JP2007103847A - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
JP2007103847A
JP2007103847A JP2005294867A JP2005294867A JP2007103847A JP 2007103847 A JP2007103847 A JP 2007103847A JP 2005294867 A JP2005294867 A JP 2005294867A JP 2005294867 A JP2005294867 A JP 2005294867A JP 2007103847 A JP2007103847 A JP 2007103847A
Authority
JP
Japan
Prior art keywords
substrate
photoconductive layer
pixel
photoconductive
pixel electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005294867A
Other languages
English (en)
Inventor
Hiroshi Horiuchi
弘 堀内
Hiroyuki Aida
博之 會田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2005294867A priority Critical patent/JP2007103847A/ja
Publication of JP2007103847A publication Critical patent/JP2007103847A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】解像度特性に優れた放射線検出器を提供する。
【解決手段】放射線検出器は、基板10と、基板上に互いに隙間を置いて配設された複数の画素電極19と、画素電極に接して前記基板上に設けられた光導電層20と、光導電層に所定のバイアス電圧を印加可能なバイアス電極層23とを備えている。光導電層20は、それぞれ画素電極19に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する複数の分割部21と、分割部間に設けられた絶縁性の他の分割部22とを有している。
【選択図】 図2

Description

この発明は、放射線検出器に関し、特に、直接変換方式の放射線検出器に関する。
近年、新世代のX線診断用検出器としてアクティブマトリックス型のX線平面検出器が大きな注目を集めている。このX線平面検出器において、照射されたX線を検出することにより、X線撮影像またはリアルタイムのX線画像がデジタル信号として出力される。X線平面検出器は固体検出器であることから、画質性能や安定性の面でも極めて期待が大きい。このため、多くの大学やメーカーが研究開発に取り組んでいる。
実用化の最初の用途として、比較的大きなX線量で、静止画像を収集する人体の胸部・一般撮影用に開発され、近年商品化されている。より高い技術的なハードルをクリアして、透視線量下で毎秒30コマ以上のリアルタイム動画を実現させる必要のある循環器、消化器分野への応用に対しても近い将来に商品化が予想される。この動画用途に対しては、ノイズ(S/N:シグナル/ノイズ比)の改善や微小信号のリアルタイム処理技術等が重要な開発項目となっている。
X線平面検出器には、大きく分けて直接変換方式と間接変換方式との2通りがある。
直接変換方式は、X線をa−Seなどの光導電膜を用いて直接信号電荷に変換し、変換した信号電荷を電荷蓄積用キャパシタに蓄積する方式である(例えば、特許文献1参照)。この直接変換方式は、X線により発生した光導電電荷を高電界により直接に電荷蓄積用キャパシタに導く方式である。
一方、間接変換方式は、シンチレータ層によりX線を受けて一旦可視光に変換し、可視光をa−SiフォトダイオードやCCDにより信号電荷に変換して、電荷蓄積用キャパシタに導く方式である。シンチレータ層からの可視光は、フォトダイオードやCCDに到達する迄に光学的な拡散及び散乱が生じてしまうため、解像度特性が低下してしまう。
特開2005−33003号公報
上記したX線平面検出器において、特に直接変換方式のX線平面検出器は、アクティブマトリックスの画素ピッチで規定される解像度特性を得ることが求められている。このため、X線平面検出器の解像度特性の低下を抑制する技術が求められる。
この発明は以上の点に鑑みなされたもので、その目的は、解像度特性に優れた放射線検出器を提供することにある。
上記課題を解決するため、本発明の態様に係る放射線検出器は、
基板と、
