JP2007105853A - Control method and device for moving of electrical insulator in electric discharge machining method using electrical insulator sheathed electrode - Google Patents

Control method and device for moving of electrical insulator in electric discharge machining method using electrical insulator sheathed electrode Download PDF

Info

Publication number
JP2007105853A
JP2007105853A JP2005301322A JP2005301322A JP2007105853A JP 2007105853 A JP2007105853 A JP 2007105853A JP 2005301322 A JP2005301322 A JP 2005301322A JP 2005301322 A JP2005301322 A JP 2005301322A JP 2007105853 A JP2007105853 A JP 2007105853A
Authority
JP
Japan
Prior art keywords
tool electrode
machining
electrical insulator
electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005301322A
Other languages
Japanese (ja)
Other versions
JP4512901B2 (en
Inventor
Seiji Kumagai
誠治 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONJO YURI SANGYO KAGAKU GIJUT
HONJO YURI SANGYO KAGAKU GIJUTSU SHINKO ZAIDAN
Original Assignee
HONJO YURI SANGYO KAGAKU GIJUT
HONJO YURI SANGYO KAGAKU GIJUTSU SHINKO ZAIDAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONJO YURI SANGYO KAGAKU GIJUT, HONJO YURI SANGYO KAGAKU GIJUTSU SHINKO ZAIDAN filed Critical HONJO YURI SANGYO KAGAKU GIJUT
Priority to JP2005301322A priority Critical patent/JP4512901B2/en
Publication of JP2007105853A publication Critical patent/JP2007105853A/en
Application granted granted Critical
Publication of JP4512901B2 publication Critical patent/JP4512901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for appropriately automatically maintaining an exposure area of a tool electrode tip end to thereby improve the machining operationality and shorten a machining time in an electric discharge machining method using an electrical insulator sheathed electrode. <P>SOLUTION: The control device always measures the feeding rate to a workpiece of the tool electrode closely related to the exposure area of the tool electrode tip end. An automatic control system for setting the feeding rate within a certain constant range by moving the electrical insulator is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被加工物と面しかつ任意の形を為す底面を有する電極を、その側面など放電発生が望まれない部位を電気絶縁物で包み覆い、その電極と電気絶縁体の間に、または電極の中空にも加工液を流動させることにより、放電加工を実現する装置において、自動的に工具電極消耗長さ分電気絶縁体を移動させ、工具電極先端露出領域を適正に維持することにより、その加工操作性および加工速度を向上させる技術に関するものである。 In the present invention, an electrode having a bottom surface facing a workpiece and having an arbitrary shape is covered with an electrical insulator such as a side surface where discharge is not desired, and between the electrode and the electrical insulator, Alternatively, in a device that realizes electrical discharge machining by flowing the machining fluid into the hollow electrode, the electrical insulator is automatically moved by the tool electrode consumption length to maintain the tool electrode tip exposed area appropriately. The present invention relates to a technique for improving the processing operability and processing speed.

放電加工法は、高硬度材料に対する精密加工法として一般的に用いられている。無垢の金属電極を用いる従来の放電加工法により、高硬度材料に対して深穴など縦横比の高い加工を行う場合、加工によって生じた加工屑や加工方向に対して横方向の電極振れなどにより、電極側面での不必要な放電が発生する。 The electric discharge machining method is generally used as a precision machining method for high hardness materials. When machining with a high aspect ratio such as deep holes is performed on high-hardness materials by the conventional electrical discharge machining method using solid metal electrodes, due to machining scraps produced by machining or electrode runout in the transverse direction to the machining direction, etc. Unnecessary discharge occurs on the electrode side surface.

これら側面放電が加工効率と加工精度の低下を招くため、電極の加工方向の駆動には複雑精緻な機構を必要とする。 Since these side surface discharges cause a reduction in machining efficiency and machining accuracy, a complicated and precise mechanism is required to drive the electrodes in the machining direction.

側面放電による加工効率と加工精度の低下を防ぐために、電極周辺を電気絶縁体で覆い、電極と電気絶縁体の間に加工液を流動させる放電加工法が主張されている。
UK Patent GB 2177644 特開2005−224887号公報
In order to prevent a reduction in machining efficiency and machining accuracy due to side discharge, an electric discharge machining method is claimed in which the periphery of the electrode is covered with an electrical insulator and a machining fluid is caused to flow between the electrode and the electrical insulator.
UK Patent GB 2177644 Japanese Patent Laid-Open No. 2005-224887

電気絶縁体包覆電極による放電加工法を用いれば、複雑精緻な電極駆動機構を必要とせず、かつ深穴など縦横比の高い加工を実現することができる。 If an electric discharge machining method using an electric insulator covering electrode is used, a complicated and precise electrode drive mechanism is not required, and machining with a high aspect ratio such as a deep hole can be realized.

電気絶縁体包覆電極を用いた放電加工法においては、加工が進展するに従い工具電極が消耗すると、その消耗長さ分電気絶縁体を移動させ、工具電極先端露出領域を維持する必要がある。 In the electric discharge machining method using the electric insulator covering electrode, when the tool electrode is consumed as the machining progresses, it is necessary to move the electric insulator by the consumed length to maintain the tool electrode tip exposed region.

工具電極先端露出領域が非常に狭くなると、放電領域も狭くなり、放電が加工部底面全体に分散しなくなる。 If the tool electrode tip exposed area becomes very narrow, the discharge area also becomes narrow, and the discharge does not spread over the entire bottom surface of the processed part.

