JP2007104798A - Voltage fluctuation compensator - Google Patents

Voltage fluctuation compensator Download PDF

Info

Publication number
JP2007104798A
JP2007104798A JP2005290693A JP2005290693A JP2007104798A JP 2007104798 A JP2007104798 A JP 2007104798A JP 2005290693 A JP2005290693 A JP 2005290693A JP 2005290693 A JP2005290693 A JP 2005290693A JP 2007104798 A JP2007104798 A JP 2007104798A
Authority
JP
Japan
Prior art keywords
motor
voltage fluctuation
phase advance
capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005290693A
Other languages
Japanese (ja)
Inventor
Shigeru Akita
茂 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005290693A priority Critical patent/JP2007104798A/en
Publication of JP2007104798A publication Critical patent/JP2007104798A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction smaller than ever, more inexpensive than ever, and capable of coping with voltage fluctuation with respect to a voltage fluctuation compensator that compensates voltage fluctuation that occurs when a motor is started. <P>SOLUTION: The voltage fluctuation compensator 10 is constructed of a voltage transformer 1; a current transformer 2; a phase advance capacitor circuit 8 that includes multiple shunts constructed of a semiconductor switch 11, a reactor 12, and a capacitor 13 and is connected in parallel with a motor M; and controlling means 9 that sends out a switching signal for the switches 11. The controlling means 9 includes a compensation value detection unit 4 that computes a compensation value corresponding to a voltage fluctuation value from the outputs of the transformer 1 and the current transformer 2; a computation unit 5 that computes a number of required phase advance capacitor stages from its output; a starting signal reception unit that receives a starting signal 3 from a motor controller MC; a subtraction unit that is connected thereto and sequentially carries out subtraction from the number of phase advance capacitor stages required to be thrown each time a predetermined time has passed from when a starting signal 3 is ended; and an input commanding unit 7 that sends out a switching signal for the switches 11 according to its output. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、入力容量が変動する電動機負荷と電気的に接続され、電動機の起動時に配電線に発生する電圧変動を、複数の進相コンデンサ回路をオン/オフして一定電圧に保つように動作する、コンデンサ開閉制御形の電圧変動補償装置に関する。   The present invention is electrically connected to a motor load whose input capacity fluctuates, and operates to maintain a constant voltage by turning on / off a plurality of phase-advancing capacitor circuits when a voltage fluctuation occurs in a distribution line when the motor is started. The present invention relates to a capacitor open / close control type voltage fluctuation compensator.

揚水機場などに設置されるポンプ用電動機は、起動するときに非常に大きな電力を必要とする一方、定常運転状態に移行すると使用電力はほとんど一定になる。従って、配電線の電圧降下は電動機の起動時に大きく変動し、定常状態ではほぼ一定の値となる。   A pump motor installed in a pumping station or the like requires a very large amount of electric power when starting up, while the electric power used becomes almost constant when shifting to a steady operation state. Therefore, the voltage drop of the distribution line greatly fluctuates when the motor is started, and becomes a substantially constant value in the steady state.

しかし、電動機が定常運転状態であっても、電動機が運転し電力を消費している限り、電圧降下を生じることから、従来の電圧変動補償装置では、定常運転状態にあっても装置に設けた進相コンデンサを投入して電圧を昇圧させ、電動機が停止しているときと同じ電圧になるよう進相コンデンサ投入回路を選択、投入する操作を行っていた(例えば、特許文献1参照)。   However, even if the motor is in a steady operation state, as long as the motor is operating and consuming electric power, a voltage drop occurs. Therefore, the conventional voltage fluctuation compensation device is provided in the device even in the steady operation state. An operation for selecting and turning on a phase advance capacitor input circuit was performed so that the voltage was boosted by inserting a phase advance capacitor and the same voltage as when the motor was stopped (see, for example, Patent Document 1).

図4は、3台のポンプ用電動機を有する揚水機場設備において、ポンプ用電動機一台ごとに専用の進相コンデンサ回路8を設けた従来例に係る電圧変動補償装置50の構成を示す図である。この例では、No.1〜No.3の各ポンプM1〜M3用電動機電流検出用の変流器2を各々設け、かつ配電線の電圧検出用の計器用変圧器1を共用としている。図中に示す変圧器Tは、構外の高圧受電点から揚水機場構内へ配電線を引き込む際に一般的に設けられるものである。また図中に示す各進相コンデンサ回路8は、それぞれ直列に接続された半導体スイッチ11、直列リアクトル12および進相コンデンサ13を含み、前記電動機負荷と並列に接続された複数の分路(ここでは、8a〜8dの4群構成とされる)からなっている。図中の参照符号14は公知の遮断器である。
上述したとおり、この従来例に係る電圧変動補償装置50では、ポンプ用電動機一台ごとに設けられた各々の制御系(図示せず)は、ポンプが稼動している限り必要な容量分の進相コンデンサを投入し続ける構成となっている。これについては、次に図5を参照しながらより詳細に説明する。
FIG. 4 is a diagram showing a configuration of a voltage fluctuation compensator 50 according to a conventional example in which a dedicated phase advance capacitor circuit 8 is provided for each pump motor in a pumping station facility having three pump motors. . In this example, no. 1-No. 3, each of the current transformers 2 for detecting the motor current for the pumps M1 to M3 is provided, and the voltage transformer 1 for voltage detection of the distribution line is shared. The transformer T shown in the figure is generally provided when a distribution line is drawn from the off-site high voltage receiving point into the pumping station yard. Each phase advance capacitor circuit 8 shown in the figure includes a semiconductor switch 11, a series reactor 12, and a phase advance capacitor 13 connected in series, and a plurality of shunts (here, connected in parallel with the motor load). , 8a to 8d). Reference numeral 14 in the figure is a known circuit breaker.
As described above, in the voltage fluctuation compensator 50 according to this conventional example, each control system (not shown) provided for each pump electric motor advances the necessary capacity as long as the pump is operating. It is the composition which continues putting on the phase capacitor. This will be described in more detail with reference to FIG.

図5は、この従来例の場合における進相コンデンサのオン/オフに関するタイムチャートである。図5には、本例に係るNo.1〜No.3の各ポンプM1〜M3用電動機がそれぞれ3相誘導電動機とされ、その起動が公知のコンドルファ法によって行われることが示されている。図5に示すとおり、従来例に係る構成では、起動終了後も定常運転状態で発生する電圧降下を補償するため、引き続き進相コンデンサの投入が維持される。
なお、図5には、起動信号終了後に力率調整(力調)用コンデンサが投入されるシーケンスについても示されている。一般に、電圧変動補償装置においては力調用コンデンサも投入され得る。
FIG. 5 is a time chart regarding on / off of the phase advance capacitor in the case of this conventional example. In FIG. 1-No. It is shown that each of the three motors for the pumps M1 to M3 is a three-phase induction motor, and its activation is performed by a known condorfa method. As shown in FIG. 5, in the configuration according to the conventional example, the phase-advancing capacitor is continuously turned on to compensate for the voltage drop that occurs in the steady operation state even after the start-up is completed.
FIG. 5 also shows a sequence in which a power factor adjustment (power adjustment) capacitor is turned on after the start signal ends. Generally, in a voltage fluctuation compensating device, a power adjustment capacitor can also be inserted.

このように、従来の電圧変動補償装置は、起動時であるか定常状態であるかに関係なく、電動機が運転中である限り、電動機が停止しているときと同じ電圧になるよう、進相コンデンサを投入し続けていた。   In this way, the conventional voltage fluctuation compensator is advanced so that the voltage is the same as when the motor is stopped as long as the motor is in operation, regardless of whether it is at startup or in a steady state. Continued to put in the capacitor.

ところで、電動機が起動時または定常状態で運転しているとき、電動機が停止しているときと同じ電圧まで昇圧させるには、無効電力に起因する電圧変動の他に有効電力に起因する電圧変動も併せて補償する必要がある。進相コンデンサによって電動機の起動時に生じ得る電圧変動を補償する本例の電圧変動補償装置でも、この点につき十分配慮すべきである。   By the way, when the motor is operating at startup or in a steady state, in order to boost the voltage to the same voltage as when the motor is stopped, in addition to the voltage fluctuation caused by reactive power, voltage fluctuation caused by active power It is necessary to compensate at the same time. The voltage fluctuation compensator of this example that compensates for the voltage fluctuation that may occur at the start of the motor by the phase advance capacitor should be sufficiently considered in this respect.

ここで、電動機が運転状態にある時発生する電圧降下値は、次式(1)にて計算できる。
ΔV=P×(%R×cosθ+%X×sinθ)/(10×10) ・・・(1)
なお、ΔV:電圧降下値[%]、P:電動機の皮相電力[VA]、%R:配電線の抵抗分インピーダンス(10MVA当りの%)、cosθ:電動機の力率、%X:配電線のリアクタンス分インピーダンス(10MVA当りの%)であり、sinθは、電動機の力率より算出されるものである(θ=cos−1θ)。
Here, the voltage drop value generated when the motor is in operation can be calculated by the following equation (1).
ΔV = P × (% R × cos θ +% X × sin θ) / (10 × 10 6 ) (1)
ΔV: voltage drop value [%], P: apparent electric power [VA] of motor,% R: impedance of distribution line resistance (% per 10 MVA), cos θ: power factor of motor,% X: distribution line The impedance is reactance (% per 10 MVA), and sin θ is calculated from the power factor of the motor (θ = cos −1 θ).