前記基板上に、かつ、この基板の平面に平行な面方向に1次元または2次元的に互いに隙間を置いて配設された複数の画素電極と、
前記画素電極に接して前記基板上に設けられた光導電層と、
前記光導電層に所定のバイアス電圧を印加可能なバイアス電極層とを備え、
前記光導電層は、それぞれ前記画素電極に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する複数の分割部と、前記分割部間に設けられた絶縁性の他の分割部とを有している。
また、本発明の他の態様に係る放射線検出器は、
基板と、
前記基板上に、かつ、この基板の平面に平行な面方向に1次元または2次元的に互いに隙間を置いて配設された複数の画素電極と、
前記画素電極に接して前記基板上に設けられた光導電層と、
前記光導電層に所定のバイアス電圧を印加可能なバイアス電極層とを備え、
前記光導電層は、それぞれ前記画素電極に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する複数の分割部と、前記分割部間に設けられているとともにこれら分割部と放射線吸収率の異なる他の分割部とを有している。
また、本発明の他の態様に係る放射線検出器は、
基板と、
前記基板上に、かつ、この基板の平面に平行な面方向に1次元または2次元的に互いに隙間を置いて配設された複数の画素電極と、
前記画素電極に接して前記基板上に設けられた光導電層と、
前記光導電層に所定のバイアス電圧を印加可能なバイアス電極層とを備え、
前記光導電層は、それぞれ前記画素電極に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する複数の分割部と、前記分割部間に設けられているとともにこれら分割部と放射線吸収率の異なる絶縁性の他の分割部とを有している。
この発明によれば、解像度特性に優れた放射線検出器を提供することができる。
以下、図面を参照しながらこの発明の放射線検出器を直接変換方式のX線検出器に適用した実施の形態について詳細に説明する。
図1及び図2に示すように、X線検出器は、アクティブマトリクス型の光電変換基板1を備えている。光電変換基板1は、ガラス等の絶縁性の材料で形成されているとともに画素領域Rを有した矩形状の基板10と、複数の第1駆動線11と、複数の第2駆動線12と、入射されるX線(放射線)の量に対応した電荷信号を出力する複数の画素部15とを備えている。
複数の画素部15は基板10の画素領域Rに設けられている。より詳しくは、複数の画素部15は、複数の第1駆動線11及び複数の第2駆動線12で囲まれたマトリクス状の複数の領域に設けられている。図1に示した例では、16個の画素部15が図示されている。
複数の第1駆動線11及び複数の第2駆動線12は基板10上に配設されている。画素領域Rにおいて、複数の第1駆動線11及び複数の第2駆動線12は互いに交差して配設されている。
画素部15は、スイッチング素子としてのTFT(薄膜トランジスタ)16と、蓄積コンデンサ17と、画素電極19とを備えている。
TFT16は、基板10上に形成され、第1駆動線11の一部を延出したゲート電極16aと、基板及びゲート電極上に形成されたゲート絶縁膜16bと、ゲート電極に重ねてゲート絶縁膜上に形成された半導体膜16cと、半導体膜のソース領域に接続されたソース電極16dと、半導体膜のドレイン領域に接続されたドレイン電極16eとで形成されている。
蓄積コンデンサ17は、基板10上に形成された下部電極17aと、ゲート絶縁膜16bを介して下部電極に対向して設けられた上部電極17bとで形成されている。上部電極17bは、TFT16のドレイン電極16eと電気的に接続されている。
画素電極19は、TFT16及び蓄積コンデンサ17上の絶縁層18上に形成され、この絶縁層の一部に形成されたスルーホール18hを介してTFT16のドレイン電極16eに電気的に接続されている。絶縁層18は酸化珪素(SiO)等で形成されている。画素電極19は、基板10の平面に平行な面方向にマトリクス状に配設けられているとともに互いに隙間を置いて設けられている。
この実施の形態において、画素電極19は、矩形状であり、より詳しくは幅wが125μm、長さlが125μmの正方形である。隣合う画素電極19間の隙間gは25μmである。隣合う画素電極19間のピッチpは、150μmである。
光電変換基板1は、さらに、画素電極19に接して設けられているとともに絶縁層18及び画素電極19上に形成された光導電層20と、この光導電層上に形成されたバイアス電極層23と、このバイアス電極層上に形成された絶縁層24と、この絶縁層24上に形成された遮蔽部としてのX線グリッド25とを備えている。