従って、加工部の断面積が小さくなるが、加工屑の排出量は減らないため、加工屑の排出が滞り、特に水系の加工液を用いた場合、掘削部底面に酸化物電気絶縁層が形成され、加工が継続できなくなる場合がある。 Therefore, the cross-sectional area of the machined part is reduced, but the amount of machined waste is not reduced, so the machined waste is delayed. Especially when an aqueous machining fluid is used, an oxide electrical insulation layer is formed on the bottom of the excavated part. And processing may not be continued.

逆に電気絶縁体の移動が過剰で、工具電極露出領域が広くなりすぎると、放電領域が広くなり、加工断面積が広がるため、断面形状が不均一になる上、加工速度も低下する。 On the other hand, if the electric insulator is excessively moved and the tool electrode exposed area becomes too wide, the discharge area becomes wide and the processing cross-sectional area increases, so that the cross-sectional shape becomes non-uniform and the processing speed also decreases.

一定時間毎に工具電極消耗長さを実際に計測し、工具電極露出領域を適正に維持することが、最も確実な方法であるが、加工操作性が低下する。 Although it is the most reliable method to actually measure the tool electrode consumption length at regular intervals and maintain the tool electrode exposure area appropriately, the machining operability is lowered.

工具電極の消耗速度は決して一定ではなく、工具電極消耗速度を一定と仮定した電気絶縁体の移動制御法は有効的ではない。 The consumption rate of the tool electrode is never constant, and the electric insulator movement control method assuming that the consumption rate of the tool electrode is constant is not effective.

本発明は、電気絶縁体包覆電極を用いた放電加工法において、工具電極先端露出領域を適正に維持するための電気絶縁体の自動移動制御法を提供し、その加工操作性の向上と加工時間の短縮という課題を解決するものである。 The present invention provides an electric insulator automatic movement control method for properly maintaining a tool electrode tip exposed region in an electric discharge machining method using an electric insulator covering electrode, and improves the machining operability and machining. It solves the problem of time reduction.

電気絶縁体包覆電極を用いた放電加工法において、工具電極を被加工物に接近させ、放電の発生と掘削を継続させつつ、消耗長さと加工深さ分、工具電極を被加工物に対して送る第1の軸送り機構と、第1の軸送り機構と同じ軸上で、工具電極先端露出領域を調整するため、工具電極を包覆している電気絶縁体を移動させる第2の軸送り機構を設ける。 In the electrical discharge machining method using an electrical insulator-covered electrode, the tool electrode is brought close to the work piece, the discharge is continued and the excavation is continued, and the tool electrode is applied to the work piece by the consumption length and machining depth. And a second axis for moving the electrical insulator covering the tool electrode to adjust the tool electrode tip exposed region on the same axis as the first axis feed mechanism. A feed mechanism is provided.

加工が進展するに従い、第1の軸送り機構により、工具電極が被加工物に対して送られ、工具電極先端部は放電による消耗により、工具電極先端露出領域は徐々に狭くなる。 As the machining progresses, the tool electrode is fed to the workpiece by the first axial feed mechanism, and the tool electrode tip exposed area gradually narrows due to the consumption of the tool electrode tip by electric discharge.

第1の軸送り機構における工具電極の送り機構は、公知の技術である被加工物と工具電極の電圧と所定のしきい電圧の二つの信号を元にしたフィードバック制御などであり、第2の軸送り機構である電気絶縁体の移動制御系とは独立している。 The feed mechanism of the tool electrode in the first axis feed mechanism is a feedback control based on two signals of the workpiece and the tool electrode voltage and a predetermined threshold voltage, which is a known technique. It is independent of the movement control system of the electrical insulator that is the shaft feed mechanism.

第2の軸送り機構において、電気絶縁体を移動させずに保持すると、狭くなった工具電極先端露出領域により、放電が拡散されず、小さな断面積で加工が進む。 In the second axial feed mechanism, when the electric insulator is held without being moved, the electric discharge is not diffused by the narrowed tool electrode tip exposed region, and the processing proceeds with a small cross-sectional area.

掘削量が変化せず、加工の断面積だけが小さくなるので、工具電極の被加工物への送り速度が徐々に上昇する。 Since the amount of excavation does not change and only the cross-sectional area of machining decreases, the feed rate of the tool electrode to the workpiece gradually increases.

加工の断面積が小さくなりすぎると、加工屑の排出が滞り、加工底面部に電気絶縁層が形成されるか、電気絶縁体が加工部底面に接触することにより、加工が継続不可能になる。 If the cross-sectional area of processing becomes too small, the processing waste will be discharged, and an electric insulation layer will be formed on the bottom surface of the processing, or the electric insulator will contact the bottom surface of the processing portion, making it impossible to continue processing .

従って、工具電極の送り速度が上昇しすぎる前に、第2の軸送り機構において、所定長さ電気絶縁体を露出方向に移動させて、工具電極先端露出領域を拡張すると、放電領域が再び分散し、加工の断面積が元に復元する。 Therefore, before the feed rate of the tool electrode is increased too much, in the second axial feed mechanism, when the electrical insulator is moved a predetermined length in the exposure direction and the tool electrode tip exposed region is expanded, the discharge region is dispersed again. Then, the cross-sectional area of processing is restored to the original.

電気絶縁体の移動を決定するしきい送り速度は、可能な限り高い方が加工時間の短縮につながるが、被加工物の種類、加工穴の断面積など各々の加工条件ごとに、加工停止に至らないよう最大値を設定する。 The higher the threshold feed rate that determines the movement of the electrical insulator, the shorter the machining time will be.However, the machining stop will be stopped for each machining condition such as the type of workpiece and the cross-sectional area of the machining hole. Set the maximum value so as not to reach.

