JP2007106347A - Brake control device - Google Patents

Brake control device Download PDF

Info

Publication number
JP2007106347A
JP2007106347A JP2005301518A JP2005301518A JP2007106347A JP 2007106347 A JP2007106347 A JP 2007106347A JP 2005301518 A JP2005301518 A JP 2005301518A JP 2005301518 A JP2005301518 A JP 2005301518A JP 2007106347 A JP2007106347 A JP 2007106347A
Authority
JP
Japan
Prior art keywords
tire
road surface
wear
brake control
abs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005301518A
Other languages
Japanese (ja)
Inventor
Shinichiro Osako
伸一郎 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005301518A priority Critical patent/JP2007106347A/en
Publication of JP2007106347A publication Critical patent/JP2007106347A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brake control device capable of suppressing a change in the braking distance associated with the wear of a tire in a braking mode. <P>SOLUTION: The brake control device acquires tire wear information via a deflection detection sensor. An ABS threshold changing unit 42 changes the ABS control timing threshold of the anti-lock brake control based on the acquired tire wear information. The ABS control unit 44 performs the ABS control based on the ABS control timing threshold N during the actual braking. As a result, the ABS control timing threshold is optimized according to the tire wear state, and the change of the braking distance associated with the tire wear in the braking mode can be suppressed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ブレーキ制御装置、特に、制動時のタイヤの摩耗に伴う停止距離の変化を抑制するブレーキ制御装置の改良に関する。   The present invention relates to a brake control device, and more particularly to an improvement of a brake control device that suppresses a change in a stop distance due to tire wear during braking.

車両の制動時のスリップの抑制には、アンチロックブレーキシステム(以下、ABSという)が有効である。ABSは、急激に強いブレーキングを行ってもホイールロックを防ぎ、安定したブレーキングを実現する装置であり、各ホイールに付けられた車輪速センサーによってロック傾向を検知し、ブレーキ油圧を弱めることでホイールロックを未然に防いでいる。いわゆるポンピングブレーキを素早い間隔で自動的に実行するように構成されている。特に濡れた路面や凍結した路面など、滑りやすい路面において、急ブレーキを踏んでもポンピングブレーキ効果により操縦性を確保したまま、車両を横滑りさせることなくまっすぐに停止させることができる。   An antilock brake system (hereinafter referred to as ABS) is effective for suppressing slip during braking of the vehicle. ABS is a device that prevents wheel lock even when suddenly strong braking is performed, and realizes stable braking. By detecting the tendency of the lock by the wheel speed sensor attached to each wheel, the brake hydraulic pressure is weakened. Prevents wheel locks. A so-called pumping brake is automatically executed at quick intervals. In particular, even on a slippery road surface such as a wet road surface or a frozen road surface, even if a sudden brake is applied, the vehicle can be stopped straight without slipping while keeping the maneuverability by the pumping brake effect.

このようなABSを備えた車両において、例えば、特許文献1のように車両の性能や安全走行を高める工夫を施した装置を搭載するものが種々提案されている。
特開2005−138702号公報
Various types of vehicles equipped with such an ABS have been proposed in which a device that is devised to improve the performance and safe driving of the vehicle as in Patent Document 1, for example.
JP 2005-138702 A

ところで、タイヤが摩耗している場合に制動を実施すると、ドライ路面では非摩耗時より停止距離が短くなり、ウエット路面では、非摩耗時より停止距離が延びる傾向がある。ドライ路面走行時の停止距離の短縮は、タイヤの摩耗が進むことにより、タイヤトレッドの凸ブロックの剛性が高くなり、路面との摩擦係数が高くなる結果生じる。つまりタイヤが路面にグリップし易くなることにより生じる。一方、ウエット路面走行時の停止距離の増加は、タイヤトレッドの凸ブロックの摩耗により、凸部ロック間の溝が浅くなり、排水性が低下する結果生じる。つまり、タイヤ表面に水膜が形成されて空走距離が延びるためである。その結果、同一のタイヤを装着していても、タイヤの摩耗進行にしたがって、ドライ路面走行時の停止距離とウエット路面走行時停止距離との差が拡大してしまうという現象が生じ、車両搭乗者に違和感を与えるという問題がある。   By the way, when braking is performed when the tire is worn, the stop distance is shorter on the dry road surface than when it is not worn, and the stop distance tends to be longer on the wet road surface than when it is not worn. The reduction of the stopping distance when driving on a dry road surface results from the fact that the tire wear advances, so that the rigidity of the convex block of the tire tread increases and the coefficient of friction with the road surface increases. That is, the tire is easily gripped on the road surface. On the other hand, the increase in the stopping distance during running on a wet road surface results from a decrease in drainage due to shallow grooves between the convex locks due to wear of the convex blocks of the tire tread. That is, a water film is formed on the tire surface and the idle running distance is extended. As a result, even if the same tire is installed, the difference between the stopping distance when driving on a dry road surface and the stopping distance when driving on a wet road surface increases as the tire wears out. There is a problem of giving a sense of incongruity.

本発明はこうした状況に鑑みてなされたものであり、その目的は、制動時のタイヤの摩耗に伴う停止距離の変化を抑制できるブレーキ制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a brake control device that can suppress a change in a stop distance due to tire wear during braking.

上記課題を解決するために、本発明は、アンチロックブレーキ制御が可能なブレーキ制御装置であって、タイヤの摩耗情報を取得する摩耗情報取得手段と、前記タイヤの摩耗情報に基づいて、前記アンチロックブレーキ制御の制御タイミング閾値を変更する閾値変更手段と、変更した前記閾値に基づきアンチロックブレーキ制御を実行する制御実行手段と、を含むことを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a brake control device capable of anti-lock brake control, comprising: wear information acquisition means for acquiring tire wear information; and Threshold change means for changing the control timing threshold value of the lock brake control, and control execution means for executing anti-lock brake control based on the changed threshold value.

この態様によれば、タイヤの摩耗状態に応じてアンチロックブレーキ制御の制御タイミング閾値を変更して制御を実行できる。例えば、タイヤの摩耗が所定値、例えば、新品のタイヤに対して50%摩耗した値を越えた場合、アンチロックブレーキ制御の実行タイミングをタイヤの非摩耗時の実行タイミングより早くすることができる。その結果、アンチロックブレーキ制御の制御タイミング閾値をタイヤの摩耗状態に応じて最適化し、制動時のタイヤの摩耗に伴う停止距離の変化を抑制することができる。   According to this aspect, the control can be executed by changing the control timing threshold value of the antilock brake control in accordance with the wear state of the tire. For example, when the tire wear exceeds a predetermined value, for example, a value of 50% wear on a new tire, the execution timing of the antilock brake control can be made earlier than the execution timing when the tire is not worn. As a result, the control timing threshold value of the antilock brake control can be optimized according to the tire wear state, and the change in the stop distance due to the tire wear during braking can be suppressed.

また、上記態様において、タイヤが走行する路面状態がドライ状態かウエット状態かを示す路面情報を取得する路面情報取得手段をさらに含み、前記閾値変更手段は、路面状態に応じて、前記ドライ状態とウエット状態とで異なる制御タイミング閾値に変更するようにしてもよい。例えば、摩耗したタイヤがドライ路面で制動すると停止距離は短縮されるが、アンチロックブレーキ制御の実行タイミングが早まることにより、一時的に制動力を弱めて停止距離を実質的に伸ばすことができる。つまり、タイヤ摩耗により短縮された停止距離を修正して非摩耗時の停止距離に近づけることができる。また、摩耗したタイヤがウエット路面で制動すると停止距離は滑りにより延長されるが、アンチロックブレーキ制御の実行タイミングが早まることにより、タイヤの滑りを抑制し、停止距離を実質的に短くすることができる。つまり、タイヤ摩耗により延長された停止距離を修正して非摩耗時の停止距離に近づけることができる。その結果、ドライ路面走行時とウエット路面走行時の停止距離の差がタイヤの摩耗と共に拡大することを抑制して、路面状態および摩耗状態に応じた最適なアンチロックブレーキ制御を実行することができる。   Further, in the above aspect, the vehicle further includes road surface information acquisition means for acquiring road surface information indicating whether a road surface state on which the tire travels is a dry state or a wet state, and the threshold value changing unit includes the dry state according to the road surface state. You may make it change to the control timing threshold value which changes with wet states. For example, when a worn tire is braked on a dry road surface, the stop distance is shortened. However, the antilock brake control execution timing is advanced, so that the braking force can be temporarily reduced to substantially extend the stop distance. That is, the stop distance shortened by tire wear can be corrected and brought close to the stop distance at the time of non-wear. In addition, when a worn tire is braked on a wet road surface, the stopping distance is extended by slipping, but the antilock brake control execution timing is advanced, thereby suppressing the slipping of the tire and substantially reducing the stopping distance. it can. That is, the stop distance extended by tire wear can be corrected and brought close to the stop distance at the time of non-wear. As a result, it is possible to execute the optimum antilock brake control according to the road surface condition and the wear state by suppressing the difference in the stop distance between the dry road surface and the wet road surface from increasing with tire wear. .