また、進相コンデンサにおける電圧上昇値は、次式(2)にて計算できる。
ΔVUP=Q×%X/(10×10) ・・・ (2)
なお、ΔVUP:電圧上昇値(%)、Q:進相コンデンサ容量[var]、%X:配電線のリアクタンス分インピーダンス(10MVA当りの%)である。
(2)式は、(1)式においてコンデンサが供給する電力=進み無効電力のみであることから導出されるものである。
Further, the voltage rise value in the phase advance capacitor can be calculated by the following equation (2).
ΔV UP = Q ×% X / (10 × 10 6 ) (2)
ΔV UP : voltage increase value (%), Q: phase advance capacitor capacity [var],% X: impedance corresponding to reactance of distribution line (% per 10 MVA).
Equation (2) is derived from the fact that the power supplied by the capacitor in equation (1) = advanced reactive power only.

例えば、定常運転状態の電動機の皮相電力P=500kVA、力率0.8、配電線のインピーダンス%R=50および%X=100としたとき、電圧降下値ΔVは、
ΔV=500×10×(50×0.8+100×0.6)/(10×10
=5[%]
と計算される。
For example, when the apparent power P = 500 kVA of the motor in the steady operation state, the power factor 0.8, and the impedance% R = 50 and% X = 100 of the distribution line, the voltage drop value ΔV is
ΔV = 500 × 10 3 × (50 × 0.8 + 100 × 0.6) / (10 × 10 6 )
= 5 [%]
Is calculated.

ここで、電動機が発生している有効電力は次式(3)にて計算できる。
W=P×cosθ ・・・ (3)
なお、W:電動機が発生している有効電力[W]、P:電動機の皮相電力[VA]であり、cosθは、電動機の力率である。
Here, the active power generated by the motor can be calculated by the following equation (3).
W = P × cos θ (3)
Note that W: active power [W] generated by the electric motor, P: apparent electric power [VA] of the electric motor, and cos θ is a power factor of the electric motor.

従って、本例の電動機が発生している有効電力は、
W=500×10×0.8
=400×10[W]
=400[kW]
となる。つまり有効電力に起因する電圧降下値は上式(1)の(%R×cosθ)の項より2%と計算される。
Therefore, the active power generated by the electric motor of this example is
W = 500 × 10 3 × 0.8
= 400 × 10 3 [W]
= 400 [kW]
It becomes. That is, the voltage drop value resulting from the active power is calculated as 2% from the term (% R × cos θ) in the above equation (1).

上述のとおり、従来の電圧変動補償装置では、電動機が停止しているときと同じ電圧になるよう進相コンデンサを投入することから、この定常状態における電圧降下を進相コンデンサで補償すると、
ΔVUP=Q×%X/(10×10)=5[%]より、
Q=5×(10×10)/100=500×10[var]
=500[kvar]
の容量が必要となる。
As described above, in the conventional voltage fluctuation compensator, since the phase advance capacitor is inserted so as to be the same voltage as when the motor is stopped, when the voltage drop in the steady state is compensated with the phase advance capacitor,
ΔV UP = Q ×% X / (10 × 10 6 ) = 5 [%]
Q = 5 × (10 × 10 6 ) / 100 = 500 × 10 3 [var]
= 500 [kvar]
Capacity is required.

ここで、電動機が発生している無効電力は次式(3)にて計算できる。
Q’=P×sinθ ・・・ (3)
なお、Q’:電動機が発生している無効電力[var]、P:電動機の皮相電力[VA]であり、sinθは、電動機の力率より算出される(θ=cos−1θ)。
Here, the reactive power generated by the electric motor can be calculated by the following equation (3).
Q ′ = P × sin θ (3)
Here, Q ′ is the reactive power [var] generated by the motor, P is the apparent power [VA] of the motor, and sin θ is calculated from the power factor of the motor (θ = cos −1 θ).

従って、本例の電動機が発生している無効電力は、
Q’=500×10×0.6
=300×10[var]
=300[kvar]
と計算される。つまり無効電力に起因する電圧降下値は、上式(1)の(%X×sinθ)の項から3%となる。
Therefore, the reactive power generated by the motor of this example is
Q ′ = 500 × 10 3 × 0.6
= 300 × 10 3 [var]
= 300 [kvar]
Is calculated. That is, the voltage drop value resulting from the reactive power is 3% from the term (% X × sin θ) in the above equation (1).

つまり、上記の例では、電動機の定常運転状態において電圧変動補償装置が投入すべき進相コンデンサ容量は、変動がほとんどないにも関わらず、配電線での電圧降下を補償するため電動機が発生している無効電力を200kvar上回る過進相状態としておかなければならない。これは有効電力に起因する電圧降下分2%を補償するため200kvarを投入することが必要となるからである。   In other words, in the above example, the phase-advancing capacitor capacity that should be input by the voltage fluctuation compensator in the steady operation state of the motor is almost unchanged, but the motor is generated to compensate for the voltage drop in the distribution line. It must be in an advanced phase state that exceeds the active reactive power by 200 kvar. This is because it is necessary to input 200 kvar to compensate for the voltage drop of 2% caused by the active power.

一方、この電動機の起動時における電圧降下値ΔVは、皮相電力P=1,500kVA、力率0.6とすると、
ΔV=1,500×10×(50×0.6+100×0.8)/(10×10
=16.5[%]
と計算される。
On the other hand, when the voltage drop value ΔV at the time of starting the motor is an apparent power P = 1,500 kVA and a power factor of 0.6,
ΔV = 1,500 × 10 3 × (50 × 0.6 + 100 × 0.8) / (10 × 10 6 )
= 16.5 [%]
Is calculated.

従って、起動時における電圧降下を進相コンデンサで補償すると、
ΔVUP=Q×%X/(10×10)=16.5[%]より、
Q=16.5×(10×10)/100=1,650×10[var]
=1,650[kvar]
の容量が必要となる。
Therefore, if the voltage drop at startup is compensated with a phase advance capacitor,
ΔV UP = Q ×% X / (10 × 10 6 ) = 16.5 [%]
Q = 16.5 × (10 × 10 6 ) / 100 = 1,650 × 10 3 [var]
= 1,650 [kvar]
Capacity is required.

以上をまとめると、例えば上記の電動機においては、起動時および定常運転状態に発生する電圧降下を補償するには、1,650kvarの進相コンデンサ容量を有する電圧変動補償装置が必要(電動機1基当たり)となる。   In summary, for example, in the motor described above, a voltage fluctuation compensator having a phase advance capacitor capacity of 1,650 kvar is required to compensate for the voltage drop that occurs during startup and in the steady operation state (per motor). )

しかるに、揚水機場に設置されるポンプ用電動機は複数台設置されるのが通例であり、例えば上記電動機が3台設置された揚水機場において、電動機各々に電圧変動補償装置を設置するとすると、総容量合計1,650×3=4,950kvarもの膨大な進相コンデンサ容量を有する設備となる。   However, it is customary to install a plurality of pump motors installed in a pumping station. For example, in a pumping station where three motors are installed, if a voltage fluctuation compensator is installed in each motor, the total capacity A total of 1,650 × 3 = 4,950 kvar is a facility having a huge phase-advancing capacitor capacity.

また、複数台のポンプ用電動機が互いに同時始動しないと言う条件を付けたとしても、例えば3台のポンプ用電動機であれば、最大の電圧変動が、2台の電動機が定常状態で1台が始動する状況の下で発生し、これを補償するには、500×2+1,650=2,650kvarと膨大な容量の進相コンデンサを有する設備が必要となる。   Moreover, even if a condition that a plurality of pump motors do not start at the same time is given, for example, if there are three pump motors, the maximum voltage fluctuation is one in two steady state motors. In order to compensate for this occurring under start-up conditions, a facility having a phase advance capacitor of 500 × 2 + 1, 650 = 2, 650 kvar and a huge capacity is required.

ここで、上記コンデンサ開閉制御方式の電圧変動補償装置では、コンデンサを複数の容量群に分割し、例えば容量に1・2・4・8の重み付けを行うことにより4コンデンサ群の容量組み合わせで15段階制御(4群15段制御)を行い、それによってコンデンサ容量を1段ずつ半導体スイッチによってオン/オフするよりもコンデンサの群数およびコンデンサ電流の開閉スイッチ数を低減することが行われ得る(図5参照)。なお、例えば1・2・4・8の重み付けにて4群15段制御した場合には、コンデンサ電流の開閉スイッチ数が4個で済むものが、15段等容量制御の場合には15個必要となるほか、スイッチ周辺の回路数も増えるため、コストが上昇するのは自明である。
しかしながら、かかる構成の下では、コンデンサ総容量が大きくなると重み付けが大きい回路のコンデンサ電流が大きくなり、開閉する半導体スイッチが高価または入手困難となる。
Here, in the voltage fluctuation compensator using the above-described capacitor switching control system, the capacitors are divided into a plurality of capacitance groups and, for example, weights of 1, 2, 4, and 8 are given to the capacitors, so that there are 15 levels of combinations of four capacitor groups. Control (4 group 15 stage control) can be performed, thereby reducing the number of groups of capacitors and the number of open / close switches of the capacitor current rather than turning on / off the capacitor capacity one step at a time by a semiconductor switch (FIG. 5). reference). For example, when 4 groups and 15 stages are controlled by weighting 1, 2, 4, and 8, for example, the number of open / close switches for the capacitor current is only four, but in the case of 15 stages of equal capacity control, 15 are required. As the number of circuits around the switch increases, it is obvious that the cost increases.
However, under such a configuration, when the total capacitance of the capacitor increases, the capacitor current of a circuit with a large weight increases, and the semiconductor switch that opens and closes becomes expensive or difficult to obtain.

