outside. The gas 6 is assumed to be a vapor of a refrigerant that is easily vaporized.
For example, hydrogen, ammonia, propane, chlorofluorocarbon and carbon dioxide gas are used.
Around the container 10, a ring-shaped permanent magnet 14 and two pairs of optical fibers 15 arranged with their end faces facing each other are arranged. The permanent magnet 14 is a magnetism generating means for moving the capillary viscometer 20 from the outside of the container 10 in a non-contact manner.
The container 10 is inserted into the ring-shaped permanent magnet 14. In this state, the permanent magnet 14 can be moved along the side surface of the container 10 between a position near the lower end of the container 10 in the drawing and a predetermined position of the intermediate portion of the container 10. The movement of the permanent magnet 14 is automatically performed by a driving means such as an electric motor via an arm 14A attached to the magnet 14.

光ファイバ15は、光ファイバ15A, 15Bおよび光ファイバ15C, 15D のそれぞれが、毛細管粘度計20の内部に収納された液体2の液面位置を検出する近接センサの一部を形成するものとなっている。すなわち、光ファイバ15A は、図示しない粘度計算機に設けられた所定の光源からの光を光ファイバ15B の端面に向かって投光するものである。一方、光ファイバ15B は、光ファイバ15A からの光を受光して前述の粘度計算機内の受光素子まで導くものとなっている。液体2の液面が光ファイバ15A、 15Bの間の位置まで降下すると、当該液面が光ファイバ15A からの光を遮り、光ファイバ15B が光を受光できなくなる。これにより、容器10の所定位置で、毛細管粘度計20内の液体2の液面位置が検出されるようになっている。
同様に、光ファイバ15C は、前述の光源からの光を光ファイバ15D の端面に向かって投光するものである一方、光ファイバ15D は、光ファイバ15C からの光を受光するためのものである。液体2の液面が光ファイバ15C、 15Dの間にあって、光ファイバ15C からの光を遮ると、光ファイバ15D が光を受光できなくなり、これにより、光ファイバ15A,15Bとは別の位置で、毛細管粘度計20内の液体2の液面位置が検出されるようになっている。なお、容器10には、図には示されていないが、当該容器10の内部の液体2を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサが設けられている。
In the optical fiber 15, each of the optical fibers 15 </ b> A and 15 </ b> B and the optical fibers 15 </ b> C and 15 </ b> D forms a part of a proximity sensor that detects the liquid level position of the liquid 2 stored in the capillary viscometer 20. ing. That is, the optical fiber 15A projects light from a predetermined light source provided in a viscosity calculator (not shown) toward the end face of the optical fiber 15B. On the other hand, the optical fiber 15B receives light from the optical fiber 15A and guides it to the light receiving element in the viscosity calculator. When the liquid level of the liquid 2 drops to a position between the optical fibers 15A and 15B, the liquid level blocks the light from the optical fiber 15A and the optical fiber 15B cannot receive the light. Thereby, the liquid level position of the liquid 2 in the capillary viscometer 20 is detected at a predetermined position of the container 10.
Similarly, the optical fiber 15C projects light from the above-described light source toward the end face of the optical fiber 15D, while the optical fiber 15D receives light from the optical fiber 15C. . When the liquid level of the liquid 2 is between the optical fibers 15C and 15D and blocks the light from the optical fiber 15C, the optical fiber 15D cannot receive the light, and thereby, at a position different from the optical fibers 15A and 15B, The liquid level position of the liquid 2 in the capillary viscometer 20 is detected. Although not shown in the figure, the container 10 is provided with a pressure sensor, a temperature sensor, a refractive index sensor, a density sensor, and a concentration sensor that measure the liquid 2 inside the container 10. .