また、上記態様において、前記摩耗情報取得手段は、前記タイヤのトレッド部の凸ブロック内に配置されたトレッド部のたわみ量を検出するたわみ検出センサを含み、前記たわみ検出センサの検出したたわみ量と、予め保持した前記タイヤの摩耗時のたわみ量変化情報に基づき、前記タイヤの摩耗情報を取得してもよい。タイヤのトレッド部の凸ブロックは一種の片持ち梁と見なすことができる。したがって、車両が定速走行している場合、タイヤの凸ブロックのたわみ量は、凸ブロックの高さに対応して変化する。すなわち、新品タイヤで摩耗がない状態、すなわち凸ブロックの高さが高い場合、たわみ量は大きくなる。一方、タイヤの摩耗が進み、凸ブロックの高さが低くなると凸ブロックの剛性が高くなるので、たわみ量は少なくなる。したがって、このたわみ量の変化に基づいてタイヤの摩耗情報を取得することができる。   Further, in the above aspect, the wear information acquisition means includes a deflection detection sensor that detects a deflection amount of the tread portion arranged in the convex block of the tread portion of the tire, and the deflection amount detected by the deflection detection sensor. The tire wear information may be acquired based on the deflection amount change information when the tire is held in advance. The convex block in the tread portion of the tire can be regarded as a kind of cantilever. Therefore, when the vehicle is traveling at a constant speed, the amount of deflection of the convex block of the tire changes corresponding to the height of the convex block. That is, when the new tire is not worn, that is, when the height of the convex block is high, the amount of deflection becomes large. On the other hand, as the wear of the tire progresses and the height of the convex block decreases, the rigidity of the convex block increases, so the amount of deflection decreases. Therefore, tire wear information can be acquired based on the change in the amount of deflection.

また、上記態様において、前記摩耗情報取得手段は、前記タイヤのトレッド部の凸ブロック内に埋設され、当該凸ブロックが所定量摩耗して露出した場合に路面と接触することにより電位変化信号を出力する電位センサを含み、当該電位変化に基づき、前記タイヤの摩耗情報を取得してもよい。例えば、新品のタイヤに対して50%摩耗した時点で電位センサが露出するように配置する。電位センサが凸ブロックから露出すると路面との接触により電荷がグランドに移動し、変位変化が生じる。すなわち、電位センサの電位変化を検出した場合、タイヤが所定量摩耗したことを認識することができできる。その結果、タイヤの摩耗情報を取得することができる。   In the above aspect, the wear information acquisition means is embedded in a convex block of the tread portion of the tire, and outputs a potential change signal by contacting the road surface when the convex block is worn and exposed for a predetermined amount. The tire wear information may be acquired based on the potential change. For example, it is arranged so that the potential sensor is exposed when 50% of a new tire is worn. When the potential sensor is exposed from the convex block, the electric charge moves to the ground due to contact with the road surface, and a displacement change occurs. That is, when a potential change of the potential sensor is detected, it can be recognized that the tire has worn a predetermined amount. As a result, tire wear information can be acquired.

また、前記摩耗情報取得手段は、ユーザからの摩耗情報を受け付ける入力装置であってもよい。この態様によれば、ユーザ自らがタイヤの摩耗状態を例えばスリップサインまでの溝深さなどに基づき入力装置を介して入力することにより、アンチロックブレーキ制御の制御タイミング閾値を変更できる。   Further, the wear information acquisition means may be an input device that receives wear information from a user. According to this aspect, the user can change the control timing threshold value of the antilock brake control by inputting the tire wear state via the input device based on, for example, the groove depth to the slip sign.

また、前記路面情報取得手段は、ユーザからの路面情報を受け付ける入力装置であったもよい。この態様によれば、ユーザ自ら路面がドライ状態であるか、ウエット状態であるか入力することにより、アンチロックブレーキ制御の制御タイミング閾値を変更できる。   Further, the road surface information acquisition means may be an input device that receives road surface information from a user. According to this aspect, the control timing threshold value of the antilock brake control can be changed by inputting whether the road surface is in a dry state or a wet state.

本発明のブレーキ制御装置によれば、タイヤの摩耗情報に基づいて、アンチロックブレーキ制御の制御タイミング閾値を変更するので、制動時のタイヤの摩耗に伴う停止距離の変化を抑制できる。   According to the brake control device of the present invention, since the control timing threshold value of the antilock brake control is changed based on the tire wear information, it is possible to suppress the change in the stop distance due to the tire wear during braking.

以下、本発明の実施の形態(以下実施形態という)を、図面に基づいて説明する。   Hereinafter, an embodiment of the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings.

本実施形態のブレーキ制御装置は、タイヤの摩耗情報を取得することにより、その摩耗情報に基づき、アンチロックブレーキ制御の制御タイミング閾値を変更する。その結果、アンチロックブレーキ制御の制御タイミング閾値をタイヤの摩耗状態に応じて最適化できるので、制動時のタイヤの摩耗に伴う停止距離の変化を抑制できる。   The brake control device of the present embodiment acquires tire wear information, and changes the control timing threshold for antilock brake control based on the wear information. As a result, since the control timing threshold value of the antilock brake control can be optimized according to the tire wear state, it is possible to suppress the change in the stop distance due to the tire wear during braking.

図1は、本実施形態のブレーキ制御装置10を搭載する車両12の概念構成図である。車両12は、前輪位置および後輪位置にタイヤ14を装着している。各タイヤ14の内部、例えばトレッド内部に、タイヤ14のトレッド部から突出した凸ブロック14aの摩耗情報を取得する摩耗情報取得手段として機能するたわみ検出センサ16が配置している。たわみ検出センサ16は、後出の図面を用いて詳細に説明するが、タイヤ14のトレッド部に突出形成された凸ブロックのたわみの大きさを検出するセンサであり、例えば、タイヤ14の幅方向略中央部に1個配置される。また、たわみ検出センサ16はタイヤ14の周方向に複数配置してもよい。さらに、タイヤ14の幅方向の複数の位置に配置してもよいし、幅方向および周方向に複数配置してもよい。たわみ検出センサ16で検出された検出信号は、例えばホイール18の一部に配置された送信機20を介して車両12側に提供される。送信機20から送信された検出信号は受信機22を介してアンチロックブレーキシステム(以下、ABSという)の制御を実行する制御装置(以下、ECUという)24に提供される。また、タイヤ14と対面する位置で車両12の固定部分には、タイヤ14の回転速度、すなわち車輪速を検出する車輪速センサ26が配置されている。車輪速センサ26は、電磁ピックアップ方式またはホールIC方式などの回転センサであり、個々のタイヤ14の回転を検出して、ECU24にその情報を提供している。この他、ECU24には、車両12の車速を検出する車速センサ28からの情報や、車両搭乗者が必要に応じて操作可能で、タイヤ14の摩耗情報や路面状態情報などを入力する入力装置30からの情報が提供される。なお、入力装置30はキーボードやマウスやポインタ、音声認識入力装置などで構成することができる。   FIG. 1 is a conceptual configuration diagram of a vehicle 12 equipped with a brake control device 10 of the present embodiment. The vehicle 12 is equipped with tires 14 at the front wheel position and the rear wheel position. A deflection detection sensor 16 that functions as a wear information acquisition unit that acquires wear information of the convex block 14 a protruding from the tread portion of the tire 14 is disposed inside each tire 14, for example, the tread. The deflection detection sensor 16, which will be described in detail with reference to the following drawings, is a sensor that detects the deflection of a convex block that protrudes from the tread portion of the tire 14, for example, the width direction of the tire 14. One is arranged at a substantially central portion. A plurality of deflection detection sensors 16 may be arranged in the circumferential direction of the tire 14. Furthermore, you may arrange | position in the several position of the width direction of the tire 14, and may arrange in multiple in the width direction and the circumferential direction. A detection signal detected by the deflection detection sensor 16 is provided to the vehicle 12 side via a transmitter 20 disposed in a part of the wheel 18, for example. A detection signal transmitted from the transmitter 20 is provided via a receiver 22 to a control device (hereinafter referred to as ECU) 24 that performs control of an anti-lock brake system (hereinafter referred to as ABS). A wheel speed sensor 26 that detects the rotational speed of the tire 14, that is, the wheel speed, is disposed at a fixed portion of the vehicle 12 at a position facing the tire 14. The wheel speed sensor 26 is a rotation sensor such as an electromagnetic pickup system or a Hall IC system, and detects the rotation of each tire 14 and provides the information to the ECU 24. In addition, an input device 30 that inputs information from the vehicle speed sensor 28 that detects the vehicle speed of the vehicle 12, information on wear of the tire 14, road surface state information, and the like that can be operated by a vehicle occupant as needed. Information from is provided. The input device 30 can be configured by a keyboard, a mouse, a pointer, a voice recognition input device, or the like.