例えば、上記2,650kvarに近い15段制御容量2,700kvarの場合、これを重み付けしながら4群に分けたとすると、それぞれ180/360/720/1,440kvarの容量群となり、この場合、大容量となる1,440kvarを開閉できる半導体スイッチが入手困難あるいは非常に高価となる。
特開平9−191576号公報
For example, in the case of a 15-stage control capacity of 2,700 kvar, which is close to 2,650 kvar, if it is divided into four groups while weighting, it becomes a capacity group of 180/360/720/1, 440 kvar, respectively. A semiconductor switch capable of opening and closing 1,440 kvar becomes difficult to obtain or very expensive.
Japanese Patent Laid-Open No. 9-191576

従って本発明は、上記課題を解決し、少なくとも1基の電動機負荷と電気的に接続され、該電動機の起動時に配電線に発生する電圧変動を補償する電圧変動補償装置に関し、より低コストかつ省スペースで電圧変動対策を実現する新規なシステムを提供することを課題とする。   Accordingly, the present invention relates to a voltage fluctuation compensator that solves the above problems and is electrically connected to at least one motor load and compensates for voltage fluctuations that occur in the distribution line when the motor is started. It is an object to provide a new system that realizes voltage fluctuation countermeasures in space.

上記課題を解決すべく種々検討を重ねた結果、本発明者は、以下の構成を備えた電圧変動補償装置とすることで上記課題を解決可能なことを見い出し、本発明を完成した。
本発明は、実際に電動機電流が流れ出て起動を開始する直前から、起動が終了し定常運転状態に移行する時点までの期間電動機の制御装置より出力される起動信号を受信し、起動信号終了後任意の時間が経過するごとに、起動時にコンデンサ投入段数演算回路にて算出した必要な進相コンデンサ投入段数を順次1段分(または複数段分)ずつ減算していく減算回路を持った制御手段を備え、
それにより、起動終了後任意の時間が経過するごとに、投入していた進相コンデンサを順次オフとし、最終的に進相コンデンサ投入量をゼロまで減少させることで、複数台の電動機に対して一台分の補償容量で対応可能な電圧変動補償装置を提供するものである。本発明によれば、より低コストかつ省スペースで電圧変動対策を実現することが可能となる。
ここで、進相コンデンサ投入量は1段分(または複数段分)ずつ減少するので、配電線に発生する電圧変動は大きな値とはならず、他の需要家への影響は少ない。また定常運転時に発生する電圧降下は電圧変動補償装置における進相コンデンサ投入量が減少することにより徐々に増加するが、電力会社配電線には定常的な負荷容量に起因する電圧変動を補償し、定電圧で供給するための自動電圧調整装置が設置されるのが通例であり、設置された自動電圧調整装置が応答可能な間隔で、電圧変動補償装置の進相コンデンサ投入量を減少させるのであれば、この場合の電圧変動は自動的に調整されることが期待できる。
As a result of various studies to solve the above problems, the present inventor has found that the above problems can be solved by using a voltage fluctuation compensator having the following configuration, and has completed the present invention.
The present invention receives a start signal output from the motor control device for a period from immediately before the start of the start after the motor current actually flows and until the start of the start and the transition to the steady operation state. Control means with a subtractor circuit that subtracts the required number of advanced phase capacitor input stages calculated by the capacitor input stage number calculation circuit at the time of start-up every one time sequentially (or multiple stages) With
As a result, every time after start-up, the phase-advancing capacitors that were turned on are turned off sequentially, and finally the amount of phase-advancing capacitors charged is reduced to zero, so that multiple motors can be The present invention provides a voltage fluctuation compensator that can be handled with a compensation capacity of one unit. According to the present invention, it is possible to realize a countermeasure for voltage fluctuation at a lower cost and a smaller space.
Here, since the amount of phase-advancing capacitor input decreases by one stage (or a plurality of stages), the voltage fluctuation generated in the distribution line does not become a large value, and the influence on other customers is small. In addition, the voltage drop that occurs during steady operation gradually increases as the amount of phase-advancing capacitor in the voltage fluctuation compensator decreases, but the power company distribution line compensates for voltage fluctuation caused by steady load capacity, It is customary to install an automatic voltage regulator to supply at a constant voltage, and to reduce the amount of phase-advancing capacitor input to the voltage fluctuation compensator at intervals where the installed automatic voltage regulator can respond. In this case, it can be expected that the voltage fluctuation is automatically adjusted.

上記課題を解決可能な本発明の電圧変動補償装置は、(1)少なくとも1基の電動機負荷と電気的に接続され、前記電動機の起動時に配電線に発生する電圧変動を補償する電圧変動補償装置であって、
前記電動機負荷と電気的に接続された配電線の電圧を検出する計器用変圧器と、負荷電流を検出する変流器と、直列リアクトルと半導体スイッチと進相コンデンサとを直列接続した分路を複数含み、前記電動機負荷と並列に接続された進相コンデンサ回路と、前記進相コンデンサ回路の半導体スイッチをオン/オフする信号を出力する制御手段と、
で構成され、
前記制御手段が、前記計器用変圧器および前記変流器の出力より、前記配電線に発生する電圧変動値に対応した補償値を算出する補償値検出部と、前記補償値検出部からの出力に応じて必要な進相コンデンサ投入段数を演算するコンデンサ投入段数演算部と、前記コンデンサ投入段数演算部と電気的に接続され、前記電動機の起動期間に出力される起動信号を受信する起動信号受信部と、前記起動信号受信部と電気的に接続され、前記電動機の起動信号終了時から任意の時間を経過するごとに必要な進相コンデンサ投入段数を1段分または複数段分ずつ順次減算していく減算部と、前記減算部からの出力に応じて前記半導体スイッチをオン/オフする信号を出力する投入指令部と、からなることを特徴とするものである。
The voltage fluctuation compensator of the present invention that can solve the above-mentioned problems is (1) a voltage fluctuation compensator that is electrically connected to at least one motor load and compensates for voltage fluctuations that occur in a distribution line when the motor is started. Because
An instrument transformer for detecting the voltage of a distribution line electrically connected to the motor load, a current transformer for detecting a load current, a shunt connected in series with a series reactor, a semiconductor switch, and a phase advance capacitor. A phase advance capacitor circuit connected in parallel with the electric motor load, and a control means for outputting a signal for turning on / off a semiconductor switch of the phase advance capacitor circuit;
Consists of
The control means calculates a compensation value corresponding to a voltage fluctuation value generated in the distribution line from outputs of the instrument transformer and the current transformer, and an output from the compensation value detector A capacitor input stage number calculation unit that calculates the required number of phase advance capacitor input stages according to the condition, and a start signal reception that is electrically connected to the capacitor input stage number calculation unit and that receives the start signal output during the start-up period of the motor And the start signal receiving unit, and each time a predetermined time elapses from the end of the start signal of the motor, the necessary number of phase-advancing capacitor input stages is sequentially subtracted by one stage or a plurality of stages. A subtracting unit that performs a turn-on and a signal for turning on / off the semiconductor switch in response to an output from the subtracting unit.

また本発明の電圧変動補償装置は、上記(1)の電圧変動補償装置に関し、(2)前記補償値が、前記電動機負荷に発生する有効電力および無効電力を演算することにより算出されることを特徴とするものである。   The voltage fluctuation compensator according to the present invention relates to the voltage fluctuation compensator of (1) above, and (2) the compensation value is calculated by calculating active power and reactive power generated in the motor load. It is a feature.

なお、本明細書において「起動」とは、実際に電動機電流が流れ出して起動を開始する直前から起動が終了し定常運転状態に移行する時点までを指すものとする。
「起動信号」とは、実際に電動機電流が流れ出して起動を開始する直前から起動が終了し、定常運転状態に移行する時点までの期間、電動機の制御装置より出力される信号のことを指すものとする。また、この起動信号が出力され始めてから終了するまでの期間を起動期間という。
「減算引き外し」とは、減算回路からの出力に基づき、起動終了後任意の時間が経過するごとに、投入していた進相コンデンサを半導体スイッチの開閉により順次オフとする操作のことを指すものとする。
「負荷電力演算期間」とは、上記起動信号の出力が開始された時点から、定常状態移行後、進相コンデンサの減算引き外しが完了する時点までの期間を指すものとする。
In this specification, “start-up” refers to the period from immediately before the start of start-up after the motor current has actually flowed to the point in time when the start-up ends and the state shifts to a steady operation state.
“Startup signal” refers to a signal that is output from the motor control device during the period from when the motor current actually flows out and immediately before the start of the start until the end of the start and the transition to the steady operation state And Further, a period from the start of outputting the start signal to the end is referred to as a start period.
“Subtraction trip” refers to an operation of turning off a phase advance capacitor that has been turned on sequentially by opening and closing a semiconductor switch every time after start-up based on the output from the subtraction circuit. Shall.
The “load power calculation period” refers to a period from the time when the output of the start signal is started until the time when the subtraction of the phase advance capacitor is completed after the transition to the steady state.

