JP2007107640A - Auto tensioner - Google Patents

Auto tensioner Download PDF

Info

Publication number
JP2007107640A
JP2007107640A JP2005299975A JP2005299975A JP2007107640A JP 2007107640 A JP2007107640 A JP 2007107640A JP 2005299975 A JP2005299975 A JP 2005299975A JP 2005299975 A JP2005299975 A JP 2005299975A JP 2007107640 A JP2007107640 A JP 2007107640A
Authority
JP
Japan
Prior art keywords
raceway surface
base end
end portion
support member
end part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005299975A
Other languages
Japanese (ja)
Inventor
Masahiro Harada
昌寛 原田
Hiroshi Ueno
弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005299975A priority Critical patent/JP2007107640A/en
Priority to EP06811743A priority patent/EP1947370A1/en
Priority to US12/083,517 priority patent/US20090291790A1/en
Priority to PCT/JP2006/320464 priority patent/WO2007043650A1/en
Publication of JP2007107640A publication Critical patent/JP2007107640A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an auto tensioner which more effectively absorbs fluctuation of belt tension. <P>SOLUTION: This auto tensioner 1 includes a swinging arm provided with a base end part 3 having an outer raceway surface 31 formed on the inner periphery and with an arm extending from the base end part 3 and having a rotatably fixed pulley around which a belt is wound; a support member 2 having an inside raceway surface 21 in the outer peripheral side and supporting the swinging arm so as to freely swings it by relatively rotatably supporting the base end part 3; and cylindrical rollers 4 interposed between the outside raceway surface 31 and the inside raceway surface 21 so as to be freely rolled. On the inside raceway surface 21 and the outside raceway surface 31, respective raceway surfaces 2k, 3k of different shapes are formed to gradually narrow nipping intervals of the cylindrical rollers 4 while rolling the cylindrical rollers 4 along with the relative rotation of the base end part 3 and the support member 2 and apply rotation energizing force in a direction canceling a phase difference between the base end part 3 and the support member 2 generated by the relative rotation between the base end part 3 and support member 2. Due to this rotation energizing force, the swinging arm is energized in a predetermined swinging direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プーリに巻き掛けられたベルトに張力を付与するオートテンショナに関する。   The present invention relates to an auto tensioner that applies tension to a belt wound around a pulley.

エンジンからの動力をオルタネータ等の補機類に伝達する手段として、一般にベルトが用いられている。このベルトの張力は、オートテンショナによって一定に維持される。オートテンショナは、エンジンなどに固定された支持部を中心に揺動可能とされた揺動アームの先端に、上記ベルトが巻き掛けられたプーリを有しており、揺動アームは、当該揺動アームと支持部との間に取り付けられたねじりコイルばねによって生じる弾性力によって弾性的に揺動可能とされている(例えば、特許文献1参照)。
このようなオートテンショナは、プーリを所定の揺動方向に付勢することでベルトに一定の張力を付与する。また同時に、エンジンの回転速度の変動等により生じるベルトの張力変動を、揺動アームの弾性的な揺動によって吸収し、ベルトの振動や異音の発生を防止して、ベルト本来の寿命を確保することができる。また、補機の取付誤差、温度変化による寸法変化、又は、ベルトの長さのばらつき等を吸収することができる。
A belt is generally used as means for transmitting power from an engine to an auxiliary machine such as an alternator. The belt tension is kept constant by the auto tensioner. The auto tensioner has a pulley around which the belt is wound around the tip of a swing arm which can swing around a support portion fixed to an engine or the like. It can be elastically swung by an elastic force generated by a torsion coil spring attached between the arm and the support (see, for example, Patent Document 1).
Such an auto tensioner applies a certain tension to the belt by urging the pulley in a predetermined swinging direction. At the same time, fluctuations in belt tension caused by fluctuations in engine rotation speed, etc. are absorbed by the elastic swing of the swing arm, preventing belt vibration and abnormal noise to ensure the original life of the belt. can do. Further, it is possible to absorb an attachment error of the auxiliary machine, a dimensional change due to a temperature change, a belt length variation, and the like.

特開平7−4481号公報(図1)Japanese Patent Laid-Open No. 7-4481 (FIG. 1)

上記従来例のオートテンショナによれば、揺動アームのベルト張力の変動吸収特性は、上記ねじりコイルばねに依存しているが、このねじりコイルばねは、当該オートテンショナに組み込むことができる程度の大きさに制限されるため、その線径や自由長、巻き数等が制限され、ねじりコイルばねの弾性力の特性を自由に設定することができなかった。このため、オートテンショナとしてのベルト張力の変動吸収特性を設定する際の自由度が制限されてしまい、ベルト張力の変動を十分に吸収できない場合があった。
本発明はこのような事情に鑑みなされたものであり、ベルト張力の変動をより効果的に吸収することができるオートテンショナを提供することを目的とする。
According to the conventional auto tensioner, the fluctuation absorption characteristic of the belt tension of the swing arm depends on the torsion coil spring, and the torsion coil spring is large enough to be incorporated in the auto tensioner. Therefore, the wire diameter, the free length, the number of windings, and the like are limited, and the characteristics of the elastic force of the torsion coil spring cannot be set freely. For this reason, the degree of freedom in setting the fluctuation absorption characteristic of the belt tension as an auto tensioner is limited, and the fluctuation of the belt tension may not be sufficiently absorbed.
The present invention has been made in view of such circumstances, and an object thereof is to provide an auto tensioner capable of more effectively absorbing fluctuations in belt tension.

