JP2007105625A - Manufacturing method of electrically conductive member - Google Patents

Manufacturing method of electrically conductive member Download PDF

Info

Publication number
JP2007105625A
JP2007105625A JP2005298792A JP2005298792A JP2007105625A JP 2007105625 A JP2007105625 A JP 2007105625A JP 2005298792 A JP2005298792 A JP 2005298792A JP 2005298792 A JP2005298792 A JP 2005298792A JP 2007105625 A JP2007105625 A JP 2007105625A
Authority
JP
Japan
Prior art keywords
coated
coating
conductive
layer
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005298792A
Other languages
Japanese (ja)
Inventor
Hideta Araki
秀太 荒木
Hisanari Sawada
弥斉 澤田
Toshihiro Otaka
利博 大高
Atsushi Ikeda
敦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2005298792A priority Critical patent/JP2007105625A/en
Publication of JP2007105625A publication Critical patent/JP2007105625A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrically conductive member by which film thickness unevenness of a covering layer can be suppressed without performing a plurality of times of dip coating and without changing lifting speed of an object to be coated when forming the covering layer around the object to be coated by performing dip coating. <P>SOLUTION: The manufacturing method of the electrically conductive member having a columnar electrically conductive support and an elastic layer and the covering layer around the support comprises a process for preparing the object to be coated which at least has the elastic layer provided around the electrically conductive support and has an outside surface where a contacting angle toward water stepwise or continuously becomes smaller from one end to another end in a longitudinal direction and a dip coating process for applying a coating solution onto the outside surface of the object to be coated by dipping the object to be coated in the coating solution for forming the covering layer and then lifting the object to be coated while directing its one end downward and its another end upward. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリンタ、ファクシミリ及び複写機等の電子写真方式を採用した画像形成装置に用いられる、導電性ローラなどの導電性部材に関する。   The present invention relates to a conductive member such as a conductive roller used in an image forming apparatus employing an electrophotographic system such as a printer, a facsimile machine, and a copying machine.

従来、電子写真画像形成装置の帯電装置としてはコロナ帯電器が使用されてきたが、近年、これに代って導電性部材を感光体に接触させながら電圧を印加して、感光体表面を帯電させる接触帯電方式が実用化されてきている。これは、感光体に、ローラ型、ブレード型、ブラシ型及び磁気ブラシ型等の電荷供給部材としての導電性部材(帯電部材)を接触させ、この接触帯電部材に所定の帯電バイアスを印加して感光体面を所定の極性・電位に一様に帯電させるものである。   Conventionally, a corona charger has been used as a charging device for an electrophotographic image forming apparatus, but in recent years, instead of this, a voltage is applied while a conductive member is in contact with the photosensitive member to charge the surface of the photosensitive member. The contact charging method to be used has been put into practical use. This is because a conductive member (charging member) as a charge supply member such as a roller type, a blade type, a brush type or a magnetic brush type is brought into contact with the photosensitive member, and a predetermined charging bias is applied to the contact charging member. The photosensitive member surface is uniformly charged to a predetermined polarity and potential.

これは、低オゾン、低電力を目的としており、中でも特に導電性部材として導電性ローラを用いたローラ帯電方式が、帯電の安定性という点で好ましく、広く用いられている。
ローラ帯電方式では、導電性の弾性ローラを被帯電体に加圧当接させ、これに電圧を印加することによって放電により被帯電体への帯電を行う。
This is aimed at low ozone and low power, and in particular, a roller charging method using a conductive roller as a conductive member is preferable and widely used in terms of charging stability.
In the roller charging method, a conductive elastic roller is brought into pressure contact with a member to be charged, and a voltage is applied thereto to charge the member to be charged by discharge.

具体的には、放電開始電圧(OPC感光体(有機光感光体)に対して導電性ローラを加圧当接させた場合には、約550V)に、必要とされる感光体表面電位Vdを足したDC電圧を印加することで帯電を行うDC帯電方式、あるいは、特許文献1に記載されるように、環境・耐久変動等による電位の変動を改善する目的として、必要とされる感光体表面電位Vdに相当するDC電圧に放電開始電圧の2倍以上のピーク間電圧を持つAC成分を重畳した電圧を接触導電性ローラに印加する事で帯電を行うAC帯電方式がある。   Specifically, the required photoreceptor surface potential Vd is set to the discharge start voltage (about 550 V when the conductive roller is pressed against the OPC photoreceptor (organic photoconductor)). The surface of the photoreceptor required for the purpose of improving the fluctuation of the potential due to the environment and durability fluctuation as described in Patent Document 1, or the charging method in which charging is performed by applying the added DC voltage. There is an AC charging method in which charging is performed by applying, to a contact conductive roller, a voltage in which an AC component having a peak-to-peak voltage more than twice the discharge start voltage is superimposed on a DC voltage corresponding to the potential Vd.

これは、AC電圧による電位の均し効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央である電位Vdに収束し、環境等の外乱には影響されることはなく、接触帯電方式として優れた方法である。   This is intended to equalize the potential due to the AC voltage, and the potential of the charged body converges to the potential Vd which is the center of the peak of the AC voltage, and is not affected by disturbances such as the environment. It is an excellent method as a contact charging method.

しかしながら、AC帯電方式では直流電圧印加時における放電開始電圧(VTH)の2倍以上のピーク間電圧である高圧の交流電圧を重畳させるため、直流電源とは別に交流電源が必要となり、装置自体のコストアップを招く。更には、交流電流を多量に消費することにより、導電性ローラ及び感光体の耐久性が低下し易い。   However, in the AC charging method, a high-voltage AC voltage that is a peak-to-peak voltage more than twice the discharge start voltage (VTH) when a DC voltage is applied is superimposed, so that an AC power supply is required in addition to the DC power supply. Incurs cost increase. Furthermore, by consuming a large amount of alternating current, the durability of the conductive roller and the photoconductor is likely to decrease.

これらは、導電性ローラに直流電圧のみを印加して帯電を行うDC帯電方式により解消されるものの、導電性ローラに直流電圧のみを印加する方式においては、導電性ローラの帯電均一性向上やトナー付着性の更なるレベルアップが要求される。つまりDC帯電方式は被覆層の膜厚ムラや塗工ムラ、粗さムラ等がAC帯電方式に比べ、画像不良として非常に現れやすい傾向にある。特に膜厚ムラの制御は、帯電均一性の向上のために非常に重要な項目であり、数μmの膜厚差が画像不良につながってしまう場合も少なくない。   These are solved by the DC charging method in which only the DC voltage is applied to the conductive roller to perform charging. However, in the method in which only the DC voltage is applied to the conductive roller, the charging uniformity of the conductive roller is improved and the toner is A further level of adhesion is required. That is, in the DC charging method, the coating layer thickness unevenness, coating unevenness, roughness unevenness and the like tend to appear very easily as image defects compared to the AC charging method. In particular, control of film thickness unevenness is an extremely important item for improving charging uniformity, and a film thickness difference of several μm often leads to image defects.