本発明によれば、ポンプ用電動機の制御装置から出力される起動信号を利用することによって、ある電動機の起動終了後、定常状態で投入中の進相コンデンサを順次オフとして最終的に投入コンデンサ数をゼロにし、この電動機の起動に供された一台分の補償容量をもつ進相コンデンサ回路を、別の電動機の起動時には、あたかもその電動機専用の補償装置のごとく動作し得る状態にすることを可能とする電圧変動補償装置を提供することができる。すなわち本発明によれば、複数台の電動機に対して一台分の補償容量で対応可能な電圧変動補償装置を提供できる。
このように、本発明によれば、より低コストかつ省スペースで電圧変動対策を実現する新規なシステムを提供することが可能となる。
According to the present invention, by using the start signal output from the control device for the motor for the pump, after the start of a certain motor, the phase-advancing capacitors that are being charged in a steady state are sequentially turned off, and finally the number of capacitors to be charged The phase-advancing capacitor circuit having the compensation capacity for one motor used for starting this motor is set to a state where it can be operated as if it is a compensator dedicated to that motor when another motor is started. It is possible to provide a voltage fluctuation compensator that enables this. That is, according to the present invention, it is possible to provide a voltage fluctuation compensator capable of handling a plurality of electric motors with a compensation capacity for one unit.
As described above, according to the present invention, it is possible to provide a novel system that realizes a countermeasure against voltage fluctuation at a lower cost and in a smaller space.

以下、添付図面に基づき、本発明の電圧変動補償装置の一実施形態につき説明する。図1は本発明の一実施形態を説明する制御ブロック図、図2は本発明の一実施形態の制御シーケンスを表したタイムチャートを示す図、図3は実際に本発明装置を3台のポンプ用電動機が設けられた揚水機場に設置した状態を説明する図である。なお、先の従来技術の欄で説明した構成要素と同じものについては同一の参照符号を付すものとする。
本実施形態ではポンプ用電動機は3相誘導電動機を用い、その起動は、図2に示すとおり公知のコンドルファ法によって行われる。
Hereinafter, an embodiment of a voltage fluctuation compensator according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a control block diagram for explaining an embodiment of the present invention, FIG. 2 is a time chart showing a control sequence of an embodiment of the present invention, and FIG. It is a figure explaining the state installed in the water pump station provided with the electric motor. It should be noted that the same reference numerals are assigned to the same components as those described in the prior art section.
In this embodiment, a three-phase induction motor is used as the pump motor, and its activation is performed by a known condorfa method as shown in FIG.

[構成]
まず始めに、本実施形態に係る電圧変動補償装置の概略構成を、図1に基づき説明する。
図1に示すとおり、本実施形態に係る電圧変動補償装置10は、配電線の電圧を検出する計器用変圧器1と、ポンプM用電動機に流れる電流を検出する変流器2と、上記計器用変圧器1の出力、変流器2の出力、およびポンプ制御装置MCから出力される起動信号3を受けて上記配電線に発生し得る電圧変動値に対応した補償値を算出する補償値検出回路4と、該補償値から必要な進相コンデンサ投入段数を演算するコンデンサ投入段数演算回路5と、ポンプ制御装置MCから出力される起動信号3を受信すると共に、起動信号終了時から任意の時間が経過するごとに、先に求められた必要な進相コンデンサ投入段数を順次減算して行く起動信号受信および減算回路6と、起動信号受信および減算回路6からの出力に応じて半導体スイッチを開閉する信号を作成する投入指令回路7と、それぞれ直列に接続された半導体スイッチ11、直列リアクトル12および進相コンデンサ13からなる分路を複数含み、上記電動機負荷と並列に接続された進相コンデンサ回路8(分路8a〜8d)とからなっている。本実施形態では、補償値検出回路4、コンデンサ投入段数演算回路5、起動信号受信および減算回路6、並びに投入指令回路7から制御手段9を構成している。また本実施形態では、進相コンデンサ回路8は4群で構成され、分路8a〜8dを有している。
[Constitution]
First, a schematic configuration of the voltage fluctuation compensator according to the present embodiment will be described with reference to FIG.
As shown in FIG. 1, the voltage fluctuation compensating apparatus 10 according to the present embodiment includes an instrument transformer 1 that detects a voltage of a distribution line, a current transformer 2 that detects a current flowing through a motor for a pump M, and the above-described instrument. Compensation value detection for calculating the compensation value corresponding to the voltage fluctuation value that can be generated in the distribution line in response to the output of the transformer 1, the output of the current transformer 2, and the start signal 3 output from the pump controller MC The circuit 4, the capacitor input stage number calculating circuit 5 for calculating the required number of phase advance capacitor input stages from the compensation value, and the start signal 3 output from the pump control device MC are received, and an arbitrary time from the end of the start signal , The activation signal reception and subtraction circuit 6 that sequentially subtracts the required number of advance phase capacitor input stages previously obtained, and the semiconductor switch according to the output from the activation signal reception and subtraction circuit 6 A closing command circuit 7 for creating a closing signal, and a phase advance capacitor including a plurality of shunts each including a semiconductor switch 11, a series reactor 12, and a phase advance capacitor 13 connected in series, and connected in parallel with the motor load. The circuit 8 is composed of shunts 8a to 8d. In the present embodiment, the compensation value detection circuit 4, the capacitor input stage number calculation circuit 5, the start signal reception and subtraction circuit 6, and the input command circuit 7 constitute the control means 9. Moreover, in this embodiment, the phase advance capacitor circuit 8 is comprised by 4 groups, and has shunt 8a-8d.

図1に示すとおり、本実施形態では、ポンプM用電動機の制御装置MCから起動信号3が出力されると、起動信号3は起動信号受信および減算回路6で受信された後、まず補償値検出回路4に入力される。
ここで、起動信号3は、図2に示すとおり、実際にポンプM用電動機に電流が流れる直前にポンプ制御装置MCより出力されるものである。本実施形態に係る制御手段9では、この起動信号3を得た後直ちに演算処理を行って、実際にポンプM用電動機に電流が流れるよりも先に、ポンプM用電動機の発生する有効電力および無効電力の検出回路(補償値検出回路)を起動するよう構成されている(図2のシーケンスおよび後段の説明参照)。このように、本実施形態によれば、ポンプ制御装置MCより出力される起動信号3を利用して、起動期間中にポンプM用電動機の発生する有効電力および無効電力の検出を行い、ポンプ起動時の電圧降下を確実に抑えることが可能になっている。
As shown in FIG. 1, in this embodiment, when the start signal 3 is output from the control device MC for the motor for the pump M, the start signal 3 is received by the start signal receiving and subtracting circuit 6 and then the compensation value is detected. Input to the circuit 4.
Here, as shown in FIG. 2, the start signal 3 is output from the pump control device MC immediately before the current actually flows through the pump M motor. In the control means 9 according to the present embodiment, the calculation process is performed immediately after obtaining the start signal 3, and the effective power generated by the pump M motor before the current actually flows to the pump M motor, The reactive power detection circuit (compensation value detection circuit) is activated (see the sequence of FIG. 2 and the description of the subsequent stage). As described above, according to the present embodiment, the start signal 3 output from the pump control device MC is used to detect the active power and reactive power generated by the pump M motor during the start-up period, and the pump start-up. The voltage drop at the time can be reliably suppressed.

[動作]
次に、上記構成からなる本実施形態の電圧変動補償装置の動作につき説明する。以下、複数のポンプを同時始動しないという条件の下で説明を進めることとする。
はじめに、ポンプMの制御装置MCから起動信号3が出力されると、制御手段9は、上記のとおりこの信号を起動信号受信および減算回路6で受信した後、起動信号3を補償値検出回路4に入力する。この起動信号3は、図2に示すとおり、ポンプ起動時における過渡状態が終了し、定常状態に移行するまでポンプ制御装置MCから出力される。
補償値検出回路4は、起動信号3を受けて、計器用変圧器1の出力および変流器2の出力から、配電線に発生する電圧変動値に対応した必要な補償値を算出する。求められた補償値は、コンデンサ投入段数演算回路5に送出される。コンデンサ投入段数演算回路5では、得られた補償値に基づき、必要な進相コンデンサ投入段数を演算する。
[Operation]
Next, the operation of the voltage fluctuation compensator of the present embodiment having the above configuration will be described. Hereinafter, the description will proceed under the condition that a plurality of pumps are not started simultaneously.
First, when the activation signal 3 is output from the control device MC of the pump M, the control means 9 receives this signal by the activation signal reception and subtraction circuit 6 as described above, and then the activation signal 3 is received by the compensation value detection circuit 4. To enter. As shown in FIG. 2, the start signal 3 is output from the pump control device MC until the transient state at the start of the pump ends and the state shifts to a steady state.
The compensation value detection circuit 4 receives the activation signal 3 and calculates a necessary compensation value corresponding to the voltage fluctuation value generated in the distribution line from the output of the instrument transformer 1 and the output of the current transformer 2. The obtained compensation value is sent to the capacitor input stage number calculation circuit 5. The capacitor input stage number calculation circuit 5 calculates the required number of phase advance capacitor input stages based on the obtained compensation value.