所定長さの電気絶縁体の移動を行っても、工具電極の送り速度が適正レベルまで低下しない場合は、さらに電気絶縁体を移動させて、工具電極先端露出領域を拡張することにより、工具電極送り速度を低下させる。 If the feed rate of the tool electrode does not decrease to an appropriate level even after moving the electrical insulator of a predetermined length, the tool electrode is further extended by moving the electrical insulator to expand the tool electrode tip exposed area. Reduce the feed rate.

逆に、電気絶縁体の移動が過度で、工具電極先端露出領域が拡張されすぎた場合、放電領域が広がりすぎ、加工断面積が所望より大きくなる。 On the other hand, if the electric insulator is moved excessively and the tool electrode tip exposed region is excessively expanded, the discharge region is excessively widened and the processing cross-sectional area becomes larger than desired.

このことは、加工速度の低下と断面形状の不均一性につながるため、電気絶縁体を電極包覆方向に移動させ、工具電極先端露出領域を狭めることにより、適正な加工断面と加工速度に復帰させることができる。 This leads to a decrease in machining speed and non-uniformity in the cross-sectional shape. Therefore, by moving the electrical insulator in the electrode covering direction and narrowing the exposed area of the tool electrode tip, the machining cross section and machining speed are restored. Can be made.

電極包覆方向への電気絶縁体の移動を決定するしきい送り速度も、電極露出方向のしきい送り速度に近い方が加工時間の短縮につながる。 The threshold feed rate that determines the movement of the electrical insulator in the electrode covering direction is also closer to the threshold feed rate in the electrode exposure direction, leading to a reduction in processing time.

しかし、二つのしきい送り速度が接近しすぎると、工具電極送り速度のオーバーシュートが生じやすく、加工停止に至る可能性が高くなるので、各加工条件に応じて、適正な値を予備的に決定しておく必要がある。 However, if the two threshold feed rates are too close, overshooting of the tool electrode feed rate is likely to occur, and the possibility of machining stop increases, so appropriate values are preliminarily set according to each machining condition. It is necessary to decide.

第1の軸送り機構において、工具電極の位置を検出する位置検出装置およびそれにより工具電極送り速度を算出し、その速度を信号源として、第2の軸送り機構において、電極露出方向で所定長さ電気絶縁体を移動させる、または電極包覆方向で電気絶縁体を移動させるNC制御装置またはコンピュータ制御装置を設ける。 In the first axial feed mechanism, a position detecting device for detecting the position of the tool electrode and the tool electrode feed speed are calculated thereby, and the speed is used as a signal source, and the second axial feed mechanism has a predetermined length in the electrode exposure direction. An NC control device or a computer control device for moving the electric insulator or moving the electric insulator in the electrode covering direction is provided.

これら制御装置に対して、工具電極の送り速度の取得、電気絶縁体の移動動作規則、ならびにその移動動作を発令する条件のプログラミングを行う。 These control devices are programmed to acquire the feed rate of the tool electrode, to move the electrical insulator, and to set the conditions for issuing the movement.

以上の加工装置、制御系とプログラムを稼動させることにより、電気絶縁体包覆電極を用いた放電加工法において、工具電極先端露出領域の自動維持が実現される。 By operating the above machining apparatus, control system, and program, automatic maintenance of the tool electrode tip exposed area is realized in the electric discharge machining method using the electrical insulator covering electrode.

必要に応じて、上記方法に従い、工具電極をその軸と直交する面内において走査しながら行うことも可能である。 If necessary, according to the above method, the tool electrode can be scanned in a plane perpendicular to the axis thereof.

上記の方法により、自動で工具電極先端露出領域が適正に維持され、電気絶縁体包覆電極を用いた放電加工における加工操作性の向上と加工時間の短縮という課題を解決する。 By the above method, the tool electrode tip exposed region is automatically properly maintained, and the problems of improving the machining operability and shortening the machining time in the electric discharge machining using the electric insulator covering electrode are solved.

電気絶縁体包覆電極を用いた放電加工法においては、加工が進展するに従い工具電極が消耗すると、その消耗長さ分電気絶縁体を移動させ、工具電極先端露出領域を維持する必要がある。 In the electric discharge machining method using the electric insulator covering electrode, when the tool electrode is consumed as the machining progresses, it is necessary to move the electric insulator by the consumed length to maintain the tool electrode tip exposed region.

工具電極の消耗は必ずしも一定速度で進まないため、手作業で一定時間毎に工具電極消耗長さを計測し、電気絶縁体を移動させることが最も確実な方法であるが、加工操作性が著しく低下し、加工に要する時間も長くなる。 Tool electrode wear does not always progress at a constant speed, so it is the most reliable method to measure the tool electrode wear length at regular intervals by hand and move the electrical insulator. The time required for processing decreases.

本発明は、電気絶縁体包覆電極を用いた放電加工法において、工具電極先端露出領域を適正に維持するための電気絶縁体の自動移動制御法を提供し、その加工操作性の向上と加工時間の短縮という課題を解決するものである。 The present invention provides an electric insulator automatic movement control method for properly maintaining a tool electrode tip exposed region in an electric discharge machining method using an electric insulator covering electrode, and improves the machining operability and machining. It solves the problem of time reduction.

本発明方法の実施形態の原理的例を図1、図2、図3と図4を用いて説明する。 A principle example of the embodiment of the method of the present invention will be described with reference to FIGS. 1, 2, 3 and 4. FIG.