弾性体であるローラ本体の表面に導電性塗料による塗工膜を形成する方法としては、ロールコート法、スプレーコート法、ディップ法、等が挙げられる。   Examples of a method for forming a coating film with a conductive paint on the surface of the roller body, which is an elastic body, include a roll coating method, a spray coating method, and a dip method.

ロールコート法は、特許文献2に記載されるように、ローラ本体を水平にして、芯金を中心に回転させながら昇降させる。これにより、ローラ本体が横向きに回転しながら塗料中に浸されることによって、塗工膜を形成するという方法である。   In the roll coating method, as described in Patent Document 2, the roller body is leveled and moved up and down while rotating around a cored bar. This is a method of forming a coating film by immersing the roller body in the paint while rotating horizontally.

しかし、このようなロールコート法では、塗工終了時ローラ本体が液面から離れる際に、その離れる部分に発生する線状のムラを避けられず、均一な塗工膜を形成することが困難である。   However, in such a roll coating method, when the roller body is separated from the liquid surface at the end of coating, it is inevitable to form a linear unevenness in the separated portion, and it is difficult to form a uniform coating film. It is.

また、スプレーコート法は、特許文献3に記載されるように、芯金を中心にして回転しているローラ本体の表面に塗料を噴霧することによって、塗工膜を形成するという方法である。   The spray coating method is a method in which a coating film is formed by spraying a coating material on the surface of a roller body rotating around a core metal as described in Patent Document 3.

しかし、スプレーコート法は、基本的に塗料を均一に噴霧することが困難であり、また噴霧する際の塗料のロス分も少なくない。   However, in the spray coating method, it is basically difficult to spray the paint uniformly, and there is not a little loss of paint when spraying.

ディップ法は、特許文献4に記載されるように、ローラ本体を垂直にして、塗料中に浸漬し、その後ローラ本体を引き上げて塗工膜を形成するという方法である。   As described in Patent Document 4, the dip method is a method in which a roller main body is vertical and immersed in a paint, and then the roller main body is pulled up to form a coating film.

ディップ法は、ローラの円周方向の膜厚精度が高い、塗工によるムラ等のローラ表面の欠陥が発生しにくい、塗工装置の構造が簡便である等の利点があり、広く用いられている方法である。しかしながら、ローラを定速で引き上げた場合にはローラ本体を浸漬する際の下側の塗工膜が上側に比べ厚くなってしまう。このような塗工時の膜厚の差を修正するためにローラの本体の上下を反転させて更にもう一度浸漬塗工を行う方法、特許文献5に記載されるようなローラの引き上げ速度を変化させる方法が用いられている。
特開昭57−5048号公報 特開平10−177290号公報 特開平5−35140号公報 特開昭60−48333号公報 特開平8−207171号公報
The dip method has advantages such as high accuracy of film thickness in the circumferential direction of the roller, resistance to surface defects such as unevenness due to coating, and simple construction of the coating device. Is the way. However, when the roller is pulled up at a constant speed, the lower coating film when the roller body is immersed becomes thicker than the upper side. In order to correct the difference in film thickness at the time of coating, the roller body is turned upside down and the dip coating is performed again, and the roller pulling speed as described in Patent Document 5 is changed. The method is used.
JP-A-57-5048 JP-A-10-177290 Japanese Patent Laid-Open No. 5-35140 JP 60-48333 A JP-A-8-207171

しかしながら、ローラ本体の上下を反転させて更にもう一度浸漬塗工を行う方法は、塗布に必要のない芯金にまで塗工液が塗布されるのを防ぐためのキャップの取り付け、取り外しが二度必要となり装置の構造が複雑になってしまい、工程が煩雑になるとともに、装置自体のコストアップを招く。また一度目の浸漬塗工の前後で表面の濡れ性が異なるために、上下膜厚差をなくすことができない場合もある。それに対し、ローラの引き上げ速度を変化させる(徐々に遅くする)方法は工程数の増加もなく、簡便な方法であるといえる。しかしながら、実際にはローラの引き上げ速度を変化させる方法は、塗工タクトが長くなり、また、いわゆる液だれの影響を抑えきれず、ローラの上下の膜厚差をなくすことが困難である場合もある。   However, the method of dip coating again by turning the roller body upside down requires the installation and removal of the cap twice to prevent the coating liquid from being applied to the core metal that is not required for coating. As a result, the structure of the apparatus becomes complicated, the process becomes complicated, and the cost of the apparatus itself increases. In addition, since the wettability of the surface is different before and after the first dip coating, the difference between the upper and lower film thicknesses may not be eliminated. On the other hand, it can be said that the method of changing (gradually slowing) the roller pulling speed is a simple method without increasing the number of steps. However, in practice, the method of changing the roller pulling speed increases the coating tact time, and the influence of so-called liquid dripping cannot be suppressed, and it may be difficult to eliminate the film thickness difference between the upper and lower rollers. is there.

本発明の目的は、塗工液への被塗工物の浸漬とその後の引き上げによる浸漬塗工を行って被塗工物の周囲に被覆層を形成するに際し、複数回の浸漬塗工を行わなくとも、被塗工物の引き上げ速度を変化させることなく、被覆層の膜厚ムラを抑制することのできる導電性部材の製造方法を提供することである。   An object of the present invention is to perform dip coating a plurality of times when a coating layer is formed around the coating object by immersing the coating object in a coating liquid and then performing dip coating by pulling up. Even if it is not, it is providing the manufacturing method of the electroconductive member which can suppress the film thickness nonuniformity of a coating layer, without changing the pulling-up speed of a to-be-coated article.

本発明者らが鋭意検討した結果、浸漬塗工においては、被塗工物の表面の接触角を浸漬時最下端部から最上端部にかけて段階的或いは連続的に小さくなるように変化させることにより、膜厚の制御が可能であることが明らかとなった。浸漬塗工の場合、一般には浸漬時の下側の膜厚が大きくなる。これはいわゆる「液だれ」によるところが大きい。   As a result of intensive studies by the present inventors, in dip coating, the contact angle of the surface of the object to be coated is changed so as to decrease stepwise or continuously from the lowermost end to the uppermost end during immersion. It was revealed that the film thickness can be controlled. In the case of dip coating, generally the lower film thickness at the time of dip is large. This is largely due to so-called “drip”.

本発明によれば、柱状の導電性支持体と、その周囲に弾性層及び被覆層を有する導電性部材の製造方法において、
該導電性支持体の周囲に設けられた、少なくとも弾性層を有する被塗工物であって、
長手方向の一端から他端に向かって段階的もしくは連続的に水に対する接触角が小さくなる外表面を有する被塗工物を用意する工程;および
該被塗工物を、被覆層形成用の塗工液に浸漬し、該一端を下に、該他端を上にして上方に引き上げることにより、該被塗工物の外表面に該塗工液を塗工する浸漬塗工工程
を有する導電性部材の製造方法が提供される。
According to the present invention, in a method of manufacturing a conductive member having a columnar conductive support and an elastic layer and a coating layer around the columnar conductive support,
An object to be coated having at least an elastic layer provided around the conductive support,
A step of preparing a coated object having an outer surface in which a contact angle with water is reduced stepwise or continuously from one end to the other end in the longitudinal direction; and the coated article for coating layer formation Conductivity having a dip coating process in which the coating liquid is applied to the outer surface of the object to be coated by immersing in the working liquid and pulling the one end down and the other end up A method of manufacturing a member is provided.