ここで、上記補償値および必要な進相コンデンサ投入段数を求めるに当たって必要な、電動機が運転状態にある時発生する電圧降下値ΔV、進相コンデンサにおける電圧上昇値ΔVUP、および進相コンデンサ容量Q等の算出法については、従来技術の欄で示した上式(1)、(2)等を適宜用い得る。
なお、複数のポンプを同時始動しないという条件の下では、1基のポンプ用電動機に係る(起動時および定常状態における)皮相電力P、電圧降下値ΔV、進相コンデンサにおける電圧上昇値ΔVUP、進相コンデンサ容量Qおよび電動機の力率等の各値(従来技術の欄参照)は予測がつくため、予めこれらの値を制御手段9の内または外に備えた不図示のメモリに記憶しておき、起動信号3を検出したら直ちにメモリを参照しながらコンデンサ投入段数演算回路5の出力を得るように構成しても良い。
そのほか、上記補償値および必要な進相コンデンサ投入段数を求めるに当たっては、まずポンプ用電動機に発生する有効電力および無効電力を演算し、その後、従来技術の欄で示した数式等に基づいて上記補償値や必要な進相コンデンサ投入段数を求める構成にしても良い。
Here, the voltage drop value ΔV generated when the motor is in operation, the voltage rise value ΔV UP at the phase advance capacitor, and the phase advance capacitor capacity Q, which are necessary to obtain the compensation value and the required number of stages of phase advance capacitor, are required. As for the calculation method, etc., the above formulas (1), (2), etc. shown in the column of the prior art can be used as appropriate.
Note that, under the condition that a plurality of pumps are not started simultaneously, the apparent power P, voltage drop value ΔV, voltage rise value ΔV UP in the phase advance capacitor, related to one pump motor (during start-up and steady state), Since each value such as the phase advance capacitor capacity Q and the power factor of the motor (see the column of the prior art) can be predicted, these values are stored in advance in a memory (not shown) provided inside or outside the control means 9. Alternatively, the output of the capacitor input stage number calculation circuit 5 may be obtained while referring to the memory as soon as the activation signal 3 is detected.
In addition, in obtaining the above compensation value and the required number of phase-advancing capacitor input stages, first, the active power and reactive power generated in the pump motor are calculated, and then the above compensation based on the mathematical formula shown in the column of the prior art. It may be configured to obtain the value and the required number of phase advance capacitor input stages.

起動時においては、必要な進相コンデンサ投入段数が求まれば、それに基づいて必要な段数のコンデンサを投入すべく、投入指令回路7から直接、各半導体スイッチ11に対してスイッチ開閉信号が送信される。   At the time of start-up, if the required number of phase advance capacitor input stages is obtained, a switch opening / closing signal is transmitted directly from the input command circuit 7 to each semiconductor switch 11 in order to input the required number of capacitors based on that. The

ポンプ起動時における過渡状態が終了し、ポンプ制御装置MCより出力される起動信号3が終了すると、次に、起動信号受信および減算回路6において、起動信号終了時から任意の時間が経過するごとに、先に演算された必要な進相コンデンサ投入段数を順次減算して行く処理が行われる。   When the transient state at the start of the pump ends and the start signal 3 output from the pump control device MC ends, the start signal receiving and subtracting circuit 6 next every time an arbitrary time elapses from the end of the start signal. Then, a process of sequentially subtracting the necessary number of phase advance capacitor input stages calculated previously is performed.

上記したとおり、従来知られた一般的な構成では、電動機が定常運転状態に移行した後発生するほぼ一定の有効電力および無効電力に起因する電圧降下を、電動機が停止している時の電圧に補償すべく、定常状態移行後も引き続き進相コンデンサ投入を維持して過進相状態のままとしているが、本発明では、電圧降下を補償するコンデンサ容量を算出する制御手段を備え、起動信号の終了時に、強制的に進相コンデンサ投入容量を段階的に減算することを開始するようにした。この投入コンデンサ段数を任意の時間(例えば1分)経過後に1段分(または複数段分)ずつ減算して投入中のコンデンサを徐々にオフして行くことにより、最終的にコンデンサ投入量をゼロまで減少させる。
図2に負荷電力演算期間として示すとおり、本発明において実際に制御手段9で配電線電圧および負荷電流を制御するのは、起動信号3の出力開始時点から、定常状態移行後における進相コンデンサの減算引き外しが完了するまでの間である。
As described above, in the general configuration known in the art, the voltage drop caused by the substantially constant active power and reactive power generated after the motor enters the steady operation state is changed to the voltage when the motor is stopped. In order to compensate, the phase advance capacitor is continuously turned on after the transition to the steady state to keep the state of the over advance phase.In the present invention, the control means for calculating the capacitor capacity to compensate for the voltage drop is provided, and the start signal At the end, it was started to forcibly subtract the phased capacitor input capacity step by step. By subtracting one stage (or multiple stages) after an arbitrary time (for example, 1 minute) from the number of input capacitor stages, and gradually turning off the capacitor being input, the amount of capacitor input is finally reduced to zero. To decrease.
As shown in FIG. 2 as the load power calculation period, in the present invention, the control means 9 actually controls the distribution line voltage and the load current from the start of output of the start signal 3 to the phase advance capacitor after the transition to the steady state. This is the time until the subtraction trip is completed.

ところで本発明の場合も、定常状態に移行した直後は、電動機が定常運転状態に移行した後発生するほぼ一定の電圧降下を補償すべく、引き続き進相コンデンサ投入を維持して過進相状態としているが(図2参照)、このときにおける進相コンデンサ投入段数は起動時に必要とされる進相コンデンサ投入段数に比べて格段に少ない。   By the way, also in the case of the present invention, immediately after the transition to the steady state, in order to compensate for the almost constant voltage drop that occurs after the motor transitions to the steady operation state, the phase advance capacitor is continuously maintained to enter the overrun state. However, the number of advanced phase capacitor input stages at this time is significantly smaller than the number of advanced phase capacitor input stages required at startup.

従って、起動信号終了後、一定時間ごとに投入段数を1段分ずつ減算しても短期間に進相コンデンサ投入量をゼロまで減少させることができる。つまり特定の電動機の起動終了後に別の電動機を起動する際の待ち時間はさして長いものとはならない。   Therefore, even if the number of input stages is subtracted by one stage at regular intervals after the start signal is finished, the amount of phase advance capacitor input can be reduced to zero in a short time. In other words, the waiting time when starting another motor after the start of a specific motor is not long.

なお、本実施形態では、進相コンデンサ投入量は1段分ずつ減少するので、配電線に発生する電圧変動は大きな値とはならず、他の需要家への影響は少ない。また定常運転時に発生する電圧降下は電圧変動補償装置における進相コンデンサ投入量が減少することにより徐々に増加するが、電力会社配電線には定常的な負荷容量に起因する電圧変動を補償し、定電圧で供給するための自動電圧調整装置が設置されるのが通例であり、設置された自動電圧調整装置が応答可能な間隔で電圧変動補償装置の進相コンデンサ投入量を減少させるのであれば、この場合の電圧変動は自動的に調整されることが期待できる。   In the present embodiment, the amount of phase-advancing capacitor input decreases by one stage, so that the voltage fluctuation generated in the distribution line does not become a large value, and the influence on other consumers is small. In addition, the voltage drop that occurs during steady operation gradually increases as the amount of phase-advancing capacitor in the voltage fluctuation compensator decreases, but the power company distribution line compensates for voltage fluctuation caused by steady load capacity, It is customary to install an automatic voltage regulator to supply at a constant voltage. If the installed automatic voltage regulator reduces the amount of phase-advancing capacitor input in the voltage fluctuation compensator at an interval at which it can respond. In this case, it can be expected that the voltage fluctuation is automatically adjusted.

上記した例に係る電動機であれば(従来技術の欄参照)、電動機一台分に必要な電圧変動補償装置容量1,650kvarのうち、定常運転時における必要コンデンサ投入量は500kvarであり、4群15段制御(容量に1・2・4・8の重み付けを行うとすると、それぞれ110/220/440/880[kvar]の容量群となる)とした場合、これに最も近い進相コンデンサ容量550kvarは5段分に相当するので、5段の減算で進相コンデンサ投入量はゼロとなり、減算を1分ごととしても起動終了後5分間で、減算引き外しが完了する。
上述の条件で計算した場合、定常運転時500kvar、起動時1,650kvarとなり、従来の制御を行なった場合、3台のポンプでは2,650kvarの設備が必要となる。これを本発明の制御方式とした場合、ポンプ1台の起動時に発生する電圧変動補償容量のみの1,650kvarでよい。進相コンデンサ容量が2,650kvarの場合、4群15段制御に構成したときの最大の容量は、従来例では1,440kvarとなるが、本発明では880kvarで従来例と比べ約60%の容量となり、一般産業向け仕様品が適用可能となった。
In the case of the electric motor according to the above-described example (see the column of the prior art), among the 1,650 kvar of voltage fluctuation compensator capacity required for one electric motor, the required capacitor input amount during steady operation is 500 kvar, In the case of 15-stage control (when capacity of 1, 2, 4, and 8 is weighted, it becomes a capacity group of 110/220/440/880 [kvar], respectively), the phase advance capacitor capacity 550 kvar closest to this Is equivalent to 5 stages, so the amount of phase-advancing capacitor input becomes zero by 5 stages of subtraction, and even if the subtraction is performed every minute, the subtraction trip is completed in 5 minutes after the start-up.
When the calculation is performed under the above-described conditions, the steady operation is 500 kvar and the startup is 1,650 kvar. When the conventional control is performed, the three pumps require 2,650 kvar. When this is the control method of the present invention, it may be 1,650 kvar of only the voltage fluctuation compensation capacity generated when one pump is started. When the phase advance capacitor capacity is 2,650 kvar, the maximum capacity when the four-group 15-stage control is configured is 1,440 kvar in the conventional example, but in the present invention, it is 880 kvar, which is about 60% of the capacity of the conventional example. As a result, products for general industries can be applied.

このように、本実施形態によれば、電動機の制御装置から出力される起動信号を利用することによって、1台の電動機の起動終了後、定常状態で投入中の進相コンデンサを順次オフして最終的に投入コンデンサ数をゼロにすることができ、それにより、定常状態となった電動機の起動に供された一台分の補償容量をもつ進相コンデンサ回路を、他の電動機の起動時には、あたかもその電動機専用の補償装置のごとく動作可能な状態にすることを可能とする電圧変動補償装置を提供できる。
従って、本発明によれば、複数台の電動機に対して一台分の補償容量で対応可能な電圧変動補償装置を提供することが可能なことがわかる。
As described above, according to the present embodiment, the start-up signal output from the motor control device is used to sequentially turn off the phase-advancing capacitors that are being turned on in a steady state after the start-up of one motor. Finally, the number of input capacitors can be reduced to zero, so that a phase-advancing capacitor circuit having a compensation capacity for one motor used for starting the motor in a steady state can be used when starting another motor. It is possible to provide a voltage fluctuation compensator that can be operated as if it were a compensator dedicated to the electric motor.
Therefore, it can be seen that according to the present invention, it is possible to provide a voltage fluctuation compensator capable of handling a plurality of electric motors with a compensation capacity for one unit.

以下では、上述した制御系を有する本発明の電圧変動補償装置を適用して実際に3台のポンプ用電動機を有する揚水機場設備を構成した一例につき説明する。図3に、本発明の電圧変動補償装置を適用してなる揚水機場設備の一実施例を示す。本実施例においても、図2に示す制御シーケンスが同様に適用される。また図3に示した構成では、制御手段9として先に図1で説明したものを用い得る。
なお本実施例でも、No.1〜No.3の各ポンプM1〜M3用電動機はそれぞれ3相誘導電動機を用い、その起動は、図2に示す如く公知のコンドルファ法によって行われるものとする。
Below, the example which applied the voltage fluctuation compensation apparatus of this invention which has the above-mentioned control system, and actually comprised the pumping-station facility which has the three motors for pumps is demonstrated. FIG. 3 shows an embodiment of a pumping station facility to which the voltage fluctuation compensator of the present invention is applied. Also in this embodiment, the control sequence shown in FIG. 2 is similarly applied. In the configuration shown in FIG. 3, the control unit 9 described above with reference to FIG.
In this embodiment, no. 1-No. Each of the three motors for pumps M1 to M3 uses a three-phase induction motor, and its activation is performed by a known condorfa method as shown in FIG.

図3においては、No.1〜No.3の各ポンプM1〜M3用電動機電流検出用の変流器2を各々設け、かつ配電線の電圧検出用の計器用変圧器1を共用とし、各ポンプ制御装置MC1〜MC3より各々出力されるポンプ起動信号3を電圧変動補償装置10の制御手段9に供給する構成となっている。なお、図中に示す変圧器Tは、構外の高圧受電点から揚水機場構内へ配電線を引き込む際に一般的に設けられるものである。また図中に示す進相コンデンサ回路8は、それぞれ直列に接続された半導体スイッチ11、直列リアクトル12および進相コンデンサ13を含み、上記各ポンプM1〜M3用電動機と並列に接続された複数の分路(8a〜8d)からなっている。本実施例でも、進相コンデンサ回路8は4群からなるものとしている。図中の参照符号14は、公知の遮断器である。   In FIG. 1-No. 3 are provided with current transformers 2 for detecting motor currents for each of pumps M1 to M3, and share voltage transformer 1 for voltage detection of distribution lines, and output from pump control devices MC1 to MC3, respectively. The pump start signal 3 is supplied to the control means 9 of the voltage fluctuation compensation device 10. In addition, the transformer T shown in the figure is generally provided when a distribution line is drawn from the off-site high voltage receiving point to the pumping station yard. A phase advance capacitor circuit 8 shown in the drawing includes a semiconductor switch 11, a series reactor 12, and a phase advance capacitor 13 connected in series, and a plurality of components connected in parallel to the motors for the pumps M1 to M3. It consists of roads (8a-8d). Also in this embodiment, the phase advance capacitor circuit 8 is composed of four groups. Reference numeral 14 in the figure is a known circuit breaker.

上記構成からなる本実施例の電圧変動補償装置の動作については、上記実施形態において説明したものと基本的に同じである。複数のポンプを同時始動しないという条件の下では、各ポンプM1〜M3の制御装置MC1〜MC3の何れかから起動信号が出力されると、制御手段9内では、まず、この信号を起動信号受信および減算回路6が受け取った後、起動信号3を補償値検出回路4に入力する。なお、本実施例でも、この起動信号3は、ポンプ起動時における過渡状態が終了し、定常状態に移行するまでポンプ制御装置より出力される(図2参照)。
補償値検出回路4は、起動信号3を受けて、計器用変圧器1の出力および変流器2の出力から、配電線に発生し得る電圧変動値に対応した必要な補償値を算出する。求められた補償値は、コンデンサ投入段数演算回路5に送信される。コンデンサ投入段数演算回路5では、得られた補償値に基づき、必要な進相コンデンサ投入段数を演算する。
ここで、上記補償値および必要な進相コンデンサ投入段数を求めるに当たって必要な、電動機が運転状態にある時発生する電圧降下値ΔV、進相コンデンサにおける電圧上昇値ΔVUP、および進相コンデンサ容量Q等の算出法については、従来技術の欄で示した上式(1)、(2)等を適宜用い得る。
The operation of the voltage fluctuation compensator of the present example having the above configuration is basically the same as that described in the above embodiment. Under the condition that a plurality of pumps are not started simultaneously, when a start signal is output from any of the control devices MC1 to MC3 of the pumps M1 to M3, the control means 9 first receives this signal. And the subtraction circuit 6 receives the start signal 3 to the compensation value detection circuit 4. In this embodiment as well, the start signal 3 is output from the pump control device until the transitional state at the time of starting the pump ends and shifts to a steady state (see FIG. 2).
The compensation value detection circuit 4 receives the start signal 3 and calculates a necessary compensation value corresponding to the voltage fluctuation value that can be generated in the distribution line from the output of the instrument transformer 1 and the output of the current transformer 2. The obtained compensation value is transmitted to the capacitor input stage number calculation circuit 5. The capacitor input stage number calculation circuit 5 calculates the required number of phase advance capacitor input stages based on the obtained compensation value.
Here, the voltage drop value ΔV generated when the motor is in operation, the voltage rise value ΔV UP at the phase advance capacitor, and the phase advance capacitor capacity Q, which are necessary to obtain the compensation value and the required number of stages of phase advance capacitor, are required. As for the calculation method, etc., the above formulas (1), (2), etc. shown in the column of the prior art can be used as appropriate.

本実施例では、上記補償値および必要な進相コンデンサ投入段数は、以下に説明する具体的な要領で算出される。   In the present embodiment, the compensation value and the necessary number of phase advance capacitor input stages are calculated in the specific manner described below.

まず、ポンプ用電動機を起動する場合には、上式(1)より求まる電圧降下ΔVが発生する。このとき、電動機の有効電力W、無効電力Q’をポンプ電流と回路電圧から演算することにより、電圧降下ΔVが算出される。
本実施例では、上式(1)に示す有効電力と無効電力による電圧降下の合計分を、進相コンデンサより供給される進相無効電流によって補償する方式を採っている。すなわち本実施例では、起動時における電圧降下を進相コンデンサの投入によって補償することから、上式(1)の電圧降下値ΔVが直ちに、進相コンデンサにおける電圧上昇値ΔVUPに相当する関係となる。
従って、補償値検出回路4では、電圧降下値ΔVまたは進相コンデンサにおける電圧上昇値ΔVUPを補償値として算出している。
なお、(1)式の電圧降下は、P×cosθ×%Rの(有効電力の)項とP×sinθ×%Xの(無効電力の)項の和である。入力された電圧と電流から有効電力、無効電力を算出する方式は既に別装置あるいは従来知られた電圧変動補償装置で使用されており、本発明の電圧変動補償装置でも同じ方式で電力を演算後、インピーダンスを乗算して電圧降下を求めることができる。
First, when the pump motor is started, a voltage drop ΔV obtained from the above equation (1) is generated. At this time, the voltage drop ΔV is calculated by calculating the active power W and the reactive power Q ′ of the motor from the pump current and the circuit voltage.
In this embodiment, a method is adopted in which the total voltage drop due to the active power and reactive power shown in the above equation (1) is compensated by the phase advance reactive current supplied from the phase advance capacitor. That is, in this embodiment, since the voltage drop at the time of start-up is compensated by inserting the phase advance capacitor, the voltage drop value ΔV in the above equation (1) immediately corresponds to the voltage rise value ΔV UP in the phase advance capacitor. Become.
Accordingly, the compensation value detection circuit 4 calculates the voltage drop value ΔV or the voltage rise value ΔV UP at the phase advance capacitor as the compensation value.
The voltage drop in equation (1) is the sum of the P × cos θ ×% R (active power) term and the P × sin θ ×% X (reactive power) term. The method of calculating active power and reactive power from the input voltage and current is already used in another device or a conventionally known voltage fluctuation compensator, and the voltage fluctuation compensator of the present invention also calculates the power by the same method. The voltage drop can be obtained by multiplying the impedance.