図1において1は被加工物であり、その位置が固定される。2は工具電極であり、これと被加工物とは放電電源3を介して接続され、被加工物が放電により掘削、加工される。4はコンデンサであり、必要に応じて接続され、放電を活発化させる。工具電極として図1では丸棒を使ったが、細線あるいは角棒など任意の形を有するものを用いても良い。 In FIG. 1, 1 is a workpiece, and its position is fixed. Reference numeral 2 denotes a tool electrode, which is connected to the workpiece via a discharge power source 3, and the workpiece is excavated and processed by electric discharge. A capacitor 4 is connected as necessary to activate discharge. Although a round bar is used as a tool electrode in FIG. 1, an electrode having an arbitrary shape such as a thin wire or a square bar may be used.

工具電極2は工具電極脱着チャック5を介して、6の工具電極回転機構により回転する。7の工具電極送り機構は、その位置が固定されており、工具電極の被加工物への送りを8の順方向と9の逆方向で移動制御し、放電を継続的に発生させる。この移動制御は、公知の技術である被加工物と工具電極の電圧と所定のしきい電圧の二つの信号と元にしたフィードバック制御を用いる。それら公知技術に関する詳細は省略する。 The tool electrode 2 is rotated by a tool electrode rotating mechanism 6 via a tool electrode attaching / detaching chuck 5. The position of the tool electrode feed mechanism 7 is fixed, and movement of the tool electrode to the workpiece is controlled to move in the forward direction 8 and the reverse direction 9 to continuously generate discharge. This movement control uses a feedback control based on two signals of a workpiece and a tool electrode voltage and a predetermined threshold voltage, which are known techniques. Details regarding these known techniques are omitted.

工具電極2は10の電気絶縁体により、放電発生が望まれない領域が包み覆われている。電気絶縁体10は11の電気絶縁体接続部において、12の加工液導入部と接続される。13の加工液は、加工液導入部12から工具電極2と電気絶縁体10の間を流動し、放電掘削を行う14の工具電極先端露出領域付近を通過し、掘削部外に排出される。中空を有する工具電極を使用する場合には、中空電極内にも加工液を流動させても良い。中空内にも加工液が流動することにより、電極底面中心部付近での加工屑排出が促進され、加工安定性と加工速度を向上させる。 The tool electrode 2 is covered and covered with 10 electrical insulators in areas where discharge is not desired. The electrical insulator 10 is connected to 12 machining fluid introduction portions at 11 electrical insulator connection portions. The machining fluid 13 flows between the tool electrode 2 and the electrical insulator 10 from the machining fluid introduction unit 12, passes through the vicinity of the exposed region of the tool electrode 14 where discharge excavation is performed, and is discharged outside the excavation unit. In the case of using a tool electrode having a hollow, the machining fluid may also flow inside the hollow electrode. By flowing the machining liquid into the hollow space, machining waste discharge near the center of the bottom surface of the electrode is promoted, and machining stability and machining speed are improved.

15の電気絶縁体移動機構により、電気絶縁体10は、16の工具電極露出方向と17の工具電極包覆方向で移動する。 The electric insulator 10 moves in the direction of 16 tool electrode exposures and in the direction of 17 tool electrode covering by the electric insulator moving mechanism 15.

18のNC制御装置は19の記憶部、20のプログラム、データ入力部、21の表示部を付帯し、工具電極送り機構7から送られる22の工具電極送り速度情報を取得する。また、工具電極露出方向16への電気絶縁体の移動を発令する露出しきい工具電極送り速度を決定し、NC制御装置18にプログラミングする。また、工具電極包覆方向17への電気絶縁体の移動を発令する包覆しきい工具電極送り速度も決定し、NC制御装置18にプログラミングする。 The 18 NC control devices are provided with 19 storage units, 20 programs, a data input unit, and 21 display units, and acquire 22 tool electrode feed speed information sent from the tool electrode feed mechanism 7. Further, the exposure threshold tool electrode feed rate for instructing the movement of the electrical insulator in the tool electrode exposure direction 16 is determined and programmed in the NC controller 18. Also, an enveloping threshold tool electrode feed rate for instructing movement of the electrical insulator in the tool electrode enveloping direction 17 is determined and programmed into the NC controller 18.

工具電極送り速度22が、露出しきい工具電極送り速度を超えた場合、23の電気絶縁体移動命令を電気絶縁体移動機構15に出力し、工具電極先端露出領域14を広める方向16に電気絶縁体10を所定の距離と速度で移動させる。逆に、22の工具電極送り速度が、露出しきい工具電極送り速度より小さくなった場合、電気絶縁体移動命令23を電気絶縁体移動機構15に出力し、工具電極先端露出領域14を狭める方向17に電気絶縁体10を所定の距離と速度で移動させる。このような動作と制御を実現するプログラミングをNC制御装置18に対して行う。NC制御装置をコンピュータ等の他の制御装置に置き換えても良い。なお、図1に示した構成は限られた例であり、これら図以外に種々の形態がある。 When the tool electrode feed speed 22 exceeds the exposed threshold tool electrode feed speed, an electrical insulator movement command 23 is output to the electrical insulator movement mechanism 15 to electrically insulate the tool electrode tip exposed region 14 in the direction 16. The body 10 is moved at a predetermined distance and speed. On the other hand, when the tool electrode feed speed of 22 becomes smaller than the exposed threshold tool electrode feed speed, the electric insulator movement command 23 is output to the electric insulator movement mechanism 15 to narrow the tool electrode tip exposed area 14. 17, the electric insulator 10 is moved at a predetermined distance and speed. Programming for realizing such operation and control is performed on the NC controller 18. The NC control device may be replaced with another control device such as a computer. The configuration shown in FIG. 1 is a limited example, and there are various forms other than these diagrams.