前記浸漬塗工工程前の被塗工物外表面の、浸漬塗工時上側の端から被塗工物全長の5%の位置における接触角θa(°)、中央部における接触角θb(°)、浸漬塗工時下側の端から被塗工物全長の5%の位置における接触角θc(°)が以下の関係にあることが好ましい。
θc−θa≧10、
θa≦90、かつ
θa<θb<θc。
The contact angle θa (°) at the position of 5% of the total length of the coated object from the upper end during dip coating on the outer surface of the coated object before the dip coating process, and the contact angle θb (°) at the center part The contact angle θc (°) at the position of 5% of the total length of the object to be coated is preferably in the following relationship from the lower end during dip coating.
θc−θa ≧ 10,
θa ≦ 90 and θa <θb <θc.

上記導電性部材が導電性ローラであることができる。   The conductive member may be a conductive roller.

本発明によれば、塗工液への被塗工物の浸漬とその後の引き上げによる浸漬塗工を行って被塗工物の周囲に被覆層を形成するに際し、複数回の浸漬塗工を行わなくとも、被塗工物の引き上げ速度を変化させることなく、被覆層の膜厚ムラを抑制することのできる導電性部材の製造方法が提供される。   According to the present invention, when the coating layer is formed around the coating object by immersing the coating object in the coating liquid and then performing dip coating by pulling up, a plurality of dip coatings are performed. Even if it is not, the manufacturing method of the electroconductive member which can suppress the film thickness nonuniformity of a coating layer is provided, without changing the pulling-up speed of a to-be-coated article.

本発明によって、柱状の導電性支持体と、その周囲に弾性層及び被覆層を有する導電性部材を製造することができる。柱状としては、円柱状や楕円柱状、あるいは三角柱状、四角柱状、六角柱状などの多角柱状、などが挙げられる。導電性部材が導電性ローラである場合は、代表的には、円柱状の導電性支持体の外周に弾性層および被覆層がこの順に環状に設けられる。   According to the present invention, a conductive member having a columnar conductive support and an elastic layer and a covering layer around it can be manufactured. Examples of the columnar shape include a cylindrical shape, an elliptical columnar shape, a triangular columnar shape, a polygonal columnar shape such as a quadrangular columnar shape, and a hexagonal columnar shape. When the conductive member is a conductive roller, typically, an elastic layer and a covering layer are annularly provided in this order on the outer periphery of a cylindrical conductive support.

以下、導電性部材として、電子写真方式の画像形成装置の帯電装置として利用可能な導電性ローラを例にとりつつ、図面を参照して、本発明の形態を詳細に説明するが、本発明はこれによって限定されるものではない。   Hereinafter, the embodiment of the present invention will be described in detail with reference to the drawings, taking as an example a conductive roller that can be used as a charging device of an electrophotographic image forming apparatus as the conductive member. It is not limited by.

(1)導電性部材
導電性ローラは、導電性支持体と、その外周に一体に形成された弾性層、およびさらにその外周に形成された被覆層を有する。被覆層は、弾性層の少なくとも外周面を被覆する層であり、次に述べるように、最外周に配される表面層、および弾性層と表面層との間に必要に応じて配される抵抗層を含む。
(1) Conductive member The conductive roller has a conductive support, an elastic layer integrally formed on the outer periphery thereof, and a coating layer formed on the outer periphery thereof. The covering layer is a layer that covers at least the outer peripheral surface of the elastic layer, and as described below, a surface layer disposed on the outermost periphery, and a resistance disposed as necessary between the elastic layer and the surface layer. Including layers.

例えば導電性ローラは、図1に示すように弾性層2と、被覆層としての表面層3とからなる2層構造を有してもよい。また、図2に示すように弾性層2と、被覆層としての抵抗層4および表面層3からなる3層構造を有してもよい。あるいはまた、図3に示すように被覆層として抵抗層4と表面層3の間にさらに第2の抵抗層5を設けた4層構造を有してもよく、さらに他の層を弾性層と表面層の間に設けた5層以上の構造を有してもよい。   For example, the conductive roller may have a two-layer structure including an elastic layer 2 and a surface layer 3 as a covering layer as shown in FIG. Moreover, as shown in FIG. 2, you may have a 3 layer structure which consists of the elastic layer 2, the resistance layer 4 as a coating layer, and the surface layer 3. As shown in FIG. Alternatively, as shown in FIG. 3, it may have a four-layer structure in which a second resistance layer 5 is further provided between the resistance layer 4 and the surface layer 3 as a covering layer, and another layer is an elastic layer. You may have a structure of five layers or more provided between the surface layers.

本発明に用いられる導電性支持体1としては、導電性ローラに用いられる公知の導電性支持体を適宜用いることができる。例えば、鉄、銅、ステンレス、アルミニウム及びニッケル等の金属材料の丸棒を用いることができる。更に、導電性を損なわない範囲で、これらの金属表面に防錆や耐傷性付与を目的としてメッキ処理を施しても構わない。   As the electroconductive support body 1 used for this invention, the well-known electroconductive support body used for an electroconductive roller can be used suitably. For example, a round bar made of a metal material such as iron, copper, stainless steel, aluminum, and nickel can be used. Furthermore, these metal surfaces may be plated for the purpose of rust prevention and scratch resistance as long as the conductivity is not impaired.

導電性部材において、弾性層2は被帯電体としての電子写真感光体に対する給電や、電子写真感光体に対する良好な均一密着性を確保するために適当な導電性と弾性を持たせてある。また、導電性部材と電子写真感光体の均一密着性を確保するために弾性層2を研磨によって中央部を一番太く、両端部に行くほど細くなる形状、いわゆるクラウン形状に形成することが好ましい。一般に使用されている導電性部材が、支持体1の両端部に所定の押圧力を与えて電子写真感光体と当接されるので、中央部の押圧力が小さく、両端部ほど大きくなるために、導電性部材の真直度が優れていればよいが、そうでない場合には中央部と両端部に対応する画像に濃度ムラが生じてしまう場合がある。クラウン形状は、これを優れて防止することができるため好ましい。   In the conductive member, the elastic layer 2 has appropriate conductivity and elasticity in order to supply power to the electrophotographic photosensitive member as a member to be charged and to ensure good uniform adhesion to the electrophotographic photosensitive member. Further, in order to ensure uniform adhesion between the conductive member and the electrophotographic photosensitive member, it is preferable to form the elastic layer 2 in a so-called crown shape by polishing so that the central portion is thickest and narrows toward both ends. . A generally used conductive member applies a predetermined pressing force to both end portions of the support 1 to come into contact with the electrophotographic photosensitive member, so that the pressing force at the central portion is small and the both end portions become larger. The straightness of the conductive member only needs to be excellent, but if not, density unevenness may occur in the images corresponding to the center and both ends. The crown shape is preferable because this can be prevented excellently.

