JP2007107671A - Thrust bearing device - Google Patents

Thrust bearing device Download PDF

Info

Publication number
JP2007107671A
JP2007107671A JP2005301050A JP2005301050A JP2007107671A JP 2007107671 A JP2007107671 A JP 2007107671A JP 2005301050 A JP2005301050 A JP 2005301050A JP 2005301050 A JP2005301050 A JP 2005301050A JP 2007107671 A JP2007107671 A JP 2007107671A
Authority
JP
Japan
Prior art keywords
positioning hole
claw
peripheral wall
race
thrust bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005301050A
Other languages
Japanese (ja)
Other versions
JP4552827B2 (en
Inventor
Takeshi Maruyama
武士 丸山
Akira Murata
彰 村田
Yutaka Okabe
豊 岡部
Hiroyuki Sakai
比呂之 坂井
Hisashi Tanaka
久士 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2005301050A priority Critical patent/JP4552827B2/en
Publication of JP2007107671A publication Critical patent/JP2007107671A/en
Application granted granted Critical
Publication of JP4552827B2 publication Critical patent/JP4552827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To keep stress of claw parts smaller than endurance limit without increasing plate thickness of a race in a thrust bearing device for positioning the race in its radial direction by respectively inserting the plurality of claw parts protruding at an outer circumference of the race into a plurality of positioning holes provided in a contact member. <P>SOLUTION: In a thrust bearing, a plurality of protruding parts protrude in the outer circumference of the race on which a rolling element rotates around a bearing axis, and a claw part is formed by bending an end of the protruding part in the bearing axis direction. In a contacting member with which the race contacts, a plurality of positioning holes are provided on a pitch circle centering on the bearing axis and each claw part is inserted and engaged in the respective positioning hole so that the race is positioned in the radial direction. In the positioning hole where the claw part contacts with a circumference wall of the positioning hole, the outer circumference edge part of the claw part contacts with the circumference wall of the positioning hole at a position deviated outward from its center. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動変速機等に用いられるスラスト軸受装置に係わり、詳しくは、転動体が転動するレースを確実に位置決めすることができるスラスト軸受装置に関する。   The present invention relates to a thrust bearing device used for an automatic transmission or the like, and more particularly to a thrust bearing device capable of reliably positioning a race on which rolling elements roll.

一般に、スラスト軸受は、第1および第2レース間にローラが配置され、各レースが相対回転する第1および第2当接部材に当接してスラスト荷重を受けるようになっている。例えば、第1当接部材に段部が形成されていると、第1レースは軸受軸線方向に屈曲した屈曲部が第1当接部材の段部と嵌合して半径方向に位置決めされる。ところが、例えば第2当接部材30に段部が形成できない場合、図8に示すように、第2レース31の外周から複数の突出部32が半径方向外方に突出され、各突出部32の先端が軸受軸線方向に屈曲されて爪部33が形成されている。第2当接部材30には相対回転中心と同心のピッチ円PC上に複数の位置決め穴34が穿設されている。各爪部33が各位置決め穴34に係入さることにより、第2レース31が第2当接部材30に対して半径方向に位置決めされる。そして、第1当接部材と第2当接部材30とが相対回転すると、第2レース31上をローラが摺動を伴って転動することにより引き摺り回転トルクTが第2レース31に作用する。このため、爪部33が位置決め穴34の周壁35に接触し、周壁35から爪部33に作用する反力Fが引き摺り回転トルクTと釣り合う。   In general, the thrust bearing is configured such that a roller is disposed between the first and second races, and a thrust load is received by contacting the first and second contact members in which the respective races rotate relative to each other. For example, when a step portion is formed on the first contact member, the first race is positioned in the radial direction by fitting a bent portion bent in the bearing axial direction with the step portion of the first contact member. However, for example, when a step portion cannot be formed on the second contact member 30, as shown in FIG. 8, a plurality of protrusions 32 protrude outward in the radial direction from the outer periphery of the second race 31, and The front end is bent in the bearing axial direction to form a claw portion 33. The second contact member 30 has a plurality of positioning holes 34 formed on a pitch circle PC concentric with the relative rotation center. Each claw 33 is engaged with each positioning hole 34, whereby the second race 31 is positioned in the radial direction with respect to the second contact member 30. When the first contact member and the second contact member 30 rotate relative to each other, the drag rotation torque T acts on the second race 31 as the roller rolls on the second race 31 with sliding. . For this reason, the claw portion 33 comes into contact with the peripheral wall 35 of the positioning hole 34, and the reaction force F acting on the claw portion 33 from the peripheral wall 35 is balanced with the drag rotation torque T.

従来装置では、周壁35から爪部33に作用する反力Fが引き摺り回転トルクTと釣り合う場合、図8に示すように、爪部33の内周縁部が位置決め穴34の周壁中央位置より内側に偏寄した位置で周壁35と接触するので、周壁35に作用する反力Fは接触点の法線方向と同様に外側を向き、この反力Fの半径方向成分により爪部33には外方への曲げモーメントが作用し、爪部33の基端部である屈曲部内周面に引張応力が作用する。応力条件が厳しい屈曲部内周面に作用する引張応力を疲労限界以下にするために第2レース31の肉厚を厚くし、爪部33の強度を高くすることが考えられるが、レースの板厚を増大すると周辺部品の変更が必要であり、周辺部品の設計の自由度が制限されるとともに、装置が大型化する不具合を生じる。   In the conventional apparatus, when the reaction force F acting on the claw portion 33 from the peripheral wall 35 is balanced with the drag rotation torque T, the inner peripheral edge portion of the claw portion 33 is located inside the peripheral wall center position of the positioning hole 34 as shown in FIG. Since the contact is made with the peripheral wall 35 at the biased position, the reaction force F acting on the peripheral wall 35 faces outward in the same direction as the normal direction of the contact point, and the radial component of the reaction force F causes the claw portion 33 to move outward. The bending moment acts on the inner peripheral surface of the bent portion, which is the base end portion of the claw portion 33. It is conceivable to increase the thickness of the second race 31 and increase the strength of the claw portion 33 in order to make the tensile stress acting on the inner peripheral surface of the bent portion with severe stress conditions less than the fatigue limit. If the increase is increased, it is necessary to change the peripheral parts, which limits the degree of freedom in designing the peripheral parts and causes a problem that the apparatus becomes larger.

本発明は、レースの外周に突設した複数の爪部を当接部材に設けた複数の位置決め穴に夫々係入してレースを半径方向に位置決めするスラスト軸受装置において、レースの板厚を厚くすることなく爪部の応力を疲労限界以下にすることである。   The present invention relates to a thrust bearing device for positioning a race in a radial direction by engaging a plurality of claw portions protruding from the outer periphery of the race into a plurality of positioning holes provided in an abutting member, thereby increasing the thickness of the race. It is to make the stress of the nail part below the fatigue limit without doing.

上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、転動体が軸受軸線回りに公転するレースの外周に複数の突出部が突設され、該突出部の先端が前記軸受軸線方向に屈曲されて爪部が形成され、前記レースが当接する当接部材に前記軸受軸線を中心とするピッチ円上に複数の位置決め穴が穿設され、該各位置決め穴に前記各爪部が係入されて前記レースを半径方向に位置決めするスラスト軸受装置にして、前記爪部が前記位置決め穴の周壁に接触するいずれの位置決め穴においても、前記爪部の外周縁部が前記位置決め穴の周壁中央位置より外側に偏寄した位置で前記位置決め穴の周壁に接触するように構成されていることである。   In order to solve the above-described problem, the structural feature of the invention described in claim 1 is that a plurality of projecting portions project from the outer periphery of the race in which the rolling element revolves around the bearing axis, and the tip of the projecting portion is A claw portion is formed by bending in the bearing axis direction, and a plurality of positioning holes are formed on a pitch circle centered on the bearing axis line in the contact member with which the race contacts, A thrust bearing device in which the claw portion is engaged to position the race in the radial direction, and the outer peripheral edge portion of the claw portion is positioned in any positioning hole where the claw portion contacts the peripheral wall of the positioning hole. It is comprised so that the peripheral wall of the said positioning hole may be contacted in the position which deviated outside from the peripheral wall center position of the hole.

請求項2に記載の発明の構成上の特徴は、請求項1において、前記爪部の外周縁部が前記位置決め穴の周壁中央位置より外側に偏寄した位置で前記位置決め穴の周壁に接触するとともに、前記爪部の内周縁部が前記位置決め穴の周壁から離脱するように設定される前記爪部の前記軸受軸線からの距離の最小値を前記爪部の前記軸受軸線からの距離とすることである。   The structural feature of the invention according to claim 2 is that, in claim 1, the outer peripheral edge portion of the claw portion contacts the peripheral wall of the positioning hole at a position offset outward from the peripheral wall center position of the positioning hole. In addition, the minimum value of the distance from the bearing axis of the claw that is set so that the inner peripheral edge of the claw is separated from the peripheral wall of the positioning hole is the distance from the bearing axis of the claw. It is.

請求項3に記載の発明の構成上の特徴は、請求項1または2において、前記当接部材が回転する場合、該当接部材のいずれの回転位置においても、前記爪部が前記位置決め穴の周壁に接触するいずれの位置決め穴において、前記爪部の外周縁部が前記位置決め穴の周壁中央位置より外側に偏寄した位置で前記位置決め穴の周壁に接触するように構成されていることである。   According to a third aspect of the present invention, in the first or second aspect, when the contact member rotates, the claw portion is a peripheral wall of the positioning hole at any rotational position of the corresponding contact member. In any of the positioning holes that come into contact with the positioning hole, the outer peripheral edge portion of the claw portion is configured to come into contact with the peripheral wall of the positioning hole at a position that is offset outward from the central position of the peripheral wall of the positioning hole.

請求項4に記載の発明の構成上の特徴は、請求項1乃至3のいずれか1項において、前記爪部が前記位置決め穴の周壁と接触する接触点での法線が回転方向接線に対して0〜20度内側に傾斜していることである。   According to a fourth aspect of the present invention, there is provided a structural feature according to any one of the first to third aspects, wherein a normal line at a contact point at which the claw portion contacts the peripheral wall of the positioning hole is a rotation direction tangent line. It is inclined to 0 to 20 degrees inside.

請求項5に記載の発明の構成上の特徴は、請求項1乃至4のいずれか1項において、前記スラスト軸受装置が、自動変速機の回転部材のスラスト荷重を支持するスラスト軸受装置であることである。   A structural feature of the invention according to claim 5 is that, in any one of claims 1 to 4, the thrust bearing device is a thrust bearing device that supports a thrust load of a rotating member of an automatic transmission. It is.

上記のように構成した請求項1に係る発明においては、レースは、爪部の外周縁部が位置決め穴の周壁中央位置より外側に偏寄した位置で位置決め穴の周壁に接触することにより半径方向に位置決めされるので、爪部の外周縁部に内側を向く反力が作用する。この反力の半径方向成分により爪部には内方への曲げモーメントが作用し、爪部の基端部である屈曲部内周面には疲労限界に対して有利な圧縮応力が作用する。これにより、レース板厚を厚くすることなく、周辺部品の設計の自由度を制約することなく、爪部の応力を疲労限界以下にすることができる。   In the invention according to claim 1 configured as described above, the race is in the radial direction by contacting the peripheral wall of the positioning hole at a position where the outer peripheral edge of the claw portion is offset outward from the central position of the peripheral wall of the positioning hole. Accordingly, a reaction force directed inwardly acts on the outer peripheral edge of the claw portion. Due to the radial component of the reaction force, an inward bending moment acts on the claw portion, and a compressive stress advantageous to the fatigue limit acts on the inner peripheral surface of the bent portion, which is the base end portion of the claw portion. Thereby, the stress of a nail | claw part can be made into a fatigue limit or less, without restricting the freedom degree of design of peripheral components, without making a race board thickness thick.

上記のように構成した請求項2に係る発明においては、爪部の外周縁部が位置決め穴の周壁中央位置より外側に偏寄した位置で位置決め穴の周壁に接触するときにおける爪部の軸受軸線からの距離の最小値を爪部の軸受軸線からの距離に設定するので、爪部に作用する反力の半径方向成分が小さくなり、爪部の応力を疲労限界以下とすることができる。   In the invention which concerns on Claim 2 comprised as mentioned above, the bearing axis line of a nail | claw part when the outer-periphery edge part of a nail | claw part contacts the peripheral wall of a positioning hole in the position which deviated outside the peripheral wall center position of the positioning hole Since the minimum value of the distance from the claw is set to the distance from the bearing axis of the claw, the radial component of the reaction force acting on the claw is reduced, and the stress of the claw can be made below the fatigue limit.

上記のように構成した請求項3に係る発明においては、当接部材が回転する場合、当接部材のいずれの回転位置においても、レースは、爪部の外周縁部が位置決め穴の周壁中央位置より外側に偏寄した位置で位置決め穴の周壁に接触することにより半径方向に位置決めされる。これにより、当接部材が回転する場合でも爪部の外周縁部には、内側を向く反力が作用し、爪部の応力を疲労限界以下にすることができる。   In the invention according to claim 3 configured as described above, when the abutting member rotates, the outer peripheral edge portion of the claw portion is positioned at the center of the peripheral wall of the positioning hole at any rotation position of the abutting member. It is positioned in the radial direction by contacting the peripheral wall of the positioning hole at a position biased to the outside. Thereby, even when the contact member rotates, a reaction force directed inwardly acts on the outer peripheral edge portion of the claw portion, and the stress of the claw portion can be reduced to the fatigue limit or less.

上記のように構成した請求項4に係る発明においては、位置決め穴の周壁と接触する爪部の外周縁部に内側向きに作用する反力の半径方向成分を小さい値に制限できるので、爪部の応力を疲労限界以下にすることができる。   In the invention according to claim 4 configured as described above, the radial component of the reaction force acting inwardly on the outer peripheral edge portion of the claw portion that contacts the peripheral wall of the positioning hole can be limited to a small value. The stress can be reduced below the fatigue limit.