本発明のオートテンショナは、内周に外側軌道面が形成された筒状の基端部、及びこの基端部から延びるとともにベルトが巻き掛けられるプーリが回転自在に固定されたアームを有する揺動アームと、外周側に前記外側軌道面に対向する内側軌道面を有し前記基端部を相対回転可能に支持することで前記揺動アームを揺動自在に支持する支持部材と、前記外側軌道面と前記内側軌道面との間に転動可能に介在した転動体とを備え、前記内側軌道面及び外側軌道面の少なくとも一方が、前記基端部と前記支持部材との相対回転に伴い転動体を転動させつつ当該転動体の挟持間隔を漸次狭くして、前記相対回転により生じた前記基端部と前記支持部材との間の位相差を解消する方向の回動付勢力を前記基端部と前記支持部材との間に付与する異形軌道面を少なくとも一部に有しており、この回動付勢力によって、前記揺動アームを所定の揺動方向に付勢することを特徴としている。   The auto tensioner of the present invention has a cylindrical base end portion having an outer raceway surface formed on the inner periphery, and a swing having an arm that is rotatably fixed to a pulley that extends from the base end portion and on which a belt is wound. An arm, a support member having an inner raceway surface facing the outer raceway surface on an outer peripheral side and supporting the base end part so as to be relatively rotatable, and the outer raceway, A rolling element interposed between the inner raceway surface and the inner raceway surface such that at least one of the inner raceway surface and the outer raceway surface rolls with relative rotation between the base end portion and the support member. The rolling biasing force in a direction to eliminate the phase difference between the base end portion and the support member generated by the relative rotation by gradually narrowing the holding interval of the rolling body while rolling the moving body. Variant applied between the end and the support member Has at least a portion the road surface, by the turn biasing force, it is characterized by biasing the swing arm in a predetermined oscillation direction.

上記のように構成されたオートテンショナによれば、ねじりコイルばね等を用いることなく簡素な構成で回動付勢機能(ねじりばね性)を、基端部と支持部材との間に付与することができる。すなわち、このねじりばね性によって、揺動アームを弾性的に揺動させ、前記揺動アームを所定の揺動方向に付勢することができる。これによって、プーリに巻き掛けられるベルトに張力を付与することができる。また、上記構成により得られるねじりばね性の特性は、異形軌道面の形状や転動体の外径等を変更することで、多様に変化させることができ、その設定の自由度が極めて高くなる。従って、エンジンの特性や仕様等に応じて、揺動アームが揺動する際の弾性力特性を好適に設定することができる。   According to the auto tensioner configured as described above, a rotation biasing function (torsion spring property) is imparted between the base end portion and the support member with a simple configuration without using a torsion coil spring or the like. Can do. In other words, this torsion spring property makes it possible to elastically swing the swing arm and to bias the swing arm in a predetermined swing direction. As a result, tension can be applied to the belt wound around the pulley. In addition, the torsion spring property obtained by the above configuration can be changed in various ways by changing the shape of the irregular raceway surface, the outer diameter of the rolling element, etc., and the degree of freedom of setting becomes extremely high. Therefore, the elastic force characteristics when the swing arm swings can be suitably set according to the characteristics and specifications of the engine.

また、上記オートテンショナにおいて、前記基端部と、前記支持部材との間には、これらを互いに相対回転可能に支持する転がり軸受が介装されていることが好ましい。
この場合、前記基端部に作用するラジアル方向の負荷荷重を前記転がり軸受によって支持することができるので、異形軌道面及び転動体に作用する外部からの負荷荷重を低減できる。従って、上記ねじりばね性をより安定して得ることができる。
In the autotensioner, it is preferable that a rolling bearing that supports the base end portion and the support member so as to be relatively rotatable with each other is interposed between the base end portion and the support member.
In this case, since the radial load acting on the base end portion can be supported by the rolling bearing, the external load acting on the deformed raceway surface and the rolling element can be reduced. Therefore, the torsion spring property can be obtained more stably.

以上のように、本発明に係るオートテンショナによれば、揺動アームが揺動する際の弾性力特性を好適に設定することができるので、ベルト張力の変動をより効果的に吸収することができる。   As described above, according to the autotensioner according to the present invention, the elastic force characteristics when the swing arm swings can be suitably set, so that the belt tension fluctuation can be absorbed more effectively. it can.

次に、本発明の好ましい実施形態について添付図面を参照しながら説明する。図1及び図2はそれぞれ、本発明の一実施形態によるオートテンショナの断面図及び側面図である。図1において、揺動アーム30は、ほぼ筒状の基端部3と、この基端部3から延びるとともにベルト50が巻き掛けられるプーリ6が固定されたアーム7とが一体成形された成形部材である。プーリ6は、その中心部に玉軸受8が装着されている。この玉軸受8の内輪は、アーム7の先端部7aに外嵌され、ボルト9及びナット10によって先端部7aに固定されている。このようにして、プーリ6は、アーム7の先端部7aに回転自在に固定されている。   Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings. 1 and 2 are a cross-sectional view and a side view, respectively, of an auto tensioner according to an embodiment of the present invention. In FIG. 1, a swing arm 30 is a molded member in which a substantially cylindrical base end portion 3 and an arm 7 that extends from the base end portion 3 and on which a pulley 6 around which a belt 50 is wound are fixed. It is. The pulley 6 has a ball bearing 8 mounted at the center thereof. The inner ring of the ball bearing 8 is fitted on the distal end portion 7 a of the arm 7 and is fixed to the distal end portion 7 a by a bolt 9 and a nut 10. In this way, the pulley 6 is rotatably fixed to the distal end portion 7 a of the arm 7.

一方、揺動アーム30を支持する支持部材2は、中空軸状に形成された軸部25と、当該オートテンショナ1が取り付けられるエンジンに固定するための固定部26とを有する成形部材である。軸部25は、基端部3の内周側に同軸に配置されており、この軸部25と、基端部3との間には、転動体としての円筒ころ4が転動可能に介在している。また、基端部3の内周面には、円筒ころ4が転動する外側軌道面31が形成されているとともに、軸部25の外周面には、円筒ころ4が転動する内側軌道面21が、外側軌道面31に対向して形成されている。   On the other hand, the support member 2 that supports the swing arm 30 is a molded member having a shaft portion 25 formed in a hollow shaft shape and a fixing portion 26 for fixing to the engine to which the auto tensioner 1 is attached. The shaft portion 25 is coaxially disposed on the inner peripheral side of the base end portion 3, and the cylindrical roller 4 as a rolling element is interposed between the shaft portion 25 and the base end portion 3 so as to be able to roll. is doing. An outer raceway surface 31 on which the cylindrical roller 4 rolls is formed on the inner peripheral surface of the base end portion 3, and an inner raceway surface on which the cylindrical roller 4 rolls on the outer peripheral surface of the shaft portion 25. 21 is formed opposite to the outer raceway surface 31.

基端部3と軸部25との間には、転がり軸受51、52が円筒ころ4の軸方向両側に位置するように介装されており、基端部3と軸部25とを互いに相対回転可能とするとともに、基端部3に作用するラジアル方向の荷重を支持している。また、軸部25の端部には、円筒ころ4及び転がり軸受51、52が軸部25から抜けないように固定するための押さえ部材53が圧入嵌合されている。   Rolling bearings 51 and 52 are interposed between the base end portion 3 and the shaft portion 25 so as to be positioned on both sides of the cylindrical roller 4 in the axial direction, so that the base end portion 3 and the shaft portion 25 are relative to each other. While being able to rotate, the load of the radial direction which acts on the base end part 3 is supported. In addition, a pressing member 53 for press-fitting the cylindrical roller 4 and the rolling bearings 51 and 52 so as not to come out of the shaft portion 25 is press-fitted and fitted to the end portion of the shaft portion 25.

次に、軸部25及び基端部3にそれぞれ設けちれた内側軌道面21及び外側軌道面31について説明する。図3は、図1中III−III線の断面の拡大図である。軸部25の内側軌道面21は、軸部25及び基端部3の回転軸Xを中心とする円周面とは異なる4個の異形軌道面としての内側異形軌道面2kを連続的に形成することにより構成されている。外側軌道面31は、4個の異形軌道面としての外側異形軌道面3kを連続的に形成することにより構成されている。
内側軌道面21を構成する各内側異形軌道面2kはすべて同一形状であり、外側軌道面31を構成する各外側異形軌道面3kもすべて同一形状である。内側軌道面21は周方向に均等に(90度ごとに)4分割され、各分割部分がそれぞれ内側異形軌道面2kとされている。同様に、外側軌道面31も周方向に均等に(90度ごとに)4分割され、各分割部分がそれぞれ外側異形軌道面3kとされている。そして、各異形軌道面2k、3k間に1個ずつ円筒ころ4が配置されている。
また、軸部25と基端部3との間には、内側異形軌道面2k及び外側異形軌道面3kにより、軌道面間隔が周方向に漸次狭くなる漸縮空間部(くさび状空間部)が形成され、軸部25と基端部3との相対回転に伴い所謂くさび効果によって円筒ころ4が圧縮弾性変形する。上記の如く、内側軌道面21及び外側軌道面31をそれぞれ異形軌道面2k、3kの連続により形成することで、内側軌道面21及び外側軌道面31はそれぞれ異形軌道面2k、3kのみによって占められている。しかも、各異形軌道面2k,3kは周方向に等配されている。
Next, the inner raceway surface 21 and the outer raceway surface 31 provided on the shaft portion 25 and the base end portion 3 will be described. FIG. 3 is an enlarged view of a cross section taken along line III-III in FIG. The inner raceway surface 21 of the shaft portion 25 continuously forms inner deformed raceway surfaces 2k as four deformed raceway surfaces different from the circumferential surface around the rotation axis X of the shaft portion 25 and the base end portion 3. It is comprised by doing. The outer raceway surface 31 is configured by continuously forming outer variant raceway surfaces 3k as four variant raceway surfaces.
Each inner deformed raceway surface 2k constituting the inner raceway surface 21 has the same shape, and each outer deformed raceway surface 3k constituting the outer raceway surface 31 has the same shape. The inner raceway surface 21 is equally divided into four in the circumferential direction (every 90 degrees), and each divided portion is an inner deformed raceway surface 2k. Similarly, the outer raceway surface 31 is also equally divided into four in the circumferential direction (every 90 degrees), and each divided portion is an outer deformed raceway surface 3k. One cylindrical roller 4 is disposed between each of the irregular raceway surfaces 2k and 3k.
Further, between the shaft portion 25 and the base end portion 3, there is a gradually reduced space portion (wedge-shaped space portion) in which the raceway surface interval gradually decreases in the circumferential direction due to the inner deformed raceway surface 2k and the outer deformed raceway surface 3k. The cylindrical roller 4 is compressed and elastically deformed by a so-called wedge effect with the relative rotation between the shaft portion 25 and the base end portion 3. As described above, the inner raceway surface 21 and the outer raceway surface 31 are formed by continuation of the modified raceway surfaces 2k and 3k, respectively, so that the inner raceway surface 21 and the outer raceway surface 31 are occupied only by the variant raceway surfaces 2k and 3k, respectively. ing. In addition, the deformed raceway surfaces 2k and 3k are equally arranged in the circumferential direction.

次に、外側異形軌道面3k及び内側異形動道面2kの輪郭形状について詳述する。
外側軌道面31を構成する4個の外側異形軌道面3kは、それぞれ凹曲面とされている。具体的には、外側異形軌道面3kは軸部25及び基端部3の回転軸X(以下、軸中心Xともいう)よりも軌道面(当該外側異形軌道面3k)に近い側に位置する外輪軌道曲率中心Coを中心とする円周面とされている。この外側異形軌道面3kの曲率半径groは、外側軌道面31と軸中心Xとの距離の最大値であって外側軌道面31の断面輪郭線に外接する円の半径である外側軌道基準半径Roよりも小さい。また、断面視において、3つの各外側異形軌道面3kのそれぞれに関し、外側軌道曲率中心Coは、軸中心Xからの距離が最大値となる外側軌道最大径位置3mと軸中心Xとを含む直線p3上にある。
Next, the contour shapes of the outer deformed raceway surface 3k and the inner deformed raceway surface 2k will be described in detail.
Each of the four outer deformed track surfaces 3k constituting the outer track surface 31 is a concave curved surface. Specifically, the outer deformed raceway surface 3k is located closer to the raceway surface (the outer deformed raceway surface 3k) than the rotation axis X (hereinafter also referred to as the shaft center X) of the shaft portion 25 and the base end portion 3. The circumferential surface is centered on the outer ring raceway curvature center Co. The curvature radius gro of the outer deformed raceway surface 3k is the maximum value of the distance between the outer raceway surface 31 and the axis center X, and is the outer track reference radius Ro that is the radius of a circle circumscribing the cross-sectional contour line of the outer raceway surface 31. Smaller than. Further, in a cross-sectional view, with respect to each of the three outer deformed raceway surfaces 3k, the outer raceway curvature center Co is a straight line including the outer track maximum radial position 3m and the shaft center X where the distance from the shaft center X is the maximum value. on p3.


内側軌道面21を構成する4個の内側異形軌道面2kは、それぞれ凸曲面とされている。具体的には、内側異形軌道面2kは軸中心Xよりも軌道面(当該内側異形軌道面2k)から遠い側に位置する内側軌道曲率中心Ciを中心とする円周面とされている。この内側異形軌道面2kの曲率半径griは、内側軌道面21と軸中心Xとの距離の最小値であって内側軌道面21の断面輪郭線に内接する円の半径である内側軌道基準半径Riよりも大きい。また、断面視において、3つの各内側異形軌道面2kのそれぞれに関し、内側軌道曲率中心Ciは、軸中心Xからの距離が最小値となる内側軌道最小径位置2mと軸中心Xとを含む直線p2上にある。
.
Each of the four inner deformed track surfaces 2k constituting the inner track surface 21 is a convex curved surface. Specifically, the inner deformed track surface 2k is a circumferential surface centered on the inner track curvature center Ci located on the side farther from the track surface (the inner deformed track surface 2k) than the axis center X. The curvature radius gri of the inner deformed raceway surface 2k is the minimum value of the distance between the inner raceway surface 21 and the axis center X and is the radius of a circle inscribed in the cross-sectional contour line of the inner raceway surface 21. Bigger than. Further, in a cross-sectional view, for each of the three inner deformed raceway surfaces 2k, the inner raceway curvature center Ci is a straight line including the inner raceway minimum diameter position 2m at which the distance from the shaft center X is the minimum and the shaft center X. on p2.

以上のような形状の両軌道面21、31が設けられている軸部25及び基端部3は、これらが相対回転した時に、その相対回転に伴う位相差を解消する方向への回動付勢機能(ねじりばね機能)を有している。以下、この点について説明する。
内側軌道面21及び外側軌道面31は、上述したように、いずれも軸中心Xを中心とする円周面ではないので、内側軌道面21と外側軌道面31との間の空間(転動空間)の形状は軸部25と基端部3との相対位相関係により変化するが、図3の状態は、外側軌道面31の外側軌道最大径位置3mと内側軌道面21の内側軌道最小径位置2mとが同位相とされた状態である。以下、この状態を基準状態ということとする。この基準状態において、各円筒ころ4は、内側軌道最小径位置2m及び外側軌道最大径位置3mと接する周方向位置に配置される。この基準状態は、外側異形軌道面3kと内側異形軌道面2kとによる円筒ころ4の挟持間隔(円筒ころ4の接触位置における軌道面間隔)が最も広い状態である。よって、この基準状態では、両軌道面2k、3kから円筒ころ4に作用する圧縮力は最小値(たとえば0)となる。
なお、基準状態における内側軌道最小径位置2mと外側軌道最大径位置3mとの間の径方向距離は円筒ころ4の直径と略一致させるが、若干のラジアル隙間(プラス隙間又はマイナス隙間)を与えても良い。
The shaft portion 25 and the base end portion 3 provided with both the raceway surfaces 21 and 31 having the above-described shape are rotated in a direction to eliminate a phase difference caused by the relative rotation when they are relatively rotated. It has a biasing function (torsion spring function). Hereinafter, this point will be described.
As described above, since the inner raceway surface 21 and the outer raceway surface 31 are not circumferential surfaces around the axis center X, a space (rolling space) between the inner raceway surface 21 and the outer raceway surface 31 is used. 3) changes depending on the relative phase relationship between the shaft portion 25 and the base end portion 3, but the state in FIG. 3 is the outer track maximum diameter position 3 m of the outer track surface 31 and the inner track minimum diameter position of the inner track surface 21. 2m is in the same phase. Hereinafter, this state is referred to as a reference state. In this reference state, each cylindrical roller 4 is arranged at a circumferential position in contact with the inner track minimum diameter position 2 m and the outer track maximum diameter position 3 m. This reference state is a state in which the holding interval of the cylindrical roller 4 between the outer deformed raceway surface 3k and the inner deformed raceway surface 2k (the track surface interval at the contact position of the cylindrical roller 4) is the widest. Therefore, in this reference state, the compressive force acting on the cylindrical roller 4 from both the raceway surfaces 2k and 3k becomes a minimum value (for example, 0).
Note that the radial distance between the inner track minimum diameter position 2 m and the outer track maximum diameter position 3 m in the reference state is substantially the same as the diameter of the cylindrical roller 4, but gives a slight radial gap (plus gap or minus gap). May be.