弾性層2の導電性は、ゴム等の弾性材料中にカーボンブラック、グラファイト及び導電性金属酸化物等の電子伝導機構を有する導電剤、及びアルカリ金属塩や四級アンモニウム塩等のイオン伝導機構を有する導電剤を適宜添加することにより102Ωcm〜1010Ωcmに調整されるのがよい。弾性層2の具体的弾性材料としては、導電性ローラに用いられる公知の弾性材料を用いることができる。例えば、天然ゴム、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、シリコンーンゴム、ウレタンゴム、エピクロルヒドリンゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、ニトリルブタジエンゴム(NBR)及びクロロプレンゴム(CR)等の合成ゴム、更にはポリアミド樹脂、ポリウレタン樹脂及びシリコーン樹脂等が挙げられる。 The conductivity of the elastic layer 2 is such that a conductive agent having an electron conduction mechanism such as carbon black, graphite and a conductive metal oxide in an elastic material such as rubber, and an ion conduction mechanism such as an alkali metal salt or a quaternary ammonium salt. The conductive agent is preferably adjusted to 10 2 Ωcm to 10 10 Ωcm by appropriately adding a conductive agent. As a specific elastic material of the elastic layer 2, a known elastic material used for a conductive roller can be used. For example, natural rubber, ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), silicon rubber, urethane rubber, epichlorohydrin rubber, isoprene rubber (IR), butadiene rubber (BR), nitrile butadiene rubber (NBR) and chloroprene rubber (CR) And other synthetic rubbers, as well as polyamide resins, polyurethane resins and silicone resins.

表面層3は、弾性層に接した位置に形成されるため弾性層中に含有される軟化油や可塑剤等の導電性ローラ表面へのブリードアウトを防止する目的で、また、導電性ローラ全体の電気抵抗を調整する目的で設けられる。また、表面層3には、導電性ローラの表面を構成し、被帯電体である感光体と接触するため、感光体を汚染しない材料が用いられる。   Since the surface layer 3 is formed at a position in contact with the elastic layer, the entire surface of the conductive roller is used for the purpose of preventing bleeding out of the surface of the conductive roller such as softening oil or plasticizer contained in the elastic layer. It is provided for the purpose of adjusting the electrical resistance. Further, the surface layer 3 is made of a material that does not contaminate the photosensitive member because it forms the surface of the conductive roller and comes into contact with the photosensitive member that is a member to be charged.

表面層3の結着樹脂材料としては、導電性ローラに用いられる公知の結着樹脂材料を用いることができる。例えば、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン−オレフィン共重合体(CEBC)等が挙げられる。また、これらの結着樹脂に、グラファイト、雲母、二硫化モリブデン及びフッ素樹脂粉末等の固体潤滑剤、あるいはフッ素系界面活性剤、ワックス又はシリコーンオイル等を添加してもよい。   As the binder resin material of the surface layer 3, a known binder resin material used for a conductive roller can be used. For example, fluorine resin, polyamide resin, acrylic resin, polyurethane resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC), olefin-ethylene-butylene-olefin copolymer (CEBC), and the like. It is done. In addition, solid binders such as graphite, mica, molybdenum disulfide, and fluorine resin powder, fluorine-based surfactant, wax, silicone oil, or the like may be added to these binder resins.

表面層3には、各種導電剤(導電性カーボン、グラファイト、銅、アルミニウム、ニッケル、鉄粉及び金属酸化物である導電性酸化錫や導電性酸化チタン等)を適宜用いることができる。本発明においては、所望の電気抵抗を得るために、前記各種導電剤を2種以上併用してもよい。表面層の抵抗値は、104〜1015Ωcmであることが好ましい。 For the surface layer 3, various conductive agents (conductive carbon, graphite, copper, aluminum, nickel, iron powder, conductive tin oxide which is a metal oxide, conductive titanium oxide, or the like) can be used as appropriate. In the present invention, in order to obtain a desired electric resistance, two or more kinds of the various conductive agents may be used in combination. The resistance value of the surface layer is preferably 10 4 to 10 15 Ωcm.

抵抗層4、5は、表面層3のみでは弾性層中に含有される軟化油や可塑剤等の帯電部材表面へのブリードアウトや、導電性部材全体の電気抵抗が調整困難である場合に設けることが好ましい。   The resistance layers 4 and 5 are provided when the surface layer 3 alone is difficult to adjust the bleed out to the surface of the charging member such as softening oil or plasticizer contained in the elastic layer or the electrical resistance of the entire conductive member. It is preferable.

抵抗層4、5を構成する材料としては、導電性ローラの抵抗層に用いられる公知の弾性材料を用いることができる。例えば、エピクロルヒドリンゴム、NBR、ポリオレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、エチレン酢酸ビニル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー及び塩素化ポリエチレン系熱可塑性エラストマー等を挙げることができる。   As a material constituting the resistance layers 4 and 5, a known elastic material used for the resistance layer of the conductive roller can be used. For example, epichlorohydrin rubber, NBR, polyolefin-based thermoplastic elastomer, urethane-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, fluororubber-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, polybutadiene-based thermoplastic elastomer, Examples thereof include an ethylene vinyl acetate thermoplastic elastomer, a polyvinyl chloride thermoplastic elastomer, and a chlorinated polyethylene thermoplastic elastomer.

抵抗層4、5は、導電性を有する。導電性の発現のための導電材として、各種電子伝導機構を有する導電剤(導電性カーボン、グラファイト、導電性金属酸化物、銅、アルミニウム、ニッケル、鉄粉等)を使用することができる。   The resistance layers 4 and 5 have conductivity. As a conductive material for developing conductivity, conductive agents (conductive carbon, graphite, conductive metal oxide, copper, aluminum, nickel, iron powder, etc.) having various electron conduction mechanisms can be used.

本発明では被塗工物外表面に被覆層を浸漬塗工法を用いて形成する。具体的には、被塗工物を被覆層形成用の塗工液に浸漬し、接触角が大きい側の端を下に、接触角が小さい側の端を上にして、鉛直上方に引き上げ、被塗工物の外表面(ローラにおいては外周面)に塗工液を塗工する浸漬塗工工程を行う。   In the present invention, the coating layer is formed on the outer surface of the object to be coated using the dip coating method. Specifically, the object to be coated is immersed in a coating liquid for forming a coating layer, with the end with the large contact angle on the bottom, the end with the small contact angle on the top, and pulled upward vertically, A dip coating process is performed in which the coating liquid is applied to the outer surface of the workpiece (the outer peripheral surface of the roller).

被塗工物は、弾性層上に被覆層を浸漬塗工によって設ける場合は弾性層である。既に一層以上の被覆層が弾性層上に設けられ、さらにその上に被覆層を浸漬塗工によって設ける場合、この一層以上の被覆層が弾性層上に設けられたものが被塗工物となる。   An object to be coated is an elastic layer when a coating layer is provided on the elastic layer by dip coating. When one or more coating layers are already provided on the elastic layer, and further a coating layer is provided thereon by dip coating, what is provided with the one or more coating layers provided on the elastic layer is the article to be coated. .

浸漬塗工工程で得られた塗工膜を、必要に応じて乾燥および/または硬化させることによって、被覆層を形成することができる。   The coating layer can be formed by drying and / or curing the coating film obtained in the dip coating process as necessary.