バイアス電極層23は、光導電層20に所定のバイアス電圧を印加可能に形成されている。X線グリッド25は、バイアス電極層23上に絶縁層24等を介して設けられているとともに画素電極19間に重なっている。このため、X線グリッド25は、画素部15に隣合う画素部から入射されるX線を遮蔽する機能を有し、散乱X線による解像度特性の低下を抑制している。
図2及び図3に示すように、光導電層20は、複数の分割部21と、他の分割部22とを有している。分割部21は、それぞれ画素電極19に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する機能を有している。この実施の形態において、他の分割部22は、分割部21間に設けられているとともにこれら分割部より放射線吸収率が高く形成されている。この実施の形態において、分割部21は高感度光導電材料としてのPbIで形成され、他の分割部22はCsIで形成されている。他の分割部22は絶縁性の材料で形成されている。光導電層20の膜厚は、例えば400μmである。
次に、上記したようなX線検出器を用いて例えば人体を検査し、X線像を撮影する場合について説明する。
まず、光電変換基板1およびX線管を人体を挟むように配置する。光電変換基板1のバイアス電極層23に所定のバイアス電圧Vbが印加された状態で、X線管から光電変換基板1に向けてX線が当てられる。
X線は人体を透過する等して光電変換基板1の光導電層20に照射される。これにより、分割部21で生起された電荷20aはバイアス電極層23に印加されているバイアス電圧Vbにより方向付けられる電界により、任意の各画素部15の画素電極19に移動する。他の分割部22では電荷の生起が抑制されるため、他の分割部22は、画素部15に隣合う画素部から入射されるX線によって生じる不要な電荷の生起を抑制している。このように、他の分割部22はX線グリッド25とともに散乱X線による解像度特性の低下を抑制している。さらに、他の分割部22は絶縁性を有しているため、画素部15に隣合う画素部からのリーク電流(電荷の移動)を抑制することができ、解像度特性の低下を抑制している。
なお、図2においては、電子eがバイアス電極層23に、ホール(正孔)hが画素電極19にそれぞれ向かう状態として説明されている。画素電極19に移動した電荷20aは、TFT16のドレイン電極16eを経由して各蓄積コンデンサ17に蓄積される。
続いて、第1駆動線11にTFT16をオン状態またはオフ状態に切替えるための駆動信号が入力される。ここで、駆動信号は図示しない駆動回路から出力されている。駆動信号によりTFT16がオン状態になると、各画素部15の蓄積コンデンサ17に蓄積された電荷は電荷信号として第2駆動線12に出力され、第2駆動線を介して図示しない信号処理部に伝送される。
信号処理部に伝送された電荷信号は信号処理され、例えばモニタに伝送される。これにより、モニタの表示画面にはX線検出器によって撮影された画像を表示させることができる。なお、TFT16をオン状態にする駆動信号は第1駆動線11毎に、それぞれ位相をずらして入力される。
次に、光導電層20の形成方法について説明する。
光導電層20を形成する際、まず、図4に示すように、TFT16、蓄積コンデンサ17、絶縁層18及び画素電極19が形成された基板10を用意する。続いて、図5に示すように、基板10上に、画素電極19に重ならずに絶縁層18に重なるようにマスク30を配置する。その後、基板10全面に、PbIを真空蒸着法により膜厚12.5μmに蒸着させる。そして、マスク30を取り除くことにより、画素電極19上にのみ膜厚12.5μmのPbI膜21aが形成される。
次いで、図6に示すように、基板10上に、画素電極19にのみ重なるようにマスク40を配置する。その後、基板10全面に、CsIを真空蒸着法により膜厚12.5μmに蒸着させる。そして、マスク40を取り除くことにより、画素電極19間の絶縁層18上にのみ膜厚12.5μmのCsI膜22aが形成される。
ここで、真空蒸着法を用いる場合において、CsI膜22aを形成可能とするCsI膜22aと、このCsI膜を形成する幅との比(アスペクト比:CsI膜/CsI膜を形成する幅)を0.5とした場合、CsI膜22aの形成可能な膜厚が判る。上記したことは、CsI膜を形成する幅が上記間隔gと同様25μmであることによる。
そして、上記したようにPbIの蒸着と、CsIの蒸着とを交互に64回繰り返すことにより膜厚400μmの分割部21と、膜厚400μmの他の分割部22とを有した光導電層20を形成することができる。
以上のように構成されたX線検出器によれば、光導電層20は、高感度光導電材料で形成された複数の分割部21と、分割部と異なる放射線吸収率を有した絶縁性の他の分割部22とを有している。他の分割部22は、画素部15に隣合う画素部から入射されるX線によって生じる不要な電荷の生起を抑制することができるため、X線検出器の解像度特性の低下を抑制することができる。