加工装置および制御系を稼動させると、加工初期においては、工具電極先端の消耗は少ない。図2は工具電極先端露出領域14が適正な場合での加工状況を示す図である。このような状況では、24aの安定し、適正な発生領域を有する放電の発生により、所望の加工断面積と深さ方向への加工速度が実現される。加工断面積と深さ方向の加工速度は、加工液の種類、コンデンサ容量、工具電極の種類など種々の加工条件で変更できることは公知である。本制御系と制御装置においては、工具電極が電気絶縁体先端より7mm突出した程度の工具電極先端露出領域が最適で、高い速度を得つつ、安定な加工が可能となる。 When the processing apparatus and the control system are operated, the tool electrode tip is less consumed in the initial stage of processing. FIG. 2 is a diagram showing a machining situation when the tool electrode tip exposed region 14 is appropriate. In such a situation, a desired machining cross-sectional area and a machining speed in the depth direction are realized by the occurrence of a discharge having a stable and appropriate generation region 24a. It is known that the machining cross-sectional area and the machining speed in the depth direction can be changed under various machining conditions such as the type of machining liquid, capacitor capacity, and type of tool electrode. In the present control system and control device, the tool electrode tip exposed area where the tool electrode protrudes 7 mm from the tip of the electrical insulator is optimal, and stable machining is possible while obtaining a high speed.

深さ方向への加工が進展するに従い、工具電極先端部は消耗する。図3は電気絶縁体10の移動が不十分で工具電極先端露出領域17が狭い場合の加工状況を示す図である。24bの発生領域の狭い放電により、加工断面積が縮小する傾向になる。掘削量は変化しないので、深さ方向への加工速度が上昇する。従って、工具電極送り速度22が徐々に上昇する。 As machining in the depth direction progresses, the tip of the tool electrode is consumed. FIG. 3 is a diagram showing a machining situation when the electric insulator 10 is not sufficiently moved and the tool electrode tip exposed region 17 is narrow. Due to the narrow discharge in the 24b generation region, the processing cross-sectional area tends to be reduced. Since the amount of excavation does not change, the processing speed in the depth direction increases. Therefore, the tool electrode feed speed 22 gradually increases.

この工具電極送り速度22が、工具電極露出方向16への電気絶縁体の移動を発令する露出しきい工具電極送り速度を超過すると、NC制御装置18より電気絶縁体移動命令23を電気絶縁体移動機構15に出力し、工具電極露出方向16へ電気絶縁体を移動させる。このとき、露出しきい工具電極送り速度は、図2のような適正な加工状況での工具電極送り速度の1.5倍程度に設定するのが最も安定した加工につながる。NC制御装置18の工具電極送り速度22の取得と電気絶縁体移動命令23は、10秒に一度が効率的で、かつ制御を安定させる。電気絶縁体10の移動は、1回につき毎秒1mmの速度で、1mmの移動長さが最適である。 When this tool electrode feed rate 22 exceeds the exposure threshold tool electrode feed rate for instructing movement of the electrical insulator in the tool electrode exposure direction 16, the electrical control unit 23 sends an electrical insulator movement command 23 from the NC controller 18. Output to the mechanism 15 to move the electrical insulator in the tool electrode exposure direction 16. At this time, setting the exposed threshold tool electrode feed speed to about 1.5 times the tool electrode feed speed in an appropriate machining situation as shown in FIG. 2 leads to the most stable machining. The acquisition of the tool electrode feed rate 22 and the electrical insulator movement command 23 of the NC controller 18 are efficient once every 10 seconds and stabilize the control. The electrical insulator 10 is moved at a speed of 1 mm per second, and a moving length of 1 mm is optimal.

電気絶縁体10の工具電極露出方向16への移動により、工具電極先端領域は図2にように適正に維持される。再び加工断面積が適正値に復帰し、工具電極送り速度22は、露出しきい工具電極送り速度より小さい値となり、加工が安定する。 Due to the movement of the electrical insulator 10 in the tool electrode exposure direction 16, the tool electrode tip region is properly maintained as shown in FIG. 2. The machining cross-sectional area returns to an appropriate value again, and the tool electrode feed rate 22 becomes a value smaller than the exposed threshold tool electrode feed rate, and the machining is stabilized.

工具電極送り速度22が、露出しきい工具電極送り速度を超過した場合、以上の制御を繰り返すことにより、安定した深さ方向への加工が実現される。 When the tool electrode feed rate 22 exceeds the exposed threshold tool electrode feed rate, the processing in the stable depth direction is realized by repeating the above control.

加工屑の底面部での停滞や工具電極の電極消耗の不均一性などにより、電気絶縁体10の工具電極露出方向16に過度に移動し、工具電極先端露出領域17が広くなりすぎる場合がある。図4は電気絶縁体の移動が過多で工具電極先端露出領域が広い場合の加工状況を示す図である。 Due to stagnation at the bottom surface of the processing waste or non-uniformity of the electrode consumption of the tool electrode, the tool electrode may be moved excessively in the tool electrode exposure direction 16 and the tool electrode tip exposed region 17 may become too wide. . FIG. 4 is a diagram showing a machining situation when the electric insulator is excessively moved and the tool electrode tip exposed region is wide.