図2は、ECU24の内部構成を説明する構成ブロック図である。ECU24は、たわみ検出部32、摩耗推定部34、記憶部36、路面摩擦係数推定部38、路面判定部40、ABS閾値変更部42、ABS制御部44などを含む。たわみ検出部32は、受信機22を介して提供されたたわみ検出センサ16の検出値に基づき、タイヤ14のたわみ量を検出する。   FIG. 2 is a configuration block diagram illustrating the internal configuration of the ECU 24. The ECU 24 includes a deflection detection unit 32, a wear estimation unit 34, a storage unit 36, a road surface friction coefficient estimation unit 38, a road surface determination unit 40, an ABS threshold value change unit 42, an ABS control unit 44, and the like. The deflection detection unit 32 detects the deflection amount of the tire 14 based on the detection value of the deflection detection sensor 16 provided via the receiver 22.

ここで、図3を参照する。図3には、タイヤ14のトレッド部に突出形成された凸ブロック14aの形状および凸ブロック14a内部におけるたわみ検出センサ16の配置状態が示されている。タイヤ14の凸ブロック14aは、図3に示すように、タイヤ14の周方向Aに関する幅が幅b、タイヤ14の幅方向Bに関する幅が幅h、高さが高さLである。複数の凸ブロック14aの間が、いわゆる溝部46となる。このような、凸ブロック14aを有するタイヤ14を装着した車両12が、定速走行時、例えば40km/hで加減速をすることなく走行している場合、凸ブロック14aが路面から受ける摩擦力Fは路面状態に関係なく一定であると見なすことができる。また、凸ブロック14aは、タイヤ14のトレッド表面で片持ち状態で固定された片持ち梁と見なすことができる。したがって、凸ブロック14aに発生する走行中のたわみδはδ=FL/3EIで求めることができる。ここで、I=bh/12、Eは縦弾性係数である。したがって、定速走行時の凸ブロック14aのたわみ量と凸ブロック14aの高さLの間には、図4で示すような比例関係が成り立つ。したがって、所定閾値Aを下回った場合、凸ブロック14aも所定の高さを下回る摩耗が生じていると推定することができる。また、たわみ検出センサ16で検出したたわみ量と凸ブロック14aの高さLの間にも同様な比例関係が存在すると見なすことができる。したがって、所定閾値Aを下回った場合、凸ブロック14aも所定の高さを下回る摩耗が生じていると推定することができる。なお、図3に示す凸ブロック14aの形状は、本実施形態の説明のために簡略化したもので、実際の凸ブロック14aの形状は摩耗強度や排水能力を考慮した様々な形状になっている。 Reference is now made to FIG. FIG. 3 shows the shape of the convex block 14 a formed to protrude from the tread portion of the tire 14 and the arrangement state of the deflection detection sensor 16 inside the convex block 14 a. As shown in FIG. 3, the convex block 14 a of the tire 14 has a width b in the circumferential direction A of the tire 14, a width h in the width direction B of the tire 14, and a height L in the height 14. Between the plurality of convex blocks 14 a is a so-called groove 46. When the vehicle 12 equipped with the tire 14 having the convex block 14a is traveling at a constant speed, for example, at 40 km / h without acceleration / deceleration, the frictional force F received by the convex block 14a from the road surface is as follows. Can be considered constant regardless of the road surface condition. Further, the convex block 14 a can be regarded as a cantilever beam fixed in a cantilever state on the tread surface of the tire 14. Therefore, the running deflection δ generated in the convex block 14a can be obtained by δ = FL 3 / 3EI. Here, I = bh 3/12, E is the modulus of longitudinal elasticity. Therefore, a proportional relationship as shown in FIG. 4 is established between the amount of deflection of the convex block 14a and the height L of the convex block 14a during constant speed traveling. Therefore, when the value falls below the predetermined threshold A, it can be estimated that the convex block 14a is also worn below a predetermined height. Further, it can be considered that a similar proportional relationship exists between the deflection amount detected by the deflection detection sensor 16 and the height L of the convex block 14a. Therefore, when the value falls below the predetermined threshold A, it can be estimated that the convex block 14a is also worn below a predetermined height. In addition, the shape of the convex block 14a shown in FIG. 3 is simplified for the description of the present embodiment, and the actual shape of the convex block 14a has various shapes in consideration of wear strength and drainage capacity. .

図2に戻り、摩耗推定部34は、たわみ検出部32で検出した凸ブロック14aのたわみ量と、記憶部36に記憶されたたわみ量と凸ブロック14aの高さの関係を示すテーブルを用いて、実際の凸ブロック14aの高さ、言い換えれば、タイヤ14の摩耗量を推定する。なお、記憶部36に記憶されたテーブルは、例えば予め測定装置などを用いて、凸ブロック14aの摩耗状態と、その時にたわみ検出センサ16により検出されるたわみ量により作成しておくことができる。また、路面摩擦係数推定部38は、車両12の車速センサ28から提供される車速と、車輪速センサ26から提供される車輪速とに基づき周知の方法により路面摩擦係数を推定する。路面判定部40は、路面摩擦係数推定部38が推定した路面摩擦係数に基づき、現在車両12が走行している路面がドライ路面であるかウエット路面であるかを判定する。その判定結果は、ABS閾値変更部42に提供される。また、ABS閾値変更部42には、摩耗推定部34が推定したタイヤ14の摩耗量に基づき、記憶部36に予め記憶させておいてABS制御タイミング閾値を変更する。変更したABS制御タイミング閾値は、ABS制御部44に提供され、実際のABS制御に活用される。   Returning to FIG. 2, the wear estimation unit 34 uses the deflection amount of the convex block 14 a detected by the deflection detection unit 32 and a table indicating the relationship between the deflection amount stored in the storage unit 36 and the height of the convex block 14 a. The actual height of the convex block 14a, in other words, the amount of wear of the tire 14 is estimated. In addition, the table memorize | stored in the memory | storage part 36 can be produced previously, for example using the measuring apparatus etc. by the abrasion state of the convex block 14a, and the deflection amount detected by the deflection | deviation detection sensor 16 at that time. Further, the road surface friction coefficient estimation unit 38 estimates the road surface friction coefficient by a known method based on the vehicle speed provided from the vehicle speed sensor 28 of the vehicle 12 and the wheel speed provided from the wheel speed sensor 26. The road surface determination unit 40 determines whether the road surface on which the vehicle 12 is currently traveling is a dry road surface or a wet road surface based on the road surface friction coefficient estimated by the road surface friction coefficient estimation unit 38. The determination result is provided to the ABS threshold value changing unit 42. The ABS threshold value changing unit 42 changes the ABS control timing threshold value stored in advance in the storage unit 36 based on the wear amount of the tire 14 estimated by the wear estimation unit 34. The changed ABS control timing threshold value is provided to the ABS control unit 44 and used for actual ABS control.