光導電層20は高密度な材料で形成され、この光導電層を高感度光導電材料でのみ基板10上に一様に形成した場合、光導電層20の体積抵抗率は絶縁層18に対して小さくなり、さらに、隣合う画素電極19間に電位差が生じた場合には、画素電極19に隣合う画素電極から流れる微小なリーク電流が発生してしまう可能性がある。
しかしながら、他の分割部22は、画素部15に隣合う画素部からのリーク電流を抑制することができるため、X線検出器の解像度特性の低下を抑制することができる。このため、高解像度特性が要求されるマンモグラフィ用途等において特に有用である。
また、高密度の光導電層20を高感度光導電材料でのみ基板10上に一様に形成した場合、光導電層20は入射したX線に対する出力信号強度と十分なX線吸収率とを得るために数百μm以上の膜厚に形成する必要がある。この場合、形成時の光導電層20に大きな内部応力が発生してしまい、光導電層20の剥がれ及び基板10の反り等による諸特性及び信頼性の低下が生じてしまう。
しかしながら、この実施の形態において、光導電層20は分割部21と分割部と異なる放射線吸収率を有した他の分割部22とで形成されているため、光導電層20形成時の内部応力を大幅に緩和させることができる。これにより、光導電層20が大面積であっても、他の分割部22は光導電層20の剥がれ及び基板10の反り等による信頼性の低下を抑制することが可能となり、X線検出器の解像度特性の低下の抑制にも寄与することができる。
ここで、上記内部応力について説明する。
内部応力とは、内部応力とは,薄基板上に気相成長法等により薄膜を形成した場合において,薄膜が形成された薄基板に曲がり等の変形を生じさせる薄膜中の応力の事を示している。主な発生原因としては、(1)薄基板と薄膜材料の熱膨張係数差(熱応力)、(2)薄基板と薄膜材料の格子定数の不一致、(3)薄膜の格子欠陥の消失、(4)薄基板と薄膜材料の表面張力差等が挙げられる(一般的には単一では無く、複合要因となる事が多い)が、最も一般的な要因は熱応力である。
この実施の形態においても熱応力が支配的であり、分割部21(PbI)と基板10(ガラス)とでは熱膨張係数差が10倍程度存在する。また、内部応力は高密度な厚膜を形成する場合の方が,低密度な薄膜を形成するよりも影響が大きくなる。
分割部21は画素電極19に重ねて形成したが、この分割部21はTFT16及び蓄積コンデンサ17の上方にも形成されているため、これらTFT及び蓄積コンデンサのX線耐性の向上に寄与することができる。これにより、光電変換基板1の寿命及び信頼性を向上させることができるため、X線検出器自体の寿命及び信頼性も向上させることができる。
上記したことから、解像度特性に優れ、光導電層20の大面積化に対する信頼性が改善でき、寿命及び信頼性を向上させることができるX線検出器を得ることができる。
なお、この発明は、上述した実施の形態に限定されることなく、この発明の範囲内で種々変形可能である。例えば、光導電層20を形成する際、始めにCsIを蒸着させて形成しても上述した効果を得ることができる。光導電層20の形成方法は、上記真空蒸着法に限定されるものではなく、スパッタリング法、CVD法、高感度光導電材料とバインダーとの混合塗布法、スクリーン印刷若しくはインクジェット印刷を含む印刷法、高感度光導電材料の粒子を圧縮成型する方法、液相成長法等を用いても上述した効果を得ることができる。
また、分割部21を形成する高感度光導電材料をPbIとした場合、他の分割部22を形成する材料はCs、Ba、Hf、Ta、W、Hg、Pb、Bi等の重金属元素を主成分とする材料、並びにCs、Ba、Hf、Ta、W、Hg、Pb、Bi等の重金属元素を主成分とする酸化物、窒化物及び沃化物等が挙げられる。ただし、PbIを除く。
他の分割部22は、分割部21より放射線吸収率が低く形成されても良い。
上述した実施の形態ではX線検出器について説明したが、これに限らずγ線等、他の放射線を検出する放射線検出器に適用することができる。
この発明の実施の形態に係るX線検出器の光電変換基板の一部を模式的に示す概略図。 上記光電変換基板の一部を拡大して模式的に示す断面図。 上記光電変換基板の画素電極及び光導電層を取り出して光導電層側からみた平面図。 上記光電変換基板の光導電層の製造工程を示す断面図。 図4に続く上記光電変換基板の光導電層の製造工程を示す断面図。 図5に続く上記光電変換基板の光導電層の製造工程を示す断面図。
符号の説明
1…光電変換基板、10…基板、15…画素部、16…TFT、17…蓄積コンデンサ、18…絶縁層、19…画素電極、20…光導電層、21…分割部、22…他の分割部、23…バイアス電極層、24…絶縁層、25…X線グリッド。