この場合、発生領域の広がった放電24cにより、加工断面積は適正値より大きくなり、その分加工速度が低下する。工具電極先端の消耗により、工具電極送り速度22が自然に適正値まで上昇する場合が多いが、工具電極送り速度22が、包覆しきい工具電極送り速度より小さくなる場合もある。この場合、電気絶縁体移動命令23を電気絶縁体移動機構15に出力し、工具電極先端露出領域14を狭める方向に電気絶縁体10を移動させる。この移動も、1回につき毎秒1mmの速度で、1mmの移動長さが最適である。その結果、過度に工具電極送り速度が低下しすぎた場合の加工断面形状の乱れと適正な工具電極送り速度までの復帰遅延を防ぐ。このとき、包覆しきい工具電極送り速度は、図2のような適正な加工状況での工具電極送り速度の0.7倍程度に設定するのが最も安定した加工につながる。 In this case, the machining cross-sectional area becomes larger than the appropriate value due to the electric discharge 24c in which the generation region is widened, and the machining speed is lowered accordingly. In many cases, the tool electrode feed speed 22 naturally rises to an appropriate value due to wear of the tip of the tool electrode, but the tool electrode feed speed 22 may be smaller than the covering threshold tool electrode feed speed. In this case, the electric insulator movement command 23 is output to the electric insulator movement mechanism 15 to move the electric insulator 10 in the direction of narrowing the tool electrode tip exposed region 14. For this movement, a movement length of 1 mm is optimal at a speed of 1 mm per second. As a result, when the tool electrode feed rate is excessively lowered, the machining cross-sectional shape is disturbed and the return delay to the proper tool electrode feed rate is prevented. At this time, setting the wrapping threshold tool electrode feed speed to about 0.7 times the tool electrode feed speed in an appropriate machining situation as shown in FIG. 2 leads to the most stable machining.

以上の制御原理で制御装置により、工具電極先端露出領域17を直接計測することなく、それを適正な値に維持することが可能となり、電気絶縁体包覆電極を用いた放電加工法において、その加工操作性の向上させ、加工時間を短縮する。 With the above control principle, the control device can maintain the tool electrode tip exposed region 17 at an appropriate value without directly measuring it. In the electric discharge machining method using the electric insulator-covered electrode, Improve machining operability and reduce machining time.

自動工具電極送り機構を備えた電気絶縁体包覆電極を用いた放電加工装置において、5分毎に加工を停止させ、目視により工具電極先端領域を工具電極先端と電気絶縁体先端間の距離が7mmになるように調整する手作業制御と、適正な工具電極送り速度を毎秒0.06mm、露出しきい工具電極送り速度を毎秒0.08mm、包覆しきい工具電極送り速度を毎秒0.04mm、電気絶縁体の移動を毎秒1mmの速度で1mmとした自動制御における加工操作性と加工に要した全時間を比較した。その他の加工設定条件を同一にして、加工条件と結果を示す。 In an electrical discharge machining apparatus using an electrical insulator-covered electrode equipped with an automatic tool electrode feed mechanism, machining is stopped every 5 minutes, and the distance between the tool electrode tip and the electrical insulator tip is visually observed in the tool electrode tip region. Manual control to adjust to 7 mm, proper tool electrode feed rate 0.06 mm per second, exposed threshold tool electrode feed rate 0.08 mm per second, covering threshold tool electrode feed rate 0.04 mm per second, electrical insulation We compared the processing operability and the total time required for processing in the automatic control where the body movement was 1 mm at a speed of 1 mm per second. The other machining setting conditions are the same, and the machining conditions and results are shown.

加工条件
加工対象:円形深穴
被加工材料:構造用炭素鋼
電極:直径0.30mmのタングステン丸棒
電気絶縁体:外径0.55mm、内径0.40mmのふっ素樹脂チューブ
加工液:水道水に塩化ナトリウムを溶解。導電率は150μS/cm
放電電源:パルス放電電源(パルス波形、40μsecオン/100μsecオフ)
コンデンサ:7.8μF
工具電極移動制御:放電電圧フィードバック自動制御による工具電極移動
加工された穴円の直径:0.8mm
加工された穴円の深さ:150mm
Machining conditions Machining object: Circular deep hole Work material: Structural carbon steel Electrode: Tungsten round rod with diameter 0.30mm Electrical insulator: Fluorine resin tube with outer diameter 0.55mm, inner diameter 0.40mm Processing liquid: Sodium chloride in tap water Dissolution. Conductivity is 150μS / cm
Discharge power supply: Pulsed discharge power supply (pulse waveform, 40 μsec on / 100 μsec off)
Capacitor: 7.8μF
Tool electrode movement control: Diameter of hole circle machined by tool electrode movement by automatic discharge voltage feedback control: 0.8mm
Processed hole circle depth: 150mm

加工結果1
自動制御における加工に要した全時間:手作業制御における加工に要した全時間=178分:241分
Processing result 1
Total time required for processing in automatic control: Total time required for processing in manual control = 178 minutes: 241 minutes

加工結果2
自動制御における手作業による電気絶縁体の移動回数:手作業制御における手作業による電気絶縁体の移動回数=0回:40回(1回につき平均1分所要)
Processing result 2
Number of manual movements of electrical insulators in automatic control: Number of manual movements of electrical insulators in manual control = 0 times: 40 times (average takes 1 minute each time)

本発明にかかわる放電加工装置と電気絶縁体移動制御法の概念を示す図である。It is a figure which shows the concept of the electrical discharge machining apparatus and electric insulator movement control method concerning this invention. 工具電極先端露出領域が適正な場合での加工状況を示す図である。It is a figure which shows the processing condition in case a tool electrode front-end | tip exposure area | region is appropriate. 電気絶縁体の移動が不十分で工具電極先端露出領域が狭い場合の加工状況を示す図である。It is a figure which shows the processing condition in case a movement of an electrical insulator is inadequate and a tool electrode front-end | tip exposure area | region is narrow. 電気絶縁体の移動が過多で工具電極先端露出領域が広い場合の加工状況を示す図である。It is a figure which shows the processing condition in case a movement of an electrical insulator is excessive and a tool electrode front-end | tip exposure area | region is wide.

