JP2007106816A - Method for producing uniaxially drawn microporous tetrafluoroethylene film - Google Patents

Method for producing uniaxially drawn microporous tetrafluoroethylene film Download PDF

Info

Publication number
JP2007106816A
JP2007106816A JP2005297277A JP2005297277A JP2007106816A JP 2007106816 A JP2007106816 A JP 2007106816A JP 2005297277 A JP2005297277 A JP 2005297277A JP 2005297277 A JP2005297277 A JP 2005297277A JP 2007106816 A JP2007106816 A JP 2007106816A
Authority
JP
Japan
Prior art keywords
tension
stage
roll
film
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297277A
Other languages
Japanese (ja)
Inventor
Kuo Chin Chen
陳國欽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singtex Ind Co Ltd
Original Assignee
Singtex Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singtex Ind Co Ltd filed Critical Singtex Ind Co Ltd
Priority to JP2005297277A priority Critical patent/JP2007106816A/en
Publication of JP2007106816A publication Critical patent/JP2007106816A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a uniaxially drawn microporous tetrafluoroethylene film having improved uniformity of the distribution of micropores, pore diameter and void ratio, increased air permeability and moisture permeability and improved waterproofing effect with a simplified production process at increased production speed. <P>SOLUTION: An intermediate product comprising a rolled sheet of tetrafluoroethylene is used as a principal raw material. The rolled sheet is taken up from a raw material delivery roll and introduced in a drawing stage through a roller. The drawing stage is a step to transfer the intermediate product from the first drawing roll to the fourth drawing roll. The intermediate product is heated with the first heating apparatus in the drawing stage as a temporary forming step, transferred to the second heating apparatus as a forming step after the drawing stage, and wound on a winding roll as the final product to obtain the uniaxially drawn microporous tetrafluoroethylene film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微多孔質テトラフルオルエチレン・フィルムの製造方法に係り、特に、製造方法が簡単化になり生産速度が良くなり、且つフィルムでの微細穴の分布と穴径と隙間率とが均一になり、エア透過性と湿気透過性とが高くなり、防水効果が向上する単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法に関するものである。 The present invention relates to a method for producing a microporous tetrafluoroethylene film, in particular, the production method is simplified and the production rate is improved, and the distribution of fine holes, hole diameter, and clearance ratio in the film are reduced. The present invention relates to a method for producing a uniaxially stretched microporous tetrafluoroethylene film that is uniform, has high air permeability and moisture permeability, and improves the waterproofing effect.

良く知られたテフロン(登録商標)は、樹脂であり、化学学名がテトラフルオルエチレンであり、四フッ化エチレン(C2F4)を重合して形成されたものであり、炭素とフッ素とから構成され水素が含まないので、酸素と反応しなく、だから、耐熱性と耐低温性と耐食性と不粘着性と低摩擦係数と自己潤滑性となどの特性を有し、また、テフロン(登録商標)は他の物質と溶合し難いので、良く採用される材料の一つになっている。 The well-known Teflon (registered trademark) is a resin, the chemical name is tetrafluoroethylene, and it is formed by polymerizing tetrafluoroethylene (C 2 F 4 ). It is composed of and does not react with oxygen, so it does not react with oxygen, so it has characteristics such as heat resistance, low temperature resistance, corrosion resistance, non-adhesiveness, low coefficient of friction and self-lubricity, Trademark) is one of the materials that are often used because it is difficult to melt with other substances.

テトラフルオルエチレンは上記特性を有するので、ある業者はテトラフルオルエチレンを多孔質なシートまたはフィルムに加工して、織物または非織物に積層して、濾過材料または他の用途の材料として使用し、例えば米国特許第5234739号、米国特許第6080472号、米国特許第5750242号、台湾特許第538164号、台湾特許第592783号が提案された。 Because tetrafluoroethylene has the above properties, some manufacturers process tetrafluoroethylene into a porous sheet or film and laminate it into a woven or non-woven fabric for use as a filtering material or other material. For example, US Pat. No. 5,347,739, US Pat. No. 6,080,472, US Pat. No. 5,750,242, Taiwan Patent No. 538164, and Taiwan Patent No. 592783 were proposed.

だから、加工処理されたテトラフルオルエチレンは、工業と民生用品とに広汎に応用され、その製造プロセスが使用しようとする分野によって異なり、例えば米国特許第6702971号、第6852223号、第5098625号、第6228477号、第6410084号、第6676993号、第6854603号、第4096227号が提案された。 So processed tetrafluoroethylene is widely applied in industry and consumer products, and its manufacturing process depends on the field to be used, such as US Pat. Nos. 6,670,971, 6,852,223, 5098625, No. 6228477, No. 6410084, No. 6667993, No. 6854603, No. 4096227 were proposed.