毛細管粘度計20は、両端が開口されるとともに、ガラス等で形成された透明な筒状のものであり、その長手方向が容器10の長手方向に沿って配置されるとともに、容器10の長手方向に沿って移動自在とされている。毛細管粘度計20の図中上端近傍には、図2にも示されるように、側壁を膨らませた液溜め部21が設けられている。液溜め部21の図中上方および下方には、液体2の流量計測等に利用される標線21A、21Bがそれぞれ設けられている。なお、標線21A、21Bは、光ファイバ15A,15Cからの光を遮らないものとなっている。
毛細管粘度計20の標線21B の図中下方の部分には、内径が著しく小さくなった細管部22が設けられている。この細管部22の内部を所定量の液体2が通過するのに要する時間(換言すれば、液体2の流量)を計測することにより、液体2の動粘度が測定されるようになっている。細管部22の側壁の外周面には、磁性体からなる帯状外環部23が固定されている。永久磁石14を容器10の長手方向に沿って移動することにより、帯状外環部23が磁力により吸引される。
これにより、容器10の外部における操作により非接触で、毛細管粘度計20が永久磁石14に追従して移動するようになっている。
The capillary viscometer 20 is open at both ends, and is a transparent cylinder formed of glass or the like. The capillary viscometer 20 is arranged along the longitudinal direction of the container 10 and the longitudinal direction of the container 10. It is possible to move along. In the vicinity of the upper end of the capillary viscometer 20 in the drawing, as shown in FIG. 2, a liquid reservoir 21 having a side wall inflated is provided. Marks 21A and 21B used for measuring the flow rate of the liquid 2 are provided above and below the liquid reservoir 21 in the figure. The marked lines 21A and 21B do not block the light from the optical fibers 15A and 15C.
A capillary portion 22 having a remarkably small inner diameter is provided at a lower portion in the figure of the marked line 21B of the capillary viscometer 20. The kinematic viscosity of the liquid 2 is measured by measuring the time required for a predetermined amount of the liquid 2 to pass through the inside of the narrow tube portion 22 (in other words, the flow rate of the liquid 2). A belt-like outer ring portion 23 made of a magnetic material is fixed to the outer peripheral surface of the side wall of the thin tube portion 22. By moving the permanent magnet 14 along the longitudinal direction of the container 10, the belt-shaped outer ring portion 23 is attracted by magnetic force.
Thus, the capillary viscometer 20 moves following the permanent magnet 14 in a non-contact manner by an operation outside the container 10.

毛細管粘度計20の移動範囲は、液体2の液面下に完全に浸かってしまう位置Aと、その標線21A、21Bの各々が光ファイバ15A、15Bおよび光ファイバ15C、15Dにそれぞれ挟まれる位置Bとの間となっている。ここで、毛細管粘度計20を位置Aから位置Bまで移動すると、毛細管粘度計20の内部に液体2が満たされるようになっている。また、液体2で満たされた毛細管粘度計20を位置Bに保持しておくと、液体2が毛細管粘度計20から滴下し、毛細管粘度計20が空になるまで、液体2の液面が降下していく。そして、液体2の液面が標線21B を通過したことが光ファイバ15C、15Dにより検知され、前述の粘度計算機に内蔵されたカウンタ(図示略)が起動されるとともに、液体2の液面が標線21A を通過したことが光ファイバ15A、15Bにより検知され、前述のカウンタが停止するようになっている。これにより、前述の粘度計算機が、細管部22の内部を所定量の液体2が通過するのに要する時間を計測するとともに、動粘度を自動的に測定するようになっている。   The moving range of the capillary viscometer 20 is a position A where the liquid viscometer 2 is completely immersed, and positions where the marked lines 21A and 21B are sandwiched between the optical fibers 15A and 15B and the optical fibers 15C and 15D, respectively. It is between B. Here, when the capillary viscometer 20 is moved from position A to position B, the liquid 2 is filled in the capillary viscometer 20. Further, if the capillary viscometer 20 filled with the liquid 2 is held at the position B, the liquid 2 drops from the capillary viscometer 20 and the liquid level of the liquid 2 is lowered until the capillary viscometer 20 becomes empty. I will do it. Then, it is detected by the optical fibers 15C and 15D that the liquid level of the liquid 2 has passed the marked line 21B, a counter (not shown) built in the aforementioned viscosity calculator is activated, and the liquid level of the liquid 2 is The passage of the marked line 21A is detected by the optical fibers 15A and 15B, and the aforementioned counter is stopped. As a result, the above-described viscosity calculator measures the time required for a predetermined amount of the liquid 2 to pass through the inside of the narrow tube portion 22 and automatically measures the kinematic viscosity.