(2)膜厚均一化のための接触角調整
本発明において被塗工物の表面性(接触角)を調節するために、被塗工物の形状を損なわずに、接触角を変えることのできる方法を適宜採用することができる。例えば、UV照射、溶剤洗浄、水洗浄、テープ洗浄などを採用することができる。また生産上、一つの方法で、その条件を振ることにより接触角を変化させられる方法が好ましい。
(2) Contact angle adjustment for uniform film thickness In order to adjust the surface property (contact angle) of an object to be coated in the present invention, the contact angle can be changed without impairing the shape of the object to be coated. A method that can be used can be adopted as appropriate. For example, UV irradiation, solvent cleaning, water cleaning, tape cleaning and the like can be employed. In production, a method in which the contact angle can be changed by changing the conditions by one method is preferable.

一例として、洗浄ノズルから水を噴射する水噴射装置による被塗工物表面の水洗浄を以下に挙げる。水洗浄の場合、浸漬引き上げ時下側(接触角を相対的に大きくする側)の洗浄時間を長く、浸漬引き上げ時上側(接触角を相対的に小さくする側)に行くに従い洗浄時間を短くしていくことにより、被塗工物の水に対する接触角を、下側から上側に向かって段階的或いは連続的に小さくすることができる。   As an example, water cleaning of the surface of an object to be coated by a water injection device that injects water from a cleaning nozzle will be described below. In the case of water cleaning, the cleaning time on the lower side (side where the contact angle is relatively increased) is lengthened when the dip is pulled up, and the cleaning time is shortened as going to the upper side (side where the contact angle is relatively reduced) when dip is pulled up. By proceeding, the contact angle of the object to be coated with water can be decreased stepwise or continuously from the lower side toward the upper side.

例えば具体的には、弾性層を10s-1で回転させながら、噴射水については圧力を0.1MpaG〜2MpaG(圧力単位におけるGは、ゲージ圧を意味する)、流量4L/min〜12L/minの範囲の条件に固定し、洗浄ノズルの移動速度を浸漬塗工時最下端部0.008〜0.05m/sec、浸漬塗工時最上端部0.05〜0.1m/secで段階的或いは連続的に大きくなるように変化させ、浸漬塗工時最下端部から最上端部に行くに従い、接触角を段階的或いは連続的に小さくしていくことが望ましい。 For example, specifically, while rotating the elastic layer at 10 s −1 , the pressure of the jet water is 0.1 MpaG to 2 MpaG (G in pressure unit means gauge pressure), and the flow rate is 4 L / min to 12 L / min. The moving speed of the cleaning nozzle is stepwise from 0.008 to 0.05 m / sec at the lowermost end during dip coating and 0.05 to 0.1 m / sec at the uppermost end during dip coating. Alternatively, it is desirable that the contact angle is continuously increased and the contact angle is decreased stepwise or continuously as it goes from the lowermost end to the uppermost end during dip coating.

水洗浄に用いる水としては、イオン交換水、精製水、超純水、アルカリイオン水、超還元性水、水道水、井戸水等が挙げられる。   Examples of water used for water washing include ion exchange water, purified water, ultrapure water, alkali ion water, superreducible water, tap water, and well water.

以下に、具体的な実施例を用いて本発明を更に詳細に説明するが、本発明はこれによって限定されるものではない。なお、実施例中の「部」は質量部を示す。   Hereinafter, the present invention will be described in more detail using specific examples, but the present invention is not limited thereto. In addition, "part" in an Example shows a mass part.

〔実施例1〕
下記の要領で本発明の導電性部材としての導電性ローラ(帯電ローラ)を作成した。
[Example 1]
A conductive roller (charging roller) as a conductive member of the present invention was prepared in the following manner.

(弾性層)
エピクロルヒドリンゴム:100部、
四級アンモニウム塩 : 2部、
炭酸カルシウム : 30部、
酸化亜鉛 : 5部、
脂肪酸 : 5部。
(Elastic layer)
Epichlorohydrin rubber: 100 parts,
Quaternary ammonium salt: 2 parts
Calcium carbonate: 30 parts
Zinc oxide: 5 parts
Fatty acid: 5 parts.

以上の材料を60℃に調節した密閉型ミキサーにて10分間混練した後、エピクロルヒドリンゴム100部に対してエーテルエステル系可塑剤15部を加え、20℃に冷却した密閉型ミキサーで更に20分間混練し、原料コンパウンドを調整した。このコンパウンドに原料ゴムのエピクロルヒドリンゴム100部に対し加硫剤としての硫黄1部、加硫促進剤としてのノクセラーDM(商品名。大内新興化学社製)1部及びノクセラーTS(商品名。大内新興化学社製)0.5部を加え、20℃に冷却した2本ロール機にて10分間混練した。得られたコンパウンドを、導電性支持体(外直径6mm、長さ260mmのステンレス製丸棒)の周囲に押出成型機にて成型し、加熱加硫成型して、外直径12mmになるように研磨処理し、ローラ形状(内直径6mm、外直径12mm、長さ230mmの円環状)の弾性層を形成した。   After kneading the above materials for 10 minutes with a closed mixer adjusted to 60 ° C., add 15 parts of an ether ester plasticizer to 100 parts of epichlorohydrin rubber, and knead for another 20 minutes with a closed mixer cooled to 20 ° C. The raw material compound was adjusted. In this compound, 100 parts of raw rubber epichlorohydrin rubber, 1 part of sulfur as a vulcanizing agent, 1 part of Noxeller DM (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.) and Noxeller TS (trade name. Inner Shinsei Chemical Co., Ltd.) 0.5 parts was added and kneaded for 10 minutes in a two-roll mill cooled to 20 ° C. The obtained compound is molded around an electroconductive support (stainless steel round bar having an outer diameter of 6 mm and a length of 260 mm) by an extrusion molding machine, heated and vulcanized, and polished to an outer diameter of 12 mm. By processing, an elastic layer having a roller shape (annular shape having an inner diameter of 6 mm, an outer diameter of 12 mm, and a length of 230 mm) was formed.

(表面層)
上記弾性層の上に被覆形成する表面層は以下のようにして作製した。表面層3の材料として、
アクリルポリオール溶液(有効成分70質量%、希釈溶剤としてキシレン30質量%):100部、
イソシアネートA(IPDI(イソホロンジイソシアネート))(有効成分60質量%、希釈溶剤としてn−酢酸ブチルを15質量%、キシレン25質量%):40部、
イソシアネートB(HDI(ヘキサメチレンジイソシアネート))(有効成分80質量%、希釈剤として酢酸エチル20%含有):30部、
カーボンブラック:80部、
ポリメチルメタクリレート(PMMA)(樹脂粒子8μm):35部、
メチルイソブチルケトン:340部
をミキサーを用いて撹拌し混合溶液を作成した。ついで、その混合溶液を循環式のビーズミル分散機を用いて分散処理(処理速度600ml/min)を行い、表面層形成用塗工液を得た。
(Surface layer)
The surface layer to be coated on the elastic layer was produced as follows. As a material of the surface layer 3,
Acrylic polyol solution (active ingredient 70% by mass, xylene 30% by mass as a diluent solvent): 100 parts,
Isocyanate A (IPDI (isophorone diisocyanate)) (active ingredient 60% by mass, n-butyl acetate 15% by mass as xylene solvent, xylene 25% by mass): 40 parts,
Isocyanate B (HDI (hexamethylene diisocyanate)) (active ingredient 80% by mass, containing 20% ethyl acetate as diluent): 30 parts,
Carbon black: 80 parts
Polymethylmethacrylate (PMMA) (resin particles 8 μm): 35 parts,
Methyl isobutyl ketone: 340 parts were stirred using a mixer to prepare a mixed solution. Subsequently, the mixed solution was subjected to dispersion treatment (treatment speed 600 ml / min) using a circulation type bead mill disperser to obtain a surface layer forming coating solution.