次に、この基準状態から軸部25と基端部3とを相対回転させると、円筒ころ4が転動するとともに、当該円筒ころ4の挟持間隔は漸次狭くなる。よってこの相対回転に伴い円筒ころ4は内側軌道面21及び外側軌道面31により圧縮されて弾性圧縮変形し、この相対回転により生じた位相差を解消する方向の回動付勢力(弾性力;ねじりばね力)を軸部25と基端部3との間に付与する。   Next, when the shaft portion 25 and the base end portion 3 are relatively rotated from this reference state, the cylindrical roller 4 rolls and the holding interval of the cylindrical roller 4 gradually decreases. Accordingly, with this relative rotation, the cylindrical roller 4 is compressed by the inner raceway surface 21 and the outer raceway surface 31 to be elastically compressed and deformed, and a rotational biasing force (elastic force; torsion) in a direction to eliminate the phase difference caused by this relative rotation. (Spring force) is applied between the shaft portion 25 and the base end portion 3.

上記の回動付勢力(ねじりばね力)が生じる点について更に詳細に説明する。図4は、軸部25と基端部3との相対回転により発生する回動付勢力について説明するための断面図であり、理解しやすいように内側異形軌道面2k及び外側異形軌道面3kと円筒ころ4の断面線のみを示している。図4では、軸部25を固定し、基端部3を反時計回りに角度θだけ回転させて静止させた釣り合い状態を示している。基準状態では、外側軌道最大径位置3mは図4のx軸上の位置3miに位置し、且つ内側軌道最小径位置2mもx軸上にある。またこの基準状態では円筒ころ4の中心Prもx軸上にある。かかる基準状態から基端部3を角度θだけ反時計回りに回転させると、円筒ころ4が図4に示す位置まで反時計回りに転動する。この転動による円筒ころ4の公転角度は、内側軌道曲率中心Ciに対して角度φiである。   The point at which the rotational biasing force (torsion spring force) is generated will be described in more detail. FIG. 4 is a cross-sectional view for explaining the rotational biasing force generated by the relative rotation between the shaft portion 25 and the base end portion 3, and the inner deformed track surface 2k and the outer deformed track surface 3k for easy understanding. Only the cross-sectional line of the cylindrical roller 4 is shown. FIG. 4 shows a balanced state in which the shaft portion 25 is fixed and the base end portion 3 is rotated counterclockwise by an angle θ to be stationary. In the reference state, the outer track maximum diameter position 3m is located at a position 3mi on the x axis in FIG. 4, and the inner track minimum diameter position 2m is also on the x axis. In this reference state, the center Pr of the cylindrical roller 4 is also on the x axis. When the base end 3 is rotated counterclockwise by an angle θ from such a reference state, the cylindrical roller 4 rolls counterclockwise to the position shown in FIG. The revolution angle of the cylindrical roller 4 due to this rolling is an angle φi with respect to the inner track curvature center Ci.