符号の説明Explanation of symbols

1・・・被加工物
2・・・工具電極
3・・・放電電源
4・・・コンデンサ
5・・・工具電極脱着チャック
6・・・工具電極回転機構
7・・・工具電極送り機構
8・・・工具電極送り方向
9・・・工具電極送り逆方向
10・・・電気絶縁体
11・・・電気絶縁体接続部
12・・・加工液導入部
13・・・加工液
14・・・工具電極先端露出領域
15・・・電気絶縁体移動機構
16・・・工具電極露出方向
17・・・工具電極包覆方向
18・・・NC制御装置
19・・・記憶部
20・・・プログラム、データ入力部
21・・・表示部
22・・・工具電極送り速度情報
23・・・電気絶縁体移動命令と移動詳細情報
24a・・放電
24b・・放電
24c・・放電

DESCRIPTION OF SYMBOLS 1 ... Workpiece 2 ... Tool electrode 3 ... Discharge power supply 4 ... Capacitor 5 ... Tool electrode attachment / detachment chuck 6 ... Tool electrode rotation mechanism 7 ... Tool electrode feed mechanism 8 ..Tool electrode feed direction 9 ... Tool electrode feed reverse direction 10 ... Electric insulator 11 ... Electric insulator connection part 12 ... Working fluid introduction part 13 ... Working liquid 14 ... Tool Electrode tip exposed area 15 ... Electric insulator moving mechanism 16 ... Tool electrode exposure direction 17 ... Tool electrode covering direction 18 ... NC controller 19 ... Storage unit 20 ... Program, data Input unit 21 ... Display unit 22 ... Tool electrode feed rate information 23 ... Electrical insulator movement command and movement detailed information 24a · · Discharge 24b · · Discharge 24c · · Discharge

Claims (5)

被加工物と面しかつ任意の形を為す底面を有する工具電極を、その側面など放電発生が望まれない箇所を電気絶縁体で包み覆い、放電により被加工物を加工する放電加工法において、自動的に工具電極消耗長さ分電気絶縁体を移動させ、工具電極露出領域を適正に維持することにより、安定的に放電を発生させ、その加工操作性および加工速度を向上させる電気絶縁体の移動制御法。 In the electric discharge machining method, the tool electrode having a bottom face that faces the workpiece and has an arbitrary shape is covered with an electrical insulator around a portion where discharge is not desired, such as the side surface, and the workpiece is machined by electric discharge. By automatically moving the electrical insulator by the tool electrode wear length and maintaining the tool electrode exposure area appropriately, it is possible to generate a stable discharge and improve the machining operability and machining speed. Movement control method. 特許請求の範囲第1項において、加工液を用いることを特徴とする放電加工法における電気絶縁体の移動制御法。 The electric insulator movement control method in the electric discharge machining method according to claim 1, wherein a machining fluid is used. 特許請求の範囲第1項と第2項において、被加工物と面しかつ任意の形を為す底面を有する電極に一つまたは複数の中空が存在する場合、それら中空にも加工液を流入させることを特徴とする放電加工法における電気絶縁体の移動制御法。 In Claims 1 and 2, when one or more cavities exist in an electrode having a bottom face that faces the workpiece and has an arbitrary shape, the machining fluid is caused to flow into the cavities. A method for controlling the movement of an electrical insulator in an electrical discharge machining method. 特許請求の範囲第1項から第3項において、0.01μFから100μFのコンデンサを電極と被加工物の間隙に並列に接続した放電電源を用いることを特徴とする放電加工法における電気絶縁体の移動制御法。 The electric insulator movement in the electric discharge machining method according to any one of claims 1 to 3, wherein a discharge power source in which a capacitor of 0.01 µF to 100 µF is connected in parallel to the gap between the electrode and the workpiece is used. Control method. 特許請求の範囲第1項から第4項において、電極をその軸と直交する面内において走査しながら行う加工法における電気絶縁体の移動制御法。

The method of controlling movement of an electrical insulator in a processing method according to claim 1, wherein the electrode is scanned while being scanned in a plane orthogonal to the axis thereof.

JP2005301322A 2005-10-17 2005-10-17 Electrical insulator movement control method and apparatus in electrical discharge machining using electrical insulator-covered electrode Expired - Fee Related JP4512901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301322A JP4512901B2 (en) 2005-10-17 2005-10-17 Electrical insulator movement control method and apparatus in electrical discharge machining using electrical insulator-covered electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301322A JP4512901B2 (en) 2005-10-17 2005-10-17 Electrical insulator movement control method and apparatus in electrical discharge machining using electrical insulator-covered electrode

Publications (2)

Publication Number Publication Date
JP2007105853A true JP2007105853A (en) 2007-04-26
JP4512901B2 JP4512901B2 (en) 2010-07-28

Family

ID=38032110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301322A Expired - Fee Related JP4512901B2 (en) 2005-10-17 2005-10-17 Electrical insulator movement control method and apparatus in electrical discharge machining using electrical insulator-covered electrode

Country Status (1)