ABS制御タイミング閾値の変更を図5の模式図を用いて説明する。図5には、非摩耗時(新品時)でドライ路面走行時のタイヤ摩耗係数とスリップ率を示すグラフaと、摩耗時でドライ路面走行時のタイヤ摩耗係数とスリップ率を示すグラフbが示されている。また、非摩耗時(新品時)でウエット路面走行時のタイヤ摩耗係数とスリップ率を示すグラフcと、摩耗時でドライ路面走行時のタイヤ摩耗係数とスリップ率を示すグラフdが示されている。前述したように、ドライ路面を走行している場合、タイヤ14の摩耗が進行すると、タイヤ14の凸ブロック14aの剛性が高くなり、タイヤ摩擦係数が高くなる。一方、ウエット路面を走行している場合、凸ブロック14aの高さ減少により、溝部46が浅くなり排水性が低下して、路面とタイヤ14との間に水膜が形成される。その結果、タイヤ摩耗係数が低下する。なお、タイヤ14が非摩耗状態の場合、ABS制御タイミング閾値は、安全上タイヤ摩擦係数のピーク(グラフaの場合、P点)の後に設定されている。つまりタイヤ14の滑り出しを検出した後にABSを動作させている。図5に示すように、ABS制御タイミング閾値をドライ路面走行時とウエット路面走行時の両方で共用する場合、ABS制御タイミング閾値Mは、ドライ路面走行時とウエット路面走行時の両方で良好に機能するように設定される。   The change of the ABS control timing threshold will be described with reference to the schematic diagram of FIG. FIG. 5 shows a graph a showing the tire wear coefficient and slip ratio when running on a dry road surface when not worn (new article), and a graph b showing the tire wear coefficient and slip ratio when running on a dry road surface when worn. Has been. In addition, a graph c indicating the tire wear coefficient and slip rate when running on a wet road surface when not worn (when new) and a graph d showing the tire wear coefficient and slip rate when running on a dry road surface when worn are shown. . As described above, when the tire 14 is being worn on the dry road surface, the rigidity of the convex block 14a of the tire 14 increases and the tire friction coefficient increases. On the other hand, when the vehicle is traveling on a wet road surface, the groove 46 becomes shallow due to a decrease in the height of the convex block 14 a, the drainage performance is lowered, and a water film is formed between the road surface and the tire 14. As a result, the tire wear coefficient decreases. When the tire 14 is in a non-wearing state, the ABS control timing threshold value is set after the peak of the tire friction coefficient for safety (point P in the case of graph a). That is, the ABS is operated after the slipping of the tire 14 is detected. As shown in FIG. 5, when the ABS control timing threshold value is shared for both dry road driving and wet road driving, the ABS control timing threshold M functions well for both dry road driving and wet road driving. Set to do.

ところで、タイヤ14の摩耗が進行すると、前述のように、ドライ路面では、タイヤ摩擦係数が高くなり停止距離が短くなり、ウエット路面では低くなり停止距離が長くなる。そこで、本実施形態においては、図5に示すように、ABS制御タイミング閾値MをABS制御タイミング閾値Nに修正することにより、ABSを早めに動作させるようにする。その結果、ドライ路面走行時には、タイヤ14の摩耗に伴い短くなった停止距離をタイヤ14の非摩耗時の停止距離に戻すように制御することができる。一方、ウエット路面走行時には、ABSを早めに動作させることにより、タイヤ14の摩耗に伴う水膜の形成により長くなった空走距離をタイヤ14の非摩耗時の停止距離に戻すように制御することができる。   By the way, as the wear of the tire 14 progresses, as described above, the tire friction coefficient increases on the dry road surface and the stop distance decreases, and the stop distance decreases on the wet road surface and the stop distance increases. Therefore, in the present embodiment, the ABS is operated earlier by correcting the ABS control timing threshold M to the ABS control timing threshold N as shown in FIG. As a result, when traveling on a dry road surface, it is possible to control so that the stopping distance shortened with the wear of the tire 14 is returned to the stopping distance when the tire 14 is not worn. On the other hand, when running on a wet road surface, by operating the ABS early, control is performed so that the idle running distance that has become longer due to the formation of a water film accompanying the wear of the tire 14 is returned to the stop distance when the tire 14 is not worn. Can do.

図6には、本実施形態のブレーキ制御装置10の制御手順を示すフローチャートが示されている。図6では、タイヤ14の摩耗を検出してABS制御タイミング閾値を変更する基本処理を説明する。なお、この場合、図2のECU24の構成おいて、ABS制御タイミング閾値の変更処理に路面摩擦係数推定部38と路面判定部40は使用しないので、省略することができる。ECU24は、車速センサ28を介して、車速がVkm/h(例えば40km/h)で一定速度になったか否かの判断を実施する(S100のYまたはN)。Vkm/hに達していない場合、または、加減速を行っている場合(S100のN)、たわみ量が安定しないため検出処理は行わず、車速の監視を継続する。もし、車速がVkm/h(例えば40km/h)で一定速度になった場合(S100のY)、たわみ検出部32はたわみ検出センサ16から提供される検出情報に基づき、たわみ検出を実施する(S101)。たわみ量の検出が完了した場合、摩耗推定部34は摩耗推定を行い、摩耗値が所定値、例えば新品のタイヤ14に対して50%摩耗したか否を判断する(S102)。摩耗状態が所定値を越えていない場合(S102のN)、S101に戻り、再度たわみ量の検出処理を実施する。一方、摩耗推定部34が所定値以上摩耗したと判断した場合(S102のY)、摩耗推定部34はABS閾値変更部42に摩耗情報を提供し、ABS閾値変更部42は、図5に示すように、ABS制御タイミング閾値MをABS制御タイミング閾値Nに修正する(S103)。そして、修正したABS制御タイミング閾値NをABS制御部44に提供し、実際の制動時に、ABS制御タイミング閾値Nに基づきABSの制御を実行する(S104)。   FIG. 6 shows a flowchart showing a control procedure of the brake control device 10 of the present embodiment. FIG. 6 illustrates a basic process for detecting wear of the tire 14 and changing the ABS control timing threshold. In this case, in the configuration of the ECU 24 in FIG. 2, the road surface friction coefficient estimating unit 38 and the road surface determining unit 40 are not used for the ABS control timing threshold changing process, and can be omitted. The ECU 24 determines whether or not the vehicle speed has become a constant speed at Vkm / h (for example, 40 km / h) via the vehicle speed sensor 28 (Y or N in S100). If Vkm / h has not been reached, or if acceleration / deceleration is being performed (N in S100), the amount of deflection is not stable, so detection processing is not performed and vehicle speed monitoring is continued. If the vehicle speed is Vkm / h (for example, 40 km / h) and the vehicle speed is constant (Y in S100), the deflection detection unit 32 performs deflection detection based on the detection information provided from the deflection detection sensor 16 ( S101). When the detection of the deflection amount is completed, the wear estimation unit 34 performs wear estimation and determines whether or not the wear value is worn by a predetermined value, for example, 50% of the new tire 14 (S102). If the wear state does not exceed the predetermined value (N in S102), the process returns to S101 and the deflection amount detection process is performed again. On the other hand, when it is determined that the wear estimation unit 34 has worn beyond a predetermined value (Y in S102), the wear estimation unit 34 provides wear information to the ABS threshold value changing unit 42, and the ABS threshold value changing unit 42 is shown in FIG. As described above, the ABS control timing threshold value M is corrected to the ABS control timing threshold value N (S103). Then, the corrected ABS control timing threshold value N is provided to the ABS control unit 44, and ABS control is executed based on the ABS control timing threshold value N during actual braking (S104).

このように、タイヤ14の摩耗を検出してABS制御タイミング閾値MをABS制御タイミング閾値Nに変更することにより、タイヤ14の摩耗により広がったドライ走行時の停止距離とウエット走行時の停止距離の差をタイヤ14の非摩耗時の差に戻すように制御することができる。その結果、タイヤ14の摩耗に伴う車両12の搭乗者の停止距離に関する違和感を減少することができる。   In this way, by detecting the wear of the tire 14 and changing the ABS control timing threshold M to the ABS control timing threshold N, the stop distance at the time of dry travel and the stop distance at the time of wet travel spread by the wear of the tire 14 are increased. The difference can be controlled to return to the difference when the tire 14 is not worn. As a result, it is possible to reduce a sense of discomfort related to the stop distance of the passenger of the vehicle 12 due to wear of the tire 14.