ここで、進相コンデンサにおける電圧上昇値ΔVUPが上式(2)より求まることを利用すれば、起動時に必要な進相コンデンサ容量および進相コンデンサ投入段数を算出することが可能である。従って、コンデンサ投入段数演算回路5では、上記補償値および上式(2)により、起動時に必要な進相コンデンサ容量および進相コンデンサ投入段数を算出している。 Here, by using the fact that the voltage increase value ΔV UP in the phase advance capacitor is obtained from the above equation (2), it is possible to calculate the phase advance capacitor capacity and the number of phase advance capacitor input stages required at the time of startup. Therefore, the capacitor input stage number calculation circuit 5 calculates the phase advance capacitor capacity and the phase advance capacitor input stage number required at the start-up by the above compensation value and the above equation (2).

起動時においては、必要な進相コンデンサ投入段数が求まれば、それに基づいて必要な段数の進相コンデンサを投入すべく、投入指令回路7から直接、各半導体スイッチ11に対してスイッチ開閉信号が送信される。   At the time of start-up, if the required number of phase advance capacitor input stages is obtained, a switch open / close signal is directly sent from the input command circuit 7 to each semiconductor switch 11 in order to input the required number of phase advance capacitors based on that. Sent.

ここで、進相コンデンサの投入は、進相電流による電圧上昇を与えることに相当する。
このように、本実施例によれば、進相コンデンサに流れる進相電流により上式(1)に示す電圧降下ΔVを補償することが可能となる。
Here, the introduction of the phase advance capacitor corresponds to giving a voltage increase due to the phase advance current.
Thus, according to the present embodiment, the voltage drop ΔV shown in the above equation (1) can be compensated by the phase advance current flowing in the phase advance capacitor.

ポンプ起動時における過渡状態が終了し、ポンプ制御装置より出力される起動信号3が終了すると、次に、起動信号受信および減算回路6において、起動信号終了時から任意の時間が経過するごとに、先に演算された必要な進相コンデンサ投入段数を順次減算して行く処理が行われる。投入指令回路7では、この起動信号受信および減算回路6からの出力に応じた半導体スイッチ11開閉信号が作成され、定常状態においても未だ投入されていた進相コンデンサは、この投入指令回路7からの指令に基づいて順次オフとされる(減算引き外し)。投入コンデンサ数は、図2に示すとおり最終的にゼロとなる。   When the transient state at the time of starting the pump ends and the start signal 3 output from the pump control device ends, next, in the start signal reception and subtraction circuit 6, every time an arbitrary time elapses from the end of the start signal, A process of sequentially subtracting the necessary number of phase advance capacitor input stages calculated previously is performed. In the closing command circuit 7, a semiconductor switch 11 opening / closing signal is generated in response to the start signal reception and the output from the subtracting circuit 6, and the phase advance capacitor that has been turned on even in the steady state is supplied from the closing command circuit 7. It is sequentially turned off based on the command (subtraction tripping). The number of input capacitors finally becomes zero as shown in FIG.

なお、ポンプ用電動機一台ごとに専用の進相コンデンサ回路を設けた従来例に係る図4を参照すると、図4においても、各ポンプM1〜M3用電動機電流検出用の変流器2を各々設け、かつ配電線の電圧検出用の計器用変圧器1を共用とする点は本実施例と同ようである。しかしながら、従来例に係る電圧変動補償装置50の制御系ではポンプ起動信号を利用しておらず、ポンプ用電動機一台ごとに設けられた各々の制御系は、ポンプが稼動している限り、進相コンデンサを投入し続ける点が本実施例の場合と相違する。   Referring to FIG. 4 relating to the conventional example in which a dedicated phase advance capacitor circuit is provided for each pump motor, also in FIG. 4, each of the current transformers 2 for detecting the motor current for each of the pumps M1 to M3 is shown. This is the same as the present embodiment in that it is provided and the voltage transformer 1 for voltage detection of the distribution line is shared. However, the control system of the voltage fluctuation compensator 50 according to the conventional example does not use the pump start signal, and each control system provided for each pump motor is advanced as long as the pump is operating. This is different from the case of the present embodiment in that the phase capacitor is continuously put on.

図2に示す、本実施例における進相コンデンサのオン/オフに関するタイムチャートによれば、本実施例では、起動終了より一定時間(1分)経過するごとに、1段ずつ進相コンデンサ投入量を減少させている。   According to the time chart for turning on / off the phase advance capacitor in this embodiment shown in FIG. 2, in this embodiment, the amount of phase advance capacitor input is increased by one stage every time a predetermined time (1 minute) has elapsed from the end of startup. Is decreasing.

他方、図5に示す従来例の場合は、起動時における進相コンデンサ投入は本実施例と同様であるが、起動終了後も定常運転状態で発生する電圧降下を補償すべく、引き続き進相コンデンサ投入が維持される。   On the other hand, in the case of the conventional example shown in FIG. 5, the introduction of the phase advance capacitor at the time of start-up is the same as that of the present embodiment, but the phase advance capacitor continues to compensate for the voltage drop that occurs in the steady operation state after the start-up. The input is maintained.

本実施例によれば、1台のポンプ(例えばNo.1のポンプ)の起動終了後、コンデンサの減算引き外し完了後は(図2参照)、図3に示す進相コンデンサ回路8を他の(例えばNo.2以降の)ポンプの起動に使用することができる。第2番目以降に起動させるポンプの起動シーケンスも、第1番目に起動させたポンプの場合と何ら変わるところがない。
このように、複数のポンプを同時始動しないという条件の下では、進相コンデンサ回路8を1台分の容量で構成することができ、本実施例に係る電圧変動補償装置は、コスト面、スペース面で非常に有利なものとなる。
According to the present embodiment, after the start-up of one pump (for example, No. 1 pump) and after completion of subtraction of the capacitor (see FIG. 2), the phase advance capacitor circuit 8 shown in FIG. It can be used to start a pump (for example, No. 2 or later). The start sequence of the pumps that are started after the second time is the same as that of the pump that is started first.
Thus, under the condition that a plurality of pumps are not started simultaneously, the phase advance capacitor circuit 8 can be configured with a capacity of one unit, and the voltage fluctuation compensator according to the present embodiment is cost-effective and space-saving. This is very advantageous.

[変形例]
以上、本発明につき一実施形態等を用いて具体的に説明したが、本発明は上記実施形態等に記載の構成に限定されず、種々の設計変更が可能である。
[Modification]
Although the present invention has been specifically described with reference to one embodiment and the like, the present invention is not limited to the configuration described in the embodiment and the like, and various design changes are possible.

例えば、上記実施例では、進相コンデンサ回路8を1台分の容量で構成したが、コンデンサ容量に適宜余裕を持たせてもよい。これにより、1台の電動機が定常運転状態に移行後、第2の電動機が投入中の進相コンデンサを順次オフする段階にあっても、第3の電動機を、第2の電動機に投入中のコンデンサ容量がゼロになる前に起動させることが可能となる。   For example, in the above embodiment, the phase advance capacitor circuit 8 is configured with a capacity of one unit, but a capacity may be appropriately provided for the capacitor capacity. As a result, even after one motor has shifted to the steady operation state, the third motor is being put into the second motor even when the second motor is sequentially turning off the phase-advancing capacitor. It becomes possible to start up before the capacitor capacity becomes zero.

本発明が適用される用途についても、揚水機場に何ら限定されない。本発明は、例えば電動機等の誘導性負荷が複数並列接続される設備に容易に適用し得るものである。
ポンプ用電動機の形式についても、3相誘導電動機に何ら限定されないほか、その起動法についても、上記例で挙げたコンドルファ法のほか、既知の始動方式を適宜、単独または複数組み合わせて用いることが可能である。
The use to which the present invention is applied is not limited to the pumping station. The present invention can be easily applied to equipment in which a plurality of inductive loads such as electric motors are connected in parallel.
The type of pump motor is not limited to a three-phase induction motor, and the start-up method is not limited to the condorfa method mentioned in the above example, and a known starting method may be used singly or in combination. Is possible.

定常状態に移行後、順に減算引き外しを行ってゆくコンデンサの段数に関しても、上記各例では1段ずつとしたが、系統側に設けられた自動電圧調整装置の能力等に応じて、複数段を減算引き外しして行くような構成としても構わない。
減算引き外しを実施する時間間隔についても、上記各例では例えば1分ごととしたが、厳密に一定時間ごととする必要は無く、任意の時間が経過するごとに操作が行われる形であればそれで構わない。
補償値または必要な進相コンデンサ投入段数の具体的な算出要領についても、上記各例に記載のものに一切限定されず、既知の手法を適宜採用し得る。
In terms of the number of capacitor stages to which the subtraction and removal are sequentially performed after the transition to the steady state, the number of stages is one in each of the above examples, but depending on the capability of the automatic voltage regulator provided on the system side, etc. It is also possible to adopt a configuration in which the subtraction is deducted.
In the above examples, the time interval for performing the subtraction / deduction is also set to, for example, every minute. However, it is not necessary to set the time interval to be strictly constant, as long as an operation is performed every time an arbitrary time elapses. That's fine.
The specific calculation procedure of the compensation value or the necessary number of phase advance capacitor input stages is not limited to the one described in each of the above examples, and a known method can be appropriately employed.

このように、本発明は上記実施形態等に記載の構成に限定されるものではなく、当業者であれば、以上に開示された基本的技術思想および教示に基づき、種々の変形例を想到できることは自明である。   As described above, the present invention is not limited to the configurations described in the above embodiments and the like, and those skilled in the art can devise various modifications based on the basic technical idea and teachings disclosed above. Is self-explanatory.