Claims (3)

  1. 基板と、
    前記基板上に、かつ、この基板の平面に平行な面方向に1次元または2次元的に互いに隙間を置いて配設された複数の画素電極と、
    前記画素電極に接して前記基板上に設けられた光導電層と、
    前記光導電層に所定のバイアス電圧を印加可能なバイアス電極層とを備え、
    前記光導電層は、それぞれ前記画素電極に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する複数の分割部と、前記分割部間に設けられた絶縁性の他の分割部とを有している放射線検出器。
  2. 基板と、
    前記基板上に、かつ、この基板の平面に平行な面方向に1次元または2次元的に互いに隙間を置いて配設された複数の画素電極と、
    前記画素電極に接して前記基板上に設けられた光導電層と、
    前記光導電層に所定のバイアス電圧を印加可能なバイアス電極層とを備え、
    前記光導電層は、それぞれ前記画素電極に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する複数の分割部と、前記分割部間に設けられているとともにこれら分割部と放射線吸収率の異なる他の分割部とを有している放射線検出器。
  3. 基板と、
    前記基板上に、かつ、この基板の平面に平行な面方向に1次元または2次元的に互いに隙間を置いて配設された複数の画素電極と、
    前記画素電極に接して前記基板上に設けられた光導電層と、
    前記光導電層に所定のバイアス電圧を印加可能なバイアス電極層とを備え、
    前記光導電層は、それぞれ前記画素電極に重なっているとともに入射される放射線の強度に対応する大きさの電荷に変換する複数の分割部と、前記分割部間に設けられているとともにこれら分割部と放射線吸収率の異なる絶縁性の他の分割部とを有している放射線検出器。
JP2005294867A 2005-10-07 2005-10-07 放射線検出器 Withdrawn JP2007103847A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294867A JP2007103847A (ja) 2005-10-07 2005-10-07 放射線検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294867A JP2007103847A (ja) 2005-10-07 2005-10-07 放射線検出器

Publications (1)

Publication Number Publication Date
JP2007103847A true JP2007103847A (ja) 2007-04-19

Family

ID=38030458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294867A Withdrawn JP2007103847A (ja) 2005-10-07 2005-10-07 放射線検出器

Country Status (1)

Country Link
JP (1) JP2007103847A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231715A (ja) * 2008-03-25 2009-10-08 Toshiba Corp X線検出器
WO2015182099A1 (en) 2014-05-30 2015-12-03 Canon Kabushiki Kaisha Radiation detection element, radiation detector, and method for producing radiation detection element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231715A (ja) * 2008-03-25 2009-10-08 Toshiba Corp X線検出器
WO2015182099A1 (en) 2014-05-30 2015-12-03 Canon Kabushiki Kaisha Radiation detection element, radiation detector, and method for producing radiation detection element

Similar Documents

Publication Publication Date Title
JP5669882B2 (ja) 画像検出器
Kasap et al. Direct-conversion flat-panel X-ray image detectors
JP5043374B2 (ja) 変換装置、放射線検出装置、及び放射線検出システム
KR101894392B1 (ko) 다중 에너지 방사선 검출기 및 그 제조 방법
US20110303849A1 (en) Dual screen radiographic detector with improved spatial sampling
US9401382B2 (en) Image sensor and manufacturing method thereof
US7655920B2 (en) Conversion apparatus, radiation detection apparatus, and radiation detection system
US20100051820A1 (en) X-ray detecting element
JP2010034520A (ja) 放射線検出装置及び放射線撮像システム
JP2007329434A (ja) 放射線撮像装置及び放射線撮像システム
US7576327B2 (en) Radiation image detector and driving method for the same
KR102563942B1 (ko) 하이브리드 액티브 매트릭스 평판 감지기 시스템 및 방법
JP2015133408A (ja) 放射線検出器
JP2005327817A (ja) 放射線検出器
JP2007103847A (ja) 放射線検出器
EP2169719B1 (en) X-ray detector and its method of fabrication
JP6306334B2 (ja) 放射線検出器およびその製造方法
JP2007103846A (ja) 放射線検出器
JP2007303876A (ja) 放射線検出器
JP2005033002A (ja) 放射線検出器およびその製造方法
JP2005268722A (ja) 放射線検出器およびその製造方法
JP2006059901A (ja) 放射線検出器
JP5235466B2 (ja) 放射線画像撮影装置
JP2006189296A (ja) 放射線検出装置およびその製造方法
JP2007093257A (ja) 放射線検出器

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106