(水洗浄による接触角の調整)
上記弾性層が形成された導電性支持体の両端部を支持しながら10s-1で弾性層を回転させ、弾性層の長手方向に沿って弾性層の外周面に高圧水を噴射し塗工前の水洗浄を行い、続けてエアブローを同様に行って表面上の水分を取り除いた。水洗浄に際しては、ノズルから噴射する高圧水の圧力を0.5MPaG、流量を4L/minに固定した。また、弾性層の長手方向一端(浸漬引き上げ時最下端。図4における2c)における高圧水ノズルの移動速度を0.05m/s、他端(浸漬引き上げ時最上端。図4における2a)における高圧水ノズルの移動速度を0.08m/sとし、上記一端から他端にかけて移動速度を連続的に一様に(直線的に)増加するように設定した。
(Adjusting the contact angle by washing with water)
The elastic layer is rotated at 10 s −1 while supporting both ends of the conductive support on which the elastic layer is formed, and high pressure water is sprayed on the outer peripheral surface of the elastic layer along the longitudinal direction of the elastic layer before coating. Next, air was blown in the same manner to remove moisture on the surface. During water washing, the pressure of high-pressure water sprayed from the nozzle was fixed at 0.5 MPaG and the flow rate was fixed at 4 L / min. Moreover, the moving speed of the high-pressure water nozzle at one end in the longitudinal direction of the elastic layer (the lowest end when dipping and lifting; 2c in FIG. 4) is 0.05 m / s, and the high pressure at the other end (the highest end when dipping and pulling up; 2a in FIG. 4). The moving speed of the water nozzle was set to 0.08 m / s, and the moving speed was set to increase continuously and uniformly (linearly) from one end to the other end.

エアブロー終了から10分後に、弾性体外周面の上記他端(図4における2a)から10mm内側における接触角θa、上記一端と他端の間の中央(図4における2b)における接触角θb、上記一端(図4における2c)から11.5mm内側における接触角θcを測定したところ、θa=71°、θb=76°、θc=82°であった。なお、被塗工物(弾性層)の全長は230mmなので、θaの測定位置は浸漬塗工時上側の端から被塗工物全長の5%の位置であり、θcの測定位置は浸漬塗工時下側の端から被塗工物全長の5%の位置である。   10 minutes after the end of air blow, the contact angle θa 10 mm inside from the other end (2a in FIG. 4) of the outer peripheral surface of the elastic body, the contact angle θb at the center (2b in FIG. 4) between the one end and the other end, When the contact angle θc inside 11.5 mm from one end (2c in FIG. 4) was measured, θa = 71 °, θb = 76 °, and θc = 82 °. Since the total length of the object to be coated (elastic layer) is 230 mm, the measurement position of θa is 5% of the total length of the object to be coated from the upper end during dip coating, and the measurement position of θc is dip coating. The position is 5% of the total length of the object to be coated from the lower end.

接触角は、水滴を測定しようとする個所に滴下し、接触角計(CA−X型。協和界面化学社製)を用いて測定した。   The contact angle was dropped at a location where water droplets were to be measured, and measured using a contact angle meter (CA-X type, manufactured by Kyowa Interface Chemical Co., Ltd.).

(浸漬塗工)
図4に示すように、前記表面層形成用塗工液6を浸漬塗工用の槽7に入れた。そして、接触角の調整を終えた弾性体付きのステンレス製支持体を、この槽内の塗工液の表面に対して垂直状態に保持して、被塗工物であるローラ状弾性体を塗工液中に浸漬した後、引き上げ、塗工液の塗工膜を形成した。このときの引き上げ速度は8mm/secとした。この際、弾性層から下方に突出する支持体部分1aにはポリアセタール製のマスキング用キャップを被せた。
(Dip coating)
As shown in FIG. 4, the surface layer forming coating solution 6 was placed in a dip coating tank 7. Then, the stainless steel support body with the elastic body, whose contact angle has been adjusted, is held in a state perpendicular to the surface of the coating liquid in the tank, and the roller-shaped elastic body, which is the object to be coated, is applied. After dipping in the working solution, it was pulled up to form a coating film of the coating solution. The pulling speed at this time was 8 mm / sec. At this time, a masking cap made of polyacetal was put on the support portion 1a protruding downward from the elastic layer.

(乾燥硬化)
その後、バッチ式の熱風乾燥機にて160℃(上記バインダー樹脂(ウレタン樹脂)の硬化温度は130℃)で1時間硬化反応させて上記塗工膜を乾燥硬化させ、表面層を被覆形成した導電性ローラを得た。
(Dry curing)
Subsequently, the coating film was dried and cured by a batch reaction at 160 ° C. (the curing temperature of the binder resin (urethane resin) was 130 ° C.) in a batch hot air dryer, and the surface layer was coated. A sex roller was obtained.

(膜厚測定)
得られた表面層について、長手方向の一端(浸漬引き上げ時の上端。図4における2a)から10mm内側における平均厚さta、長手方向の他端(浸漬引き上げ時の下端。図4における2c)から10mm内側における平均厚さtc、これら一端と他端の間の中央(図4における2b)における平均厚さtbを測定した。その測定においては、各位置において弾性層と表面層を一体で切り出し、電子顕微鏡観察を行い、それぞれ10個所の膜厚平均値を求めた。
(Film thickness measurement)
About the obtained surface layer, from one end in the longitudinal direction (upper end at the time of immersion pulling up; 2a in FIG. 4) from the average thickness ta 10 mm inside, from the other end in the longitudinal direction (the lower end at the time of immersion pulling up; 2c in FIG. 4) The average thickness tc inside 10 mm and the average thickness tb at the center (2b in FIG. 4) between the one end and the other end were measured. In the measurement, the elastic layer and the surface layer were cut out integrally at each position and observed with an electron microscope, and the film thickness average values at 10 locations were obtained.

ta、tb、tcのうちの最大値と最小値の差が3μm未満を良、3μm以上を不可とした。   The difference between the maximum value and the minimum value of ta, tb, and tc was less than 3 μm, and the difference was 3 μm or more.

表1に被塗工物であるローラ状弾性体の接触角及び浸漬塗工後の導電性ローラに被覆された表面層の膜厚測定結果を示した。   Table 1 shows the contact angle of the roller-like elastic body, which is the object to be coated, and the film thickness measurement results of the surface layer coated on the conductive roller after dip coating.

〔実施例2〕
高圧水の圧力を0.5MPaG、流量を8L/min、浸漬時最下端部から最上端部にかけて連続的(直線的)に高圧水ノズルの移動速度を0.03m/sから0.05m/sに設定し、弾性層表面の水に対する接触角が、上端部θa=90°、中央部θb=94°、下端部θc=100°であるローラ形状の弾性体を作製し、被塗工物として用いた以外は実施例1と同様にして導電性ローラを作製、長手方向の膜厚差評価を行い、その結果を表1に示した。
[Example 2]
The pressure of the high-pressure water is 0.5 MPaG, the flow rate is 8 L / min, and the moving speed of the high-pressure water nozzle is 0.03 m / s to 0.05 m / s continuously (linearly) from the bottom end to the top end during immersion. A roller-shaped elastic body having an upper surface portion θa = 90 °, a central portion θb = 94 °, and a lower end portion θc = 100 ° is prepared as an object to be coated. A conductive roller was produced in the same manner as in Example 1 except that it was used, and the film thickness difference in the longitudinal direction was evaluated. The results are shown in Table 1.

〔実施例3〕
高圧水の圧力を0.5MPaG、流量を2L/min、浸漬時最下端部から最上端部にかけて連続的(直線的)に高圧水ノズルの移動速度を0.02m/sから0.1m/sに設定し、弾性層表面の水に対する接触角が、上端部θa=60°、中央部θb=77°、下端部θc=90°であるローラ形状の弾性体を作製し、被塗工物として用いた以外は実施例1と同様にして導電性ローラを作製、長手方向の膜厚差評価を行い、その結果を表1に示した。
Example 3
The pressure of the high-pressure water is 0.5 MPaG, the flow rate is 2 L / min, and the moving speed of the high-pressure water nozzle is 0.02 m / s to 0.1 m / s continuously (linearly) from the bottom end to the top end during immersion. A roller-shaped elastic body having an upper surface θa = 60 °, a central portion θb = 77 °, and a lower end θc = 90 ° is prepared as an object to be coated. A conductive roller was produced in the same manner as in Example 1 except that it was used, and the film thickness difference in the longitudinal direction was evaluated. The results are shown in Table 1.

〔実施例4〕
高圧水の圧力を0.5MPaG、流量を8L/min、浸漬時最下端部から最上端部にかけて連続的(直線的)に高圧水ノズルの移動速度を0.008m/sから0.05m/sに設定し、弾性層表面の水に対する接触角が、上端部θa=87°、中央部θb=105°、下端部θc=119°であるローラ形状の弾性体を作製し、被塗工物として用いた以外は実施例1と同様にして導電性ローラを作製、長手方向の膜厚差評価を行い、その結果を表1に示した。
Example 4
The pressure of the high-pressure water is 0.5 MPaG, the flow rate is 8 L / min, and the moving speed of the high-pressure water nozzle is 0.008 m / s to 0.05 m / s continuously (linearly) from the bottom end to the top end during immersion. A roller-shaped elastic body in which the contact angle with respect to the water on the surface of the elastic layer is an upper end portion θa = 87 °, a central portion θb = 105 °, and a lower end portion θc = 119 ° is prepared as an object to be coated. A conductive roller was produced in the same manner as in Example 1 except that it was used, and the film thickness difference in the longitudinal direction was evaluated. The results are shown in Table 1.

〔実施例5〕
高圧水の圧力を0.5MPaG、流量を8L/min、浸漬時最下端部から最上端部にかけて連続的(直線的)に高圧水ノズルの移動速度を0.02m/sから0.04m/sに設定し、弾性層表面の水に対する接触角が、上端部θa=94°、中央部θb=98°、下端部θc=108°であるローラ形状の弾性体を作製し、被塗工物として用いた以外は実施例1と同様にして導電性ローラを作製、長手方向の膜厚差評価を行い、その結果を表1に示した。
Example 5
The pressure of the high-pressure water is 0.5 MPaG, the flow rate is 8 L / min, and the moving speed of the high-pressure water nozzle is 0.02 m / s to 0.04 m / s continuously (linearly) from the bottom end to the top end during immersion. A roller-shaped elastic body having a contact angle with water on the surface of the elastic layer with an upper end portion θa = 94 °, a central portion θb = 98 °, and a lower end portion θc = 108 ° is prepared as an object to be coated. A conductive roller was produced in the same manner as in Example 1 except that it was used, and the film thickness difference in the longitudinal direction was evaluated. The results are shown in Table 1.

〔比較例1〕
高圧水の圧力を0.5MPaG、流量を6L/min、浸漬時最下端部から最上端部にかけて連続的(直線的)に高圧水ノズルの移動速度を0.05m/sから0.04m/sに設定し、弾性層表面の水に対する接触角が、上端部θa=89°、中央部θb=85°、下端部θc=83°であるローラ形状の弾性体を作製し、被塗工物として用いた以外は実施例1と同様にして導電性ローラを作製、長手方向の膜厚差評価を行い、その結果を表1に示した。
[Comparative Example 1]
The pressure of the high-pressure water is 0.5 MPaG, the flow rate is 6 L / min, and the moving speed of the high-pressure water nozzle is 0.05 m / s to 0.04 m / s continuously (linearly) from the bottom end to the top end during immersion. A roller-shaped elastic body having a contact angle with respect to water on the surface of the elastic layer, that is, an upper end portion θa = 89 °, a central portion θb = 85 °, and a lower end portion θc = 83 ° is prepared as an object to be coated. A conductive roller was produced in the same manner as in Example 1 except that it was used, and the film thickness difference in the longitudinal direction was evaluated. The results are shown in Table 1.

〔比較例2〕
高圧水の圧力を0.5MPaG、流量を5L/min、浸漬時最下端部から最上端部にかけて高圧水ノズルの移動速度を0.05m/s(一定)に設定し、弾性層表面の水に対する接触角が、上端部θa=79°、中央部θb=79°、下端部θc=79°であるローラ形状の弾性体を作製し、被塗工物として用いた以外は実施例1と同様にして導電性ローラを作製、長手方向の膜厚差評価を行い、その結果を表1に示した。
[Comparative Example 2]
The pressure of the high-pressure water is set to 0.5 MPaG, the flow rate is 5 L / min, and the moving speed of the high-pressure water nozzle is set to 0.05 m / s (constant) from the lowermost end to the uppermost end during immersion. A roller-shaped elastic body having a contact angle of an upper end portion θa = 79 °, a central portion θb = 79 °, and a lower end portion θc = 79 ° was prepared and used in the same manner as in Example 1 except that it was used as a workpiece. The conductive roller was manufactured, and the film thickness difference in the longitudinal direction was evaluated. The results are shown in Table 1.