以上に説明したとおり、本願発明は、少なくとも1基の電動機負荷と電気的に接続され、該電動機の起動時に配電線に発生する電圧変動を補償する電圧変動補償装置に関し、複数の電動機に対し一台分の補償容量で対応可能な電圧変動補償システムを提供し、それにより低コストかつ省スペースで電圧変動対策を実現する、新規かつ有用なるものであることが明らかである。   As described above, the present invention relates to a voltage fluctuation compensator that is electrically connected to at least one motor load and compensates for voltage fluctuation generated in a distribution line when the motor is started up. It is clear that the present invention is a new and useful one that provides a voltage fluctuation compensation system that can cope with the compensation capacity of a unit, thereby realizing a voltage fluctuation countermeasure at a low cost and in a space-saving manner.

本発明の一実施形態を説明する制御ブロック図である。It is a control block diagram explaining one Embodiment of this invention. 本発明の一実施形態の制御シーケンスを表わしたタイムチャートを示す図である。It is a figure which shows the time chart showing the control sequence of one Embodiment of this invention. 本発明装置を3台のポンプ用電動機が設備された揚水機場に設置した状態を説明する図である。It is a figure explaining the state which installed this invention apparatus in the pumping-up station provided with the three electric motors for pumps. ポンプ用電動機一台ごとに電圧変動補償装置を設置する従来装置の様子を示す図である。It is a figure which shows the mode of the conventional apparatus which installs a voltage fluctuation compensation apparatus for every electric motor for pumps. 従来の実施例におけるタイムチャートである。It is a time chart in the conventional Example.

符号の説明Explanation of symbols

M、M1〜M3 ポンプ
MC、MC1〜MC3 ポンプ制御装置
T 変圧器
1 計器用変圧器
2 変流器
3 起動信号
4 補償値検出回路
5 コンデンサ投入段数演算回路
6 起動信号受信および減算回路
7 投入指令回路
8 進相コンデンサ回路
8a〜8d 分路
9 制御手段
10 電圧変動補償装置
11 半導体スイッチ
12 リアクトル
13 進相コンデンサ
14 遮断器
50 電圧変動補償装置
M, M1 to M3 Pump MC, MC1 to MC3 Pump control unit T Transformer 1 Instrument transformer 2 Current transformer 3 Start signal 4 Compensation value detection circuit 5 Capacitor input stage number calculation circuit 6 Start signal reception and subtraction circuit 7 Input command Circuit 8 Phase advance capacitor circuit 8a to 8d Shunt 9 Control means 10 Voltage fluctuation compensator 11 Semiconductor switch 12 Reactor 13 Phase advance capacitor 14 Breaker 50 Voltage fluctuation compensator

Claims (2)

少なくとも1基の電動機負荷と電気的に接続され、前記電動機の起動時に配電線に発生する電圧変動を補償する電圧変動補償装置であって、
前記電動機負荷と電気的に接続された配電線の電圧を検出する計器用変圧器と、
負荷電流を検出する変流器と、
直列リアクトルと半導体スイッチと進相コンデンサとを直列接続した分路を複数含み、前記電動機負荷と並列に接続された進相コンデンサ回路と、
前記進相コンデンサ回路の半導体スイッチをオン/オフする信号を出力する制御手段と、
で構成され、
前記制御手段が、
前記計器用変圧器および前記変流器の出力より、前記配電線に発生する電圧変動値に対応した補償値を算出する補償値検出部と、
前記補償値検出部からの出力に応じて必要な進相コンデンサ投入段数を演算するコンデンサ投入段数演算部と、
前記コンデンサ投入段数演算部と電気的に接続され、前記電動機の起動期間に出力される起動信号を受信する起動信号受信部と、
前記起動信号受信部と電気的に接続され、前記電動機の起動信号終了時から任意の時間を経過するごとに必要な進相コンデンサ投入段数を1段分または複数段分ずつ順次減算していく減算部と、
前記減算部からの出力に応じて前記半導体スイッチをオン/オフする信号を出力する投入指令部と、
からなることを特徴とする電圧変動補償装置。
A voltage fluctuation compensator that is electrically connected to at least one motor load and compensates for voltage fluctuations that occur in a distribution line when the motor is started,
An instrument transformer for detecting a voltage of a distribution line electrically connected to the motor load;
A current transformer for detecting the load current;
Including a plurality of shunts in which a series reactor, a semiconductor switch, and a phase advance capacitor are connected in series, and a phase advance capacitor circuit connected in parallel with the motor load;
Control means for outputting a signal for turning on / off the semiconductor switch of the phase advance capacitor circuit;
Consists of
The control means is
A compensation value detection unit that calculates a compensation value corresponding to a voltage fluctuation value generated in the distribution line from outputs of the instrument transformer and the current transformer;
A capacitor input stage number calculation unit that calculates the number of phase advance capacitor input stages required according to the output from the compensation value detection unit;
An activation signal receiving unit that is electrically connected to the capacitor input stage number calculation unit and receives an activation signal output during an activation period of the electric motor;
A subtraction that is electrically connected to the start signal receiving unit and sequentially subtracts the required number of phase-advancing capacitor input stages by one stage or multiple stages each time an arbitrary time elapses from the end of the start signal of the motor. And
An input command unit that outputs a signal for turning on / off the semiconductor switch according to an output from the subtracting unit,
A voltage fluctuation compensation device comprising:
前記補償値が、前記電動機負荷に発生する有効電力および無効電力を演算することにより算出されることを特徴とする請求項1に記載の電圧変動補償装置。   The voltage fluctuation compensation apparatus according to claim 1, wherein the compensation value is calculated by calculating active power and reactive power generated in the motor load.
JP2005290693A 2005-10-04 2005-10-04 Voltage fluctuation compensator Pending JP2007104798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290693A JP2007104798A (en) 2005-10-04 2005-10-04 Voltage fluctuation compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290693A JP2007104798A (en) 2005-10-04 2005-10-04 Voltage fluctuation compensator

Publications (1)

Publication Number Publication Date
JP2007104798A true JP2007104798A (en) 2007-04-19

Family

ID=38031175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290693A Pending JP2007104798A (en) 2005-10-04 2005-10-04 Voltage fluctuation compensator

Country Status (1)

Country Link
JP (1) JP2007104798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289274A (en) * 2007-05-17 2008-11-27 Nichicon Corp Voltage fluctuation compensator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224630A (en) * 1987-03-12 1988-09-19 株式会社東芝 Reactive power feeder
JPH05344654A (en) * 1992-06-10 1993-12-24 Hitachi Ltd Voltage drop compensator
JPH09163609A (en) * 1995-12-08 1997-06-20 Tokyo Gas Co Ltd System closing method and system closing circuit for induction generator
JPH09191576A (en) * 1996-01-09 1997-07-22 Hitachi Ltd Device for compensating for voltage fluctuation of power supply
JP2000224767A (en) * 1999-02-01 2000-08-11 Nissin Electric Co Ltd Reactive power compensator and its control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224630A (en) * 1987-03-12 1988-09-19 株式会社東芝 Reactive power feeder
JPH05344654A (en) * 1992-06-10 1993-12-24 Hitachi Ltd Voltage drop compensator
JPH09163609A (en) * 1995-12-08 1997-06-20 Tokyo Gas Co Ltd System closing method and system closing circuit for induction generator
JPH09191576A (en) * 1996-01-09 1997-07-22 Hitachi Ltd Device for compensating for voltage fluctuation of power supply
JP2000224767A (en) * 1999-02-01 2000-08-11 Nissin Electric Co Ltd Reactive power compensator and its control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289274A (en) * 2007-05-17 2008-11-27 Nichicon Corp Voltage fluctuation compensator

Similar Documents

Publication Publication Date Title
US9553533B2 (en) DC pre charge circuit
KR101779909B1 (en) Electrical panel including automatic power factor compansation system
JP5367252B2 (en) AC voltage control method
KR101529889B1 (en) Switchgear capable of power factor correction
JP2001238495A (en) Excitation control unit and excitation control method
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
JP5986857B2 (en) Voltage regulator
JP2004048938A (en) Voltage compensation apparatus
KR20190019562A (en) Smart compensation apparatus capable of improving power-factor of leading phase and lagging phase current
KR20130005500A (en) Reactive power compensating apparatus for alternating current motor
JP2007104798A (en) Voltage fluctuation compensator
KR20060052197A (en) Detecting device for voltage lowering
EP3579659B1 (en) Subsea direct electrical heating power supply system, direct electrical heating system and method of operating a subsea direct electrical heating power supply system
JP2000308263A (en) Power factor controller
CN113904351A (en) System and method for inhibiting three-phase-to-ground capacitance imbalance of medium-voltage distribution network
EP3503330B1 (en) Dynamic motor current phase unbalance protection
JP5938312B2 (en) Voltage regulator
EP3637575A1 (en) Power supply system and control device
JP2005065423A (en) Controller for self-excitation converter
Osborn et al. Voltage regulation system during large motor starting and operation
JPH1189090A (en) Voltage stabilization controller using static phase modification equipment
JPH0715875A (en) Controller for reactive power compensator
JP3911601B2 (en) Generator motor control device and power generation system using the same
JP7013096B2 (en) Static varsator
JPH09163609A (en) System closing method and system closing circuit for induction generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111005