次に、本実施形態における測定手順について説明する。まず、所定量の潤滑油の液体2および毛細管粘度計20を耐圧20MPaのサファイア管からなる容器10の中に入れた後、蓋11を閉じ、次に、冷媒(液化炭酸ガス)を導入する場合は、耐圧30MPa仕様のT字型ジョイント24に安全弁26(作動圧力14MPa)及びニードル弁25を装着した後、容器10を冷媒4の入った恒温槽3に浸す。次にニードル弁25と冷媒採取ライン(図示せず)を耐圧ホース27を介して接続する。尚、冷媒4の温度は試料に用いる液化炭酸ガスの沸点(−59℃)以下の温度に保持する。
次に、真空ポンプ(図示せず)を作動し容器10及び冷媒採取ライン内を約13.3Paまで脱気する。真空ポンプを止め、冷媒容器の元弁を開き容器10に冷媒を導入する。
このようにして冷媒を容器10内に採取することによって、潤滑油と冷媒の混合比率を任意の値にすることができる。
尚、上記操作に当っては、容器10内の温度及び圧力については特に注視する必要がある。ここで、安全弁26の作動圧力はサファイア管の使用圧力20MPaの3分の2の14MPa程度のものを使用することが好ましい。
所定量の冷媒が導入されたらニードル弁25を閉じ、冷媒容器の弁を閉じ、耐圧ホース27を切り離した後、予め温度調節手段5で内部の熱媒体4を所定の温度にするとともに、永久磁石14を位置Aに降下させておいた恒温槽3内の所定位置に、密閉した容器10を設置する。容器10全体が熱的に平衡状態になったら、永久磁石14を移動させる駆動手段を起動して、永久磁石14を移動させ、毛細管粘度計20を位置Bまで上昇させる。これにより、図3に示されるように、液体2が毛細管粘度計20から滴下し、液体2の液面が降下していく。そして、液体2の液面が標線21B および標線21A を通過したことを、光ファイバ15に検知させ、細管部22の内部を所定量の潤滑油と炭酸ガス冷媒との混合液体2が通過するのに要する時間を粘度計算機に自動計測させるとともに粘度を自動測定させ、測定を完了する。
Next, the measurement procedure in this embodiment will be described. First, when a predetermined amount of the lubricating oil liquid 2 and the capillary viscometer 20 are placed in a container 10 made of a sapphire tube having a pressure resistance of 20 MPa, the lid 11 is closed, and then a refrigerant (liquefied carbon dioxide) is introduced. After attaching the safety valve 26 (operating pressure 14 MPa) and the needle valve 25 to the T-shaped joint 24 having a pressure resistance of 30 MPa, the container 10 is immersed in the thermostatic chamber 3 containing the refrigerant 4. Next, the needle valve 25 and the refrigerant sampling line (not shown) are connected via the pressure hose 27. The temperature of the refrigerant 4 is maintained at a temperature equal to or lower than the boiling point (−59 ° C.) of the liquefied carbon dioxide gas used for the sample.
Next, a vacuum pump (not shown) is operated to evacuate the container 10 and the refrigerant collection line to about 13.3 Pa. The vacuum pump is stopped, the original valve of the refrigerant container is opened, and the refrigerant is introduced into the container 10.
By collecting the refrigerant in the container 10 in this manner, the mixing ratio of the lubricating oil and the refrigerant can be set to an arbitrary value.
In the above operation, it is necessary to pay particular attention to the temperature and pressure in the container 10. Here, the operating pressure of the safety valve 26 is preferably about 14 MPa, which is two thirds of the working pressure 20 MPa of the sapphire tube.
When a predetermined amount of refrigerant is introduced, the needle valve 25 is closed, the valve of the refrigerant container is closed, the pressure-resistant hose 27 is disconnected, the internal heating medium 4 is brought to a predetermined temperature by the temperature adjusting means 5 in advance, and the permanent magnet The hermetically sealed container 10 is installed at a predetermined position in the thermostatic chamber 3 in which 14 is lowered to the position A. When the entire container 10 is in a thermal equilibrium state, the driving means for moving the permanent magnet 14 is activated to move the permanent magnet 14 and raise the capillary viscometer 20 to the position B. Thereby, as FIG. 3 shows, the liquid 2 dripped from the capillary viscometer 20 and the liquid level of the liquid 2 falls. Then, the optical fiber 15 detects that the liquid level of the liquid 2 has passed the marked lines 21B and 21A, and the mixed liquid 2 of a predetermined amount of lubricating oil and carbon dioxide refrigerant passes through the inside of the narrow tube portion 22. The time required to do this is automatically measured by the viscosity calculator and the viscosity is automatically measured to complete the measurement.

本発明の液体の粘度測定装置は、炭酸ガスのような高圧冷媒と潤滑油、特に冷凍機油との混合液体の動粘度について直接測定を簡単な操作で、かつ安全に行うことができる。   The liquid viscosity measuring apparatus of the present invention can directly measure the kinematic viscosity of a mixed liquid of a high-pressure refrigerant such as carbon dioxide and lubricating oil, particularly refrigeration oil, with a simple operation and safely.

本発明の実施態様の一例を示す断面図である。It is sectional drawing which shows an example of the embodiment of this invention. 本発明の実施態様の一例を示す実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of an embodiment showing an example of an embodiment of the present invention. 本発明の実施態様の測定における一手順を示す断面図である。It is sectional drawing which shows one procedure in the measurement of the embodiment of this invention.

符号の説明Explanation of symbols

1.粘度測定装置 10.容器
2.測定対象となる液体 14.磁気発生手段
3.恒温槽 15.近接センサの一部である光ファイバ
4.冷媒又は熱媒体 20.毛細管粘度計
5.温度調節手段 23.磁性体からなる帯状外環部

1. Viscosity measuring device 10. Container 2. Liquid to be measured 14. 2. Magnetic generation means Thermostatic bath 15. 3. Optical fiber that is part of proximity sensor Refrigerant or heat medium 20. 4. Capillary viscometer Temperature control means 23. Belt-shaped outer ring made of magnetic material

Claims (8)

粘度の測定対象となる液体を密閉状態で収納する単結晶サファイア管からなる容器と、この容器の内部に移動自在に配置された毛細管粘度計とを備えた液体の粘度測定装置であって、前記毛細管粘度計が磁性体を含んで構成され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられていることを特徴とする液体の粘度測定装置。   A liquid viscosity measuring apparatus comprising a container made of a single crystal sapphire tube for containing a liquid to be measured for viscosity in a sealed state, and a capillary viscometer movably disposed inside the container, A device for measuring the viscosity of a liquid, characterized in that the capillary viscometer includes a magnetic material, and magnetism generating means for moving the magnetic material of the capillary viscometer from the outside of the container in a non-contact manner is provided. . 前記液体が、冷媒と潤滑油の混合液体である請求項1記載の液体の粘度測定装置。   The liquid viscosity measuring apparatus according to claim 1, wherein the liquid is a mixed liquid of refrigerant and lubricating oil. 前記冷媒が炭酸ガスである請求項2記載の液体の粘度測定装置。   The liquid viscosity measuring apparatus according to claim 2, wherein the refrigerant is carbon dioxide. 前記容器が細長い密閉耐圧容器とされ、前記毛細管粘度計が前記容器の長手方向に沿って移動自在とされ、前記磁気発生手段が、内部に前記容器を挿通可能なリング状の永久磁石とされている請求項1〜3のいずれかに記載の液体の粘度測定装置。   The container is an elongated hermetic pressure-resistant container, the capillary viscometer is movable along the longitudinal direction of the container, and the magnetism generating means is a ring-shaped permanent magnet through which the container can be inserted. The liquid viscosity measuring apparatus according to claim 1. 前記毛細管粘度計の内部の液体の液面位置を検出する近接センサが前記容器の外部に設けられている請求項1〜4のいずれかに記載の液体の粘度測定装置。   The liquid viscosity measuring apparatus according to any one of claims 1 to 4, wherein a proximity sensor for detecting a liquid surface position of the liquid inside the capillary viscometer is provided outside the container. 前記容器が透明材料で形成されたものとされ、前記毛細管粘度計の少なくとも一部分が、その内部を視認可能とする透明材料で形成されている請求項1〜5のいずれかに記載の液体の粘度測定装置。   The viscosity of the liquid according to any one of claims 1 to 5, wherein the container is formed of a transparent material, and at least a part of the capillary viscometer is formed of a transparent material that makes the inside visible. measuring device. 前記容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つが前記容器に設けられている請求項1〜6のいずれかに記載の液体の粘度測定装置。   The liquid according to any one of claims 1 to 6, wherein at least one of a pressure sensor, a temperature sensor, a refractive index sensor, a density sensor, and a concentration sensor whose measurement target is the liquid inside the container is provided in the container. Viscosity measuring device. 粘度の測定対象となる液体を密閉状態で収納する容器と、この容器の内部に、磁性体を含んで構成された毛細管粘度計が移動自在に配置され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられている液体の粘度測定装置を用いて、前記液体の粘度を測定するための液体の粘度測定方法であって、前記磁気発生手段を操作することにより、前記容器に収納した測定対象の液体中に浸漬した前記毛細管粘度計を当該液体の上方へ移動した後、前記毛細管粘度計の内部の前記液体の液面が所定の二位置を通過するのに要する通過時間を計測することを特徴とする液体の粘度測定方法。

A container for containing a liquid whose viscosity is to be measured in a sealed state, and a capillary viscometer configured to include a magnetic substance is movably disposed in the container, and the magnetic substance of the capillary viscometer is disposed in the container. A liquid viscosity measuring method for measuring the viscosity of the liquid using a liquid viscosity measuring device provided with a magnetism generating means for moving in a non-contact manner from the outside of the container, wherein the magnetism generating means By operating, after moving the capillary viscometer immersed in the liquid to be measured stored in the container above the liquid, the liquid level of the liquid inside the capillary viscometer has two predetermined positions. A method for measuring a viscosity of a liquid, comprising measuring a transit time required for passing.

JP2005299993A 2005-10-14 2005-10-14 Liquid viscosity measuring device and measuring method Active JP5074683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299993A JP5074683B2 (en) 2005-10-14 2005-10-14 Liquid viscosity measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299993A JP5074683B2 (en) 2005-10-14 2005-10-14 Liquid viscosity measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2007108045A true JP2007108045A (en) 2007-04-26
JP5074683B2 JP5074683B2 (en) 2012-11-14

Family

ID=38034009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299993A Active JP5074683B2 (en) 2005-10-14 2005-10-14 Liquid viscosity measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP5074683B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203125A (en) * 2010-03-25 2011-10-13 Idemitsu Kosan Co Ltd Device for measuring electrical characteristics of sample liquid, and method of measuring electrical characteristics employing the same
JP2015038490A (en) * 2014-09-29 2015-02-26 出光興産株式会社 Dielectric constant measuring device of sample liquid and dielectric constant measuring method using the same
CN106979908A (en) * 2016-01-18 2017-07-25 S.P.C.M.股份公司 Device for measuring viscosity in an inert atmosphere
CN108776082A (en) * 2018-08-22 2018-11-09 天津大学 A kind of capillary device and method of automatic measurement refrigerant and lubricating oil viscosity
CN111208039A (en) * 2020-01-11 2020-05-29 长江大学 System for measuring viscosity of water-containing crude oil at high temperature and high pressure
WO2020166272A1 (en) 2019-02-14 2020-08-20 出光興産株式会社 Composition for refrigerating machines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142139A (en) * 1996-11-08 1998-05-29 Idemitsu Kosan Co Ltd Instrument and method for measurement of viscosity of liquid
JP3153825B2 (en) * 1992-01-10 2001-04-09 三菱電機株式会社 Display fluorescent lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153825B2 (en) * 1992-01-10 2001-04-09 三菱電機株式会社 Display fluorescent lamp
JPH10142139A (en) * 1996-11-08 1998-05-29 Idemitsu Kosan Co Ltd Instrument and method for measurement of viscosity of liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203125A (en) * 2010-03-25 2011-10-13 Idemitsu Kosan Co Ltd Device for measuring electrical characteristics of sample liquid, and method of measuring electrical characteristics employing the same
JP2015038490A (en) * 2014-09-29 2015-02-26 出光興産株式会社 Dielectric constant measuring device of sample liquid and dielectric constant measuring method using the same
CN106979908A (en) * 2016-01-18 2017-07-25 S.P.C.M.股份公司 Device for measuring viscosity in an inert atmosphere
CN108776082A (en) * 2018-08-22 2018-11-09 天津大学 A kind of capillary device and method of automatic measurement refrigerant and lubricating oil viscosity
CN108776082B (en) * 2018-08-22 2023-06-27 天津大学 Capillary tube device and method for automatically measuring viscosity of refrigerant and lubricating oil
WO2020166272A1 (en) 2019-02-14 2020-08-20 出光興産株式会社 Composition for refrigerating machines
CN111208039A (en) * 2020-01-11 2020-05-29 长江大学 System for measuring viscosity of water-containing crude oil at high temperature and high pressure

Also Published As

Publication number Publication date
JP5074683B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5074683B2 (en) Liquid viscosity measuring device and measuring method
US5351500A (en) Refrigerant leak detector system
CN105548137A (en) High-pressure cooling-heating table device for in-situ observation of aquo-complex microscopic reaction kinetics process and application method
CN106168564A (en) A kind of device and method measuring refrigerator oil and cold-producing medium blending agent
CN104316647B (en) For simulating the test unit of fouling
KR100947109B1 (en) Parts tester for an extremely low temperature
CN101101270A (en) Petroleum product condensation point metering device
MX2011003287A (en) Process for measuirng the dynamic viscosity in heavy crude oil from the oil well pressure to the atmospheric pressure, including the bubble poin pressure, based on an electromagnetic viscometer.
Chaudhary et al. Solubilities of nitrogen, isobutane and carbon dioxide in polyethylene
CN105474011A (en) Determining minimum miscibility pressure of an oil composition with a fluid
JP3711303B2 (en) Liquid viscosity measuring device and measuring method
CN105371541B (en) Refrigerant injection device and refrigerant method for implanting
KR100918193B1 (en) An apparatus for testing reffrigerant leakage
Tangri et al. Solubility, miscibility and compatibility studies of low GWP non-flammable refrigerants and lubricants for refrigeration and air conditioning applications
KR101478288B1 (en) Cryogenic probestation with re-condensing type of cryogen
JP5624782B2 (en) Volume resistivity measuring device for sample liquid and volume resistivity measuring method using the same
Feja et al. Experimental studies of thermodynamic properties of R744-oil-mixtures up to 140 C and 150 bar
BR102015011187B1 (en) PRESSURIZED DEVICE FOR SPONTANEOUS IMBEBITION TESTS
JP2007108046A (en) Two-layer separating temperature measuring device and measuring technique thereof
Nguyen et al. New Viscosity Data for CuO-Water Nanofluid–the Hysteresis Phenomenon Revisited
CN215296308U (en) Fluid compatibility measuring device
Cavestri et al. Measurement of Solubility, Viscosity, and Density of R410A Refrigerant/Lubricant Mixtures
Di Nicola et al. Solid–Liquid Equilibria for the CO 2+ R143a and N 2 O+ R143a Systems
JP5903142B2 (en) Apparatus for measuring electrical characteristics of sample liquid and method for measuring electrical characteristics using the same
Sofekun Rheometric properties of pure liquid elemental sulfur

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3