〔比較例3〕
高圧水の圧力を0.5MPaG、流量を8L/min、浸漬時最下端部から中心部にかけて連続的(直線的)に高圧水ノズルの移動速度を0.05m/sから0.2m/s、中心部から最上端部にかけて連続的(直線的)に高圧水ノズルの移動速度を0.2m/sから0.1m/sに設定し、弾性層表面の水に対する接触角が、上端部θa=85°、中央部θb=76°、下端部θc=100°であるローラ形状の弾性体を作製し、被塗工物として用いた以外は実施例1と同様にして導電性ローラを作製、長手方向の膜厚差評価を行い、その結果を表1に示した。
[Comparative Example 3]
The pressure of the high-pressure water is 0.5 MPaG, the flow rate is 8 L / min, the moving speed of the high-pressure water nozzle from 0.05 m / s to 0.2 m / s continuously (linearly) from the lowest end to the center during immersion, The moving speed of the high-pressure water nozzle is set from 0.2 m / s to 0.1 m / s continuously (linearly) from the center to the uppermost end, and the contact angle of the elastic layer surface with water is the upper end θa = A roller-shaped elastic body having a 85 ° central portion θb = 76 ° and a lower end portion θc = 100 ° was produced, and a conductive roller was produced in the same manner as in Example 1 except that it was used as an object to be coated. The film thickness difference was evaluated in the direction, and the results are shown in Table 1.

Figure 2007105625
Figure 2007105625

本発明によって得られる導電性部材は、プリンタ、ファクシミリ及び複写機等の電子写真方式を採用した画像形成装置において、帯電用などのために用いられる、導電性ローラなどの導電性部材として好適に利用できる。特にDC帯電方式の場合にも好適に用いることができる。   The conductive member obtained by the present invention is suitably used as a conductive member such as a conductive roller used for charging in an image forming apparatus employing an electrophotographic system such as a printer, a facsimile machine, and a copying machine. it can. In particular, it can be suitably used in the case of a DC charging method.

導電性ローラの一例を説明するための模式的断面図である。It is a typical sectional view for explaining an example of a conductive roller. 導電性ローラの別の例を説明するための模式的断面図である。It is a typical sectional view for explaining another example of a conductive roller. 導電性ローラのさらに別の例を説明するための模式的断面図である。It is a typical sectional view for explaining another example of a conductive roller. 浸漬塗工工程を説明するための模式図である。It is a schematic diagram for demonstrating a dip coating process.

符号の説明Explanation of symbols

1 導電性支持体
2 弾性層
3 被覆層(表面層)
4 被覆層(抵抗層)
5 被覆層(第二の抵抗層)
6 被覆層(表面層)形成用塗工液
7 浸漬塗工用の槽
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Elastic layer 3 Covering layer (surface layer)
4 Coating layer (resistance layer)
5 Coating layer (second resistance layer)
6 Coating layer (surface layer) forming coating solution 7 Dip coating tank

Claims (3)

柱状の導電性支持体と、その周囲に弾性層及び被覆層を有する導電性部材の製造方法において、
該導電性支持体の周囲に設けられた、少なくとも弾性層を有する被塗工物であって、
長手方向の一端から他端に向かって段階的もしくは連続的に水に対する接触角が小さくなる外表面を有する被塗工物を用意する工程;および
該被塗工物を、被覆層形成用の塗工液に浸漬し、該一端を下に、該他端を上にして上方に引き上げることにより、該被塗工物の外表面に該塗工液を塗工する浸漬塗工工程
を有する導電性部材の製造方法。
In a method for manufacturing a conductive member having a columnar conductive support and an elastic layer and a coating layer around the columnar conductive support,
An object to be coated having at least an elastic layer provided around the conductive support,
A step of preparing a coated object having an outer surface in which a contact angle with water is reduced stepwise or continuously from one end to the other end in the longitudinal direction; and the coated article for coating layer formation Conductivity having a dip coating process in which the coating liquid is applied to the outer surface of the object to be coated by immersing in the working liquid and pulling the one end down and the other end up Manufacturing method of member.
前記浸漬塗工工程前の被塗工物外表面の、浸漬塗工時上側の端から被塗工物全長の5%の位置における接触角θa(°)、中央部における接触角θb(°)、浸漬塗工時下側の端から被塗工物全長の5%の位置における接触角θc(°)が以下の関係にある請求項1に記載の方法。
θc−θa≧10、
θa≦90、かつ
θa<θb<θc
The contact angle θa (°) at the position of 5% of the total length of the coated object from the upper end during dip coating on the outer surface of the coated object before the dip coating process, and the contact angle θb (°) at the center part The method according to claim 1, wherein the contact angle θc (°) at a position of 5% of the total length of the coated object from the lower end during dip coating has the following relationship.
θc−θa ≧ 10,
θa ≦ 90 and θa <θb <θc
上記導電性部材が導電性ローラである請求項1または2記載の方法。   The method according to claim 1, wherein the conductive member is a conductive roller.
JP2005298792A 2005-10-13 2005-10-13 Manufacturing method of electrically conductive member Pending JP2007105625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298792A JP2007105625A (en) 2005-10-13 2005-10-13 Manufacturing method of electrically conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298792A JP2007105625A (en) 2005-10-13 2005-10-13 Manufacturing method of electrically conductive member

Publications (1)

Publication Number Publication Date
JP2007105625A true JP2007105625A (en) 2007-04-26

Family

ID=38031899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298792A Pending JP2007105625A (en) 2005-10-13 2005-10-13 Manufacturing method of electrically conductive member

Country Status (1)

Country Link
JP (1) JP2007105625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211519A (en) * 2013-04-18 2014-11-13 信越ポリマー株式会社 Conductive roller and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211519A (en) * 2013-04-18 2014-11-13 信越ポリマー株式会社 Conductive roller and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2007065469A (en) Charging member
KR100894752B1 (en) Charging device, image forming apparatus and charging method
JP2007101864A (en) Charging component and electrophotographic system
JP6691645B2 (en) Charging member
JP2007105625A (en) Manufacturing method of electrically conductive member
JP4262000B2 (en) Conductive roller, conductive roller manufacturing method, and electrophotographic apparatus
JP4737961B2 (en) Immersion coating method for rollers for electrophotographic apparatus
JP4509957B2 (en) Coating apparatus and coating method
JP2007271705A (en) Method and device for manufacturing conductive member
JP2003207967A (en) Roller for electrophotography and image forming apparatus
JP2008055283A (en) Manufacturing method of electrically conductive member and its manufacturing apparatus
JP2006231300A (en) Manufacturing method of conductive roller, and conductive roller
JP2007293107A (en) Conductive roller
JP2005000825A (en) Method for manufacturing conductive member
JP2004358350A (en) Masking tube, method for manufacturing electroconductive member by using the same and electroconductive member
JP2004358418A (en) Electroconductive member and method of producing electroconductive member
JP2005238157A (en) Electrically conductive member
JP2002287467A (en) Image forming apparatus, process cartridge, and electrostatic charging member
JP2006234899A (en) Manufacturing method for conductive member and roller for electrophotographic device
JP2006065059A (en) Conductive member
JP4728011B2 (en) Method for manufacturing conductive member
JP2006267397A (en) Manufacturing method for conductive member and conductive member
JP2004004146A (en) Conductive member, processing cartridge, and image forming apparatus
JP2005131597A (en) Conductive member and manufacturing method for the same
JP4289928B2 (en) Method for manufacturing conductive member