図7は、本実施形態のブレーキ制御装置10の他の制御手順を示すフローチャートが示されている。図7では、タイヤ14の摩耗を検出すると共に、路面がドライ状態かウエット状態かに応じて、ABS制御タイミング閾値を変更している例が示されている。なお、この場合、図2のECU24の構成で処理が行われる。ECU24は、車速センサ28を介して、車速がVkm/h(例えば40km/h)で一定速度になったか否かの判断を実施する(S200のYまたはN)。Vkm/hに達していない場合、または、加減速を行っている場合(S200のN)、たわみ量が安定しないので車速の監視を継続する。もし、車速がVkm/h(例えば40km/h)で一定速度になった場合(S200のY)、たわみ検出部32はたわみ検出センサ16から提供される検出情報に基づき、たわみ検出を行う(S201)。たわみ量の検出が完了した場合、摩耗推定部34は摩耗推定を行い、摩耗値が所定値、例えば新品のタイヤ14に対して50%摩耗したか否か判断を実施する(S202)。摩耗状態が所定値を越えていない場合(S202のN)、S201に戻り、再度たわみ量の検出処理を実施する。一方、摩耗推定部34が所定値以上摩耗したと判断した場合(S202のY)、摩耗推定部34はABS閾値変更部42に摩耗情報を提供する。また、路面摩擦係数推定部38は、車輪速センサ26および車速センサ28からの情報に基づき、路面摩擦係数の推定を実施する。そして、路面判定部40は、路面摩擦係数推定部38の推定した路面摩擦係数に基づき、車両12が現在走行している路面がドライ路面であるかウエット路面であるかを判断する(S203のYまたはN)。なお、ドライ路面であるかウエット路面であるかは、例えば、路面摩擦係数が設定値以下になった場合に、ウエット路面であると判断することができる。そして、その結果をABS閾値変更部42に提供する。車両12がドライ路面を走行中であると判断した場合(S203のY)、ABS閾値変更部42は、摩耗推定部34から提供された摩耗情報に基づき、ドライ路面用のABS制御タイミング閾値の変更を実施する(S204)。   FIG. 7 is a flowchart showing another control procedure of the brake control device 10 of the present embodiment. FIG. 7 shows an example in which the wear of the tire 14 is detected and the ABS control timing threshold is changed depending on whether the road surface is in a dry state or a wet state. In this case, the processing is performed by the configuration of the ECU 24 in FIG. The ECU 24 determines whether or not the vehicle speed has reached a constant speed of Vkm / h (for example, 40 km / h) via the vehicle speed sensor 28 (Y or N in S200). If Vkm / h has not been reached, or if acceleration / deceleration is being performed (N in S200), the vehicle speed is continuously monitored because the amount of deflection is not stable. If the vehicle speed is Vkm / h (for example, 40 km / h) and the vehicle speed is constant (Y in S200), the deflection detection unit 32 performs deflection detection based on the detection information provided from the deflection detection sensor 16 (S201). ). When the detection of the deflection amount is completed, the wear estimation unit 34 performs wear estimation, and determines whether or not the wear value is worn at a predetermined value, for example, 50% of the new tire 14 (S202). When the wear state does not exceed the predetermined value (N in S202), the process returns to S201, and the deflection amount detection process is performed again. On the other hand, when it is determined that the wear estimation unit 34 has worn more than a predetermined value (Y in S202), the wear estimation unit 34 provides wear information to the ABS threshold value changing unit 42. Further, the road surface friction coefficient estimating unit 38 performs estimation of the road surface friction coefficient based on information from the wheel speed sensor 26 and the vehicle speed sensor 28. The road surface determination unit 40 determines whether the road surface on which the vehicle 12 is currently traveling is a dry road surface or a wet road surface based on the road surface friction coefficient estimated by the road surface friction coefficient estimation unit 38 (Y in S203). Or N). Whether the road surface is a dry road surface or a wet road surface can be determined to be a wet road surface, for example, when the road surface friction coefficient is equal to or lower than a set value. Then, the result is provided to the ABS threshold value changing unit 42. When it is determined that the vehicle 12 is traveling on a dry road surface (Y in S203), the ABS threshold value changing unit 42 changes the ABS control timing threshold value for the dry road surface based on the wear information provided from the wear estimation unit 34. (S204).

図8(a)には、ドライ路面用のABS制御タイミング閾値の変更を示すグラフが示されている。図8(a)には、非摩耗時(新品時)でドライ路面走行時のタイヤ摩耗係数とスリップ率を示すグラフaと、摩耗時でドライ路面走行時のタイヤ摩耗係数とスリップ率を示すグラフbが示されている。また、タイヤ14が非摩耗状態でドライ走行時に適したABS制御タイミング閾値Mおよびタイヤ14が摩耗状態でドライ走行時に適したABS制御タイミング閾値Nが示されている。ABS閾値変更部42は、摩耗推定部34からの情報によりタイヤ14が所定値以上の摩耗(例えば、新品時タイヤ14に対して50%の摩耗)が発生していると判断し、かつ現在車両12がドライ路面を走行中であると判断した場合、切り換え制御を実行する。つまり、ABS制御タイミング閾値MからABS制御タイミング閾値Nに切り換える。そして、ABS閾値変更部42は変更したABS制御タイミング閾値NをABS制御部44に提供し、実際の制動時に、ABS制御タイミング閾値Nに基づきABSの制御を実行する(S205)。その結果、タイヤ14の摩耗による凸ブロック14aの剛性増大により制動時の停止距離が必要以上に短縮されていたものを、タイヤ14の摩耗がない状態の時の停止距離に戻すように、ABSが早めに動作して違和感のない制動を実現する。   FIG. 8A shows a graph showing the change of the ABS control timing threshold value for the dry road surface. FIG. 8 (a) shows a graph a showing the tire wear coefficient and slip ratio when running on a dry road surface when not worn (new article), and a graph showing the tire wear coefficient and slip ratio when running on a dry road surface when worn. b is shown. Further, an ABS control timing threshold value M suitable for dry running when the tire 14 is in a non-wearing state and an ABS control timing threshold value N suitable for dry running when the tire 14 is in a worn state are shown. The ABS threshold value changing unit 42 determines that the tire 14 is worn beyond a predetermined value (for example, 50% of the new tire 14 is worn) based on information from the wear estimating unit 34, and the current vehicle. When it is determined that 12 is traveling on a dry road surface, switching control is executed. That is, the ABS control timing threshold value M is switched to the ABS control timing threshold value N. Then, the ABS threshold changing unit 42 provides the changed ABS control timing threshold N to the ABS control unit 44, and executes ABS control based on the ABS control timing threshold N during actual braking (S205). As a result, the ABS is used so that the stopping distance at the time of braking is shortened more than necessary due to the increase in rigidity of the convex block 14a due to the wear of the tire 14 is returned to the stopping distance when the tire 14 is not worn. Operate early to achieve a comfortable brake.

一方、S203において、車両12がドライ路面を走行していない、つまりウエット路面を走行中であると判断した場合(S203のN)、ABS閾値変更部42は、摩耗推定部34から提供された摩耗情報に基づき、ウエット路面用のABS制御タイミング閾値の変更を実施する(S206)。図8(b)には、ウエット路面用のABS制御タイミング閾値の変更を示すグラフが示されている。図8(b)には、非摩耗時(新品時)でウエット路面走行時のタイヤ摩耗係数とスリップ率を示すグラフcと、摩耗時でウエット路面走行時のタイヤ摩耗係数とスリップ率を示すグラフdが示されている。また、タイヤ14が非摩耗状態でウエット走行時に適したABS制御タイミング閾値Mおよびタイヤ14が摩耗状態でウエット走行時に適したABS制御タイミング閾値Nが示されている。ABS閾値変更部42は、摩耗推定部34からの情報によりタイヤ14が所定値以上の摩耗(例えば、新品時タイヤ14に対して50%の摩耗)が発生していると判断し、かつ現在車両12がウエット路面を走行中であると判断した場合、切り換え制御を実行する。つまり、ABS制御タイミング閾値MからABS制御タイミング閾値Nに切り換える。そして、ABS閾値変更部42は変更したABS制御タイミング閾値NをABS制御部44に提供し、実際の制動時に、ABS制御タイミング閾値Nに基づきABSの制御を実行する(S205)。その結果、タイヤ14の摩耗に伴い空走により制動時の停止距離が延びていたものを、タイヤ14の摩耗がない状態の時の停止距離に戻すように、ABSが早めに動作して違和感のない制動を実現する。   On the other hand, when it is determined in S203 that the vehicle 12 is not traveling on the dry road surface, that is, the vehicle 12 is traveling on the wet road surface (N in S203), the ABS threshold value changing unit 42 wears the wear provided from the wear estimating unit 34. Based on the information, the ABS control timing threshold for the wet road surface is changed (S206). FIG. 8B shows a graph showing the change of the ABS control timing threshold value for the wet road surface. FIG. 8B shows a graph c showing the tire wear coefficient and slip ratio when running on a wet road surface when not worn (new article), and a graph showing the tire wear coefficient and slip ratio when running on a wet road surface when worn. d is shown. In addition, an ABS control timing threshold value M suitable for wet running when the tire 14 is in a non-wearing state and an ABS control timing threshold value N suitable for wet running when the tire 14 is in a worn state are shown. The ABS threshold value changing unit 42 determines that the tire 14 is worn beyond a predetermined value (for example, 50% of the new tire 14 is worn) based on information from the wear estimating unit 34, and the current vehicle. When it is determined that 12 is traveling on a wet road surface, switching control is executed. That is, the ABS control timing threshold value M is switched to the ABS control timing threshold value N. Then, the ABS threshold changing unit 42 provides the changed ABS control timing threshold N to the ABS control unit 44, and executes ABS control based on the ABS control timing threshold N during actual braking (S205). As a result, the ABS operates earlier so that the stopping distance at the time of braking due to idle running due to wear of the tire 14 is returned to the stopping distance when the tire 14 is not worn, and the discomfort is felt. Realize no braking.

なお、図6,図7に示すフローチャートにおいて、たわみ判定を行うタイミングとして、所定車速(例えば40km/hの一定車速時)としたが、複数の車速(例えば80km/hの一定車速時など)でたわみ検出を行うことにより、より精度の高いたわみ検出を行うことができる。   In the flowcharts shown in FIGS. 6 and 7, the deflection determination timing is set to a predetermined vehicle speed (for example, at a constant vehicle speed of 40 km / h), but at a plurality of vehicle speeds (for example, at a constant vehicle speed of 80 km / h). By performing deflection detection, it is possible to perform deflection detection with higher accuracy.

図9には、本実施形態の摩耗情報取得手段として機能する他の構成を含む例を示している。図9に示す例では、タイヤ14の凸ブロック14aの内部に、たわみ検出センサ16に代えて、電位センサ48が凸ブロック14aに配置している。この電位センサ48は、凸ブロック14aが摩耗することによってタイヤ14の表面に露出したときに、路面と接触して電荷をグランドに放出する。その時の電位変化を送信機20を介して、ECU24側に送っている。電位センサ48は、凸ブロック14aの所定の深さ、例えば、タイヤ14の新品時に対して凸ブロック14aが50%摩耗した時点で露出する深さに配置されている。図9の例では、タイヤ14の幅方向に3個配置しているが、配置数は任意であり1個でもよいし、4個以上配置してもよい。またタイヤ14の周方向に複数配置してもよい。電位センサ48が出力する電位変化の信号は、そのままタイヤ14の摩耗が所定値まで達したことを示す摩耗情報である。したがって、図2に示すECU24の構成のうち、たわみ検出部32、摩耗推定部34は不要であり、受信機22を介してタイヤ14側から提供される情報は、直接ABS閾値変更部42に提供される。   FIG. 9 shows an example including another configuration that functions as a wear information acquisition unit of the present embodiment. In the example shown in FIG. 9, a potential sensor 48 is arranged in the convex block 14 a instead of the deflection detection sensor 16 inside the convex block 14 a of the tire 14. When the convex block 14a is worn and exposed to the surface of the tire 14, the potential sensor 48 comes into contact with the road surface and discharges electric charges to the ground. The potential change at that time is sent to the ECU 24 side via the transmitter 20. The potential sensor 48 is disposed at a predetermined depth of the convex block 14a, for example, a depth that is exposed when the convex block 14a is worn 50% with respect to a new tire 14. In the example of FIG. 9, three are arranged in the width direction of the tire 14, but the number of arrangement is arbitrary and may be one, or four or more. A plurality of tires 14 may be arranged in the circumferential direction of the tire 14. The potential change signal output from the potential sensor 48 is wear information indicating that the wear of the tire 14 has reached a predetermined value as it is. Therefore, in the configuration of the ECU 24 shown in FIG. 2, the deflection detection unit 32 and the wear estimation unit 34 are unnecessary, and information provided from the tire 14 side via the receiver 22 is directly provided to the ABS threshold value changing unit 42. Is done.

図10は、路面判定を行わない場合のABS制御タイミング閾値の修正を行う手順を説明するフローチャートである。なお、この場合、図2のECU24の構成おいて、ABS制御タイミング閾値の変更処理に路面摩擦係数推定部38と路面判定部40は使用しないので、省略することができる。ABS閾値変更部42は受信機22を介して、電位センサ48からの電位変化信号が取得されたか否かを確認する(S301のYまたはN)。電位変化信号を取得できない場合(S301のN)、つまり、まだ電位センサ48がタイヤ14の表面に露出していない場合、取得の有無の関しを継続する。一方、電位変化信号を取得できた場合(S301のY)、ABS閾値変更部42は、タイヤ14の摩耗が所定値まで進行したと判断し、図5に示すように、ABS制御タイミング閾値MをABS制御タイミング閾値Nに修正する(S302)。そして、修正したABS制御タイミング閾値NをABS制御部44に提供し、実際の制動時に、ABS制御タイミング閾値Nに基づきABSの制御を実行する(S303)。   FIG. 10 is a flowchart for explaining the procedure for correcting the ABS control timing threshold when the road surface determination is not performed. In this case, in the configuration of the ECU 24 in FIG. 2, the road surface friction coefficient estimating unit 38 and the road surface determining unit 40 are not used for the ABS control timing threshold changing process, and can be omitted. The ABS threshold value changing unit 42 confirms whether or not a potential change signal from the potential sensor 48 is acquired via the receiver 22 (Y or N in S301). If the potential change signal cannot be acquired (N in S301), that is, if the potential sensor 48 is not yet exposed on the surface of the tire 14, the presence or absence of acquisition is continued. On the other hand, when the potential change signal can be acquired (Y in S301), the ABS threshold value changing unit 42 determines that the wear of the tire 14 has progressed to a predetermined value, and sets the ABS control timing threshold value M as shown in FIG. The ABS control timing threshold value N is corrected (S302). Then, the corrected ABS control timing threshold value N is provided to the ABS control unit 44, and ABS control is executed based on the ABS control timing threshold value N during actual braking (S303).

このように、タイヤ14の摩耗を検出してABS制御タイミング閾値MをABS制御タイミング閾値Nに変更することにより、タイヤ14の摩耗により広がったドライ走行時の停止距離とウエット走行時の停止距離の差をタイヤ14の非摩耗時の差に戻すように制御することができる。その結果、タイヤ14の摩耗に伴う車両12の搭乗者の停止距離に関する違和感を減少することができる。なお、この場合、タイヤ14の摩耗が所定値まで進行したことを直接的に検出しているので、検出信頼性が高いと共に、ECU24をシンプルに構成することができる。   In this way, by detecting the wear of the tire 14 and changing the ABS control timing threshold M to the ABS control timing threshold N, the stop distance at the time of dry travel and the stop distance at the time of wet travel spread by the wear of the tire 14 are increased. The difference can be controlled to return to the difference when the tire 14 is not worn. As a result, it is possible to reduce a sense of discomfort related to the stop distance of the passenger of the vehicle 12 due to wear of the tire 14. In this case, since it is directly detected that the wear of the tire 14 has progressed to a predetermined value, the detection reliability is high and the ECU 24 can be configured simply.

図11に示すフローチャートは、タイヤ14の摩耗を電位センサ48で検出すると共に、路面がドライ状態かウエット状態かに応じて、ABS制御タイミング閾値を変更する例が示されている。なお、この場合、図2のECU24において、たわみ検出部32、摩耗推定部34を除いた構成で処理が行われる。ABS閾値変更部42は受信機22を介して、電位センサ48からの電位変化信号が取得されたか否かを確認する(S401のYまたはN)。電位変化信号を取得できない場合、つまり、まだ電位センサ48がタイヤ14の表面に露出していない場合(S401のN)、取得の有無の監視を継続する。一方、電位変化信号を取得できた場合(S401のY)、路面摩擦係数推定部38は、車輪速センサ26および車速センサ28からの情報に基づき、路面摩擦係数の推定を行う。そして、路面判定部40は、路面摩擦係数推定部38の推定した路面摩擦係数に基づき、車両12が現在走行している路面がドライ路面であるかウエット路面であるかを判断し(S402のYまたはN)、その結果をABS閾値変更部42に提供する。車両12がドライ路面を走行中であると判断した場合(S402のY)、ABS閾値変更部42は、電位センサ48から提供された摩耗情報となる電位変化信号に基づき、ドライ路面用のABS制御タイミング閾値の変更を行う(S403)。つまり、図8(a)に示すように、ABS閾値変更部42は、電位センサ48からの情報によりタイヤ14が所定値以上の摩耗(例えば、新品時タイヤ14に対して50%の摩耗)が発生していると判断し、かつ現在車両12がドライ路面を走行中であると判断した場合、切り換え制御を実行する。つまり、ABS制御タイミング閾値MからABS制御タイミング閾値Nに切り換える。そして、ABS閾値変更部42は変更したABS制御タイミング閾値NをABS制御部44に提供し、実際の制動時に、ABS制御タイミング閾値Nに基づきABSの制御を実行する(S404)。その結果、タイヤ14の摩耗による凸ブロック14aの剛性増大により制動時の停止距離が必要以上に短縮されていたものを、タイヤ14の摩耗がない状態の時の停止距離に戻すように、ABSが早めに動作して違和感のない制動を実現する。   The flowchart shown in FIG. 11 shows an example in which the wear of the tire 14 is detected by the potential sensor 48 and the ABS control timing threshold is changed according to whether the road surface is in a dry state or a wet state. In this case, the ECU 24 in FIG. 2 performs processing with a configuration excluding the deflection detection unit 32 and the wear estimation unit 34. The ABS threshold value changing unit 42 confirms whether or not a potential change signal from the potential sensor 48 is acquired via the receiver 22 (Y or N in S401). When the potential change signal cannot be acquired, that is, when the potential sensor 48 is not yet exposed on the surface of the tire 14 (N in S401), the monitoring of the acquisition is continued. On the other hand, when the potential change signal can be acquired (Y in S401), the road surface friction coefficient estimation unit 38 estimates the road surface friction coefficient based on information from the wheel speed sensor 26 and the vehicle speed sensor 28. Then, the road surface determination unit 40 determines whether the road surface on which the vehicle 12 is currently traveling is a dry road surface or a wet road surface based on the road surface friction coefficient estimated by the road surface friction coefficient estimation unit 38 (Y in S402). Or, the result is provided to the ABS threshold value changing unit 42. When it is determined that the vehicle 12 is traveling on the dry road surface (Y in S402), the ABS threshold value changing unit 42 performs the ABS control for the dry road surface based on the potential change signal that is the wear information provided from the potential sensor 48. The timing threshold value is changed (S403). That is, as shown in FIG. 8A, the ABS threshold value changing unit 42 indicates that the tire 14 is worn by a predetermined value or more based on information from the potential sensor 48 (for example, 50% of the new tire 14 is worn). When it is determined that the vehicle has occurred and it is determined that the vehicle 12 is currently traveling on a dry road surface, switching control is executed. That is, the ABS control timing threshold value M is switched to the ABS control timing threshold value N. Then, the ABS threshold change unit 42 provides the changed ABS control timing threshold N to the ABS control unit 44, and executes ABS control based on the ABS control timing threshold N during actual braking (S404). As a result, the ABS is used so that the stopping distance at the time of braking is shortened more than necessary due to the increase in rigidity of the convex block 14a due to the wear of the tire 14 is returned to the stopping distance when the tire 14 is not worn. Operate early to achieve a comfortable brake.

一方、S402において、車両12がドライ路面を走行していない、つまりウエット路面を走行中であると判断した場合(S402のN)、ABS閾値変更部42は、電位センサ48から提供された摩耗情報となる電位変化信号に基づき、ウエット路面のABS制御タイミング閾値の変更を行う(S405)。つまり、図8(b)に示すように、ABS閾値変更部42は、電位センサ48からの情報によりタイヤ14が所定値以上の摩耗(例えば、新品時タイヤ14に対して50%の摩耗)が発生していると判断し、かつ現在車両12がウエット路面を走行中であると判断した場合、切り換え制御を実行する。つまり、ABS制御タイミング閾値MからABS制御タイミング閾値Nに切り換える。そして、ABS閾値変更部42は変更したABS制御タイミング閾値NをABS制御部44に提供し、実際の制動時に、ABS制御タイミング閾値Nに基づきABSの制御を実行する(S404)。その結果、タイヤ14の摩耗に伴い空走により制動時の停止距離が延びていたものを、タイヤ14の摩耗がない状態の時の停止距離に戻すように、ABSが早めに動作して違和感のない制動を実現する。なお、この場合、タイヤ14の摩耗が所定値まで進行したことを直接的に検出しているので、検出信頼性が高いと共に、路面状態に適したABS制御タイミング閾値の変更ができるので、路面状態、タイヤ状態に適して制動が実現できる。また、ECU24をシンプルに構成することができる。   On the other hand, if it is determined in S402 that the vehicle 12 is not traveling on a dry road surface, that is, a vehicle is traveling on a wet road surface (N in S402), the ABS threshold value changing unit 42 wear information provided from the potential sensor 48. Based on the potential change signal, the ABS control timing threshold value of the wet road surface is changed (S405). That is, as shown in FIG. 8B, the ABS threshold value changing unit 42 indicates that the tire 14 wears more than a predetermined value based on information from the potential sensor 48 (for example, 50% wear with respect to the new tire 14). When it is determined that it has occurred and it is determined that the vehicle 12 is currently traveling on a wet road surface, switching control is executed. That is, the ABS control timing threshold value M is switched to the ABS control timing threshold value N. Then, the ABS threshold change unit 42 provides the changed ABS control timing threshold N to the ABS control unit 44, and executes ABS control based on the ABS control timing threshold N during actual braking (S404). As a result, the ABS operates earlier so that the stopping distance at the time of braking due to idle running due to wear of the tire 14 is returned to the stopping distance when the tire 14 is not worn, and the discomfort is felt. Realize no braking. In this case, since it is directly detected that the wear of the tire 14 has progressed to a predetermined value, the detection reliability is high and the ABS control timing threshold suitable for the road surface condition can be changed. Brake can be realized suitable for the tire condition. Further, the ECU 24 can be configured simply.

なお、電位センサ48を用いる場合、車両12が走行中である必要はないので、任意のタイミングで、ABS制御タイミング閾値の変更処理ができる。   Note that when the potential sensor 48 is used, the vehicle 12 does not need to be traveling, so the ABS control timing threshold can be changed at an arbitrary timing.

また、上述の例では、タイヤ14の摩耗状態を取得する手段として、たわみ検出センサ16や電位センサ48を用る場合を説明したが、入力装置30を用いて、車両12の搭乗者が直接タイヤ14の摩耗情報を入力してもよい。例えば、タイヤ14の摩耗状態は、タイヤ14に設けられたスリップサインまでの溝深さなどに基づき入力することができる。なお、スリップサインは、タイヤ14の摩耗の限界を示すものなので、スリップサインを2段階にしてABS制御タイミング閾値変更用のサインとしてもよい。この場合、入力装置30からの情報をABS閾値変更部42に直接提供することになるので、ECU24の構成は、電位センサ48を用いる場合と同様な構成となる。   In the above-described example, the case where the deflection detection sensor 16 or the potential sensor 48 is used as a means for acquiring the wear state of the tire 14 has been described. Fourteen wear information may be input. For example, the wear state of the tire 14 can be input based on the groove depth to the slip sign provided on the tire 14. Since the slip sign indicates the limit of wear of the tire 14, the slip sign may be used in two stages as a sign for changing the ABS control timing threshold. In this case, since the information from the input device 30 is directly provided to the ABS threshold value changing unit 42, the configuration of the ECU 24 is the same as that when the potential sensor 48 is used.

また、路面状態も入力装置30を用いて、車両12の搭乗者が、現在走行している路面がドライ状態であるかウエット状態であるかを入力してもよい。この場合、路面摩擦係数推定部38、路面判定部40が省略できるので、ECU24の構成は簡略化される。   In addition, the road surface state may also be input using the input device 30 by the passenger of the vehicle 12 as to whether the currently running road surface is in a dry state or a wet state. In this case, since the road surface friction coefficient estimating unit 38 and the road surface determining unit 40 can be omitted, the configuration of the ECU 24 is simplified.

また、本実施形態では、タイヤ14の摩耗状態に応じて、ABS制御タイミング閾値をABS制御タイミング閾値MからABS制御タイミング閾値Nに変更する例を示したが、ABS制御タイミング閾値を複数準備しておき、タイヤ14の摩耗状態に応じて変化させることも可能で、さらに詳細なABS制御が可能となる。   In the present embodiment, an example in which the ABS control timing threshold value is changed from the ABS control timing threshold value M to the ABS control timing threshold value N according to the wear state of the tire 14 is shown, but a plurality of ABS control timing threshold values are prepared. In addition, the tire 14 can be changed according to the wear state of the tire 14, and more detailed ABS control is possible.

本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能である。各図に示す構成は、一例を説明するためのもので、同様な機能を達成できる構成であれば、適宜変更可能であり、同様な効果を得ることができる。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The configuration shown in each figure is for explaining an example, and any configuration that can achieve the same function can be changed as appropriate, and the same effect can be obtained.

本実施形態のブレーキ制御装置を搭載する車両の構成概念図である。It is a composition conceptual diagram of vehicles which mount a brake control device of this embodiment. 本実施形態のブレーキ制御装置のECUの構成を説明するブロック図である。It is a block diagram explaining the structure of ECU of the brake control apparatus of this embodiment. 本実施形態のブレーキ制御装置において、たわみ検出センサの配置と凸ブロックの形状例を説明する説明図である。In the brake control apparatus of this embodiment, it is explanatory drawing explaining the example of arrangement | positioning of a deflection | deviation detection sensor, and the shape of a convex block. 凸ブロックとたわみ量の関係を説明する説明図である。It is explanatory drawing explaining the relationship between a convex block and a deflection amount. ABS制御タイミング閾値の変更を説明する説明図である。It is explanatory drawing explaining the change of an ABS control timing threshold value. 本実施形態のブレーキ制御装置の制御例を説明するフローチャートである。It is a flowchart explaining the example of control of the brake control apparatus of this embodiment. 本実施形態のブレーキ制御装置の他の制御例を説明するフローチャートである。It is a flowchart explaining the other example of control of the brake control apparatus of this embodiment. 本実施形態のブレーキ制御装置の制御において、ドライ路面とウエット路面とを分けて制御する場合のABS制御タイミング閾値の変更を説明する説明図である。It is explanatory drawing explaining the change of an ABS control timing threshold value in the case of controlling separately a dry road surface and a wet road surface in control of the brake control apparatus of this embodiment. 本実施形態のブレーキ制御装置において、電位センサを用いる場合のタイヤの構成を説明する説明図である。In the brake control device of this embodiment, it is explanatory drawing explaining the structure of the tire in the case of using an electric potential sensor. 電位センサを用いる場合の制御手順を説明するフローチャートである。It is a flowchart explaining the control procedure in the case of using an electric potential sensor. 電位センサを用いる場合の他の制御手順を説明するフローチャートである。It is a flowchart explaining the other control procedure in the case of using an electric potential sensor.

符号の説明Explanation of symbols

10 ブレーキ制御装置、 12 車両、 14 タイヤ、 14a 凸ブロック、 16 たわみ検出センサ、 18 ホイール、 20 送信機、 22 受信機、 24 ECU、 26 車輪速センサ、 28 車速センサ、 30 入力装置、 32 たわみ検出部、 34 摩耗推定部、 36 記憶部、 38 路面摩擦係数推定部、 40 路面判定部、 42 ABS閾値変更部、 44 ABS制御部、 46 溝部、 48 電位センサ。   DESCRIPTION OF SYMBOLS 10 Brake control apparatus, 12 Vehicle, 14 Tire, 14a Convex block, 16 Deflection detection sensor, 18 Wheel, 20 Transmitter, 22 Receiver, 24 ECU, 26 Wheel speed sensor, 28 Vehicle speed sensor, 30 Input device, 32 Deflection detection Part, 34 wear estimation part, 36 storage part, 38 road surface friction coefficient estimation part, 40 road surface judgment part, 42 ABS threshold value changing part, 44 ABS control part, 46 groove part, 48 potential sensor.

Claims (6)

アンチロックブレーキ制御が可能なブレーキ制御装置であって、
タイヤの摩耗情報を取得する摩耗情報取得手段と、
前記タイヤの摩耗情報に基づいて、前記アンチロックブレーキ制御の制御タイミング閾値を変更する閾値変更手段と、
変更した前記閾値に基づきアンチロックブレーキ制御を実行する制御実行手段と、
を含むことを特徴とするブレーキ制御装置。
A brake control device capable of anti-lock brake control,
Wear information acquisition means for acquiring tire wear information;
Threshold changing means for changing a control timing threshold of the antilock brake control based on the tire wear information;
Control execution means for executing antilock brake control based on the changed threshold;
A brake control device comprising:
タイヤが走行する路面状態がドライ状態かウエット状態かを示す路面情報を取得する路面情報取得手段をさらに含み、
前記閾値変更手段は、路面状態に応じて、前記ドライ状態とウエット状態とで異なる制御タイミング閾値を変更することを特徴とする請求項1記載のブレーキ制御装置。
Road surface information acquisition means for acquiring road surface information indicating whether the road surface state where the tire travels is a dry state or a wet state;
The brake control device according to claim 1, wherein the threshold value changing unit changes a control timing threshold value that differs between the dry state and the wet state according to a road surface state.
前記摩耗情報取得手段は、前記タイヤのトレッド部の凸ブロック内に配置されたトレッド部のたわみ量を検出するたわみ検出センサを含み、前記たわみ検出センサの検出したたわみ量と、予め保持した前記タイヤの摩耗時のたわみ量変化情報に基づき、前記タイヤの摩耗情報を取得することを特徴とする請求項1または請求項2記載のブレーキ制御装置。   The wear information acquisition means includes a deflection detection sensor that detects a deflection amount of the tread portion disposed in a convex block of the tread portion of the tire, and the deflection amount detected by the deflection detection sensor and the tire held in advance. The brake control device according to claim 1, wherein wear information of the tire is acquired based on deflection amount change information during wear of the tire. 前記摩耗情報取得手段は、前記タイヤのトレッド部の凸ブロック内に埋設され、当該凸ブロックが所定量摩耗して露出した場合に路面と接触することにより電位変化信号を出力する電位センサを含み、当該電位変化に基づき、前記タイヤの摩耗情報を取得することを特徴とする請求項1または請求項2記載のブレーキ制御装置。   The wear information acquisition means includes a potential sensor that is embedded in a convex block of the tread portion of the tire, and outputs a potential change signal by contacting the road surface when the convex block is worn and exposed by a predetermined amount, The brake control device according to claim 1, wherein wear information of the tire is acquired based on the potential change. 前記摩耗情報取得手段は、ユーザからの摩耗情報を受け付ける入力装置であることを特徴とする請求項1または請求項2記載のブレーキ制御装置。   The brake control device according to claim 1, wherein the wear information acquisition unit is an input device that receives wear information from a user. 前記路面情報取得手段は、ユーザからの路面情報を受け付ける入力装置であることを特徴とする請求項2記載のブレーキ制御装置。   The brake control device according to claim 2, wherein the road surface information acquisition means is an input device that receives road surface information from a user.
JP2005301518A 2005-10-17 2005-10-17 Brake control device Pending JP2007106347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301518A JP2007106347A (en) 2005-10-17 2005-10-17 Brake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301518A JP2007106347A (en) 2005-10-17 2005-10-17 Brake control device

Publications (1)

Publication Number Publication Date
JP2007106347A true JP2007106347A (en) 2007-04-26

Family

ID=38032545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301518A Pending JP2007106347A (en) 2005-10-17 2005-10-17 Brake control device

Country Status (1)

Country Link
JP (1) JP2007106347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466528A (en) * 2019-08-30 2019-11-19 广州小鹏汽车科技有限公司 A kind of acquisition methods, system and the vehicle of residue stopping distance
KR20200142535A (en) * 2018-04-09 2020-12-22 아놀드 체이스 Dynamic vehicle separation system
CN115655740A (en) * 2022-10-11 2023-01-31 深圳市易检车服科技有限公司 Method and device for detecting vehicle braking performance, electronic equipment and storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200142535A (en) * 2018-04-09 2020-12-22 아놀드 체이스 Dynamic vehicle separation system
KR102379825B1 (en) 2018-04-09 2022-03-29 아놀드 체이스 dynamic vehicle separation system
CN110466528A (en) * 2019-08-30 2019-11-19 广州小鹏汽车科技有限公司 A kind of acquisition methods, system and the vehicle of residue stopping distance
CN110466528B (en) * 2019-08-30 2021-06-04 广州小鹏汽车科技有限公司 Method and system for acquiring remaining parking distance and vehicle
CN115655740A (en) * 2022-10-11 2023-01-31 深圳市易检车服科技有限公司 Method and device for detecting vehicle braking performance, electronic equipment and storage medium
CN115655740B (en) * 2022-10-11 2024-01-05 深圳市易检车服科技有限公司 Method and device for detecting vehicle braking performance, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
JP5252118B2 (en) Vehicle control device
JP5412315B2 (en) Estimation method for uneven tire wear
KR101857035B1 (en) Vehicle rollover sensing system by driving information optimizing
EP3008446B1 (en) Method and system for estimating the potential friction between a vehicle tyre and a rolling surface
JPWO2005016670A1 (en) Sensor built-in tire and tire condition estimation method
JP5273289B2 (en) Vehicle state calculation device and vehicle control device
US20130282253A1 (en) Brake system and brake control method
JP2006034012A (en) Method for operating slip ratio of wheel and method for controlling brake power of wheel
KR102030714B1 (en) Control of regenerative braking in an electric or hybrid vehicle
US8676463B2 (en) Travel controlling apparatus of vehicle
KR102039287B1 (en) Braking force control method and braking force control device
JP2005138702A (en) Method, device and program for determining road surface state
US20140195118A1 (en) Vehicle control device
JP2007106347A (en) Brake control device
JP5309763B2 (en) Tire contact length calculation method and apparatus
JP3709086B2 (en) Brake control device
JP2008162392A (en) Method and device for estimating tire ground contact state, tire and vehicular control device
JP4509324B2 (en) Estimation method of road friction coefficient
JP2010032269A (en) Device for estimating hydroplaning speed
JP4539198B2 (en) Vehicle motion state estimation device and vehicle motion control device
JP4784251B2 (en) Vehicle braking / driving control device
KR101144657B1 (en) Method to control stability of vehicle
CN102947149B (en) Control the method and apparatus of the stability of vehicle
KR100751232B1 (en) Method for control break pressure in a vehicle comprising Anti-lock Brake system
JP3938927B2 (en) Rough road determination device and brake control device provided with the rough road determination device