Country Link
JP (1) JP4512901B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519021A (en) * 2011-05-03 2014-08-07 スモルテク インターナショナル,リミテッド ライアビリティー カンパニー Measurement system based on micro-discharge
KR20160063953A (en) * 2014-11-27 2016-06-07 숭실대학교산학협력단 Apparatus for electrochemical discharge machining

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292319A (en) * 1986-06-09 1987-12-19 Amada Co Ltd Electrode for electric discharge machine
JPH02100830A (en) * 1988-10-07 1990-04-12 Mitsubishi Electric Corp Method and its device for electric discharge machining completion decision
JPH0523916A (en) * 1991-07-17 1993-02-02 Hitachi Seiko Ltd Electric discharge machining device
JPH08229745A (en) * 1995-02-23 1996-09-10 Olympus Optical Co Ltd Three-dimensional electric discharge machine
JPH09239621A (en) * 1996-03-05 1997-09-16 Mitsubishi Electric Corp Electric discharge machining device and discharge machining method
JP2000084741A (en) * 1998-09-16 2000-03-28 Mitsubishi Electric Corp Electric discharge machining device and method
JP2004283968A (en) * 2003-03-24 2004-10-14 Fanuc Ltd Controller for wire electric discharge machine
JP2005153044A (en) * 2003-11-21 2005-06-16 Honjo Yuri Sangyo Kagaku Gijutsu Shinko Zaidan Electric discharge machining method by insulation-coated electrode using powder mixed machining liquid and its device
JP2005224887A (en) * 2004-02-12 2005-08-25 Honjo Yuri Sangyo Kagaku Gijutsu Shinko Zaidan Electric discharge machining and device by electrical insulator sheathed electrode using electric discharge machining fluid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292319A (en) * 1986-06-09 1987-12-19 Amada Co Ltd Electrode for electric discharge machine
JPH02100830A (en) * 1988-10-07 1990-04-12 Mitsubishi Electric Corp Method and its device for electric discharge machining completion decision
JPH0523916A (en) * 1991-07-17 1993-02-02 Hitachi Seiko Ltd Electric discharge machining device
JPH08229745A (en) * 1995-02-23 1996-09-10 Olympus Optical Co Ltd Three-dimensional electric discharge machine
JPH09239621A (en) * 1996-03-05 1997-09-16 Mitsubishi Electric Corp Electric discharge machining device and discharge machining method
JP2000084741A (en) * 1998-09-16 2000-03-28 Mitsubishi Electric Corp Electric discharge machining device and method
JP2004283968A (en) * 2003-03-24 2004-10-14 Fanuc Ltd Controller for wire electric discharge machine
JP2005153044A (en) * 2003-11-21 2005-06-16 Honjo Yuri Sangyo Kagaku Gijutsu Shinko Zaidan Electric discharge machining method by insulation-coated electrode using powder mixed machining liquid and its device
JP2005224887A (en) * 2004-02-12 2005-08-25 Honjo Yuri Sangyo Kagaku Gijutsu Shinko Zaidan Electric discharge machining and device by electrical insulator sheathed electrode using electric discharge machining fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519021A (en) * 2011-05-03 2014-08-07 スモルテク インターナショナル,リミテッド ライアビリティー カンパニー Measurement system based on micro-discharge
KR20160063953A (en) * 2014-11-27 2016-06-07 숭실대학교산학협력단 Apparatus for electrochemical discharge machining
KR101649423B1 (en) 2014-11-27 2016-08-18 숭실대학교산학협력단 Apparatus for electrochemical discharge machining

Also Published As

Publication number Publication date
JP4512901B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
Munz et al. Specifics of flushing in electrical discharge drilling
JP2005319577A (en) Distributed arc electroerosion
US20100243612A1 (en) Electrical discharge machining
CN102909447B (en) Electric spark servo control method based on current pulse probability detection
KR20150114569A (en) Pulse and gap control for electrical discharge machining equipment
US20030173337A1 (en) Electric sparking drill and method for forming a hole with an electric spark
JP2011067938A (en) Systems and apparatus related to electrochemical machining
Mao et al. The state of the art of electrical discharge drilling: A review
JP4512901B2 (en) Electrical insulator movement control method and apparatus in electrical discharge machining using electrical insulator-covered electrode
JP4925481B2 (en) Wire cut electric discharge machine
KR20160140425A (en) Method for material recovery in electroerosion machining
EP1319459B1 (en) Wire electric-discharge machining apparatus
JP4460132B2 (en) Electrochemical machining method for irregular holes
JP4509509B2 (en) EDM machine
JP2904340B2 (en) Method and apparatus for controlling electrolytic erosion process
De Silva et al. Process control and power systems for electrochemical-erosion sinking (ELESIN)
JP2004230517A (en) Electrical spark drill and forming method of hole by electrical spark
JP2005224887A (en) Electric discharge machining and device by electrical insulator sheathed electrode using electric discharge machining fluid
KR100564162B1 (en) Jet-type cnc small hole electric discharge machine in which work piece half submerged
Mondal et al. Experimental study of machining characteristics of Ti6Al4V in EDM using tapered tool
RU2809818C1 (en) Method for two-stage electro-erosive-chemical piercing of small-diameter holes
JPS641256B2 (en)
JP2011110689A (en) Electric discharge machining method and electric discharge machine
Aquil et al. A Review of Optimization-associated examine of Electrical Discharge Machining Aluminum Metal Matrix Composites
Kulkarni Hole quality and interelectrode gap dynamics during pulse current electrochemical deep hole drilling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees