JP2007104371A - Electrostatic ultrasonic wave transducer - Google Patents

Electrostatic ultrasonic wave transducer Download PDF

Info

Publication number
JP2007104371A
JP2007104371A JP2005292128A JP2005292128A JP2007104371A JP 2007104371 A JP2007104371 A JP 2007104371A JP 2005292128 A JP2005292128 A JP 2005292128A JP 2005292128 A JP2005292128 A JP 2005292128A JP 2007104371 A JP2007104371 A JP 2007104371A
Authority
JP
Japan
Prior art keywords
electrode
fixed
ultrasonic transducer
conductive layer
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005292128A
Other languages
Japanese (ja)
Inventor
Yoshiki Fukui
芳樹 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005292128A priority Critical patent/JP2007104371A/en
Publication of JP2007104371A publication Critical patent/JP2007104371A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize removal of an electrode contact from a vibrating membrane at low cost and using a simple constitution, without the possibility of destroying a conductive layer(deposited film layer) at the electrode contact. <P>SOLUTION: A vibration membrane 12 with an electrode removing portion 122 is arranged and fixed by bonding on a membrane frame member 123 at first. Under the condition with the vibration membrane 12 arranged on the membrane frame member 123, a conductive rubber 127 is arranged at the electrode removing portion 122. Then, the conductive rubber 127 is fitted with pressure and is fixed to the electrode removing portion 122 by using a metallic member 124 formed by conductive material with a connected electrode wire 126. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、静電型超音波トランスデューサに関し、特に、振動膜からの電極接点の取出しを、電極接点部分の蒸着膜層(導電層)を破壊する恐れのない、安価で簡単な構成により実現する、静電型超音波トランスデューサに関する。   The present invention relates to an electrostatic ultrasonic transducer, and in particular, the extraction of an electrode contact from a vibrating membrane is realized with an inexpensive and simple configuration without fear of destroying the deposited film layer (conductive layer) of the electrode contact portion. The present invention relates to an electrostatic ultrasonic transducer.

従来より静電方式の超音波トランスデューサは高周波数帯域にわたって高い音圧を発生可能な広帯域発振型超音波トランスデューサとして知られている。図5に広帯域発振型の静電型超音波トランスデューサの構成例を示す。この静電型超音波トランスデューサは、振動膜が固定電極側に引き付けられる方向のみに働くことからプル型(Pull型)と呼ばれている。   Conventionally, an electrostatic ultrasonic transducer is known as a broadband oscillation type ultrasonic transducer capable of generating a high sound pressure over a high frequency band. FIG. 5 shows a configuration example of a broadband oscillation type electrostatic ultrasonic transducer. This electrostatic ultrasonic transducer is called a pull type because it works only in the direction in which the vibrating membrane is attracted to the fixed electrode side.

図5に示す静電型の超音波トランスデューサは、振動体(振動膜)として3〜10μm程度の厚さのPET(ポリエチレンテレフタレート樹脂)等の誘電体131(絶縁体)を用いている。誘電体131に対しては、アルミ等の金属箔として形成される上電極132がその上面部に蒸着等の処理によって一体形成されるとともに、真鍮で形成された下電極133が誘電体131の下面部に接触するように設けられている。この下電極133は、リード152が接続されるとともに、ベークライト等からなるベース板135に固定されている。   The electrostatic ultrasonic transducer shown in FIG. 5 uses a dielectric 131 (insulator) such as PET (polyethylene terephthalate resin) having a thickness of about 3 to 10 μm as a vibrating body (vibrating film). An upper electrode 132 formed as a metal foil such as aluminum is integrally formed on the upper surface of the dielectric 131 by a process such as vapor deposition, and a lower electrode 133 formed of brass is formed on the lower surface of the dielectric 131. It is provided so that it may contact a part. The lower electrode 133 is connected to a lead 152 and fixed to a base plate 135 made of bakelite or the like.

また、上電極132は、リード153が接続されており、このリード153は直流バイアス電源150に接続されている。この直流バイアス電源150により上電極132には50〜150V程度の上電極吸着用の直流バイアス電圧が常時印加され、上電極132が下電極133側に吸着されるようになっている。151は信号源である。   The upper electrode 132 is connected to a lead 153, and the lead 153 is connected to the DC bias power supply 150. A DC bias voltage for attracting the upper electrode of about 50 to 150 V is constantly applied to the upper electrode 132 by the DC bias power source 150, and the upper electrode 132 is attracted to the lower electrode 133 side. Reference numeral 151 denotes a signal source.

誘電体131および上電極132ならびにベース板135は、メタルリング136、137、および138、ならびにメッシュ139とともに、ケース130によってかしめられている。   The dielectric 131, the upper electrode 132, and the base plate 135 are caulked by the case 130 together with the metal rings 136, 137, and 138 and the mesh 139.

下電極133の誘電体131側の面には不均一な形状を有する数十〜数百μm程度の微小な溝(凹凸部)が複数形成されている。この微小な溝は、下電極133と誘電体131との間の空隙となるので、上電極132および下電極133間の静電容量の分布が微小に変化する。このランダムな微小な溝は、下電極133の表面を手作業でヤスリにより荒らすことで形成されている。静電方式の超音波トランスデューサでは、このようにして空隙の大きさや深さの異なる無数のコンデンサを形成することによって、周波数特性が広帯域となっている(例えば、特許文献1、2参照)。   On the surface of the lower electrode 133 on the dielectric 131 side, a plurality of minute grooves (uneven portions) having a non-uniform shape of about several tens to several hundreds of μm are formed. Since this minute groove becomes a gap between the lower electrode 133 and the dielectric 131, the electrostatic capacity distribution between the upper electrode 132 and the lower electrode 133 changes minutely. These random minute grooves are formed by manually roughing the surface of the lower electrode 133 with a file. An electrostatic ultrasonic transducer has a wide frequency characteristic by forming innumerable capacitors having different gap sizes and depths (see, for example, Patent Documents 1 and 2).

上述したように、図5に示す静電方式の超音波トランスデューサは従来から広周波数帯に渡って比較的高い音圧を発生させることが可能な広帯域超音波トランスデューサ(Pull型)として知られている。   As described above, the electrostatic ultrasonic transducer shown in FIG. 5 is conventionally known as a broadband ultrasonic transducer (Pull type) capable of generating a relatively high sound pressure over a wide frequency band. .

しかしながら、音圧の最大値はやや低く、例えば、120dB以下と音圧が低く、超音波スピーカとして利用するには若干音圧が不足していた。超音波スピーカにおけるパラメトリック効果が十分現れるためには120dB以上の超音波音圧が必要であるが、静電型の超音波トランスデューサ(プル型)ではこの数値を達成することが難しく、もっぱらPZTなどのセラミック圧電素子やPVDFなどの高分子圧電素子が超音波発信体として用いられてきた。しかし、圧電素子はその材質を問わず鋭い共振点を有しており、その共振周波数で駆動して超音波スピーカとして実用化しているため、高い音圧を確保出来る周波数領域が極めて狭い。すなわち狭帯域であるといえる。   However, the maximum value of the sound pressure is slightly low, for example, the sound pressure is as low as 120 dB or less, and the sound pressure is slightly insufficient for use as an ultrasonic speaker. An ultrasonic sound pressure of 120 dB or more is necessary for the parametric effect to sufficiently appear in an ultrasonic speaker. However, it is difficult to achieve this numerical value with an electrostatic ultrasonic transducer (pull type). Polymer piezoelectric elements such as ceramic piezoelectric elements and PVDF have been used as ultrasonic transmitters. However, since the piezoelectric element has a sharp resonance point regardless of the material, and is practically used as an ultrasonic speaker by being driven at the resonance frequency, the frequency region where a high sound pressure can be secured is extremely narrow. That is, it can be said that it is a narrow band.

このような問題を解決するために、図6に示すような、静電型超音波トランスデューサが現在提案されている(特願2004−173946号)。このような構造は一般にプッシュプル(Push−Pull)型と呼ばれており、プル(Pull)型の静電型超音波トランスデューサに比して、広帯域性と高音圧を同時に満たす能力を持っている。   In order to solve such a problem, an electrostatic ultrasonic transducer as shown in FIG. 6 is currently proposed (Japanese Patent Application No. 2004-173946). Such a structure is generally referred to as a push-pull type, and has the ability to satisfy both high bandwidth and high sound pressure at the same time as compared to a pull type electrostatic ultrasonic transducer. .

図6において、プッシュプル型の静電型超音波トランスデューサは、電極として機能する導電性材料で形成された導電部材を含む一対の固定電極10、11と、一対の固定電極に挟持され、導電層(蒸着膜層)121を有する振動膜12と、一対の固定電極10、11と振動膜を保持する部材(図示せず)とを有している。   In FIG. 6, the push-pull type electrostatic ultrasonic transducer includes a pair of fixed electrodes 10 and 11 including a conductive member formed of a conductive material that functions as an electrode, and a pair of fixed electrodes. It has a vibration film 12 having a (deposition film layer) 121, a pair of fixed electrodes 10 and 11, and a member (not shown) for holding the vibration film.

振動膜12は、絶縁層120と、導電性材料で形成された導電層121とを有しており、該導電層121には、直流バイアス電源16により単一極性(正極性でも負極性のいずれでもよい)の直流バイアス電圧が印加されるようになってる。   The vibration film 12 includes an insulating layer 120 and a conductive layer 121 formed of a conductive material. The conductive layer 121 is unipolar (positive or negative) by a DC bias power supply 16. DC bias voltage) may be applied.

また、一対の固定電極10、11は振動膜12を介して対向する位置に同数かつ複数の貫通穴(段付きの貫通穴)14を有しており、一対の固定電極10、11の導電部材間には信号源18A、18Bにより交流信号が印加されるようになっている。固定電極10と導電層121、固定電極11と導電層121には、それぞれコンデンサが形成されている。   In addition, the pair of fixed electrodes 10 and 11 have the same number and a plurality of through holes (stepped through holes) 14 at positions facing each other with the vibration film 12 therebetween, and the conductive members of the pair of fixed electrodes 10 and 11. An AC signal is applied between the signal sources 18A and 18B. Capacitors are formed on the fixed electrode 10 and the conductive layer 121, and on the fixed electrode 11 and the conductive layer 121, respectively.

上記構成において、超音波トランスデューサは、振動膜12の導電層121に、直流バイアス電源16により単一極性の(本例では正極性の)直流バイアス電圧が印加される。一方、一対の固定電極10、11には、信号源18A、18Bにより交流信号が印加される。この結果、信号源18A、18Bから出力される交流信号の正の半サイクルでは、固定電極10に正の電圧が印加されるために、振動膜12の固定電極で挟持されていない表面部分13Aには、静電反発力が作用し、表面部分13Aは、図6上、下方に引っ張られる。また、このとき、対向する固定電極11には、負の電圧が印加されるために、振動膜12の前記表面部分13Aの裏面側である裏面部分13Bには、静電吸引力が作用し、裏面部分13Bは、図6上、さらに下方に引っ張られる。   In the above configuration, in the ultrasonic transducer, a DC bias voltage having a single polarity (positive polarity in this example) is applied to the conductive layer 121 of the vibration film 12 by the DC bias power supply 16. On the other hand, an AC signal is applied to the pair of fixed electrodes 10 and 11 by the signal sources 18A and 18B. As a result, in the positive half cycle of the AC signal output from the signal sources 18A and 18B, since a positive voltage is applied to the fixed electrode 10, the surface portion 13A not sandwiched between the fixed electrodes of the vibrating membrane 12 is applied. The electrostatic repulsive force acts, and the surface portion 13A is pulled downward in FIG. At this time, since a negative voltage is applied to the opposed fixed electrode 11, an electrostatic attraction force acts on the back surface portion 13B which is the back surface side of the surface portion 13A of the vibration film 12, The back surface portion 13B is pulled further upward in FIG.

したがって、振動膜12の一対の固定電極10、11により挟持されていない膜部分は、同方向に静電反発力と静電斥力を受ける。これは、信号源18A、18Bから出力される交流信号の負の半サイクルについても同様に、振動膜12の表面部分13Aには図6上、上方に静電吸引力が、また裏面部分13Bには、図6上、上方に静電反発力が作用し、振動膜12の一対の固定電極10、11により挟持されていない膜部分は、同方向に静電反発力と静電斥力を受ける。このようにして、交流信号の極性の変化に応じて振動膜12が同方向に静電反発力と静電斥力を受けながら、交互に静電力が働く方向が変化するので、大きな膜振動、すなわち、パラメトリックアレイ効果を得るのに十分な音圧レベルの音響信号を発生することができる。   Accordingly, the membrane portion of the vibrating membrane 12 that is not sandwiched between the pair of fixed electrodes 10 and 11 receives an electrostatic repulsive force and an electrostatic repulsive force in the same direction. Similarly, in the negative half cycle of the AC signal output from the signal sources 18A and 18B, the electrostatic attracting force is applied to the upper surface portion 13A of the vibrating membrane 12 in FIG. In FIG. 6, an electrostatic repulsive force acts on the upper side, and the film portion not sandwiched between the pair of fixed electrodes 10 and 11 of the vibrating membrane 12 receives the electrostatic repulsive force and the electrostatic repulsive force in the same direction. In this way, the direction in which the electrostatic force changes alternately while the vibrating membrane 12 receives the electrostatic repulsive force and the electrostatic repulsive force in the same direction according to the change in polarity of the AC signal. An acoustic signal having a sound pressure level sufficient to obtain a parametric array effect can be generated.

このように超音波トランスデューサは、振動膜12が一対の固定電極10、11から力を受けて振動することからプッシュプル(Push−Pull)型と呼ばれている。プッシュプル型の静電型超音波トランスデューサは、振動膜に静電吸引力のみしか作用しないプル型(Pull)型の静電型超音波トランスデューサに比して、広帯域性と高音圧を同時に満たす能力を持っている。   In this way, the ultrasonic transducer is called a push-pull type because the vibrating membrane 12 receives a force from the pair of fixed electrodes 10 and 11 and vibrates. The push-pull type electrostatic ultrasonic transducer is capable of simultaneously satisfying wide bandwidth and high sound pressure compared to the pull type electrostatic ultrasonic transducer that only acts on the vibrating membrane. have.

図6に示す静電型超音波トランスデューサにおいて、固定電極10、11は、その材質が導電性であればよく、例えば、SUSや真鍮、鉄、ニッケルの単体構成も可能である。また、軽量化をはかる必要があるため、回路基板などで一般的に用いられるガラスエポシキ基板や紙フェノール基板に所望の穴加工を施した後、ニッケルや金、銀、銅などでメッキ処理をすることなども可能である。またこの場合成型後のソリを防止するために基板へのメッキ加工は両面に施すなどの工夫も有効である。ただし絶縁性を考慮すると、各々の固定電極の振動膜側には何らかの絶縁処理が施される事が望ましい。例えば、液状ソルダーレジスト、感光性フイルム、感光性コート材、非導電性塗料、電着材料などで絶縁された凸部を形成する。   In the electrostatic ultrasonic transducer shown in FIG. 6, the fixed electrodes 10 and 11 may be made of a conductive material. For example, SUS, brass, iron, or nickel may be used alone. In addition, since it is necessary to reduce the weight, a desired hole processing is performed on a glass epoxy substrate or a paper phenol substrate generally used for circuit boards, and then plating is performed with nickel, gold, silver, copper, or the like. It is also possible. In this case, in order to prevent warping after molding, it is also effective to devise plating on the both surfaces. However, in consideration of insulation, it is desirable that some kind of insulation treatment be performed on the vibration film side of each fixed electrode. For example, a convex portion insulated with a liquid solder resist, a photosensitive film, a photosensitive coating material, a non-conductive paint, an electrodeposition material, or the like is formed.

上述したように、プッシュプル型の静電型超音波トランスデューサにおいては、振動膜には高電圧の直流バイアス電圧が印加され、固定電極には交流電圧が印加されることにより、固定電極−振動膜に働く静電力(引力及び斥力)により膜部分が振動する。この場合、超音波帯の振動を実現する為には振動部分の穴径を数mm以下にする必要があり、多数の振動穴を設けることにより、追従性が高くて出力が大きいトランスデューサを構成する必要がある。   As described above, in the push-pull type electrostatic ultrasonic transducer, a high voltage DC bias voltage is applied to the vibration film, and an AC voltage is applied to the fixed electrode, so that the fixed electrode-vibration film The membrane part vibrates due to the electrostatic force (attraction and repulsive force) acting on. In this case, in order to realize the vibration of the ultrasonic band, it is necessary to reduce the hole diameter of the vibration part to several mm or less, and by providing a large number of vibration holes, a transducer with high followability and high output is configured. There is a need.

ところで、上記プル型の静電型超音波トランスデューサおよびプッシュプル型の静電型超音波トランスデューサにおいては、振動膜に直流バイアス電圧を印加する必要があるが、上記構造における振動膜からの電極接点の取出し容易ではなく、一般的にはフイルムコンデンサなどで採用されているメタリコン(金属溶射)により接触抵抗を軽減する方法が有効である。しかしながら、メタリコン(金属溶射)による製造工程では装置等も大掛かりなものとなってしまうという課題がある。また、金属接点による電極取出しを、金属部材を蒸着層部分(導電層)に圧接した構造により行う方法も考えられるが、この場合は蒸着部分の構造破壊や劣化が生じる可能性が高くなるという課題がある。
特開2000−50387号公報 特開2000−50392号公報
By the way, in the pull-type electrostatic ultrasonic transducer and the push-pull type electrostatic ultrasonic transducer, it is necessary to apply a DC bias voltage to the vibration film. It is not easy to take out, and a method of reducing the contact resistance by metallicon (metal spraying) generally used for a film capacitor or the like is effective. However, there is a problem that the apparatus and the like become large in the manufacturing process by metallicon (metal spraying). In addition, there is a method of taking out the electrode by the metal contact by a structure in which the metal member is pressed into contact with the vapor deposition layer portion (conductive layer). There is.
JP 2000-50387 A JP 2000-50392 A

上述したように、静電型超音波トランスデューサにおける振動膜からの電極接点の取出しには、メタリコン(金属溶射)により接触抵抗を低減させるか、金属部材を蒸着層部分(導電層)に圧接させるなどの方法が用いられている。しかしながら、それぞれの方法には問題点があり、振動膜からの電極接点の取出しは容易ではなかった。   As described above, in order to take out the electrode contact from the vibration film in the electrostatic ultrasonic transducer, the contact resistance is reduced by metallicon (metal spraying), or the metal member is pressed against the vapor deposition layer portion (conductive layer). The method is used. However, each method has a problem, and it is not easy to take out the electrode contact from the vibrating membrane.

本発明はこのような問題を解決するためになされたもので、その目的は、静電型超音波トランスデューサにおいて、振動膜からの電極接点の取出しを、電極接点部分の導電層(蒸着膜層)を破壊する恐れのない、安価で簡単な構成で実現することができる、超音波トランスデューサを提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to extract an electrode contact from a vibration film in an electrostatic ultrasonic transducer, and to conduct a conductive layer (deposition film layer) of the electrode contact portion. It is an object of the present invention to provide an ultrasonic transducer that can be realized with an inexpensive and simple configuration without fear of destroying the antenna.

本発明は上記課題を解決するためになされたものであり、本発明の超音波トランスデューサは、複数の穴が形成された第1の固定電極と、前記第1の固定電極と対をなす複数の穴が形成された第2の固定電極と、前記一対の固定電極に挟持され導電層を有し、該導電層に直流バイアス電圧が印加される振動膜と、前記一対の固定電極と前記振動膜を保持する保持部材とを有し、前記一対の固定電極間には交流信号が印加される静電型超音波トランスデューサであって、前記振動膜が膜枠材に載置され、前記振動膜の前記導電層における電極取り出し部に導電性ゴムで形成された押圧部材が載置され、電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記電極取り出し部に圧接され、固定されたことを特徴とする。
このような構成により、電極取り出し部を設けた振動膜を、接着などの方法により、膜枠材の上に配置し固定する。そして、振動膜が膜枠材に配置された状態で、電極取り出し部の上に導電性ゴムなどの押圧部材を配置する。それから、電極配線が接続された導電性材料の固定部材により、押圧部材を電極取り出し部に圧接し固定する。この押圧部材の電極取り出し部への圧接固定は、例えば、押圧部材および電極取り出し部を間に挟み、固定部材と膜枠材とをネジ止め固定することにより行う。
これにより、電極取り出し部にメタリコン(金属溶射)などを施す加工装置は必要ではなくなり、製造工程の設備コストを低減できる。また、導電層を破壊及び劣化させることなく電極接点を構成できるとともに、電極取り出し部と電極(導電性ゴム)との密着性を確保できるために、接触抵抗を低くすることが可能となる。
The present invention has been made to solve the above-described problems, and an ultrasonic transducer according to the present invention includes a first fixed electrode having a plurality of holes and a plurality of pairs that are paired with the first fixed electrode. A second fixed electrode in which a hole is formed; a vibration film that is sandwiched between the pair of fixed electrodes and has a conductive layer to which a DC bias voltage is applied; and the pair of fixed electrode and the vibration film An electrostatic ultrasonic transducer in which an AC signal is applied between the pair of fixed electrodes, wherein the vibration film is placed on a film frame member, and the vibration film A pressing member formed of conductive rubber is placed on the electrode extraction portion of the conductive layer, and the pressing member is attached to the electrode extraction portion by a fixing member formed of a conductive material to which one end of the electrode wiring is connected. Characterized by being pressed and fixed To.
With such a configuration, the vibration film provided with the electrode take-out portion is arranged and fixed on the film frame member by a method such as adhesion. Then, a pressing member such as conductive rubber is disposed on the electrode extraction portion in a state where the vibration film is disposed on the film frame member. Then, the pressing member is pressed against and fixed to the electrode take-out portion by a conductive material fixing member to which the electrode wiring is connected. The pressing contact fixing of the pressing member to the electrode extraction portion is performed, for example, by sandwiching the pressing member and the electrode extraction portion and fixing the fixing member and the film frame member with screws.
This eliminates the need for a processing apparatus that applies metallicon (metal spraying) or the like to the electrode lead-out portion, thereby reducing the equipment cost of the manufacturing process. In addition, the electrode contact can be configured without destroying and deteriorating the conductive layer, and the adhesion between the electrode take-out portion and the electrode (conductive rubber) can be secured, so that the contact resistance can be lowered.

また、本発明の静電型超音波トランスデューサは、複数の穴が形成された第1の固定電極と、前記第1の固定電極と対をなす複数の穴が形成された第2の固定電極と、前記一対の固定電極に挟持され導電層を有し、該導電層に直流バイアス電圧が印加される振動膜と、前記一対の固定電極と前記振動膜を保持する保持部材とを有し、前記一対の固定電極間には交流信号が印加される静電型超音波トランスデューサであって、前記振動膜が載置される膜枠材の外周部に溝部が形成されており、前記振動膜には前記溝部を覆うような形状で導電層が露出した電極取り出し部が形成されており、前記溝部を前記振動膜の電極取り出し部で覆うように前記膜枠材に前記振動膜が載置され、前記電極取り出し部が前記溝部を覆った状態で、導電性ゴムで形成された押圧部材が前記電極取り出し部の上面から前記溝部に嵌挿され、電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記溝部に圧接され、固定されたことを特徴とする。
このような構成により、プッシュプル型の静電型超音波トランスデューサにおいて、振動膜を固定するための膜枠材の周辺部に溝部を設け、また、振動膜には膜枠材の溝部を覆うような形状で電極取り出し部を設ける。そして、振動膜の電極取り出し部が膜枠材の溝部を覆うようして、振動膜を膜枠材の上に配置し、導電性ゴムによる押圧部材により、振動膜の電極取り出し部を膜枠材の溝部に押し込む。それから、電極配線が接続された導電性材料で形成された固定部材により、押圧部材を膜枠材の溝部に圧接し、電極取り出し部を膜枠材に圧接固定する。この押圧部材の溝部への圧接固定は、例えば、押圧部材と電極取り出し部とを間に挟み、固定部材と膜枠材とをネジ止め固定することにより行う。
これにより、電極取り出し部にメタリコン(金属溶射)などを施す加工装置は必要ではなくなり、製造工程の設備コストを低減できる。また、導電層を破壊及び劣化させることなく電極接点を構成できるとともに、電極取り出し部と電極との密着性を確保できるために、接触抵抗を低くすることが可能となる。また、振動膜を膜枠材に接着する必要がなく、その分の工程を削減でき、製造コストを下げることが可能となる。
The electrostatic ultrasonic transducer according to the present invention includes a first fixed electrode having a plurality of holes formed therein, and a second fixed electrode having a plurality of holes formed in pairs with the first fixed electrodes. A vibration film sandwiched between the pair of fixed electrodes, having a conductive layer to which a DC bias voltage is applied to the conductive layer, and a holding member that holds the pair of fixed electrodes and the vibration film, An electrostatic ultrasonic transducer in which an AC signal is applied between a pair of fixed electrodes, and a groove is formed in an outer peripheral portion of the film frame material on which the vibration film is placed. An electrode extraction part is formed in which the conductive layer is exposed in a shape covering the groove part, and the vibration film is placed on the film frame member so as to cover the groove part with the electrode extraction part of the vibration film, With the electrode extraction part covering the groove part, with conductive rubber The formed pressing member is inserted into the groove portion from the upper surface of the electrode extraction portion, and the pressing member is pressed against the groove portion and fixed by a fixing member formed of a conductive material to which one end of the electrode wiring is connected. It is characterized by that.
With such a configuration, in the push-pull type electrostatic ultrasonic transducer, a groove is provided in the periphery of the membrane frame material for fixing the vibrating membrane, and the vibrating membrane is covered with the groove portion of the membrane frame material. An electrode lead-out portion is provided in a simple shape. Then, the vibrating membrane is disposed on the membrane frame material so that the electrode extraction portion of the diaphragm covers the groove portion of the membrane frame material, and the electrode extraction portion of the diaphragm is made of the membrane frame material by a pressing member made of conductive rubber. Push it into the groove. Then, the pressing member is pressed against the groove portion of the film frame member and the electrode take-out portion is pressed and fixed to the film frame member by a fixing member formed of a conductive material to which the electrode wiring is connected. The pressing contact fixing of the pressing member to the groove portion is performed, for example, by sandwiching the pressing member and the electrode extraction portion and fixing the fixing member and the film frame member with screws.
This eliminates the need for a processing apparatus that applies metallicon (metal spraying) or the like to the electrode lead-out portion, thereby reducing the equipment cost of the manufacturing process. In addition, the electrode contact can be configured without destroying and deteriorating the conductive layer, and the adhesion between the electrode take-out portion and the electrode can be secured, so that the contact resistance can be lowered. In addition, it is not necessary to bond the vibration film to the film frame material, so that the number of processes can be reduced, and the manufacturing cost can be reduced.

また、本発明の静電型超音波トランスデューサは、表面に凹凸部を有する固定電極と、導電層を有し前記固定電極の表面に設置される振動膜と、前記固定電極と振動膜とを保持する部材とを有し、前記振動膜の導電層と固定電極との間に交流信号を印加することにより駆動する静電型超音波トランスデューサであって、前記振動膜が膜枠材に載置され、前記振動膜の前記導電層における電極取り出し部に導電性ゴムで形成された押圧部材が載置され、電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記電極取り出し部に圧接され、固定されたことを特徴とする。
このような構成により、プル型の静電型超音波トランスデューサにおいて、電極取り出し部を設けた振動膜を、接着などの方法により、膜枠材の上に配置し固定する。そして、振動膜が膜枠材に配置された状態で、電極取り出し部の上に導電性ゴムなどの押圧部材を配置する。それから、電極配線が接続された導電性材料の固定部材により、押圧部材を電極取り出し部に圧接し固定する。この押圧部材の電極取り出し部への圧接固定は、例えば、押圧部材および電極取り出し部を間に挟み、固定部材と膜枠材とをネジ止め固定することにより行う。
これにより、電極取り出し部にメタリコン(金属溶射)などを施す加工装置は必要ではなくなり、製造工程の設備コストを低減できる。また、導電層を破壊及び劣化させることなく電極接点を構成できるとともに、電極取り出し部と電極(導電性ゴム)との密着性を確保できるために、接触抵抗を低くすることが可能となる。
The electrostatic ultrasonic transducer according to the present invention includes a fixed electrode having a concavo-convex portion on a surface, a vibration film having a conductive layer and disposed on the surface of the fixed electrode, and holding the fixed electrode and the vibration film. An electrostatic ultrasonic transducer that is driven by applying an AC signal between a conductive layer of the vibrating membrane and a fixed electrode, and the vibrating membrane is placed on the membrane frame member A pressing member made of conductive rubber is placed on the electrode extraction portion of the conductive layer of the vibrating membrane, and the pressing member is formed by a fixing member formed of a conductive material to which one end of the electrode wiring is connected. The electrode take-out portion is pressed and fixed.
With such a configuration, in the pull-type electrostatic ultrasonic transducer, the vibration film provided with the electrode take-out portion is arranged and fixed on the film frame member by a method such as adhesion. Then, a pressing member such as conductive rubber is disposed on the electrode extraction portion in a state where the vibration film is disposed on the film frame member. Then, the pressing member is pressed against and fixed to the electrode take-out portion by a conductive material fixing member to which the electrode wiring is connected. The pressing contact fixing of the pressing member to the electrode extraction portion is performed, for example, by sandwiching the pressing member and the electrode extraction portion and fixing the fixing member and the film frame member with screws.
This eliminates the need for a processing apparatus that applies metallicon (metal spraying) or the like to the electrode lead-out portion, thereby reducing the equipment cost of the manufacturing process. In addition, the electrode contact can be configured without destroying and deteriorating the conductive layer, and the adhesion between the electrode take-out portion and the electrode (conductive rubber) can be secured, so that the contact resistance can be lowered.

また、本発明の静電型超音波トランスデューサは、表面に凹凸部を有する固定電極と、導電層を有し前記固定電極の表面に設置される振動膜と、前記固定電極と振動膜とを保持する部材とを有し、前記振動膜の導電層と固定電極との間に交流信号を印加することにより駆動する静電型超音波トランスデューサであって、前記振動膜が載置される膜枠材の外周部に溝部が形成されており、前記振動膜には前記溝部を覆うような形状で導電層が露出した電極取り出し部が形成されており、前記溝部を前記振動膜の電極取り出し部で覆うように前記膜枠材に前記振動膜が載置され、前記電極取り出し部が前記溝部を覆った状態で、導電性ゴムで形成された押圧部材が前記電極取り出し部の上面から前記溝部に嵌挿され、電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記溝部に圧接され、固定されたことを特徴とする。
このような構成により、プル型の静電型超音波トランスデューサにおいて、振動膜を固定するための膜枠材の周辺部に溝部を設け、また、振動膜には膜枠材の溝部を覆うような形状で電極取り出し部を設ける。そして、振動膜の電極取り出し部が膜枠材の溝部を覆うようして、振動膜を膜枠材の上に配置し、導電性ゴムによる押圧部材により、振動膜の電極取り出し部を膜枠材の溝部に押し込む。それから、電極配線が接続された導電性材料で形成された固定部材により、押圧部材を膜枠材の溝部に圧接し、電極取り出し部を膜枠材に圧接固定する。この押圧部材の溝部への圧接固定は、例えば、押圧部材と電極取り出し部とを間に挟み、固定部材と膜枠材とをネジ止め固定することにより行う。
これにより、電極取り出し部にメタリコン(金属溶射)などを施す加工装置は必要ではなくなり、製造工程の設備コストを低減できる。また、導電層を破壊及び劣化させることなく電極接点を構成できるとともに、電極取り出し部と電極との密着性を確保できるために、接触抵抗を低くすることが可能となる。また、振動膜を膜枠材に接着する必要がなく、その分の工程を削減でき、製造コストを下げることが可能となる。
The electrostatic ultrasonic transducer according to the present invention includes a fixed electrode having a concavo-convex portion on a surface, a vibration film having a conductive layer and disposed on the surface of the fixed electrode, and holding the fixed electrode and the vibration film. An electrostatic ultrasonic transducer that is driven by applying an AC signal between a conductive layer of the vibrating membrane and a fixed electrode, and a film frame member on which the vibrating membrane is placed A groove is formed on the outer periphery of the electrode, and the diaphragm is formed with an electrode take-out part with a conductive layer exposed in a shape covering the groove, and the groove is covered with the electrode take-out part of the diaphragm In this way, the vibration film is placed on the film frame member, and the pressing member formed of conductive rubber is inserted into the groove portion from the upper surface of the electrode extraction portion with the electrode extraction portion covering the groove portion. And one end of the electrode wiring was connected The fixing member formed of a conductive material, wherein the pressing member is pressed against the groove, and wherein the fixed.
With such a configuration, in the pull-type electrostatic ultrasonic transducer, a groove is provided in the peripheral portion of the film frame material for fixing the vibration film, and the vibration film covers the groove of the film frame material. An electrode extraction part is provided in the shape. Then, the vibrating membrane is disposed on the membrane frame material so that the electrode extraction portion of the diaphragm covers the groove portion of the membrane frame material, and the electrode extraction portion of the diaphragm is made of the membrane frame material by a pressing member made of conductive rubber. Push it into the groove. Then, the pressing member is pressed against the groove portion of the film frame member and the electrode take-out portion is pressed and fixed to the film frame member by a fixing member formed of a conductive material to which the electrode wiring is connected. The pressing contact fixing of the pressing member to the groove portion is performed, for example, by sandwiching the pressing member and the electrode extraction portion and fixing the fixing member and the film frame member with screws.
This eliminates the need for a processing apparatus that applies metallicon (metal spraying) or the like to the electrode lead-out portion, thereby reducing the equipment cost of the manufacturing process. In addition, the electrode contact can be configured without destroying and deteriorating the conductive layer, and the adhesion between the electrode take-out portion and the electrode can be secured, so that the contact resistance can be lowered. In addition, it is not necessary to bond the vibration film to the film frame material, so that the number of processes can be reduced, and the manufacturing cost can be reduced.

[本発明の対象となる静電型超音波トランスデューサの説明]
本発明は、静電型超音波トランスデューサにおいて、振動膜に信号を与えるための電極の構成方法に特徴がある。そして、本発明の対象となる静電型超音波トランスデューサとしては、プッシュプル型の静電型超音波トランスデューサと、プル型の静電型超音波トランスデューサとがある。
[Description of Electrostatic Ultrasonic Transducer Subject of the Present Invention]
The present invention is characterized in a method of forming an electrode for giving a signal to a vibrating membrane in an electrostatic ultrasonic transducer. The electrostatic ultrasonic transducer that is the subject of the present invention includes a push-pull type electrostatic ultrasonic transducer and a pull type electrostatic ultrasonic transducer.

図1(A)は、本発明の対象となるプッシュプル型の静電型超音波トランスデューサの構成例を示す図である。この静電型超音波トランスデューサは、振動膜12を一対の固定電極10、11で挟持し、振動膜12の導電層121に、直流バイアス電源16により直流バイアス電圧を印加し、一対の固定電極10、11には、信号源18A、18Bにより交流信号を印加する構成のものである。基本的な構成と動作は、先に説明した図6に示すプッシュプル型の静電型超音波トランスデューサと同じものである。   FIG. 1A is a diagram illustrating a configuration example of a push-pull electrostatic ultrasonic transducer that is an object of the present invention. In this electrostatic ultrasonic transducer, the vibrating membrane 12 is sandwiched between a pair of fixed electrodes 10, 11, a DC bias voltage is applied to the conductive layer 121 of the vibrating membrane 12 by a DC bias power supply 16, and the pair of fixed electrodes 10. , 11 is configured to apply an AC signal from the signal sources 18A, 18B. The basic configuration and operation are the same as those of the push-pull type electrostatic ultrasonic transducer shown in FIG.

また、図1(B)は、本発明の対象となるプル型の静電型超音波トランスデューサの構成例を示す図である。この静電型超音波トランスデューサは、振動膜12を凹凸部15A、15Bを有する固定電極11Aの上に配置し、振動膜12の導電層121に直流バイアス電源16により直流バイアス電圧を印加し、固定電極、11Aには、信号源18Bにより交流信号を印加する構成のものである。基本的な構成と動作は、先に説明した図5に示すプル型の静電型超音波トランスデューサと同じものである。   FIG. 1B is a diagram illustrating a configuration example of a pull-type electrostatic ultrasonic transducer that is an object of the present invention. In this electrostatic ultrasonic transducer, the vibrating membrane 12 is disposed on the fixed electrode 11A having the concavo-convex portions 15A and 15B, and a DC bias voltage is applied to the conductive layer 121 of the vibrating membrane 12 by the DC bias power supply 16 to fix the vibrating membrane 12. The electrode 11A is configured to apply an AC signal from a signal source 18B. The basic configuration and operation are the same as those of the pull-type electrostatic ultrasonic transducer shown in FIG. 5 described above.

図1(C)は、振動膜12の部分拡大図であり、振動膜の導電層の電極取り出し部を示す図である。図1(C)に示すように、振動膜12は、導電層(蒸着膜層)121を絶縁層120で挟み込むように構成されており、電極取出し部分(電極接点部)122のみ、片側の絶縁層120が形成されていない構造となっている。この電極取り出し部122を通して振動膜12に直流バイアス電圧を印加する。   FIG. 1C is a partially enlarged view of the vibrating membrane 12 and is a view showing an electrode extraction portion of the conductive layer of the vibrating membrane. As shown in FIG. 1C, the vibration film 12 is configured such that a conductive layer (deposition film layer) 121 is sandwiched between insulating layers 120, and only an electrode extraction portion (electrode contact portion) 122 is insulated on one side. The layer 120 is not formed. A direct current bias voltage is applied to the vibrating membrane 12 through the electrode extraction portion 122.

[振動膜の電極部の第1の構成例の説明]
図2は、本発明の静電型超音波トランスデューサにおける、振動膜の電極部の第1の構成例を示す図である。図2(A)は振動膜の組み立て手順を示し、図2(B)は、組み立てられた状態を示している。
[Description of First Configuration Example of Electrode Portion of Vibration Membrane]
FIG. 2 is a diagram showing a first configuration example of the electrode portion of the vibrating membrane in the electrostatic ultrasonic transducer of the present invention. FIG. 2A shows the assembly procedure of the diaphragm, and FIG. 2B shows the assembled state.

図2(A)に示すように、振動膜12を組み立てるために、振動膜12を接着固定する膜枠材123と、高導電率を有する導電性ゴム127と、導電性ゴム127を電極取り出し部122に圧接して取り付けるための金属部材124を用意する。なお、金属部材124は半田付け等により電極配線126を引き出す構成となっている。また、導電性ゴム127の性能としては、体積固有抵抗が1×10−1Ωcm程度の高導電タイプのものが望ましい。また、図2示す例では、振動膜12と膜枠材123が円盤状の形状のものを示しているが、振動膜12と膜枠材123は任意の形状のものであってもよい。 As shown in FIG. 2A, in order to assemble the diaphragm 12, a film frame member 123 for adhering and fixing the diaphragm 12, a conductive rubber 127 having a high conductivity, and a conductive rubber 127 are connected to the electrode extraction portion. A metal member 124 is prepared for pressure contact with 122. The metal member 124 is configured to draw out the electrode wiring 126 by soldering or the like. Further, as the performance of the conductive rubber 127, a high conductivity type having a volume resistivity of about 1 × 10 −1 Ωcm is desirable. In the example shown in FIG. 2, the vibrating membrane 12 and the membrane frame member 123 have a disc shape, but the vibrating membrane 12 and the membrane frame member 123 may have arbitrary shapes.

そして、この振動膜12の組み立ては、次の手順により行われる。
最初に、膜枠材123の外周部に接着材にて振動膜12の周辺部を接着する(ステップS1)。次に、電極取出し部122の形状に合わせた導電性ゴム127を電極取り出し部122の膜表面に圧接し(ステップS2)、その上から金属部材124にてネジ押さえによる圧接を行う。また、金属部材124から半田付け等により電極配線126を引き出す(ステップS3)。
And the assembly of this diaphragm 12 is performed by the following procedure.
First, the peripheral part of the vibration film 12 is bonded to the outer peripheral part of the film frame member 123 with an adhesive (step S1). Next, the conductive rubber 127 matched with the shape of the electrode extraction part 122 is pressed against the film surface of the electrode extraction part 122 (step S2), and the metal member 124 is pressed from above with the metal member 124. Further, the electrode wiring 126 is drawn out from the metal member 124 by soldering or the like (step S3).

そして、振動膜が組み立てられると、図2(B)に示すように、膜枠材123の上に、振動膜12の周辺部が接着固定され、振動膜12の電極取り出し部122の上に導電性ゴム127が配置され、導電性ゴム127が金属部材124により電極取り出し部122に圧接固定された状態となる。なお、図2(B)では、図面の見易さのために、ネジ穴125およびネジは省略している。   When the vibrating membrane is assembled, as shown in FIG. 2B, the periphery of the vibrating membrane 12 is bonded and fixed on the membrane frame member 123, and the conductive film is placed on the electrode extraction portion 122 of the vibrating membrane 12. The conductive rubber 127 is disposed, and the conductive rubber 127 is pressed and fixed to the electrode extraction portion 122 by the metal member 124. In FIG. 2B, the screw hole 125 and the screw are omitted for easy viewing of the drawing.

以上説明したような構成により、振動膜12の電極取り出し部122にメタリコン(金属溶射)などを施す加工装置は必要がなくなり、製造工程の設備コストを低減できる。また、電極取り出し部122の導電層を破壊及び劣化させることなく電極接点を構成できるとともに、電極取り出し部122と電極(導電性ゴム127および金属部材124)との密着性を確保できるために、接触抵抗を低くすることが可能となる。   With the configuration described above, there is no need for a processing apparatus that applies metallicon (metal spray) or the like to the electrode extraction portion 122 of the vibration film 12, and the equipment cost of the manufacturing process can be reduced. In addition, an electrode contact can be formed without destroying and deteriorating the conductive layer of the electrode lead-out part 122, and the adhesion between the electrode lead-out part 122 and the electrodes (the conductive rubber 127 and the metal member 124) can be secured. The resistance can be lowered.

なお、図2に示した振動膜の電極部の構成例は、図1(A)に示すプッシュプル型の静電型超音波トランスデューサの振動膜、および図1(B)に示すプル型の静電型超音波トランスデューサの振動膜の両方に適用できるものである。   Note that the configuration example of the electrode portion of the vibration membrane shown in FIG. 2 includes the vibration membrane of the push-pull type electrostatic ultrasonic transducer shown in FIG. 1A and the pull-type static electricity shown in FIG. The present invention can be applied to both vibration membranes of electric ultrasonic transducers.

[振動膜の電極部の第2の構成例の説明]
図3は、本発明の静電型超音波トランスデューサにおける、振動膜の電極部の第2の構成例を示す図である。図3(A)は振動膜の組み立て手順を示し、図3(B)は、組み立てられた状態を示している。
[Description of Second Configuration Example of Electrode Portion of Vibration Membrane]
FIG. 3 is a diagram showing a second configuration example of the electrode portion of the vibrating membrane in the electrostatic ultrasonic transducer of the present invention. FIG. 3A shows the procedure for assembling the diaphragm, and FIG. 3B shows the assembled state.

この第2の構成例では、図3(A)に示すように電極取り出し部122Aを振動膜12Aの外周部の全体に渡って設け、この電極取り出し部122Aを通して振動膜12Aに直流バイアス電圧を印加する。   In the second configuration example, as shown in FIG. 3A, an electrode extraction portion 122A is provided over the entire outer periphery of the vibrating membrane 12A, and a DC bias voltage is applied to the vibrating membrane 12A through the electrode extraction portion 122A. To do.

この振動膜12Aの組み立てを行うために、振動膜12Aを固定する膜枠材123Aと、リング形状の高導電率を有する導電性ゴム127Aと、導電性ゴム127Aを電極取り出し部122Aに圧接して取り付けるための金属部材124Aを用意する。金属部材124Aは半田付け等により電極配線126を引き出す構成となっている。   In order to assemble the vibrating membrane 12A, the membrane frame member 123A for fixing the vibrating membrane 12A, the conductive rubber 127A having a ring-shaped high conductivity, and the conductive rubber 127A are pressed against the electrode extraction portion 122A. A metal member 124A for attachment is prepared. The metal member 124A is configured to draw out the electrode wiring 126 by soldering or the like.

また、膜枠材123Aには、溝128が環状に設けられている。図4(A)、図4(B)に示すように、この溝128の上に振動膜12Aの電極取り出し部122Aを配置し、この電極取り出し部122Aを、導電性ゴム127Aにより、溝128内に押し込むようにして固定する。   The film frame member 123A is provided with a groove 128 in an annular shape. As shown in FIGS. 4A and 4B, an electrode extraction portion 122A of the vibrating membrane 12A is disposed on the groove 128, and the electrode extraction portion 122A is placed in the groove 128 by the conductive rubber 127A. Press to secure.

なお、導電性ゴム127Aの性能としては、体積固有抵抗が1×10−1Ωcm程度の高導電タイプのものが望ましい。また、図3示す例では、振動膜12Aと膜枠材123Aが円盤状の形状のものを示しているが、振動膜12Aと膜枠材123Aは任意の形状のものであってもよい。 The performance of the conductive rubber 127A is preferably a high conductivity type having a volume specific resistance of about 1 × 10 −1 Ωcm. In the example shown in FIG. 3, the vibrating membrane 12A and the membrane frame member 123A are shown in a disc shape, but the vibrating membrane 12A and the membrane frame member 123A may have any shape.

そして、この振動膜12Aの組み立ては、次の手順により行う。
図3(A)を参照して、最初に、振動膜12Aの電極取り出し部122Aが膜枠材123Aの溝128を覆うようにして、振動膜12Aを膜枠材123Aの上に重ねて配置し(ステップS11)、その上から導電性ゴム127Aを溝128に押し込み(ステップS12)、振動膜12Aの電極取り出し部122Aを膜枠材123Aに固定する。それから、金属部材124Aを導電性ゴム127Aの上部に配置し、金属部材124Aと膜枠材123Aとをネジ固定することにより、導電性ゴム127Aと電極取り出し部122Aとをネジ押さえにより溝128に圧接する。また、金属部材124Aから半田付け等により電極配線126Aを引き出す(ステップS13)。
The assembly of the vibrating membrane 12A is performed according to the following procedure.
Referring to FIG. 3A, first, the vibrating membrane 12A is placed on the membrane frame member 123A so that the electrode extraction portion 122A of the vibrating membrane 12A covers the groove 128 of the membrane frame member 123A. (Step S11), the conductive rubber 127A is pushed into the groove 128 from above (Step S12), and the electrode extraction portion 122A of the vibrating membrane 12A is fixed to the membrane frame member 123A. Then, the metal member 124A is disposed on the upper part of the conductive rubber 127A, and the metal member 124A and the membrane frame member 123A are fixed by screws, so that the conductive rubber 127A and the electrode extraction portion 122A are pressed against the groove 128 by screwing. To do. Further, the electrode wiring 126A is drawn out from the metal member 124A by soldering or the like (step S13).

そして、振動膜が組み立てられると、図3(B)に示すように、膜枠材123Aの上に、振動膜12Aが導電性ゴム127Aにより固定され、導電性ゴム127Aが金属部材124により圧接固定された状態となる。なお、図3(B)では、図面の見易さのために、ネジ穴125Aおよびネジは省略している。   When the vibrating membrane is assembled, as shown in FIG. 3B, the vibrating membrane 12A is fixed on the membrane frame member 123A by the conductive rubber 127A, and the conductive rubber 127A is pressure-fixed by the metal member 124. It will be in the state. Note that in FIG. 3B, the screw hole 125A and the screw are omitted for easy viewing of the drawing.

以上説明したような構成により、電極取り出し部122Aにメタリコン(金属溶射)などを施す加工装置は必要がなくなり、製造工程の設備コストを低減できる。また、電極取り出し部122Aの導電層(蒸着膜層)を破壊及び劣化させることなく電極接点を構成できるとともに、電極取り出し部122Aと電極(導電性ゴム127Aおよび金属部材124A)との密着性を確保できるために、接触抵抗を低くすることが可能となる。また、振動膜12Aを膜枠材123Aに接着する必要がなく、その分の工程を削減でき、製造コストを下げることが可能となる。   With the configuration described above, there is no need for a processing apparatus that applies metallicon (metal spraying) or the like to the electrode lead-out portion 122A, and equipment costs in the manufacturing process can be reduced. In addition, an electrode contact can be formed without destroying and deteriorating the conductive layer (deposited film layer) of the electrode lead-out portion 122A, and the adhesion between the electrode lead-out portion 122A and the electrodes (the conductive rubber 127A and the metal member 124A) is secured. Therefore, the contact resistance can be lowered. In addition, it is not necessary to bond the vibrating membrane 12A to the membrane frame member 123A, so that the corresponding steps can be reduced and the manufacturing cost can be reduced.

なお、図3に示した振動膜の電極部の構成例は、図1(A)に示すプッシュプル型の静電型超音波トランスデューサの振動膜、および図1(B)に示すプル型の静電型超音波トランスデューサの振動膜の両方に適用できるものである。   Note that the configuration example of the electrode portion of the vibration membrane shown in FIG. 3 includes the vibration membrane of the push-pull type electrostatic ultrasonic transducer shown in FIG. 1A and the pull-type static electricity shown in FIG. The present invention can be applied to both vibration membranes of electric ultrasonic transducers.

以上、本発明の実施の形態について説明したが、本発明の静電型超音波トランスデューサ、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the electrostatic ultrasonic transducer of the present invention and the above-described illustrated examples, and various modifications are made without departing from the scope of the present invention. Of course you get.

本発明の対象となる静電型超音波トランスデューサの構成例を示す図。The figure which shows the structural example of the electrostatic ultrasonic transducer used as the object of this invention. 振動膜の電極部の第1の構成例を示す図。The figure which shows the 1st structural example of the electrode part of a diaphragm. 振動膜の電極部の第2の構成例を示す図。The figure which shows the 2nd structural example of the electrode part of a diaphragm. 導電性ゴムと溝部との嵌挿方法について説明するための図。The figure for demonstrating the insertion method of a conductive rubber and a groove part. プル型の静電型超音波トランスデューサの構成例を示す図。The figure which shows the structural example of a pull type electrostatic ultrasonic transducer. プッシュプル型の静電型超音波トランスデューサの構成例を示す図。The figure which shows the structural example of a push-pull type electrostatic ultrasonic transducer.

符号の説明Explanation of symbols

10、11 固定電極、12、12A 振動膜、13A 表面部分、13B 裏面部分
14 貫通穴(段付き貫通穴)、15A凸部、15B 凹部、16 直流バイアス電源、
18A、18B 信号源、120 絶縁層、121 導電層(蒸着膜層)、
122、122A 電極取り出し部、123、123A 膜枠材、
124、124A 金属部材、125、125A ネジ穴、
126、126A 電極配線、127、127A 導電性ゴム
10, 11 Fixed electrode, 12, 12A Vibration membrane, 13A Surface portion, 13B Back surface portion 14 Through hole (stepped through hole), 15A convex portion, 15B concave portion, 16 DC bias power supply,
18A, 18B signal source, 120 insulating layer, 121 conductive layer (deposited film layer),
122, 122A electrode extraction part, 123, 123A film frame material,
124, 124A metal member, 125, 125A screw hole,
126, 126A Electrode wiring, 127, 127A Conductive rubber

Claims (4)

複数の穴が形成された第1の固定電極と、前記第1の固定電極と対をなす複数の穴が形成された第2の固定電極と、前記一対の固定電極に挟持され導電層を有し、該導電層に直流バイアス電圧が印加される振動膜と、前記一対の固定電極と前記振動膜を保持する保持部材とを有し、前記一対の固定電極間には交流信号が印加される静電型超音波トランスデューサであって、
前記振動膜が膜枠材に載置され、
前記振動膜の前記導電層における電極取り出し部に導電性ゴムで形成された押圧部材が載置され、
電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記電極取り出し部に圧接され、固定されたこと
を特徴とする静電型超音波トランスデューサ。
A first fixed electrode formed with a plurality of holes, a second fixed electrode formed with a plurality of holes paired with the first fixed electrode, and a conductive layer sandwiched between the pair of fixed electrodes. And a vibration film to which a DC bias voltage is applied to the conductive layer, the pair of fixed electrodes, and a holding member for holding the vibration film, and an AC signal is applied between the pair of fixed electrodes. An electrostatic ultrasonic transducer,
The vibrating membrane is placed on a membrane frame member,
A pressing member formed of conductive rubber is placed on the electrode extraction portion in the conductive layer of the vibration membrane,
An electrostatic ultrasonic transducer, wherein the pressing member is pressed against and fixed to the electrode take-out portion by a fixing member formed of a conductive material to which one end of an electrode wiring is connected.
複数の穴が形成された第1の固定電極と、前記第1の固定電極と対をなす複数の穴が形成された第2の固定電極と、前記一対の固定電極に挟持され導電層を有し、該導電層に直流バイアス電圧が印加される振動膜と、前記一対の固定電極と前記振動膜を保持する保持部材とを有し、前記一対の固定電極間には交流信号が印加される静電型超音波トランスデューサであって、
前記振動膜が載置される膜枠材の外周部に溝部が形成されており、
前記振動膜には前記溝部を覆うような形状で導電層が露出した電極取り出し部が形成されており、
前記溝部を前記振動膜の電極取り出し部で覆うように前記膜枠材に前記振動膜が載置され、
前記電極取り出し部が前記溝部を覆った状態で、導電性ゴムで形成された押圧部材が前記電極取り出し部の上面から前記溝部に嵌挿され、
電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記溝部に圧接され、固定されたこと
を特徴とする静電型超音波トランスデューサ。
A first fixed electrode formed with a plurality of holes, a second fixed electrode formed with a plurality of holes paired with the first fixed electrode, and a conductive layer sandwiched between the pair of fixed electrodes. And a vibration film to which a DC bias voltage is applied to the conductive layer, the pair of fixed electrodes, and a holding member for holding the vibration film, and an AC signal is applied between the pair of fixed electrodes. An electrostatic ultrasonic transducer,
Grooves are formed on the outer periphery of the film frame material on which the vibration film is placed,
The vibration film is formed with an electrode extraction part in which the conductive layer is exposed in a shape covering the groove part,
The vibrating membrane is placed on the membrane frame material so as to cover the groove portion with the electrode extraction portion of the vibrating membrane,
With the electrode extraction part covering the groove part, a pressing member formed of conductive rubber is inserted into the groove part from the upper surface of the electrode extraction part,
An electrostatic ultrasonic transducer characterized in that the pressing member is pressed against and fixed to the groove portion by a fixing member formed of a conductive material to which one end of an electrode wiring is connected.
表面に凹凸部を有する固定電極と、導電層を有し前記固定電極の表面に設置される振動膜と、前記固定電極と振動膜とを保持する部材とを有し、前記振動膜の導電層と固定電極との間に交流信号を印加することにより駆動する静電型超音波トランスデューサであって、
前記振動膜が膜枠材に載置され、
前記振動膜の前記導電層における電極取り出し部に導電性ゴムで形成された押圧部材が載置され、
電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記電極取り出し部に圧接され、固定されたこと
を特徴とする静電型超音波トランスデューサ。
A fixed electrode having a concavo-convex portion on a surface; a vibration film having a conductive layer and disposed on a surface of the fixed electrode; and a member for holding the fixed electrode and the vibration film, the conductive layer of the vibration film An electrostatic ultrasonic transducer that is driven by applying an AC signal between a fixed electrode and a fixed electrode,
The vibrating membrane is placed on a membrane frame member,
A pressing member formed of conductive rubber is placed on the electrode extraction portion in the conductive layer of the vibration membrane,
An electrostatic ultrasonic transducer, wherein the pressing member is pressed against and fixed to the electrode take-out portion by a fixing member formed of a conductive material to which one end of an electrode wiring is connected.
表面に凹凸部を有する固定電極と、導電層を有し前記固定電極の表面に設置される振動膜と、前記固定電極と振動膜とを保持する部材とを有し、前記振動膜の導電層と固定電極との間に交流信号を印加することにより駆動する静電型超音波トランスデューサであって、
前記振動膜が載置される膜枠材の外周部に溝部が形成されており、
前記振動膜には前記溝部を覆うような形状で導電層が露出した電極取り出し部が形成されており、
前記溝部を前記振動膜の電極取り出し部で覆うように前記膜枠材に前記振動膜が載置され、
前記電極取り出し部が前記溝部を覆った状態で、導電性ゴムで形成された押圧部材が前記電極取り出し部の上面から前記溝部に嵌挿され、
電極配線の一端が接続された導電性材料で形成された固定部材により、前記押圧部材が前記溝部に圧接され、固定されたこと
を特徴とする静電型超音波トランスデューサ。

A fixed electrode having a concavo-convex portion on a surface; a vibration film having a conductive layer and disposed on a surface of the fixed electrode; and a member for holding the fixed electrode and the vibration film, the conductive layer of the vibration film An electrostatic ultrasonic transducer that is driven by applying an AC signal between a fixed electrode and a fixed electrode,
Grooves are formed on the outer periphery of the film frame material on which the vibration film is placed,
The vibration film is formed with an electrode extraction part in which the conductive layer is exposed in a shape covering the groove part,
The vibrating membrane is placed on the membrane frame material so as to cover the groove portion with the electrode extraction portion of the vibrating membrane,
With the electrode extraction part covering the groove part, a pressing member formed of conductive rubber is inserted into the groove part from the upper surface of the electrode extraction part,
An electrostatic ultrasonic transducer characterized in that the pressing member is pressed against and fixed to the groove portion by a fixing member formed of a conductive material to which one end of an electrode wiring is connected.

JP2005292128A 2005-10-05 2005-10-05 Electrostatic ultrasonic wave transducer Withdrawn JP2007104371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292128A JP2007104371A (en) 2005-10-05 2005-10-05 Electrostatic ultrasonic wave transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292128A JP2007104371A (en) 2005-10-05 2005-10-05 Electrostatic ultrasonic wave transducer

Publications (1)

Publication Number Publication Date
JP2007104371A true JP2007104371A (en) 2007-04-19

Family

ID=38030855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292128A Withdrawn JP2007104371A (en) 2005-10-05 2005-10-05 Electrostatic ultrasonic wave transducer

Country Status (1)

Country Link
JP (1) JP2007104371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209031A4 (en) * 2014-10-16 2018-05-30 Yamaha Corporation Fixed pole and electroacoustic transducer
JP2018514980A (en) * 2015-03-16 2018-06-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフ Ultrasonic microphone and ultrasonic acoustic radio

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209031A4 (en) * 2014-10-16 2018-05-30 Yamaha Corporation Fixed pole and electroacoustic transducer
US10362405B2 (en) 2014-10-16 2019-07-23 Yamaha Coporaration Fixed electrode and electroacoustic transducer
JP2018514980A (en) * 2015-03-16 2018-06-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフ Ultrasonic microphone and ultrasonic acoustic radio

Similar Documents

Publication Publication Date Title
US8139794B2 (en) Speaker devices
US8045735B2 (en) Ultrasonic transducer and ultrasonic speaker using the same
JP4215788B2 (en) Piezoelectric electroacoustic transducer
US20070025570A1 (en) Condenser microphone
TWI405472B (en) Electronic device and electro-acoustic transducer thereof
US8280081B2 (en) Electrode connection structure of speaker unit
TW200913754A (en) Electrostatic electroacoustic transducers
US20120051564A1 (en) Flat speaker structure and manufacturing method thereof
US8824723B2 (en) Electro-acoustic transducer and method of manufacturing the same
KR20080049639A (en) Manufacturing method of condenser microphone and condenser microphone
CN101656906B (en) Speaker monomer structure
JP2008047953A (en) Case of microphone, and microphone
JP2007104371A (en) Electrostatic ultrasonic wave transducer
CN114586185A (en) Piezoelectric element
JP2007082052A (en) Electrostatic ultrasonic transducer and manufacturing method thereof
KR101500562B1 (en) Piezoelectric Speaker
JPH0378040B2 (en)
JP2007104521A (en) Electrostatic ultrasonic transducer and method of manufacturing same
US20100322439A1 (en) Capacitor microphone unit and capacitor microphone
KR20110005148A (en) Film type piezo speaker and manufacturing method thereof
JP2004364334A (en) Piezoelectric acoustic transducer
CN206226720U (en) A kind of pair of backplane MEMS sound-producing device and electronic equipment
JP2007228472A (en) Electrostatic ultrasonic transducer, configuration method of electrostatic ultrasonic transducer, and ultrasonic speaker
CN220528233U (en) Double-vibrating-diaphragm electrostatic loudspeaker
JP2007158889A (en) Electrostatic ultrasonic transducer, method for manufacturing the electrostatic ultrasonic transducer, and ultrasonic speaker

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070405

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106