上記のように構成した請求項5に係る発明においては、本発明に係るスラスト軸受装置が自動変速機の回転部材のスラスト荷重を支持するので、軸受装置のレースを厚くすることなく爪部の応力を疲労限界以下にし、周辺部品の設計の自由度を増して自動変速機を小型軽量化することができる。   In the invention according to claim 5 configured as described above, since the thrust bearing device according to the present invention supports the thrust load of the rotating member of the automatic transmission, the stress of the claw portion without increasing the thickness of the race of the bearing device. Can be reduced below the fatigue limit, increasing the degree of freedom in designing peripheral components, and reducing the size and weight of the automatic transmission.

以下、図面に基づいて本発明に係るスラスト軸受装置の実施の形態を、このスラスト軸受装置が公知の自動変速機の回転部材のスラスト荷重を支持するスラスト軸受装置として使用されている場合について説明する。自動変速機は、トルクコンバータと、多段変速機構とを備えており、これらトルクコンバータ及び多段変速機構が1軸上に直列的に配置されているとともに、ケースに収納されている。多段変速機は、サンギヤと、リングギヤと、サンギヤおよびリングギヤに噛合するプラネタリギヤを支承するキャリアとを回転要素として有する複数のプラネタリギヤを備えるとともに、複数のクラッチおよび複数のブレーキを有している。   Hereinafter, an embodiment of a thrust bearing device according to the present invention will be described with reference to the drawings when the thrust bearing device is used as a thrust bearing device for supporting a thrust load of a rotary member of a known automatic transmission. . The automatic transmission includes a torque converter and a multi-stage transmission mechanism. The torque converter and the multi-stage transmission mechanism are arranged in series on one axis and housed in a case. The multi-stage transmission includes a plurality of planetary gears having a sun gear, a ring gear, and a carrier that supports a planetary gear meshing with the sun gear and the ring gear as rotating elements, and includes a plurality of clutches and a plurality of brakes.

このように構成された自動変速機は、複数のクラッチを選択的に係合して複数プラネタリギヤの各回転要素を接続するとともに、トルクコンバータの出力回転を選択的に伝達し、複数のブレーキを選択的に係合してプラネタリギヤ各要素の回転を選択的に規制することにより、トルクコンバータの出力回転を前進複数段、後進1段に変速して出力軸に伝達するようになっている。   The automatic transmission configured in this manner selectively engages a plurality of clutches to connect the rotating elements of the plurality of planetary gears, selectively transmits the output rotation of the torque converter, and selects a plurality of brakes. By engaging with each other and selectively restricting the rotation of each element of the planetary gear, the output rotation of the torque converter is shifted to a plurality of forward stages and one reverse stage and transmitted to the output shaft.

図1において、11はスラスト軸受装置2を構成するスラスト軸受で、第1および第2レース12,13間に多数のローラ14が挟持され、ローラ14は第1および第2レース12,13上を軸受軸線O1回りに公転する。第1レース12は自動変速装置の第1回転部材15の端面に当接し、第2レース13は、第2回転部材16の端面に当接しローラ14を介してスラスト荷重を受けるようになっている。第1レース12は軸受軸線方向に屈曲した屈曲部が第1回転部材15の先端外周部と嵌合して半径方向に位置決めされている。   In FIG. 1, reference numeral 11 denotes a thrust bearing constituting the thrust bearing device 2, and a large number of rollers 14 are sandwiched between the first and second races 12, 13, and the rollers 14 run on the first and second races 12, 13. Revolves around the bearing axis O1. The first race 12 contacts the end surface of the first rotating member 15 of the automatic transmission, and the second race 13 contacts the end surface of the second rotating member 16 and receives a thrust load via the roller 14. . The first race 12 is positioned in the radial direction with a bent portion bent in the bearing axial direction fitted to the outer peripheral portion of the tip end of the first rotating member 15.

第2回転部材16に第2レース13と嵌合してこれを半径方向に位置決めする段部を形成すると装置が大型化するので、第2回転部材16には、スラスト軸受装置2の軸受軸線O1と同心のピッチ円PC上に複数の位置決め穴18が等角度α間隔で穿設されている。位置決め穴18の個数が5個の場合、角度αは72度である。そして、第2レース13には、その外周から複数の突出部19が半径方向外方に突出され、各突出部19の先端が軸受軸線方向に屈曲されて爪部20が形成されている。各爪部20が各位置決め穴18に係入さることにより、第2レース13が第2回転部材16に対して半径方向に位置決めされる。第2回転部材16は、レースが当接し軸受軸線を中心とするピッチ円上に複数の位置決め穴が穿設された当接部材である。   When the second rotating member 16 is fitted with the second race 13 to form a step portion for positioning the second race 13 in the radial direction, the apparatus becomes large. Therefore, the second rotating member 16 includes the bearing axis O1 of the thrust bearing device 2. A plurality of positioning holes 18 are bored at equiangular α intervals on a concentric pitch circle PC. When the number of the positioning holes 18 is 5, the angle α is 72 degrees. The second race 13 has a plurality of projecting portions 19 projecting outward in the radial direction from the outer periphery, and claw portions 20 are formed by bending the tips of the projecting portions 19 in the bearing axial direction. Each claw portion 20 is engaged with each positioning hole 18, whereby the second race 13 is positioned in the radial direction with respect to the second rotating member 16. The second rotating member 16 is a contact member in which a race contacts and a plurality of positioning holes are formed on a pitch circle centered on the bearing axis.

第1回転部材15と第2回転部材16とは相対回転するので、第2レース13上をローラ14が摺動を伴って転動することにより引き摺り回転トルクTが第2レース13に作用する。このとき、図2に示すように、位置決め穴18の周壁23に接触している爪部20に周壁23から反力Fが作用し引き摺り回転トルクと釣り合う。この場合、第2回転部材16も回転するので、第2回転部材16のいずれの回転位置においても、爪部20が位置決め穴18の周壁23に接触する位置決め穴18において、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23と接触するように構成されている。即ち、第2レース13は、いずれかの爪部20が位置決め穴18の周壁23に接触して半径方向に位置決めされる。このとき、第2回転部材16のいずれの回転位置においても、爪部20が位置決め穴18の周壁と接触するいずれの位置決め穴18において、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁に接触するように構成されている。位置決め穴18の周壁中央位置22とは、軸受軸線O1と同心のピッチ円PCが位置決め穴18の周壁23と交差する位置である。   Since the first rotating member 15 and the second rotating member 16 rotate relative to each other, the drag rotation torque T acts on the second race 13 when the roller 14 rolls on the second race 13 with sliding. At this time, as shown in FIG. 2, the reaction force F acts on the claw portion 20 in contact with the peripheral wall 23 of the positioning hole 18 from the peripheral wall 23, and balances with the drag rotation torque. In this case, since the second rotating member 16 also rotates, the outer peripheral edge of the claw 20 in the positioning hole 18 where the claw 20 contacts the peripheral wall 23 of the positioning hole 18 at any rotational position of the second rotating member 16. The part 21 is configured to come into contact with the peripheral wall 23 of the positioning hole 18 at a position offset outward from the peripheral wall central position 22 of the positioning hole 18. That is, the second race 13 is positioned in the radial direction with any of the claw portions 20 contacting the peripheral wall 23 of the positioning hole 18. At this time, at any rotation position of the second rotation member 16, the outer peripheral edge 21 of the claw 20 is the center of the peripheral wall of the positioning hole 18 in any positioning hole 18 where the claw 20 contacts the peripheral wall of the positioning hole 18. It is comprised so that the surrounding wall of the positioning hole 18 may be contacted in the position which deviated outside the position 22. FIG. The peripheral wall central position 22 of the positioning hole 18 is a position where the pitch circle PC concentric with the bearing axis O <b> 1 intersects the peripheral wall 23 of the positioning hole 18.

次に、第2回転部材16のいずれの回転位置においても、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23と接触するように構成するために、爪部20の軸受軸線O1からの距離および爪部20の幅を設定する方法の一例を説明する。   Next, at any rotational position of the second rotating member 16, the outer peripheral edge 21 of the claw 20 contacts the peripheral wall 23 of the positioning hole 18 at a position offset outward from the peripheral wall central position 22 of the positioning hole 18. In order to configure as described above, an example of a method for setting the distance from the bearing axis O1 of the claw 20 and the width of the claw 20 will be described.

スラスト軸受装置2の形状として、第2レース13は、板厚tの円環状のプレートの外周から両側面が平行なN個の突出部19が等間隔に突設され、突出部19の先端が90度屈曲されて部分円筒状に成形され、爪部20が形成されている。従って、図3に示すように、爪部20は、円周方向の中心と第2レース13の中心を通る中心線に対して線対称で爪部20両側面は中心線と平行であり、爪部20の幅はb、厚みはtである。軸受軸線O1を中心とする爪部20の厚さ方向中心の爪半径はR、爪部20の内径はRi、外径はRoである。第2回転部材16にピッチ円PC上に等角度α間隔で穿設された位置決め穴18の半径はrであり、各位置決め穴18nの穴中心のX,Y座標値は、cn,dnであり、ピッチ円PCの半径はRpcである。   As the shape of the thrust bearing device 2, the second race 13 has N protrusions 19 that are parallel to both sides from the outer periphery of an annular plate having a plate thickness t, and the tip of the protrusion 19 is formed at equal intervals. The claws 20 are formed by being bent 90 degrees and formed into a partial cylindrical shape. Therefore, as shown in FIG. 3, the claw portion 20 is symmetrical with respect to the center line passing through the center in the circumferential direction and the center of the second race 13, and both side surfaces of the claw portion 20 are parallel to the center line. The width of the part 20 is b, and the thickness is t. The claw radius at the center in the thickness direction of the claw portion 20 centered on the bearing axis O1 is R, the inner diameter of the claw portion 20 is Ri, and the outer diameter is Ro. The radius of the positioning hole 18 drilled in the second rotary member 16 on the pitch circle PC at an equal angle α interval is r, and the X and Y coordinate values of the center of each positioning hole 18n are cn and dn. The radius of the pitch circle PC is Rpc.

先ず、寸法バラツキがないと仮定した場合、爪部20の外周縁部21と内周縁部24とが、図4に示すように、位置決め穴18の周壁中央位置22より外側と内側とに等量だけ偏寄した位置で位置決め穴18の周壁23に接触したとすると、爪厚さtは爪半径Rより極めて小さいので、爪部20の外周縁部21と内周縁部24とに作用する反力Fi,Foはほぼ等しくなり、該反力Fi,Foの半径方向成分は互いに打ち消しあって爪部20に半径方向の曲げモーメンは作用しない。この理想位置における爪半径Rは、ピッチ円PCの半径Rpcと等しく、R=Rpcにより設定され、爪幅bは、位置決め穴18の直径2rに近似される。   First, assuming that there is no dimensional variation, the outer peripheral edge portion 21 and the inner peripheral edge portion 24 of the claw portion 20 are equivalent to the outer side and the inner side of the peripheral wall center position 22 of the positioning hole 18 as shown in FIG. Assuming that the nail thickness t is extremely smaller than the nail radius R, assuming that the nail thickness t is in contact with the peripheral wall 23 of the positioning hole 18, the reaction force acting on the outer peripheral edge 21 and the inner peripheral edge 24 of the nail 20. Fi and Fo are substantially equal, and the radial components of the reaction forces Fi and Fo cancel each other, and no radial bending moment acts on the claw portion 20. The claw radius R at this ideal position is equal to the radius Rpc of the pitch circle PC, is set by R = Rpc, and the claw width b is approximated to the diameter 2r of the positioning hole 18.

実際には、爪部20を位置決め穴18に係入するためのクリアランスが必要であるので、爪幅bは2rより小さい適宜値bに設定される。この場合に、爪部20の軸受軸線O1からの距離である爪半径Rを微小量ΔRずつ増大させ、爪部20が位置決め穴18の周壁23に接触するいずれの位置決め穴18においても、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23に接触するか否か判定し、この条件を最初に満たした値を爪半径Rに設定する。なお、爪半径Rの増大により爪部20と位置決め穴18とのクリアランスが小さくなるので、爪半径Rの増大に伴って爪幅bを微少量Δbずつ減少させる。   Actually, since a clearance for engaging the claw portion 20 into the positioning hole 18 is necessary, the claw width b is set to an appropriate value b smaller than 2r. In this case, the claw radius R, which is the distance from the bearing axis O1 of the claw portion 20, is increased by a minute amount ΔR, and the claw portion is in any positioning hole 18 where the claw portion 20 contacts the peripheral wall 23 of the positioning hole 18. It is determined whether or not the outer peripheral edge portion 20 of the 20 contacts the peripheral wall 23 of the positioning hole 18 at a position offset outward from the peripheral wall central position 22 of the positioning hole 18. Set to. Since the clearance between the claw portion 20 and the positioning hole 18 is reduced by increasing the claw radius R, the claw width b is decreased by a small amount Δb as the claw radius R increases.

次に、各部の寸法バラツキがないと仮定した場合の判定方法について説明する。判定に使用する計算の前提条件は、以下の通りである。   Next, a determination method when it is assumed that there is no dimensional variation of each part will be described. The calculation prerequisites used for the determination are as follows.

(1)ピッチ円PC上に等角度α間隔で穿設された一つの位置決め穴18の中心が、Y軸から角度θだけ時計方向に変位している図3の状態を初期位置とし、このY軸から角度θだけ変位した位置決め穴18を1番目の位置決め穴181、この穴181に係入された爪部20を1番目の爪部201とし、以下時計回りに2番目・・・n番目の位置決め穴18n、爪部20nとする。 (1) The initial position is the state shown in FIG. 3 in which the center of one positioning hole 18 drilled at an equal angle α interval on the pitch circle PC is displaced clockwise from the Y axis by an angle θ. positioning holes 18 a first positioning holes 18 1 displaced from the axis by an angle theta, 2 th.. the hole 18 engaged by the pawl portion 20 in 1 1 th claw portion 20 1, and the following clockwise The n-th positioning hole 18n and the claw portion 20n are used.

(2)上記理想位置での爪部20の寸法から爪半径RをΔR増大させ、爪幅bをΔb減少させたとき、各位置決め穴18nにおいて、各爪部20nは上記理想位置から図3において自重により下方にのみ変位するとし、外周縁部21nが各位置決め穴18nの周壁23nに接触するまでの距離ΔYonを算出し、内周縁部24nが各位置決め穴18nの周壁23nに接触するまでの距離ΔYinを算出する。 (2) When the claw radius R is increased by ΔR and the claw width b is decreased by Δb from the dimensions of the claw portion 20 at the ideal position, each claw portion 20n is moved from the ideal position in FIG. The distance ΔYon until the outer peripheral edge portion 21n comes into contact with the peripheral wall 23n of each positioning hole 18n is calculated, and the distance until the inner peripheral edge portion 24n comes into contact with the peripheral wall 23n of each positioning hole 18n. ΔYin is calculated.

(3)各位置決め穴18nにおいて、各爪部20nの外周縁部21nと内周縁部24nの中、距離ΔYon、ΔYinの小さい方が位置決め穴18nの周壁23nに接触する。各爪部20nが外周縁部21nで位置決め穴18nの周壁23nに接触させることを目的としているので、各位置決め穴18nにおいてΔYon<ΔYinが成立する必要がある。 (3) In each positioning hole 18n, the smaller one of the distances ΔYon and ΔYin out of the outer peripheral edge 21n and the inner peripheral edge 24n of each claw 20n contacts the peripheral wall 23n of the positioning hole 18n. Since each claw 20n is intended to come into contact with the peripheral wall 23n of the positioning hole 18n at the outer peripheral edge 21n, ΔYon <ΔYin needs to be established in each positioning hole 18n.

(4)第2回転部材16は回転するので、隣接する位置決め穴18の角度間隔αを位置決め穴の個数Nと同数でない、例えばN+1で割った角度Δα(爪部20が5個の場合は12度)ずつ第2回転部材16を回転させた状態で(2),(3)の計算を繰り返す。第2回転部材16いずれの回転位置においても、各位置決め穴18nにおいて、ΔYon<ΔYinが成立する必要がある。 (4) Since the second rotation member 16 rotates, the angle Δα between adjacent positioning holes 18 is not the same as the number N of positioning holes, for example, an angle Δα divided by N + 1 (when there are five claw portions 20) (2) and (3) are repeated with the second rotating member 16 rotated by 12 degrees. At any rotational position of the second rotating member 16, ΔYon <ΔYin needs to be established in each positioning hole 18n.

(5)(2)〜(4)を満足するまで爪半径RをΔRずつ増大させ、爪幅bをΔbずつ減少させる。(2)〜(4)を満足した最初の爪半径R、爪幅bを爪部20の緒元とする。 (5) The nail radius R is increased by ΔR and the nail width b is decreased by Δb until (2) to (4) are satisfied. The initial nail radius R and nail width b satisfying (2) to (4) are set as the specifications of the nail portion 20.

具体的には、第1ステップとして、初期位置における1番目の爪部181について計算がなされる。図5,6に示すように、軸受軸線O1を原点とするXY座標系において、爪部201の中心線とY軸とのなす角度をθ、
爪部201の内周縁部24と軸受軸線O1とを結ぶ線分と爪部201の中心線とのなす角度をθi、
爪部201の外周縁部21と軸受軸線O1とを結ぶ線分と爪部201の中心線とのなす角度をθo、
爪部20の軸受軸線O1を中心とする内周面および外周面の半径をRi,Ro、
爪部201の内周縁部24、外周縁部21のX座標値、Y座標値をXfi1,Xfo1,Yfi1,Yfo1、
内周縁部24、外周縁部21を夫々通りY軸と平行な線分が位置決め穴201と交差する点のY座標値をYhi1,Yhol、
位置決め穴201の半径をrとする。
Specifically, as the first step, calculation is performed for the first claw portion 18 1 at the initial position. As shown in FIGS. 5 and 6, in the XY coordinate system in which the bearing axis O1 as the origin, the angle between the center line and the Y-axis of the claw portion 20 1 theta,
The angle between the center line of the line segment and the claw portion 20 1 connecting the inner peripheral edge portion 24 and the bearing axis O1 of the pawl portion 20 1 .theta.i,
The angle between the line segment connecting the outer peripheral edge 21 of the claw 20 1 and the bearing axis O 1 and the center line of the claw 20 1 is θo,
The radii of the inner and outer peripheral surfaces of the claw 20 centered on the bearing axis O1 are Ri, Ro,
Inner peripheral edge portion 24 of the claw portions 20 1, X-coordinate value of the outer peripheral edge portion 21, the Y coordinate value Xfi1, Xfo1, Yfi1, Yfo1,
Inner peripheral edge portion 24, the Y-coordinate value of a point outer periphery 21, respectively as the Y axis and the parallel line segments intersects the positioning holes 20 1 Yhi1, Yhol,
The radius of the positioning holes 20 1 and r.

爪部201の内周縁部24、外周縁部21と軸受軸線O1とを夫々結ぶ線分と爪部201の中心線とのなす角度θi,θoは、
θi=sin−1b/2Ri
θo=sin−1b/2Ro から求められる。
図3,5,6から明らかなように、爪部201の内周縁部24、外周縁部21のX座標値Xfi1,Xfo1,は、
Xfi1=Ri×sin(θ+θi)
Xfo1=Ro×sin(θ+θo)から求められる。
爪部201の内周縁部24、外周縁部21のY座標値Yfi1,Yfo1は、
第2レース13に関する関係式
Xfi1+Yfi1=Ri
Xfo1+Yfo1=Ro から求められる。
爪部201の内周縁部24、外周縁部21を夫々通りY軸と平行な線分が位置決め穴201と交差する点のY座標値Yhi1,Yholは、
位置決め穴18に関する関係式
(Xfi1−c1)+(Yhi1−d1)=r
(Xfo1−c1)+(Yho1−d1)=r から求められる。
Inner peripheral edge portion 24 of the claw portion 20 1, the angle θi between the center line of the line segment and the claw portion 20 1 connecting each of the outer peripheral edge portion 21 and the bearing axis O1, .theta.o is
θi = sin −1 b / 2Ri
It is calculated from θo = sin −1 b / 2Ro.
As apparent from FIG. 3, 5, 6, the inner peripheral edge portion 24 of the claw portions 20 1, X coordinate value Xfi1 of the outer peripheral edge portion 21, Xfo1, is
Xfi1 = Ri x sin (θ + θi)
It is obtained from Xfo1 = Ro × sin (θ + θo).
Inner peripheral edge portion 24 of the claw portions 20 1, Y coordinate values Yfi1, Yfo1 of the outer peripheral edge portion 21,
Relational expression Xfi1 2 + Yfi1 2 = Ri 2 for the second race 13
Xfo1 2 + Yfo1 2 = Ro 2
The claw portion 20 1 of the inner peripheral edge portion 24, the outer peripheral edge portion 21 respectively as parallel to the Y axis line segment positioning holes 20 1 and Y-coordinate values of the point of intersection Yhi1, Yhol is
Relational expression for positioning hole 18
(Xfi1−c1) 2 + (Yhi1−d1) 2 = r 2
Obtained from (Xfo1-c1) 2 + ( Yho1-d1) 2 = r 2.

第2レース13は、爪部201が位置決め穴181の周壁23に接触するまで下方に移動して停止するので、爪部201の内周縁部24と外周縁部21の中、内周縁部24のY座標値Yfi1と内周縁部24下方の周壁23のY座標値Yhi1との差ΔYi1および外周縁部21のY座標値Yfo1と外周縁部21下方の周壁23Y座標値Yho1との差ΔYo1の小さい方が先に周壁23に接触する。爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23に接触することを目的としているので、位置決め穴181において、
ΔYo1<ΔYi1が成立する必要がある。この不等式を満足しない場合、満足するまで爪半径RをΔRずつ増大させ、爪幅bをΔbずつ減少させて演算を繰り返し、最初にΔYo1<ΔYi1が成立したときのΔYo1が第1番目の爪部201の偏心量となる。
The second race 13, since the stop moves downward until the claw portion 20 1 is brought into contact with the positioning holes 18 1 of the peripheral wall 23, in the inner peripheral edge portion 24 and the outer peripheral edge portion 21 of the claw portion 20 1, the inner peripheral edge Difference YY1 between the Y coordinate value Yfi1 of the portion 24 and the Y coordinate value Yhi1 of the peripheral wall 23 below the inner peripheral edge 24 and the difference between the Y coordinate value Yfo1 of the outer peripheral edge 21 and the peripheral wall 23Y coordinate value Yho1 below the outer peripheral edge 21 The smaller ΔYo1 comes into contact with the peripheral wall 23 first. Since the purpose of the outer peripheral edge portion 21 of the claw portion 20 contacts the peripheral wall 23 of the positioning hole 18 at a position biasing outward from the peripheral wall center 22 of the positioning hole 18, the positioning holes 18 1,
ΔYo1 <ΔYi1 must be satisfied. If this inequality is not satisfied, the nail radius R is increased by ΔR and the nail width b is decreased by Δb until the satisfaction is satisfied, and the calculation is repeated, and ΔYo1 when ΔYo1 <ΔYi1 is first satisfied is the first nail portion. the 20 1 of eccentricity.

第2ステップとして、2番目・・・N番目の爪部20について、上述の1番目の爪部201と同様の演算を繰り返し、各爪部20nにおける偏心量ΔYo2・・・ΔYonを演算する。そして、各爪部20nにおける偏心量に対応する爪半径Rの中の最小値およびそのときの爪幅bを初期位置における爪部20の緒元とする。 As the second step, for the second... Nth claw portion 20, the same calculation as that of the first claw portion 201 described above is repeated, and the eccentricity ΔYo2. Then, the minimum value in the claw radius R corresponding to the amount of eccentricity in each claw 20n and the claw width b at that time are used as the origin of the claw 20 at the initial position.

次に、第3ステップとして、第2回転部材16のいずれの角度位置においても、最初にΔYon<ΔYinが成立する爪緒元を設定するために、一つの位置決め穴18の中心が、Y軸から角度θだけ時計方向に変位している図3の状態を初期位置としこの角度θを、例えば隣接する位置決め穴18の中心と軸受軸線O1とがなす角度αを位置決め穴18の個数Nに1を加算した値(N+1)で割った角度α/(N+1)ずつ時計方向に回転させた状態で上記初期位置におけると同様の演算を繰り返し、各分割角度位置における偏心量ΔYo11・・・ΔYonnを演算する。具体的には、図7に示すように、初期位置における第1番目の爪部201の中心線とY軸とのなす角度θを、θ+α/(N+1),θ+2α/(N+1)・・・と順次増加させて各分割角度位置における演算を行う。第2回転部材16の初期位置および各分割角度位置において爪緒元として設定した爪半径Rの中の最小値およびそのときの爪幅bを爪部20の緒元とする。 Next, as a third step, at any angular position of the second rotating member 16, the center of one positioning hole 18 is moved from the Y axis in order to set the nail position where ΔYon <ΔYin is first established. The initial position is the state of FIG. 3 that is displaced clockwise by the angle θ. For example, the angle θ between the center of the adjacent positioning hole 18 and the bearing axis O1 is set to 1 for the number N of positioning holes 18. The calculation similar to that at the initial position is repeated with the angle α / (N + 1) rotated clockwise by the added value (N + 1), and the eccentricity ΔYo11... ΔYonn at each divided angle position is calculated. . Specifically, as shown in FIG. 7, the angle θ formed between the center line of the first claw 201 at the initial position and the Y axis is expressed as θ + α / (N + 1), θ + 2α / (N + 1). And sequentially increasing the calculation at each division angle position. The minimum value among the nail radii R set as the nail coordinates at the initial position and each divided angle position of the second rotating member 16 and the nail width b at that time are defined as the nail parts 20.

このように、第2回転部材16を分割角度位置に回転させた状態で、各位置決め穴18において爪部20の外周縁部21が位置決め穴18の周壁23と接触することを確認しているので、第2レース13が第2回転部材16に対していかなる方向に変位しても、爪部20が位置決め穴18の周壁23に接触するいずれの位置決め穴18において、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23に接触する。   As described above, it is confirmed that the outer peripheral edge portion 21 of the claw portion 20 is in contact with the peripheral wall 23 of the positioning hole 18 in each positioning hole 18 with the second rotating member 16 rotated to the divided angle position. Even if the second race 13 is displaced in any direction with respect to the second rotating member 16, the outer peripheral edge 21 of the claw 20 in any positioning hole 18 where the claw 20 contacts the peripheral wall 23 of the positioning hole 18. Is in contact with the peripheral wall 23 of the positioning hole 18 at a position offset outward from the central position 22 of the peripheral wall of the positioning hole 18.

実際には、爪部内外径Ri,Ro、爪幅b、爪角度、位置決め穴18の半径r、位置決め穴18nの穴中心のX,Y座標値(cn,dn)には寸法バラツキがある。そこで、各寸法に寸法公差を加味して上記計算を行うことにより、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23に接触するように爪部20の緒元を設定することができる。   Actually, there are dimensional variations in the inner and outer diameters Ri, Ro, claw width b, claw angle, radius r of the positioning hole 18 and X and Y coordinate values (cn, dn) of the center of the positioning hole 18n. Therefore, by performing the above calculation with dimensional tolerances added to each dimension, the outer peripheral edge 21 of the claw 20 is displaced to the peripheral wall 23 of the positioning hole 18 at a position offset outward from the peripheral wall central position 22 of the positioning hole 18. The specification of the nail | claw part 20 can be set so that it may contact.

具体的には、例えば、位置決め穴18nの穴中心のX,Y座標値(cn,dn)が公差Δc,Δd大きいことが許容され、半径rが公差Δr大きいことが許容される場合、各公差が現れる全ての組合せについて上記演算を行って爪部20の緒元を設定する。
即ち、(Xfin−cn)+(Yhin−dn)=rを例に説明すると、
{Xfin−(cn+Δc)}2+{Yhi1−dn}2=r2
{Xfin−(cn+Δc)}2+{Yhi1−(dn+Δd)}2=r2
・・・
{Xfin−(cn+Δc)}2+{Yhi1−(dn+Δd)}2=(r+Δr)2
と公差のすべての組合せについて演算を行って爪部20の緒元を設定する。
Specifically, for example, when the X and Y coordinate values (cn, dn) of the center of the positioning hole 18n are allowed to have a large tolerance Δc, Δd and the radius r is allowed to be a large tolerance Δr, each tolerance is allowed. The above calculation is performed for all the combinations in which the symbol appears, and the specification of the claw portion 20 is set.
That is, (Xfin−cn) 2 + (Yhin−dn) 2 = r 2
{Xfin− (cn + Δc)} 2 + {Yhi1−dn} 2 = r 2
{Xfin- (cn + Δc)} 2 + {Yhi1- (dn + Δd)} 2 = r 2
...
{Xfin− (cn + Δc)} 2 + {Yhi1− (dn + Δd)} 2 = (r + Δr) 2
Then, calculation is performed for all combinations of tolerances and the specifications of the claw portion 20 are set.

上記実施の形態では、第2回転部材16が回転するが、回転しない場合は、第3ステップを行うことなく、第1および第2ステップを行うことにより、爪部20が位置決め穴18の周壁23に接触するいずれの位置決め穴18においても、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23に接触するように爪部20の爪半径Rおよび爪幅bを設定することができる。   In the above-described embodiment, the second rotating member 16 rotates. If the second rotating member 16 does not rotate, the claw portion 20 can be moved to the peripheral wall 23 of the positioning hole 18 by performing the first and second steps without performing the third step. In any of the positioning holes 18 that come into contact with the positioning hole 18, the outer peripheral edge 21 of the claw 20 is in contact with the peripheral wall 23 of the positioning hole 18 at a position offset outward from the peripheral wall central position 22 of the positioning hole 18. Nail radius R and nail width b can be set.

上記実施の形態では、爪半径Rを微小量ΔRずつ増大させ、爪部20が位置決め穴18の周壁23に接触するいずれの位置決め穴18においても、爪部20の外周縁部21が位置決め穴18の周壁中央位置22より外側に偏寄した位置で位置決め穴18の周壁23に接触するか否か判定し、この条件を最初に満たした値を爪半径Rに設定しているが、この条件を満たした値であって爪部20が位置決め穴18の周壁23と接触する接触点での法線が回転方向接線に対して0〜20度内側に傾斜するものであれば、爪部20に作用する反力Fの半径方向成分を小さい値に制限でき、爪部の応力を疲労限界以下にすることができる。従って、この条件を満たす爪半径Rであれば、最初に条件を満たした値でなくても、爪半径Rに設定してもよい。   In the above embodiment, the claw radius R is increased by a minute amount ΔR, and the outer peripheral edge 21 of the claw 20 is positioned in the positioning hole 18 in any positioning hole 18 where the claw 20 contacts the peripheral wall 23 of the positioning hole 18. It is determined whether or not it contacts the peripheral wall 23 of the positioning hole 18 at a position that is offset outward from the peripheral wall central position 22, and a value that first satisfies this condition is set as the claw radius R. If the normal value at the contact point at which the claw portion 20 contacts the peripheral wall 23 of the positioning hole 18 is inclined to 0 to 20 degrees inward with respect to the rotation direction tangent, the claw portion 20 acts on the claw portion 20. The component of the reaction force F in the radial direction can be limited to a small value, and the stress at the claw portion can be reduced below the fatigue limit. Therefore, as long as the claw radius R satisfies this condition, the claw radius R may be set to a value that does not satisfy the condition first.

本スラスト軸受装置の拡大断面図。The expanded sectional view of this thrust bearing device. 実施の形態に係る軸受装置の爪部が位置決め穴の周壁に接触する状態を示す図。The figure which shows the state which the nail | claw part of the bearing apparatus which concerns on embodiment contacts the surrounding wall of a positioning hole. 第1番目の爪部の偏心量を算出するための演算式を導き出すための図。The figure for deriving the computing equation for calculating the amount of eccentricity of the 1st claw part. 理想状態において爪部が位置決め穴の周壁に接触する状態を示す図。The figure which shows the state which a nail | claw part contacts the surrounding wall of a positioning hole in an ideal state. 爪部の内周縁部と軸受軸線とを結ぶ線分がX軸となす角度を示す図。The figure which shows the angle which the line segment which connects the inner peripheral edge part of a nail | claw part and a bearing axis line makes with an X-axis. 爪部の外周縁部と軸受軸線とを結ぶ線分がX軸となす角度を示す図。The figure which shows the angle which the line segment which connects the outer periphery part of a nail | claw part and a bearing axis line with an X-axis. 第2回転部材の各分割角度位置において偏心量を算出する状態を示す図。The figure which shows the state which calculates the amount of eccentricity in each division | segmentation angle position of a 2nd rotation member. 従来のスラスト軸受装置の爪部が位置決め穴の周壁に接触する状態を示す図。The figure which shows the state which the nail | claw part of the conventional thrust bearing apparatus contacts the surrounding wall of a positioning hole.

符号の説明Explanation of symbols

2…スラスト軸受装置、11…スラスト軸受、12,13…第1、第2レース、14…ローラ、15…第1回転部材、16…第2回転部材、18…位置決め穴、19…突出部、20…爪部、21…外周縁部、22…中央位置、23…周壁、24…内周縁部、R…爪半径、b…爪幅、r…位置決め穴半径、ΔYon…偏心量。   DESCRIPTION OF SYMBOLS 2 ... Thrust bearing apparatus, 11 ... Thrust bearing, 12, 13 ... 1st, 2nd race, 14 ... Roller, 15 ... 1st rotation member, 16 ... 2nd rotation member, 18 ... Positioning hole, 19 ... Projection part, 20 ... claw part, 21 ... outer peripheral edge part, 22 ... central position, 23 ... peripheral wall, 24 ... inner peripheral part, R ... claw radius, b ... claw width, r ... positioning hole radius, ΔYon ... eccentricity.