上記特許から明らかなように、テトラフルオルエチレンのシートまたはフィルムは全て多孔質なものである。これらのシートまたはフィルムは微細穴の分布と穴径との均一性が一定範囲内に制御されることが出来なかった。
米国特許第5234739号、米国特許第6080472号、米国特許第5750242号、台湾特許第538164号、台湾特許第592783号 米国特許第6702971号、第6852223号、第5098625号、第6228477号、第6410084号、第6676993号、第6854603号、第4096227号
As is apparent from the above patent, all tetrafluoroethylene sheets or films are porous. In these sheets or films, the uniformity of the fine hole distribution and the hole diameter could not be controlled within a certain range.
U.S. Patent No. 5,347,739, U.S. Patent No. 6080472, U.S. Patent No. 5,750,242, Taiwan Patent No. 538164, Taiwan Patent No. 592783 U.S. Pat.Nos. 6,670,971, 6,852,223, 5098625, 6,228477, 641,0084, 6,667,993, 6,854,603, 4096227

しかしながら、これは次のような欠点がある。
(イ)これらのシートまたはフィルムは微細穴の分布と穴径との均一性が一定範囲内に制御することが出来なかった。
However, this has the following drawbacks.
(A) In these sheets or films, the uniformity of the fine hole distribution and the hole diameter could not be controlled within a certain range.

(ロ)微細穴の分布と穴径との均一性が一定範囲内に制御するために、生産設備を増設することが必要になり、生産コストが向上する問題があった。 (B) In order to control the distribution of the fine holes and the uniformity of the hole diameters within a certain range, it is necessary to increase production facilities, resulting in an increase in production cost.

(ハ)上記生産プロセスは極めて複雑であり、生産プロセスの管理が不適切であると不良品が大量に発生し、且つ品質管理がやり難いので、生産性が良くなかった。 (C) The above production process is extremely complicated, and if the production process is not properly managed, a large number of defective products are generated, and quality control is difficult to perform.

本発明の主な目的は、品質管理が容易になり、生産性が良くなり、歩留率が低減になり、生産コストが低減になる単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法を提供する。 Main object of the present invention is a method for producing a uniaxial tensile microporous tetrafluoroethylene film that facilitates quality control, improves productivity, reduces yield, and reduces production costs I will provide a.

本発明の次の目的は、シート又はフィルムでの微細穴の分布と穴径との均一性が一定範囲内に制御することができるようになる単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法を提供する。 The next object of the present invention is to provide a uniaxial tensile microporous tetrafluoroethylene film in which the uniformity of the fine hole distribution and hole diameter in the sheet or film can be controlled within a certain range. A manufacturing method is provided.

本発明のもう一つ目的は、エア透過性と湿気透過性とが高くなり、防水効果が向上する単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法を提供する。 Another object of the present invention is to provide a method for producing a uniaxially stretched microporous tetrafluoroethylene film that has high air permeability and moisture permeability and improves the waterproof effect.

上記目的を達成するためになされた本願の発明は、テトラフルオルエチレンの圧延シートである仕掛品を基本原料とし、前記仕掛品が原料入れロールから引き入れてローラを経由して引張り工程に入り、なお、引張り工程は仕掛品を第一引張りロールから第四引張りロールに輸送する工程であり、引張り工程中には第一加熱装置により加熱し、これを仮定形工程とし、引張り工程後に仕掛品が第二加熱装置に輸送され、これを定形工程とし、最後に、完成品が巻取りロールに巻き取られることを特徴とする単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法であることを要旨としている。 The invention of the present application made to achieve the above object is based on a work in progress, which is a rolled sheet of tetrafluoroethylene, as a basic raw material, and the work in progress is drawn from a raw material charging roll and enters a pulling process via a roller. The pulling process is a process of transporting the work in progress from the first pulling roll to the fourth pulling roll. During the pulling process, heating is performed by the first heating device, which is assumed to be a hypothetical process. It is transported to a second heating device, which is used as a standard process, and finally, the finished product is wound up on a winding roll, and is a method for producing a uniaxial tensile microporous tetrafluoroethylene film. Is the gist.

本願の発明では、引張り工程は第一段階引張りと第二段階引張りとを含み、仕掛品が第一引張りロールと第二引張りロールとの間に輸送されることを第一段階引張りとし、仕掛品が第三引張りロールと第四引張りロールとの間に輸送されることを第二段階引張りとし、且つ第二段階引張りの過程中または前には仮定形工程を実施してもいいことを特徴とする請求項1に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法であることを要旨としている。 In the invention of the present application, the tension process includes a first-stage tension and a second-stage tension, and the in-process goods are transported between the first and second tension rolls as the first-stage tension, Is transported between the third tension roll and the fourth tension roll as a second stage tension, and a hypothetical process may be performed during or before the second stage tension process. The gist of the present invention is the method for producing a uniaxially stretched microporous tetrafluoroethylene film according to claim 1.

本願の発明では、第一段階引張りと仮定形と第二段階引張りとを含み、総伸び比率が6〜12倍であり、第一段階引張りが長手方向の引張りを実施し、第二段階引張りは、引張りの過程中または前に仮定形工程の加熱と、幅方向の引張りとを実施し、且つ第二段階引張りの伸び量が第一段階引張りよりも大きく、前記仮定形工程は、加熱温度が80〜150℃に制御され、過熱時間が3〜5秒に制御される引張り工程と、加熱温度が300〜400℃に制御され、過熱時間が10秒に制御される定形工程と、巻取り工程とを含む単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法において、仕掛品であるテトラフルオルエチレン・フィルム(厚さ0.10〜0.15mm、幅160〜300
mm、比重0.8〜1.3g/cm3、表面に微細な穴なし)はコロナ放電処理を実施したものであり、完成品は、単軸引張り微多孔質テトラフルオルエチレン・フィルムであり、その厚さが必要によって0.03〜0.06mmに制御され、幅が1600mmであり、隙間率が80〜85%であり、JIS L-1092テスト法で得られた耐水圧度が9000MM-H2O以上であり、JIS
L-1099A1テスト法で得られた水滲み度が9995〜11713g/M2*24hrsであることを特徴とする単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法であることを要旨としている。
In the invention of the present application, including the first stage tension, the hypothetical form and the second stage tension, the total elongation ratio is 6 to 12 times, the first stage tension performs the longitudinal tension, the second stage tension is The heating of the hypothetical process and the tension in the width direction are performed during or before the tension process, and the elongation amount of the second stage tension is larger than that of the first stage tension. Pulling process controlled to 80-150 ° C, overheating time controlled to 3-5 seconds, shaping process, heating temperature controlled to 300-400 ° C, overheating time controlled to 10 seconds, and winding process In a method for producing a uniaxially tensioned microporous tetrafluoroethylene film containing a tetrafluoroethylene film as a work-in-process (thickness 0.10 to 0.15 mm, width 160 to 300)
mm, specific gravity 0.8 to 1.3 g / cm 3 , with no fine holes on the surface), which has been subjected to corona discharge treatment, and the finished product is a uniaxial tensile microporous tetrafluoroethylene film with a thickness of It is controlled to 0.03~0.06mm by required, a width of 1600 mm, a gap ratio of 80~85%, JIS L-1092 water圧度obtained by the test method be 9000 mm-H 2 O or , JIS
The gist is that it is a method for producing a uniaxially tensile microporous tetrafluoroethylene film characterized in that the degree of water bleeding obtained by the L-1099A1 test method is 9995 to 11713 g / M 2 * 24 hrs .

本願の発明では、第一段階引張りの伸び量と、第一段階引張りの前の伸び量との伸び比率は1.5倍であり、第二段階引張りの伸び量と、第一段階引張りの伸び量との伸び比率は4〜8倍であることを特徴とする請求項3に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法であることを要旨としている。 In the invention of the present application, the elongation ratio between the elongation amount of the first stage tension and the elongation amount before the first stage tension is 1.5 times, the elongation amount of the second stage tension, the elongation amount of the first stage tension, The gist of the present invention is the method for producing a uniaxially stretched microporous tetrafluoroethylene film according to claim 3, wherein the elongation ratio is from 4 to 8 times.

本願の発明では、水滲み度のテスト法はASTM E-96を採用してもよく、ASTM E-96テスト法で得られたデータは13045〜15445g/M2*24hrsであることを特徴とする請求項3に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法であることを要旨としている。 In the invention of the present application, ASTM E-96 may be adopted as the water bleeding test method, and the data obtained by the ASTM E-96 test method is 13045-15445 g / M 2 * 24 hrs. The gist of the present invention is the process for producing a uniaxially stretched microporous tetrafluoroethylene film according to claim 3.

本願の発明では、耐水圧度と水滲み度とのテスト法は他の知られたテスト法を採用してもいいことを特徴とする請求項3又は5に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法であることを要旨としている。 In the invention of the present application, other known test methods may be adopted as a test method for water pressure resistance and water bleed degree. The gist is that it is a method for producing a fluoroethylene film.

本発明に係る単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法によれば、次のような効果がある。
(イ)品質管理が容易になり、生産性が良くなり、歩留率が低減になり、生産コストが低減になる。
The method for producing a uniaxially stretched microporous tetrafluoroethylene film according to the present invention has the following effects.
(A) Quality control is facilitated, productivity is improved, yield is reduced, and production costs are reduced.

(ロ)シート又はフィルムでの微細穴の分布と穴径との均一性が一定範囲内に制御することができるようになる。 (B) The uniformity of the fine hole distribution and the hole diameter in the sheet or film can be controlled within a certain range.

(ハ)エア透過性と湿気透過性とが高くなり、防水効果が向上する。 (C) Air permeability and moisture permeability are increased, and the waterproof effect is improved.

以下、添付図面を参照して本発明の好適な実施の形態を詳細に説明する。 Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

まず、テフロン(登録商標)の二軸引張りフィルムの特性について分析する。テフロン(登録商標)は超高分子量のテトラフルオルエチレンを主要な原料とし、特殊な加工処理によって二軸引張りフィルムを作製し、このフィルムを高倍率電子顕微鏡で観察すると、繊維とノードとが極めて鮮明であり、異なる温度と伸び率とで処理されたものの繊維とノードとが異なり、より大きい倍率の引張りは、存在する繊維を引張ることではなく、存在する繊維と繊維との間にあるノードはもっと繊細な繊維に分裂し又はもっと小さいノードになることであり、上記分裂によりフィルムがミクロン・クラス又はナノ・クラスの繊維を持つフィルムになり、これらのフィルムは各分野の製品や部材に応用している。 First, the characteristics of a Teflon (registered trademark) biaxial tensile film are analyzed. Teflon (registered trademark) uses ultra-high molecular weight tetrafluoroethylene as a main raw material, and a biaxially stretched film is produced by special processing. When this film is observed with a high-power electron microscope, fibers and nodes are extremely The fibers and nodes that are crisp and treated at different temperatures and elongations are different, and the higher magnification tension is not pulling the existing fibers, but the nodes between the existing fibers are not This means that the film splits into finer fibers or becomes smaller nodes, and the above split makes the film with micron class or nano class fibers, and these films can be applied to products and components in various fields. ing.

本発明の重点は引張り過程と温度制御とにあり、本発明によれば、品質管理が容易になり、生産性が良くなり、歩留率が低減になり、生産コストが低減になり、シート又はフィルムでの微細穴の分布と穴径との均一性が一定範囲内に制御することができるようになり、且つエア透過性と湿気透過性とが高くなり、防水効果が向上する。 The emphasis of the present invention is on the tensioning process and temperature control.According to the present invention, quality control is facilitated, productivity is improved, yield is reduced, production cost is reduced, sheet or The uniformity of the fine hole distribution and the hole diameter in the film can be controlled within a certain range, and the air permeability and moisture permeability are increased, thereby improving the waterproof effect.

図1は本発明に係る生産プロセスを示すフローチャートであり、その生産プロセスは、仕掛品10が引張りプロセス20と定形30とを経て完成品50になり、完成品50が巻き取られて出荷する。 FIG. 1 is a flowchart showing a production process according to the present invention. In the production process, the work-in-process 10 becomes a finished product 50 through a pulling process 20 and a fixed shape 30, and the finished product 50 is wound up and shipped.

図2は本発明に係る生産プロセスの実施例を示す概略図である。四フッ化エチレンの圧延シートである仕掛品10を基本原料とし、前記仕掛品10が原料入れロール10′から引き入れてローラ11′,12′,13′を経由して引張り工程20に入り、なお、引張り工程20は第一段階引張り21と第二段階引張り22と仮定形23とを含み、仕掛品10が第一引張りロール14′と第二引張りロール16′との間に輸送されることを第一段階引張り21とし、第一段階引張り21は、仕掛品10が引き入れるときに、ローラ11′,12′,13′と、第一引張りロール14′と、第二引張りロール16′との間の速度差を利用して、仕掛品10であるテトラフルオルエチレンの圧延シートの供給量を調整すると共に、長手方向の引張り力を加えることであり、第一段階引張り21の伸び量と、第一段階引張り21の前の伸び量との伸び比率は1.5倍であり、また、仕掛品10が第三引張りロール17′と第四引張りロール18′との間に輸送されることを第二段階引張り22とし、且つ第二段階引張りの過程中または前には第一加熱装置19′によって加熱する仮定形23が実施され、加熱しながら実施した第二段階引張り22の伸び量と、第一段階引張りの伸び量との伸び比率は4〜8倍であり、その伸び比率がより大きいので、仮定形23の過程中または前には加熱することが必要であり、そうすると、第二段階引張り22の伸び量が達成でき、且つフィルムの延性と展性とが向上され、引張り過程中にフィルムが断裂し又はフィルムでの微細穴の分布と穴径と隙間率とが不均一になることを防止でき、なお、第一段階引張り21と第二段階引張り22と仮定形23との組合は引張り工程20と称し、引張り工程20の総伸び比率が6〜12倍であり、引張り工程20の後に仕掛品10が第二加熱装置20′に輸送され、これを定形工程30とし、定形工程30は、第二加熱装置20′で加熱を実施することにより、フィルムでの微細穴の分布と穴径と隙間率とが均一にされて定着し、そうすると、フィルムが帰って縮める現象を防止でき、最後に、完成品50が巻取りロールに巻き取られて出荷する。 FIG. 2 is a schematic view showing an embodiment of a production process according to the present invention. The work in progress 10 which is a rolled sheet of tetrafluoroethylene is used as a basic raw material, and the work in progress 10 is drawn from a raw material charging roll 10 'and enters a pulling step 20 through rollers 11', 12 'and 13'. The tensioning process 20 includes a first-stage tension 21, a second-stage tension 22, and a hypothetical form 23 to indicate that the work in process 10 is transported between the first tension roll 14 'and the second tension roll 16'. The first-stage tension 21 is defined between the rollers 11 ′, 12 ′, 13 ′, the first tension roll 14 ′, and the second tension roll 16 ′ when the work-in-process 10 is pulled. Is to adjust the supply amount of the tetrafluoroethylene rolled sheet as the work-in-process 10 and to apply a tensile force in the longitudinal direction. One step The elongation ratio with respect to the amount of elongation before the tension 21 is 1.5 times, and the second stage tension 22 indicates that the work in progress 10 is transported between the third tension roll 17 'and the fourth tension roll 18'. And an assumption form 23 heated by the first heating device 19 'is implemented during or before the second stage tension, and the elongation of the second stage tension 22 performed while heating, and the first stage tension The elongation ratio with respect to the elongation amount is 4 to 8 times, and since the elongation ratio is larger, it is necessary to heat during or before the process of the hypothetical shape 23, and then the elongation amount of the second stage tension 22 And the ductility and malleability of the film can be improved, and it can be prevented that the film is torn during the pulling process or the distribution of fine holes in the film, the hole diameter and the gap ratio are not uniform. First stage tension 21 and second stage The combination of the tension 22 and the hypothetical shape 23 is referred to as a tensioning process 20, and the total elongation ratio of the tensioning process 20 is 6 to 12 times. After the tensioning process 20, the work in process 10 is transported to the second heating device 20 ′. This is defined as a regular process 30, and the regular process 30 is heated by the second heating device 20 ′ so that the distribution of fine holes in the film, the hole diameter, and the gap ratio are made uniform and fixed. The phenomenon that the film returns and shrinks can be prevented, and finally, the finished product 50 is wound around a winding roll and shipped.

単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法は、第一段階引張りと仮定形と第二段階引張りとを含み、総伸び比率が6〜12倍であり、第一段階引張りが長手方向の引張りを実施し、第二段階引張りは、引張りの過程中または前に仮定形工程の加熱と、幅方向の引張りとを実施し、且つ第二段階引張りの伸び量が第一段階引張りよりも大きく、前記仮定形工程は、加熱温度が80〜150℃に制御され、過熱時間が3〜5秒に制御される引張り工程と、 The manufacturing method of the uniaxial tension microporous tetrafluoroethylene film includes the first stage tension, the hypothetical form and the second stage tension, the total elongation ratio is 6 to 12 times, and the first stage tension is longitudinal. In the second stage tension, the heating of the hypothetical process and the tension in the width direction are performed during or before the tension process, and the elongation of the second stage tension is higher than that of the first stage tension. The hypothetical process is a tension process in which the heating temperature is controlled to 80 to 150 ° C. and the overheating time is controlled to 3 to 5 seconds,

加熱温度が300〜400℃に制御され、過熱時間が10秒に制御される定形工程と、 A regular process in which the heating temperature is controlled to 300 to 400 ° C. and the overheating time is controlled to 10 seconds,

巻取り工程とを含み、 Winding process,

仕掛品であるテトラフルオルエチレン・フィルム(厚さ0.10〜0.15mm、幅160〜300mm、比重0.8〜1.3g/cm3、表面に微細な穴なし)はコロナ放電処理を実施したものであり、 The work-in-process tetrafluoroethylene film (thickness 0.10 to 0.15 mm, width 160 to 300 mm, specific gravity 0.8 to 1.3 g / cm 3 , and no fine holes on the surface) has been subjected to corona discharge treatment,

完成品は、単軸引張り微多孔質テトラフルオルエチレン・フィルムであり、その厚さが必要によって0.03〜0.06mmに制御され、幅が1600mmであり、隙間率が80〜85%であり、JIS L-1092テスト法で得られた耐水圧度が9000MM-H2O以上であり、JIS
L-1099A1テスト法で得られた水滲み度が9995〜11713g/M2*24hrsである。
The finished product is a uniaxial tensile microporous tetrafluoroethylene film, the thickness of which is controlled to 0.03 to 0.06 mm as required, the width is 1600 mm, the gap ratio is 80 to 85%, JIS Water pressure resistance obtained by L-1092 test method is 9000MM-H 2 O or more, JIS
The degree of water bleeding obtained by the L-1099A1 test method is 9995 to 11713 g / M 2 * 24 hrs.

図3は本発明の仕掛品10の顕微写真であり、繊維の分布が見られ、且つ図4は、本発明の完成品50の顕微写真であり、繊維とノードとの分布が鮮明に見られ、仕掛品10との主な異なる点は、繊維とノードとの連結の間に発生した隙間率と穴径と穴分布との均一性と、繊維およびノードの分布の均一性とになる。 FIG. 3 is a micrograph of the work-in-process 10 of the present invention, in which the distribution of fibers is seen, and FIG. 4 is a microphotograph of the finished product 50 of the present invention, in which the distribution of fibers and nodes is clearly seen. The main differences from the work-in-process 10 are the uniformity of the gap ratio, the hole diameter and the hole distribution generated during the connection between the fiber and the node, and the uniformity of the fiber and node distribution.

図5は本発明の仕掛品10の溶融曲線を示すグラフであり、図面から明らかなように、50℃から350℃まで持続に加熱すると、344.89℃の吸熱ピークが得られ、図6は本発明の完成品50の溶融曲線を示すグラフであり、図面から明らかなように、50℃から350℃まで持続に加熱すると、336.51℃の吸熱ピークが得られ、この吸熱ピークの数値と仕掛品10の吸熱ピークの数値との差が極めて小さく、すなわち、本発明に係る製造方法により加工された完成品50と仕掛品10との溶融曲線の異なりが一定範囲内にあり、加工前後の吸熱ピークの数値はあまり変化しない。 FIG. 5 is a graph showing a melting curve of the work-in-process 10 of the present invention. As is clear from the drawing, when the heating is continued from 50 ° C. to 350 ° C., an endothermic peak of 344.89 ° C. is obtained, and FIG. As shown in the drawing, when the heating is continued from 50 ° C. to 350 ° C., an endothermic peak of 336.51 ° C. is obtained. The difference between the numerical value of the endothermic peak is extremely small, that is, the difference between the melting curves of the finished product 50 processed by the manufacturing method according to the present invention and the work-in-process 10 is within a certain range, and the numerical value of the endothermic peak before and after processing. Does not change much.

また、図7に示すのは本発明の水滲み度をテストしたデータ表であり、JIS L-1099A1テスト法で得られた水滲み度が9995〜11713g/M2*24hrsであり、ASTM E-96テスト法で得られたデータは13045〜15445g/M2*24hrsであり、これらは従来のフィルムの水滲み度よりも高いので、完成品は高水滲み度を持つ微多孔質テトラフルオルエチレン・フィルムであることが分かる。 Further, FIG. 7 shows a data table obtained by testing the water bleeding degree of the present invention. The water bleeding degree obtained by the JIS L-1099A1 test method is 9995 to 11713 g / M 2 * 24 hrs, and ASTM E- The data obtained with the 96 test method is 13045-15445g / M 2 * 24hrs, which is higher than the water bleed of conventional films, so the finished product is a microporous tetrafluoroethylene with high water bleed.・ It turns out to be a film.

本発明に係る生産プロセスを示すフローチャートである。It is a flowchart which shows the production process which concerns on this invention. 本発明に係る生産プロセスの実施例を示す概略図である。It is the schematic which shows the Example of the production process which concerns on this invention. 本発明の仕掛品の顕微写真である。It is a microphotograph of the work-in-process of this invention. 本発明の完成品の顕微写真である。It is a microphotograph of the finished product of the present invention. 本発明の仕掛品の溶融曲線を示すグラフである。It is a graph which shows the melting curve of the work in process of this invention. 本発明の完成品の溶融曲線を示すグラフである。It is a graph which shows the melting curve of the finished product of this invention. 本発明の水滲み度をテストしたデータ表である。It is the data table which tested the water bleeding degree of this invention.

符号の説明Explanation of symbols

10 仕掛品 20 引張りプロセス
21 第一段階引張り 22 第二段階引張り
23 仮定形 30 定形
40 巻取り 50 完成品
10′ 原料入れロール
11′,12′,13′ ローラ
14′ 第一引張りロール 15′ ローラ
16′ 第二引張りロール 17′ 第三引張りロール
18′ 第四引張りロール 19′ 第一加熱装置
20′ 第二加熱装置 21′ 巻取りロール
10 Work in process 20 Tension process 21 First stage tension 22 Second stage tension 23 Assumed form 30 Standard form 40 Winding 50 Finished product 10 'Raw material feeding rolls 11', 12 ', 13' Roller 14 'First tension roll 15' Roller 16 'second tension roll 17' third tension roll 18 'fourth tension roll 19' first heating device 20 'second heating device 21' take-up roll

Claims (6)

テトラフルオルエチレンの圧延シートである仕掛品を基本原料とし、前記仕掛品が原料入れロールから引き入れてローラを経由して引張り工程に入り、なお、引張り工程は仕掛品を第一引張りロールから第四引張りロールに輸送する工程であり、引張り工程中には第一加熱装置により加熱し、これを仮定形工程とし、引張り工程後に仕掛品が第二加熱装置に輸送され、これを定形工程とし、最後に、完成品が巻取りロールに巻き取られることを特徴とする、単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法。 The work in progress, which is a rolled sheet of tetrafluoroethylene, is used as a basic raw material, and the work in progress is drawn from the raw material charging roll and enters a pulling process via a roller. It is a process of transporting to the four pulling rolls. During the pulling process, it is heated by the first heating device, this is assumed as the process, and after the pulling process, the work in process is transported to the second heating apparatus, which is defined as the regular process, Finally, a method for producing a uniaxial tensile microporous tetrafluoroethylene film, wherein the finished product is wound on a winding roll. 引張り工程は第一段階引張りと第二段階引張りとを含み、仕掛品が第一引張りロールと第二引張りロールとの間に輸送されることを第一段階引張りとし、仕掛品が第三引張りロールと第四引張りロールとの間に輸送されることを第二段階引張りとし、且つ第二段階引張りの過程中または前には仮定形工程を実施してもいいことを特徴とする、請求項1に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法。 The tension process includes a first-stage tension and a second-stage tension. The work in progress is transported between the first tension roll and the second tension roll, and the work in progress is a third tension roll. The second stage tension is transported between the first tension roll and the fourth tension roll, and a hypothetical process may be performed during or before the second stage tension. A method for producing a uniaxially stretched microporous tetrafluoroethylene film according to claim 1. 第一段階引張りと仮定形と第二段階引張りとを含み、総伸び比率が6〜12倍であり、第一段階引張りが長手方向の引張りを実施し、第二段階引張りは、引張りの過程中または前に仮定形工程の加熱と、幅方向の引張りとを実施し、且つ第二段階引張りの伸び量が第一段階引張りよりも大きく、前記仮定形工程は、加熱温度が80〜150℃に制御され、過熱時間が3〜5秒に制御される引張り工程と、
加熱温度が300〜400℃に制御され、過熱時間が10秒に制御される定形工程と、
巻取り工程とを含む単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法において、
仕掛品であるテトラフルオルエチレン・フィルム(厚さ0.10〜0.15mm、幅160〜300mm、比重0.8〜1.3g/cm3、表面に微細な穴なし)はコロナ放電処理を実施したものであり、
完成品は、単軸引張り微多孔質テトラフルオルエチレン・フィルムであり、その厚さが必要によって0.03〜0.06mmに制御され、幅が1600mmであり、隙間率が80〜85%であり、JIS L-1092テスト法で得られた耐水圧度が9000MM-H2O以上であり、JIS
L-1099A1テスト法で得られた水滲み度が9995〜11713g/M2*24hrsであることを特徴とする、
単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法。
Including the first stage tension, hypothetical form and second stage tension, the total elongation ratio is 6-12 times, the first stage tension performs the longitudinal tension, the second stage tension is in the process of tension Alternatively, the heating of the hypothetical process and the tensile in the width direction are performed before, and the elongation amount of the second stage tension is larger than that of the first stage tension. A tensioning process that is controlled and the overheating time is controlled to 3-5 seconds;
A regular process in which the heating temperature is controlled to 300 to 400 ° C. and the overheating time is controlled to 10 seconds,
In the manufacturing method of the uniaxial tension microporous tetrafluoroethylene film including a winding process,
The work-in-process tetrafluoroethylene film (thickness 0.10 to 0.15 mm, width 160 to 300 mm, specific gravity 0.8 to 1.3 g / cm 3 , and no fine holes on the surface) has been subjected to corona discharge treatment,
The finished product is a uniaxial tensile microporous tetrafluoroethylene film, the thickness of which is controlled to 0.03 to 0.06 mm as required, the width is 1600 mm, the gap ratio is 80 to 85%, JIS Water pressure resistance obtained by L-1092 test method is 9000MM-H 2 O or more, JIS
The water bleeding degree obtained by the L-1099A1 test method is 9995 to 11713 g / M 2 * 24 hrs,
Method for producing uniaxially stretched microporous tetrafluoroethylene film.
第一段階引張りの伸び量と、第一段階引張りの前の伸び量との伸び比率は1.5倍であり、第二段階引張りの伸び量と、第一段階引張りの伸び量との伸び比率は4〜8倍であることを特徴とする、請求項3に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法。 The elongation ratio between the elongation amount of the first stage tension and the elongation amount before the first stage tension is 1.5 times, and the elongation ratio between the elongation amount of the second stage tension and the elongation amount of the first stage tension is 4 times. The method for producing a uniaxially stretched microporous tetrafluoroethylene film according to claim 3, wherein the production method is ˜8 times. 水滲み度のテスト法はASTM E-96を採用してもよく、ASTM E-96テスト法で得られたデータは13045〜15445g/M2*24hrsであることを特徴とする、請求項3に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法。 The water bleeding test method may adopt ASTM E-96, and the data obtained by the ASTM E-96 test method is 13045-15445g / M 2 * 24hrs. The manufacturing method of the uniaxial tension microporous tetrafluoroethylene film of description. 耐水圧度と水滲み度とのテスト法は他の知られたテスト法を採用してもいいことを特徴とする、請求項3又は5に記載の単軸引張り微多孔質テトラフルオルエチレン・フィルムの製造方法。 The uniaxial tensile microporous tetrafluoroethylene ··· according to claim 3 or 5, characterized in that other known test methods may be adopted as a test method for water pressure resistance and water bleeding. A method for producing a film.
JP2005297277A 2005-10-12 2005-10-12 Method for producing uniaxially drawn microporous tetrafluoroethylene film Pending JP2007106816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297277A JP2007106816A (en) 2005-10-12 2005-10-12 Method for producing uniaxially drawn microporous tetrafluoroethylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297277A JP2007106816A (en) 2005-10-12 2005-10-12 Method for producing uniaxially drawn microporous tetrafluoroethylene film

Publications (1)

Publication Number Publication Date
JP2007106816A true JP2007106816A (en) 2007-04-26

Family

ID=38032941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297277A Pending JP2007106816A (en) 2005-10-12 2005-10-12 Method for producing uniaxially drawn microporous tetrafluoroethylene film

Country Status (1)

Country Link
JP (1) JP2007106816A (en)

Similar Documents

Publication Publication Date Title
JP4350095B2 (en) Method for producing porous fluoropolymer film
US3177277A (en) Process for the production of biaxially oriented polyethylene terephthalate film
DE69534047T2 (en) SEMI-CONTINUOUS METHOD FOR THE PRODUCTION OF POLYMERIC FOAMS IN SOLID CONDITION
JP5592056B2 (en) Method for improving the dimensional stability of porous PTFE membranes
KR20120121397A (en) Method for producing graphite film, method for rewinding same, and method for producing graphite composite film and graphite-free processed product
JP5602956B2 (en) Graphite film and method for producing graphite film
JP2007118362A (en) Biaxially oriented polypropylene film
JP2003176374A (en) Method and equipment for producing polytetrafluoroethylene porous membrane
JP2007106816A (en) Method for producing uniaxially drawn microporous tetrafluoroethylene film
JPH11156988A (en) Composite film for fiber-reinforced plastic molding
KR20070040585A (en) Manufacturing method of uniaxially drawn porous polytetrafluoroethylene membrane
JP2008239654A (en) Method for producing polyamide film
JP2022013879A (en) Polyethylene microporous film-wound body and method of producing the same
KR101841416B1 (en) Polyimide film and process for producing the same
TWI276637B (en) Method for producing uni-axially elongated micro-porous polytetrafluoroethylene (PTFE) film
US7211210B2 (en) Dry fibrillated PTFE film and its method of manufacture
JP4124672B2 (en) Method and apparatus for producing polytetrafluoroethylene porous membrane
JP2013129532A (en) Winding device of film, device for manufacturing film equipped with the winding device, and method for manufacturing the film
JPH0261122A (en) Production of drawn polyester tape yarn
EP1775100A1 (en) Manufacturing method of uniaxially drawn porous polytetrafluoroethylene membrane
JP2003311826A (en) Manufacturing method for biaxially stretched film
JP2013107316A (en) Biaxially oriented polyester film excellent in secondary processability
JPH01270907A (en) Production of porous polypropylene hollow fiber or film
US20070080109A1 (en) Manufacturing method of uniaxially drawn porous polytetrafluoroethylene membrane
JP2007296809A (en) Pu/ptfe composite film and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Effective date: 20080220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080519

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080619

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Effective date: 20081017

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20090115

Free format text: JAPANESE INTERMEDIATE CODE: A601

A072 Dismissal of procedure

Effective date: 20090605

Free format text: JAPANESE INTERMEDIATE CODE: A073

A02 Decision of refusal

Effective date: 20090622

Free format text: JAPANESE INTERMEDIATE CODE: A02