このとき、内側異形軌道面2kと円筒ころ4との接触位置の中心をPi、外側異形軌道面3kと円筒ころ4との接触位置の中心をPoとすると、PiとPoとの間の間隔は、基準状態における内側軌道最小径位置2mと外側軌道最大径位置3mとの間の間隔よりも狭くなっており、且つ、円筒ころ4の直径2Rr(円筒ころ4の半径Rrの2倍)よりも狭くなっている。よって、円筒ころ4は、内側軌道面21から垂直力Qiを受けるとともに、外側軌道面31から垂直力Qoを受けて圧縮弾性変形する。釣り合って静止している状態では、円筒ころ4に接線力は殆ど働かず、図4に示すように点Ci,Co,Pi,Pr,Poは直線L1上に並ぶこととなる。そして、上記垂直カQi及び垂直力Qoのベクトルの向きも直線L1と同じ向きとなり、軸部25が円筒ころ4から受ける垂直力Qi′、及び、基端部3が円筒ころ4から受ける垂直力Qo′も直線L1と同じ向きとなる。そして、基端部3が円筒ころ4から受ける垂直力Qo′は、軸中心Xを中心とする径方向(円筒ころ4との接触位置の中心Poと軸中心Xとを結ぶ方向)と相違しており、当該径方向の成分とともに時計回りの成分を有することとなる。このようにして、基端部3は、回動付勢力を発生させる時計回り方向のモーメント(以下、回動付勢モーメントともいう)を受ける。回動付勢モーメントの大きさは、〔(ベクトルQo′の大きさ)×(軸中心Xから直線L1までの距離Ul)〕となる。   At this time, if the center of the contact position between the inner deformed raceway surface 2k and the cylindrical roller 4 is Pi and the center of the contact position between the outer deformed track surface 3k and the cylindrical roller 4 is Po, the distance between Pi and Po is The distance between the minimum inner track diameter position 2m and the maximum outer track diameter position 3m in the reference state is narrower than the diameter 2Rr of the cylindrical roller 4 (twice the radius Rr of the cylindrical roller 4). It is narrower. Therefore, the cylindrical roller 4 receives the vertical force Qi from the inner raceway surface 21 and also receives the vertical force Qo from the outer raceway surface 31 and undergoes compression elastic deformation. In a balanced and stationary state, almost no tangential force acts on the cylindrical roller 4, and the points Ci, Co, Pi, Pr, Po are aligned on the straight line L1 as shown in FIG. The direction of the vector of the vertical force Qi and the vertical force Qo is the same as that of the straight line L1. Qo ′ is also in the same direction as the straight line L1. The normal force Qo ′ received by the base end portion 3 from the cylindrical roller 4 is different from the radial direction around the axial center X (the direction connecting the center Po of the contact position with the cylindrical roller 4 and the axial center X). Therefore, it has a clockwise component together with the radial component. In this way, the base end portion 3 receives a clockwise moment (hereinafter also referred to as a rotation biasing moment) that generates a rotation biasing force. The magnitude of the rotation urging moment is [(size of vector Qo ′) × (distance Ul from axis center X to straight line L1)].

上述したように、内側異形軌道面2kは凸曲面であり、且つ、外側異形軌道面3kは凹曲面である。しかも、内側異形軌道面2k及び外側異形動道面3kは滑らかに連続した曲面を構成している。内側軌道面21において滑らかに連続した曲面となっていないのは、隣り合った内側異形軌道面2k同士間の境界位置21bのみであり(図3参照)、外側軌道面31において滑らかに連続した曲面となっていないのは、隣り合った外側異形軌道面3k同士間の境界位置31bのみである(図3参照)。したがって、円筒ころ4と軌道面との接触位置がこれら境界位置21b,31bに達しない限り、軸部25と基端部3との相対回転に伴う円筒ころ4接触位置における軌道面間隔は漸次(徐々に)変化することとなる。そして、図4を用いて説明した上記機構により、軸部25と基端部3との相対回転により生じた位相差を解消する方向の回動付勢力が軸部25と基端部3との間に付与される。   As described above, the inner deformed track surface 2k is a convex curved surface, and the outer deformed track surface 3k is a concave curved surface. In addition, the inner deformed raceway surface 2k and the outer deformed raceway surface 3k constitute a smoothly continuous curved surface. Only the boundary position 21b between the adjacent inner deformed raceway surfaces 2k is not a smoothly continuous curved surface in the inner raceway surface 21 (see FIG. 3), and the smoothly continuous curved surface in the outer raceway surface 31. Only the boundary position 31b between the adjacent outer deformed raceway surfaces 3k is not (see FIG. 3). Therefore, as long as the contact position between the cylindrical roller 4 and the raceway surface does not reach these boundary positions 21b and 31b, the raceway surface spacing at the cylindrical roller 4 contact position associated with the relative rotation between the shaft portion 25 and the base end portion 3 is gradually increased ( Will gradually change). Then, by the mechanism described with reference to FIG. 4, the rotational biasing force in a direction to eliminate the phase difference caused by the relative rotation between the shaft portion 25 and the base end portion 3 is generated between the shaft portion 25 and the base end portion 3. Granted in between.

上記のようにして、軸部25は基端部3を相対回転可能に支持し、揺動アーム30は、支持部材2に対して、揺動可能となる。オートテンショナ1は、プーリ6にベルト50が巻き掛けられた状態で揺動アーム30を、上記の回動付勢力によって、図2の時計回り方向に付勢し、ベルト1に一定の張力を与える。   As described above, the shaft portion 25 supports the base end portion 3 so as to be relatively rotatable, and the swing arm 30 is swingable with respect to the support member 2. The auto tensioner 1 urges the swing arm 30 in the clockwise direction of FIG. 2 by the rotational urging force in a state where the belt 50 is wound around the pulley 6, and gives a constant tension to the belt 1. .

上記のように構成されたオートテンショナ1によれば、ねじりコイルばね等を用いることのない簡素な構成で回動付勢機能(ねじりばね性)を、軸部25(軸支持部材2)と基端部3との間に付与することができる。すなわち、このねじりばね性によって、揺動アーム30を軸部25を中心として弾性的に揺動させることができ、ベルト50に張力を付与することができる。また、上記構成により得られるねじりばね性の特性は、両異形軌道面2k、3kの形状や円筒ころ4の外径等を変更することで、多様に変化させることができ、その設定の自由度が極めて高くなる。従って、エンジンの特性や仕様等に応じて、揺動アーム30が揺動する際の弾性力特性を好適に設定することができ、ベルト50の張力変動をより効果的に吸収することができる。   According to the auto tensioner 1 configured as described above, the rotation urging function (torsion spring property) can be performed with the shaft portion 25 (the shaft support member 2) and the base with a simple configuration without using a torsion coil spring or the like. It can be applied between the end 3. That is, the torsion spring property allows the swing arm 30 to be elastically swung around the shaft portion 25, and tension can be applied to the belt 50. Further, the torsion spring characteristics obtained by the above configuration can be varied in various ways by changing the shapes of the two or two deformed raceway surfaces 2k and 3k, the outer diameter of the cylindrical roller 4, etc. Becomes extremely high. Therefore, the elastic force characteristic when the swing arm 30 swings can be suitably set according to the characteristics and specifications of the engine, and the tension variation of the belt 50 can be absorbed more effectively.

また、上記実施形態のオートテンショナ1は、円筒ころ4と、内側軌道面21及び外側軌道面31との間の転動部位を、オイルやグリース等の潤滑剤で潤滑した場合、円筒ころ4が転動する際の潤滑剤の転がり粘性抵抗や撹拌抵抗によって減衰機能を付与することができ、ねじりばね性を有するとともに、作用する外力及び前記外力の反力としての回動付勢力を減衰する減衰機能を兼ね備えたものとすることができる。これにより、本実施形態のオートテンショナ1は、ねじりばね性によって生じる共振等を減衰、緩和することができる。   In the auto tensioner 1 of the above embodiment, when the rolling part between the cylindrical roller 4 and the inner raceway surface 21 and the outer raceway surface 31 is lubricated with a lubricant such as oil or grease, the cylindrical roller 4 Attenuation function can be imparted by rolling viscous resistance and agitation resistance of the lubricant when rolling, and it has torsion spring properties and also attenuates the external force acting and the rotational biasing force as the reaction force of the external force It can have a function. Thereby, the auto tensioner 1 of this embodiment can attenuate and relieve resonance and the like caused by the torsion spring property.

また、このオートテンショナ1において、軸部25と基端部3との間には、転がり軸受51、52が介装されており、これらによって、軸部25と基端部3との間に作用するラジアル方向の荷重を支持している。これによって、両異形軌道面2k、3k及び円筒ころ4に作用する外部からの負荷荷重を低減できるので、回動付勢力を生じさせるために必要な負荷を、これら両異形軌道面2k、3k及び円筒ころ4に安定的に作用させることができる。従って、当該オートテンショナ1により得られる回動付勢力をより安定したものにできる。   In the auto tensioner 1, rolling bearings 51 and 52 are interposed between the shaft portion 25 and the base end portion 3, thereby acting between the shaft portion 25 and the base end portion 3. Supports radial load. As a result, the externally applied load acting on the deformed raceway surfaces 2k and 3k and the cylindrical roller 4 can be reduced. Therefore, the load necessary for generating the rotational biasing force can be reduced to the both deformed track surfaces 2k and 3k and The cylindrical roller 4 can be made to act stably. Therefore, the rotational urging force obtained by the auto tensioner 1 can be made more stable.

また、従来のねじりコイルばねを用いたオートテンショナと比較して、連続使用や経時変化による劣化を抑制することができ、長寿命化が可能となる。更に、周辺構造が簡素化でき、部品点数や組み立てコストの低減化や、信頼性の向上、当該オートテンショナの小型化等を図ることができる。   In addition, compared with a conventional auto tensioner using a torsion coil spring, deterioration due to continuous use or change with time can be suppressed, and a longer life can be achieved. Furthermore, the peripheral structure can be simplified, the number of parts and assembly cost can be reduced, the reliability can be improved, and the auto tensioner can be reduced in size.

尚、本発明のオートテンショナは上記実施形態のみに限定されるものではない。上記実施形態では、揺動アーム30において、基端部3とアーム7とを一体に成形したものを例示したが、例えば、基端部3とアーム7とを別部材として成型し、これらを−体に固定することで揺動アームを構成してもよい。
また、上記実施形態では、転動体として円筒ころを用いたが、例えば球や円すいころ等を用いてもよく、軸部と基端部との相対回転に伴い転動するものであれば、転動体の形状等は特に限定されない。また、ねじり剛性の設定自由度を高めるため、弾性圧縮変形しやすい中空の転動体(例えば中空の円筒ころや中空の球)等を用いることもできる。また、転動体の材質は、当該オートテンショナに求められる性能に合わせて適宜選択される。
The auto tensioner of the present invention is not limited to the above embodiment. In the above embodiment, the rocking arm 30 is illustrated in which the base end portion 3 and the arm 7 are integrally formed. For example, the base end portion 3 and the arm 7 are formed as separate members, and these are − The swing arm may be configured by being fixed to the body.
In the above embodiment, a cylindrical roller is used as the rolling element. However, for example, a sphere or a tapered roller may be used. If the roller rolls with relative rotation between the shaft portion and the base end portion, the rolling roller may be used. The shape of the moving body is not particularly limited. In order to increase the degree of freedom in setting torsional rigidity, a hollow rolling element (for example, a hollow cylindrical roller or a hollow sphere) that is easily elastically compressed and deformed can be used. Further, the material of the rolling element is appropriately selected according to the performance required for the auto tensioner.

本発明の一実施形態によるオートテンショナの断面図である。It is sectional drawing of the auto tensioner by one Embodiment of this invention. 本発明の一実施形態によるオートテンショナの側面図である。It is a side view of the auto tensioner by one Embodiment of this invention. 図1中、III−III線の断面の拡大図である。FIG. 3 is an enlarged view of a cross section taken along line III-III in FIG. 1. 軸部(支持部材)と基端部との相対回転により発生する回動付勢力について説明するための断面図である。It is sectional drawing for demonstrating the rotation energizing force which generate | occur | produces by the relative rotation of a shaft part (support member) and a base end part.

符号の説明Explanation of symbols

1 オートテンショナ
2 支持部材
21 内側軌道面
2k 内側異形軌道面
3 基端部
30 揺動アーム
31 外側軌道面
3k 外側異形軌道面
4 円筒ころ(転動体)
50 ベルト
51,52 転がり軸受
6 プーリ
7 アーム
DESCRIPTION OF SYMBOLS 1 Autotensioner 2 Support member 21 Inner raceway surface 2k Inner variant raceway surface 3 Base end part 30 Swing arm 31 Outer raceway surface 3k Outer variant raceway surface 4 Cylindrical roller (rolling element)
50 Belt 51, 52 Rolling bearing 6 Pulley 7 Arm

Claims (2)

内周に外側軌道面が形成された筒状の基端部、及びこの基端部から延びるとともにベルトが巻き掛けられるプーリが回転自在に固定されたアームを有する揺動アームと、
外周側に前記外側軌道面に対向する内側軌道面を有し前記基端部を相対回転可能に支持することで前記揺動アームを揺動自在に支持する支持部材と、
前記外側軌道面と前記内側軌道面との間に転動可能に介在した転動体とを備え、
前記内側軌道面及び外側軌道面の少なくとも一方が、前記基端部と前記支持部材との相対回転に伴い転動体を転動させつつ当該転動体の挟持間隔を漸次狭くして、前記相対回転により生じた前記基端部と前記支持部材との間の位相差を解消する方向の回動付勢力を前記基端部と前記支持部材との間に付与する異形軌道面を少なくとも一部に有しており、この回動付勢力によって、前記揺動アームを所定の揺動方向に付勢することを特徴とするオートテンショナ。
A oscillating arm having a cylindrical base end portion having an outer raceway surface formed on the inner periphery, and an arm that extends from the base end portion and on which a pulley around which a belt is wound is rotatably fixed;
A support member that has an inner raceway surface that opposes the outer raceway surface on an outer peripheral side, and supports the swing arm in a swingable manner by supporting the base end portion in a relatively rotatable manner;
A rolling element interposed between the outer raceway surface and the inner raceway surface in a rollable manner;
At least one of the inner raceway surface and the outer raceway surface rolls the rolling element along with the relative rotation between the base end portion and the support member, gradually reducing the holding interval of the rolling element, and the relative rotation At least partly has a deformed raceway surface that imparts a rotation biasing force between the base end portion and the support member in a direction to eliminate the phase difference between the base end portion and the support member. An auto tensioner characterized in that the swinging arm biases the swing arm in a predetermined swing direction.
前記基端部と、前記支持部材との間には、これらを互いに相対回転可能に支持する転がり軸受が介装されている請求項1記載のオートテンショナ。   The auto tensioner according to claim 1, wherein a rolling bearing that supports the base end portion and the support member so as to be relatively rotatable with each other is interposed between the base end portion and the support member.
JP2005299975A 2005-10-14 2005-10-14 Auto tensioner Pending JP2007107640A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005299975A JP2007107640A (en) 2005-10-14 2005-10-14 Auto tensioner
EP06811743A EP1947370A1 (en) 2005-10-14 2006-10-13 Pulley apparatus and auto-tensioner
US12/083,517 US20090291790A1 (en) 2005-10-14 2006-10-13 Pulley Assembly and Auto-Tensioner
PCT/JP2006/320464 WO2007043650A1 (en) 2005-10-14 2006-10-13 Pulley apparatus and auto-tensioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299975A JP2007107640A (en) 2005-10-14 2005-10-14 Auto tensioner

Publications (1)

Publication Number Publication Date
JP2007107640A true JP2007107640A (en) 2007-04-26

Family

ID=38033658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299975A Pending JP2007107640A (en) 2005-10-14 2005-10-14 Auto tensioner

Country Status (1)

Country Link
JP (1) JP2007107640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392855A (en) * 2011-11-08 2012-03-28 纪云龙 Wave-surface shaft device and use method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392855A (en) * 2011-11-08 2012-03-28 纪云龙 Wave-surface shaft device and use method

Similar Documents

Publication Publication Date Title
JP4657590B2 (en) Sliding bearing and bearing mechanism including the same
US8257210B2 (en) Rotation urging mechanism and pulley device
JP2007187285A (en) Bush bearing and rack-pinion type steering device of automobile using the same
JP2006226400A (en) Shaft device
JP2006234152A (en) Bearing mechanism with sliding bearing
WO2007043650A1 (en) Pulley apparatus and auto-tensioner
EP2045485A1 (en) Rotation urging device
JP2007107640A (en) Auto tensioner
JPH08184357A (en) Auto tensioner
JP2006307890A (en) Rotary urging device
JP2006170420A (en) Outer ring for half-split bearing and half-split bearing provided therewith
JP5327125B2 (en) Pendulum dynamic damper
JP2007107636A (en) Crank pulley device
JP2007107633A (en) Pulley device for alternator
JP2007205379A (en) Pulley
JP2009243560A (en) Pressurizing roller device
JP4622254B2 (en) Bearing device
JP3734755B2 (en) Auto tensioner
JP2007120624A (en) Autotensioner
JP4811521B2 (en) Sliding bearing and bearing mechanism including the same
JP2005282659A (en) Power transmission device
KR101262485B1 (en) Idler device
JP2011002025A (en) Turn energizing device and pulley device equipped with the same
JP2010242780A (en) Drive shaft
JP4946975B2 (en) Rotating biasing mechanism and pulley device