Claims (5)

転動体が軸受軸線回りに公転するレースの外周に複数の突出部が突設され、該突出部の先端が前記軸受軸線方向に屈曲されて爪部が形成され、前記レースが当接する当接部材に前記軸受軸線を中心とするピッチ円上に複数の位置決め穴が穿設され、該各位置決め穴に前記各爪部が係入されて前記レースを半径方向に位置決めするスラスト軸受装置にして、前記爪部が前記位置決め穴の周壁に接触するいずれの位置決め穴においても、前記爪部の外周縁部が前記位置決め穴の周壁中央位置より外側に偏寄した位置で前記位置決め穴の周壁に接触するように構成されていることを特徴とするスラスト軸受装置。 A contact member in which a plurality of projecting portions project from the outer periphery of the race in which the rolling element revolves around the bearing axis, the tip of the projecting portion is bent in the direction of the bearing axis, and a claw is formed. A thrust bearing device in which a plurality of positioning holes are formed on a pitch circle centered on the bearing axis, and the claw portions are inserted into the positioning holes to position the race in the radial direction. In any positioning hole in which the claw portion comes into contact with the peripheral wall of the positioning hole, the outer peripheral edge portion of the claw portion comes into contact with the peripheral wall of the positioning hole at a position offset outward from the central position of the peripheral wall of the positioning hole. A thrust bearing device comprising: 請求項1において、前記爪部の外周縁部が前記位置決め穴の周壁中央位置より外側に偏寄した位置で前記位置決め穴の周壁に接触するとともに、前記爪部の内周縁部が前記位置決め穴の周壁から離脱するように設定される前記爪部の前記軸受軸線からの距離の最小値を前記爪部の前記軸受軸線からの距離とすることを特徴とするスラスト軸受装置。 In Claim 1, While the outer peripheral edge part of the said nail | claw part contacts the peripheral wall of the said positioning hole in the position which deviated outside the peripheral wall center position of the said positioning hole, the inner peripheral edge part of the said nail | claw part is the said positioning hole. A thrust bearing device, characterized in that a minimum value of the distance from the bearing axis of the claw portion set so as to be separated from the peripheral wall is a distance from the bearing axis of the claw portion. 請求項1または2において、前記当接部材が回転する場合、該当接部材のいずれの回転位置においても、前記爪部が前記位置決め穴の周壁に接触するいずれの位置決め穴において、前記爪部の外周縁部が前記位置決め穴の周壁中央位置より外側に偏寄した位置で前記位置決め穴の周壁に接触するように構成されていることを特徴とするスラスト軸受装置。 3. The positioning device according to claim 1, wherein when the abutting member rotates, in any positioning hole where the claw portion contacts the peripheral wall of the positioning hole at any rotation position of the corresponding contact member, A thrust bearing device, wherein the peripheral portion is configured to contact the peripheral wall of the positioning hole at a position offset outward from the central position of the peripheral wall of the positioning hole. 請求項1乃至3のいずれか1項において、前記爪部が前記位置決め穴の周壁と接触する接触点での法線が回転方向接線に対して0〜20度内側に傾斜していることを特徴とするスラスト軸受装置。 The normal line at the contact point at which the claw portion contacts the peripheral wall of the positioning hole is inclined inward by 0 to 20 degrees with respect to the rotational tangent line. Thrust bearing device. 請求項1乃至4のいずれか1項において、前記スラスト軸受装置が、自動変速機の回転部材のスラスト荷重を支持するスラスト軸受装置であることを特徴とするスラスト軸受装置。 The thrust bearing device according to any one of claims 1 to 4, wherein the thrust bearing device is a thrust bearing device that supports a thrust load of a rotating member of an automatic transmission.
JP2005301050A 2005-10-14 2005-10-14 Thrust bearing device Expired - Fee Related JP4552827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301050A JP4552827B2 (en) 2005-10-14 2005-10-14 Thrust bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301050A JP4552827B2 (en) 2005-10-14 2005-10-14 Thrust bearing device

Publications (2)

Publication Number Publication Date
JP2007107671A true JP2007107671A (en) 2007-04-26
JP4552827B2 JP4552827B2 (en) 2010-09-29

Family

ID=38033684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301050A Expired - Fee Related JP4552827B2 (en) 2005-10-14 2005-10-14 Thrust bearing device

Country Status (1)

Country Link
JP (1) JP4552827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108599A (en) * 2011-11-24 2013-06-06 Nsk Ltd Thrust race, thrust roller bearing with race, and rotation support device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128808U (en) * 1974-08-26 1976-03-02
JPS59164422A (en) * 1983-03-10 1984-09-17 Nippon Seiko Kk Assembly of one-way clutch and thrust needle roller bearing
JPH03129122A (en) * 1989-10-14 1991-06-03 Jatco Corp Thrust bearing installing mechanism
JPH07332358A (en) * 1994-06-07 1995-12-22 Jatco Corp Installation structure for thrust bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128808U (en) * 1974-08-26 1976-03-02
JPS59164422A (en) * 1983-03-10 1984-09-17 Nippon Seiko Kk Assembly of one-way clutch and thrust needle roller bearing
JPH03129122A (en) * 1989-10-14 1991-06-03 Jatco Corp Thrust bearing installing mechanism
JPH07332358A (en) * 1994-06-07 1995-12-22 Jatco Corp Installation structure for thrust bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108599A (en) * 2011-11-24 2013-06-06 Nsk Ltd Thrust race, thrust roller bearing with race, and rotation support device

Also Published As

Publication number Publication date
JP4552827B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
WO2011077869A1 (en) Planetary gear pinion shaft support structure
US8091240B2 (en) Assembling method of bearing unit
US20070202986A1 (en) Roller bearing for planetary gear mechanism
WO2012165395A1 (en) Friction drive-type wave transmission
JP2014029196A (en) Rolling bearing unit with attachment plate and method of manufacturing the same
JP6613678B2 (en) Thrust bearing and manufacturing method thereof
US20110188797A1 (en) Rolling Bearing, Its Use, and a Motor Vehicle Fitted with such a Rolling Bearing
US20100209183A1 (en) Mechanical locking arrangement of an axial disk
CN105952852B (en) Synchronizer ring for a synchronizing unit of a transmission
JP4552827B2 (en) Thrust bearing device
JP4971012B2 (en) Oscillating gear unit
JP2008240907A (en) Universal coupling
JP5083056B2 (en) Thrust roller bearing race mounting device and mounting method
JP2008286330A (en) Tripod-type constant velocity universal joint
WO2021049265A1 (en) Rotary table bearing and rotary table
JP6265061B2 (en) Planetary roller traction drive device
JP5080314B2 (en) Gear structure and watch
JP2013019487A (en) Thrust bearing
WO2019111903A1 (en) Tripod constant velocity universal joint
US11754163B1 (en) Strain wave generator for harmonic reducer
KR101852678B1 (en) Harmonic gear
JP7444551B2 (en) Bearing assembly structure of rotating equipment
EP4249770A1 (en) Strain wave generator for harmonic reducer
US10344838B2 (en) Planetary roller speed changer
JP2009014179A (en) Tripod-type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees