JP2007103179A - Circuit breaking method and current breaking element - Google Patents

Circuit breaking method and current breaking element Download PDF

Info

Publication number
JP2007103179A
JP2007103179A JP2005291923A JP2005291923A JP2007103179A JP 2007103179 A JP2007103179 A JP 2007103179A JP 2005291923 A JP2005291923 A JP 2005291923A JP 2005291923 A JP2005291923 A JP 2005291923A JP 2007103179 A JP2007103179 A JP 2007103179A
Authority
JP
Japan
Prior art keywords
current
thin film
conductive thin
circuit
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291923A
Other languages
Japanese (ja)
Inventor
Kenichi Nobe
健一 野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2005291923A priority Critical patent/JP2007103179A/en
Publication of JP2007103179A publication Critical patent/JP2007103179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current breaking method capable of blocking a circuit from a power source after a prescribed accumulated current supplying period by utilizing electro-migration, and to provide a current breaking element used for the current breaking method. <P>SOLUTION: A prescribed current I is made to flow through a conductive thin film 3 to be broken by electro-migration, through which a current is made to flow, and the current breaking element A having a resistor film 4 for electric heating heating the conductive film 3 up to a prescribed temperature, while current is flowing through a circuit Z. When the accumulated current supplying period reaches a prescribed value, the circuit Z is blocked from the power source S by a wire breakage caused by the electro-migration of the conductive thin film 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回路の遮断方法及び電流遮断素子に関し、回路の累積課電時間が一定時間に達した時に回路を電源から遮断するのに有用なものである。   The present invention relates to a circuit interrupting method and a current interrupting element, and is useful for interrupting a circuit from a power source when the accumulated power application time of the circuit reaches a certain time.

LSIのAl配線には、10〜10A/cmオーダーの電流密度の電流が流されており、これを断面積1mm×1mmの導体に流れる電流に換算すると、100〜1000Aオーダに相当するが、LSI配線の厚みが1μm程度であって発熱量が放熱能力を越えることがないために、実質上ジュール熱の発生はない。
しかしながら、電流のキャリアである電子流の密度が大きいために、Al原子と電子との衝突により相当の運動量変換が行われ、電子から運動量を享受したAl原子が格子位置を離れ、拡散が生じ易い結晶粒界に沿って電子の流れ方向に移動し、徐々に空孔が形成されていき、遂には破断に至ることがある。
この現象は、エレクトロマイグレーションと称されており、エレクトロマイグレーション開始からエレクトロマイグレーション断線までの時間MTF(h)はBlackの経験式
MTF=AJ−nexp(Ea/kT)
で表すことができる。
ただし、A:配線固有の定数、J:電流密度、n:電流密度依存性を示す定数、Ea:活性化エネルギー、T:配線部の絶対温度である。
A current having a current density on the order of 10 4 to 10 5 A / cm 2 is passed through the Al wiring of the LSI, and when converted to a current flowing through a conductor having a cross-sectional area of 1 mm × 1 mm, it corresponds to an order of 100 to 1000 A. However, since the thickness of the LSI wiring is about 1 μm and the amount of generated heat does not exceed the heat dissipation capability, there is virtually no generation of Joule heat.
However, since the density of the electron current, which is a carrier of current, is large, considerable momentum conversion is performed by collision between Al atoms and electrons, and Al atoms that enjoyed momentum from electrons leave the lattice position and are likely to diffuse. It moves in the direction of electron flow along the grain boundary, and vacancies are gradually formed, eventually leading to breakage.
This phenomenon is referred to as electromigration, and the time MTF (h) from the start of electromigration to electromigration disconnection is expressed by Black's empirical formula MTF = AJ− n exp (Ea / kT)
It can be expressed as
However, A: Constant specific to wiring, J: Current density, n: Constant indicating current density dependence, Ea: Activation energy, T: Absolute temperature of wiring part.

従来、LSIにおいて、エレクトロマイグレーションにより配線をヒューズカット状態にするために、配線にクランク状の屈曲パターン部を形成し、電流密度の高い入隅コーナ箇所をエレクトロマイグレーションにより断線させることが公知である(特許文献1)。
特開2005−101267号公報
Conventionally, in an LSI, in order to put a wiring into a fuse cut state by electromigration, it is known that a crank-shaped bent pattern portion is formed in the wiring and a corner portion having a high current density is disconnected by electromigration ( Patent Document 1).
JP 2005-101267 A

しかしながら、特許文献1に開示されたエレクトロマイグレーション利用の電流遮断方法では、温度管理が行われていないために所望の累積課電時間後に回路を電源から遮断する、時限的な遮断を行うことは難しい。   However, in the current interruption method using electromigration disclosed in Patent Document 1, since temperature control is not performed, it is difficult to perform a timely interruption, in which the circuit is disconnected from the power supply after a desired cumulative voltage application time. .

本発明の目的は、エレクトロマイグレーションを利用して一定の累積課電時間後に回路を電源から遮断できる回路の遮断方法及びその方法に使用する電流遮断素子を提供することにある。   An object of the present invention is to provide a circuit interruption method capable of interrupting a circuit from a power source after a certain cumulative power application time using electromigration and a current interruption element used in the method.

請求項1に係る電流遮断素子は、電流が流されてエレクトロマイグレーションにより断線される導電薄膜とこの導電薄膜を所定の温度に加熱する通電発熱用抵抗膜を有することを特徴とする。
請求項2に係る電流遮断素子は、請求項1の電流遮断素子において、導電薄膜及び通電発熱用抵抗膜を絶縁基板上に設け、この絶縁基板を保温被覆層または保温カバーで封止したことを特徴とする。
請求項3に係る回路の遮断方法は、回路の課電時に請求項1または2記載の電流遮断素子に一定の電流を流し、導電薄膜のエレクトロマイグレーションによる断線で回路を電源から遮断することを特徴とする。
請求項4に係る回路の遮断方法は、請求項3の回路の遮断方法において、通電発熱用抵抗膜の抵抗値を調節することにより抵抗膜の通電発熱温度を所定値に設定し、導電薄膜のエレクトロマイグレーション断線時間を所定値に設定することを特徴とする。
請求項5に係る回路の遮断方法は、請求項3または4の回路の遮断方法において、導電薄膜の断面積を調節することにより、導電薄膜のエレクトロマイグレーション断線時間を所定値に設定することを特徴とする。
請求項6に係る回路の遮断方法は、請求項3〜5何れかの回路の遮断方法において、回路電流の分流を導電薄膜に流し、その分流比を調整することにより導電薄膜の電流密度を設定して導電薄膜のエレクトロマイグレーション断線時間を所定値に設定することを特徴とする。
According to a first aspect of the present invention, there is provided a current interrupting device comprising a conductive thin film that is disconnected by electromigration when a current is passed, and a conductive heat generating resistance film that heats the conductive thin film to a predetermined temperature.
The current interrupting device according to claim 2 is the current interrupting device according to claim 1, wherein the conductive thin film and the resistance heating film are provided on the insulating substrate, and the insulating substrate is sealed with a heat insulating coating layer or a heat insulating cover. Features.
According to a third aspect of the present invention, there is provided a circuit interruption method in which a constant current is supplied to the current interruption element according to the first or second aspect when the circuit is applied, and the circuit is interrupted from the power source by disconnection due to electromigration of the conductive thin film. And
The circuit cutoff method according to claim 4 is the circuit cutoff method according to claim 3, wherein the energization heat generation temperature of the resistance film is set to a predetermined value by adjusting a resistance value of the energization heat generation resistance film. The electromigration disconnection time is set to a predetermined value.
The circuit interruption method according to claim 5 is the circuit interruption method according to claim 3 or 4, wherein the electromigration disconnection time of the conductive thin film is set to a predetermined value by adjusting a cross-sectional area of the conductive thin film. And
The circuit cutoff method according to claim 6 is the circuit cutoff method according to any one of claims 3 to 5, wherein a current shunt of the circuit is set by flowing a shunt current of the circuit current through the conductive thin film and adjusting the shunt ratio. Then, the electromigration disconnection time of the conductive thin film is set to a predetermined value.

通電発熱用抵抗膜の通電発熱により導電薄膜の温度を一定にでき、回路の課電中、回路電流一定のもとで導電薄膜を一定の侵食速度でエレクトロマイグレーションさせ得、回路の所定の累積課電時間で導電薄膜をエレクトロマイグレーション断線させるように、導電薄膜に流す電流の密度J、導電薄膜の温度Tを設定することにより、回路を予め設定した累積課電時間後に電源から遮断して使用不可の状態にできる。   The temperature of the conductive thin film can be made constant by energization heat generation of the resistance heating film, and the electroconductive thin film can be electromigrated at a constant erosion rate under a constant circuit current during circuit application, and the predetermined cumulative charge of the circuit can be obtained. By setting the density J of the current flowing through the conductive thin film and the temperature T of the conductive thin film so that the electroconductive thin film is electromigration-disconnected in the electric time, the circuit is disconnected from the power supply after a preset cumulative charging time and cannot be used. Can be in the state of.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明において使用する電流遮断素子を示し上面説明図、図1の(ロ)は図1の(イ)におけるロ−ロ断面図である。
図1において、1は絶縁基板であり、例えばセラミックス板、ガラス板等を使用できる。21〜23は絶縁基板1の片面に設けられた膜電極であり、導体ペイント、例えば銀系ペイント、銅系ペイント等の印刷・焼付けにより形成することができる。3は膜電極21と膜電極23とに接続されて絶縁基板1上に設けられたエレクトロマイグレーションにより断線される導電薄膜であり、その厚みは数μmオーダ、通常1μm程度とされる。この導電薄膜3には、純アルミニウムや銀を使用でき、抵抗加熱蒸着やスパッタリングにより形成できる。4は膜電極22と膜電極23とに接続されて絶縁基板1上に設けられた通電発熱用抵抗膜であり、抵抗体ペイント、例えば酸化ルテニウムペイントの印刷・焼付けにより形成できる。51〜53は各膜電極に接続されたリード導体である。6は基板1の片面上に設けられた被覆層、例えばエポキシ樹脂塗料の滴下塗布層であり、前記の導電薄膜及び抵抗膜を封止すると共に保温している。この被覆層に代え、樹脂キャツプやセラミックスキャツプによる封止を使用することもできる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a top view illustrating a current interrupting element used in the present invention, and FIG. 1B is a cross-sectional view of FIG.
In FIG. 1, reference numeral 1 denotes an insulating substrate, and for example, a ceramic plate or a glass plate can be used. 21 to 23 are film electrodes provided on one surface of the insulating substrate 1 and can be formed by printing and baking conductor paint such as silver paint or copper paint. Reference numeral 3 denotes a conductive thin film connected to the membrane electrode 21 and the membrane electrode 23 and disconnected on the insulating substrate 1 by electromigration, and the thickness thereof is on the order of several μm, usually about 1 μm. The conductive thin film 3 can be made of pure aluminum or silver, and can be formed by resistance heating vapor deposition or sputtering. Reference numeral 4 denotes a resistance heating film provided on the insulating substrate 1 connected to the membrane electrode 22 and the membrane electrode 23, and can be formed by printing or baking a resistor paint such as ruthenium oxide paint. 51 to 53 are lead conductors connected to the respective membrane electrodes. Reference numeral 6 denotes a coating layer provided on one surface of the substrate 1, for example, a dripping coating layer of an epoxy resin paint, which seals the conductive thin film and the resistance film and keeps them warm. Instead of this coating layer, sealing with a resin cap or a ceramic cap can also be used.

図2の(イ)は本発明において使用する電流遮断素子の別例を示し上面説明図、図2の(ロ)は図2の(イ)におけるロ−ロ断面図である。
図2において、1はセラミックス板、ガラス板等の絶縁基板である。21,22は絶縁基板1の片面に設けられた膜電極であり、導体ペイント、例えば銀系ペイント、銅系ペイント等の印刷・焼付けにより形成することができる。4は膜電極21と膜電極22とに接続されて絶縁基板1上に設けられた通電発熱用抵抗膜であり、抵抗体ペイント、例えば酸化ルテニウムペイントの印刷・焼付けにより形成できる。7は抵抗膜4上にコートされた熱良伝導性の絶縁膜であり、例えばガラスの塗布・焼付けにより設けることができる。3は膜電極21と膜電極22とに接続されて絶縁膜7上に設けられたエレクトロマイグレーションにより断線される導電薄膜であり、その厚みは数μmオーダ、通常1μm程度とされ、前記と同様、純アルミニウムや銀を使用でき、抵抗加熱蒸着やスパッタリングにより形成できる。51,52は各膜電極に接続されたリード導体である。6は基板1の片面上に設けられた被覆層、例えばエポキシ樹脂塗料の滴下塗布層であり、前記の導電薄膜及び抵抗膜を封止すると共に保温している。この被覆層に代え、樹脂キャツプやセラミックスキャツプによる封止を使用することもできる。
FIG. 2A is a top view illustrating another example of the current interrupting element used in the present invention, and FIG. 2B is a cross-sectional view of FIG.
In FIG. 2, reference numeral 1 denotes an insulating substrate such as a ceramic plate or a glass plate. Reference numerals 21 and 22 denote film electrodes provided on one surface of the insulating substrate 1 and can be formed by printing or baking a conductor paint such as silver paint or copper paint. Reference numeral 4 denotes a resistance heating film which is connected to the membrane electrode 21 and the membrane electrode 22 and is provided on the insulating substrate 1 and can be formed by printing / baking a resistor paint such as ruthenium oxide paint. Reference numeral 7 denotes a heat-conductive insulating film coated on the resistance film 4 and can be provided, for example, by applying or baking glass. 3 is a conductive thin film which is connected to the membrane electrode 21 and the membrane electrode 22 and is disconnected by electromigration provided on the insulating film 7, and its thickness is on the order of several μm, usually about 1 μm. Pure aluminum or silver can be used, and can be formed by resistance heating vapor deposition or sputtering. Reference numerals 51 and 52 denote lead conductors connected to the respective membrane electrodes. Reference numeral 6 denotes a coating layer provided on one surface of the substrate 1, for example, an epoxy resin paint dropping coating layer, which seals the conductive thin film and the resistance film and keeps them warm. Instead of this coating layer, sealing with a resin cap or a ceramic cap can also be used.

図3は本発明に係る回路の遮断方法を説明するために使用した回路図であり、負荷Zと電源Sとの間にスイッチswと上記の電流遮断素子Aとを接続し、電源Sをスイッチオンすると導電薄膜3に一定の電流Iが流れ、抵抗膜4に一定の電流I’が流れてその抵抗膜4の通電発熱で導電薄膜3が一定の温度Tに加熱されるようにしてある。
導電薄膜3の電流値Iは、その電流密度Jで導電薄膜3がエレクトロマイグレーションされるオーダ範囲内での一定値に設定されている。
図3において、rは抵抗膜4の通電発熱温度を所望の一定温度に設定するための可変抵抗である。
FIG. 3 is a circuit diagram used for explaining the circuit shutoff method according to the present invention. The switch sw and the current interrupt device A are connected between the load Z and the power source S, and the power source S is switched. When turned on, a constant current I flows through the conductive thin film 3, a constant current I ′ flows through the resistance film 4, and the conductive thin film 3 is heated to a constant temperature T by energization heat generation of the resistance film 4.
The current value I of the conductive thin film 3 is set to a constant value within an order range in which the conductive thin film 3 is electromigrated at the current density J.
In FIG. 3, r is a variable resistance for setting the energization heat generation temperature of the resistance film 4 to a desired constant temperature.

図3において、導電薄膜3乃至は電流遮断素子Aの温度を検知し、導電薄膜3の温度を所望の一定値Tにするように抵抗膜通電電流I’をオン・オフする制御回路を設けたり、回路電流をバイパス回路に分流させそのバイパス回路に電流遮断素子の導電薄膜を挿入しその分流電流を一定とする電流一定化回路を設けたりすることができるが、これらの図示は省略してある。   In FIG. 3, a control circuit for detecting the temperature of the conductive thin film 3 or the current interrupting element A and turning on / off the resistance film current I ′ so as to keep the temperature of the conductive thin film 3 at a desired constant value T is provided. It is possible to provide a current stabilizing circuit that diverts the circuit current to the bypass circuit and inserts a conductive thin film of a current interrupting element into the bypass circuit to make the shunt current constant, but these are not shown in the figure. .

図3において、負荷Zが課電されると、導電薄膜3に一定電流密度Jの電流が流れ、電流のキャリアである電子流の密度が大きいために、導電薄膜3の金属原子と電子との衝突により運動量変換が行われ、電子から運動量を享受した導電薄膜3の金属原子が格子位置を離れ、拡散が生じ易い結晶粒界に沿って電子の流れ方向に移動し、徐々に空孔が形成されていき、回路の累積課電時間MTFが前記した
MTF=AJ−nexp(Ea/kT)
に達すると、導電薄膜3がエレクトロマイグレーション断線して回路Zが電源Sから遮断される。
In FIG. 3, when a load Z is applied, a current having a constant current density J flows through the conductive thin film 3, and the density of the electron current which is a carrier of the current is large. Momentum conversion is performed by collision, and the metal atoms of the conductive thin film 3 that have enjoyed momentum from electrons move away from the lattice position and move in the direction of electron flow along the grain boundaries where diffusion is likely to occur, and vacancies are gradually formed. The accumulated power application time MTF of the circuit is as described above. MTF = AJ− n exp (Ea / kT)
, The conductive thin film 3 is disconnected by electromigration, and the circuit Z is disconnected from the power source S.

上記エレクトロマイグレーション断線に至る回路累積課電時間は、導電薄膜3の温度を制する抵抗膜4の発熱温度、従って抵抗膜4の抵抗値や通電発熱電流値I’により、更に導電薄膜3の電流密度J、従って導電薄膜3の断面積や導電薄膜通電電流値Iの調節により所望値に設定できる。導電薄膜の断面積の調節においては、比較的広い巾の導電薄膜の途中をトリミングしてそのトリミング箇所の断面積を所定の電流密度Jに適応できるようにしてもよい。   The cumulative circuit charging time until the electromigration disconnection further depends on the heat generation temperature of the resistance film 4 that controls the temperature of the conductive thin film 3, and therefore the resistance value of the resistance film 4 and the current value of the heat generation current I ′. The density J can be set to a desired value by adjusting the cross-sectional area of the conductive thin film 3 and the conductive thin film current I. In adjusting the cross-sectional area of the conductive thin film, the middle of the conductive thin film having a relatively wide width may be trimmed so that the cross-sectional area of the trimmed portion can be adapted to the predetermined current density J.

本発明に係る回路の遮断方法は、電子機器の配線基板に直接に前記図1または図2に示す導電薄膜と抵抗膜とを設けて実施することもできる。   The circuit breaking method according to the present invention can also be carried out by providing the conductive thin film and the resistive film shown in FIG. 1 or 2 directly on the wiring board of the electronic device.

また、図4に示すように、導電薄膜3と並列に継電器接点81を挿入し、その継電器8を導電薄膜3に対し直列に接続し、可変抵抗r”の調整により導電薄膜3の電流密度Jを所望値に設定し、導電薄膜3のエレクトロマイグレーション断線と同時に継電器接点81をオフ動作させて負荷Zを電源Sから遮断することもできる。   4, a relay contact 81 is inserted in parallel with the conductive thin film 3, the relay 8 is connected in series to the conductive thin film 3, and the current density J of the conductive thin film 3 is adjusted by adjusting the variable resistance r ″. Can be set to a desired value, and the relay contact 81 can be turned off simultaneously with the electromigration disconnection of the conductive thin film 3 to cut off the load Z from the power source S.

本発明に係る電流遮断素子の一実施例を示す図面である。1 is a view showing an embodiment of a current interrupt device according to the present invention. 本発明に係る電流遮断素子の別実施例を示す図面である。It is drawing which shows another Example of the electric current interruption element which concerns on this invention. 本発明に係る回路の遮断方法を示すための回路図である。It is a circuit diagram for showing the circuit interruption method according to the present invention. 本発明に係る回路の遮断方法を示すための別の回路図である。It is another circuit diagram for demonstrating the circuit interruption | blocking method based on this invention.

符号の説明Explanation of symbols

1 絶縁基板
21 膜電極
22 膜電極
23 膜電極
3 導電薄膜
4 抵抗膜
6 被覆層
7 絶縁膜
DESCRIPTION OF SYMBOLS 1 Insulating substrate 21 Membrane electrode 22 Membrane electrode 23 Membrane electrode 3 Conductive thin film 4 Resistive film 6 Covering layer 7 Insulating film

Claims (6)

電流が流されてエレクトロマイグレーションにより断線される導電薄膜とこの導電薄膜を所定の温度に加熱する通電発熱用抵抗膜を有することを特徴とする電流遮断素子。 A current interrupting element comprising: a conductive thin film that is disconnected by electromigration when a current is passed through; and a conductive heat generating resistance film that heats the conductive thin film to a predetermined temperature. 導電薄膜及び通電発熱用抵抗膜を絶縁基板上に設け、この絶縁基板を保温被覆層または保温カバーで封止したことを特徴とする請求項1記載の電流遮断素子。 2. The current interrupting device according to claim 1, wherein a conductive thin film and a resistance heating film are provided on an insulating substrate, and the insulating substrate is sealed with a heat insulating coating layer or a heat insulating cover. 回路の課電時に請求項1または2記載の電流遮断素子に一定の電流を流し、導電薄膜のエレクトロマイグレーションによる断線で回路を電源から遮断することを特徴とする回路の遮断方法。 A circuit interruption method, wherein a constant current is supplied to the current interruption element according to claim 1 or 2 when the circuit is applied, and the circuit is interrupted from the power source by disconnection due to electromigration of the conductive thin film. 通電発熱用抵抗膜の抵抗値を調節することにより抵抗膜の通電発熱温度を所定値に設定し、導電薄膜のエレクトロマイグレーション断線時間を所定値に設定することを特徴とする請求項3記載の回路の遮断方法。 4. The circuit according to claim 3, wherein the energization heat generation temperature of the resistance film is set to a predetermined value by adjusting the resistance value of the resistance heat generating resistance film, and the electromigration disconnection time of the conductive thin film is set to a predetermined value. Blocking method. 導電薄膜の断面積を調節することにより、導電薄膜のエレクトロマイグレーション断線時間を所定値に設定することを特徴とする請求項3または4記載の回路の遮断方法。 5. The circuit breaking method according to claim 3, wherein the electromigration disconnection time of the conductive thin film is set to a predetermined value by adjusting a cross-sectional area of the conductive thin film. 回路電流の分流を導電薄膜に流し、その分流比を調整することにより導電薄膜の電流密度を設定して導電薄膜のエレクトロマイグレーション断線時間を所定値に設定することを特徴とする請求項3〜5何れか記載の回路の遮断方法。 6. A circuit current shunt is passed through a conductive thin film, and the current density of the conductive thin film is set by adjusting the shunt ratio to set the electromigration disconnection time of the conductive thin film to a predetermined value. Any circuit breaking method.
JP2005291923A 2005-10-05 2005-10-05 Circuit breaking method and current breaking element Pending JP2007103179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291923A JP2007103179A (en) 2005-10-05 2005-10-05 Circuit breaking method and current breaking element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291923A JP2007103179A (en) 2005-10-05 2005-10-05 Circuit breaking method and current breaking element

Publications (1)

Publication Number Publication Date
JP2007103179A true JP2007103179A (en) 2007-04-19

Family

ID=38029920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291923A Pending JP2007103179A (en) 2005-10-05 2005-10-05 Circuit breaking method and current breaking element

Country Status (1)

Country Link
JP (1) JP2007103179A (en)

Similar Documents

Publication Publication Date Title
RU2668087C2 (en) Planar heating element with ptc resistance structure
US10505106B1 (en) Encapsulated PCM switching devices and methods of forming the same
TWI390568B (en) Protection element
JP5945339B2 (en) Temperature detection and control system for layered heating elements
US9263386B2 (en) Forming BEOL line fuse structure
CN102362328A (en) Protection element
JPH0547293A (en) Fuse with thin-film fuse-element supported on substrate
JP2015165495A (en) Complex protection element
JP3768621B2 (en) How to use the protective element
JP2007299546A (en) Planar heating element
JP2010165685A (en) Protection element, and battery pack
EP3873170A1 (en) Pptc heater and material having stable power and self-limiting behavior
CN105576598B (en) It is a kind of slim from control type protector and its manufacturing method
JP3782176B2 (en) Method of using protective element and protective device
JP2021136448A (en) Self-limiting heater
JP2007103179A (en) Circuit breaking method and current breaking element
JP2007294117A (en) Protection element and operation method of protection element
JPH1050184A (en) Chip fuse element
WO2021168656A1 (en) Pptc heater and material having stable power and self-limiting behavior
CN107006073A (en) The heating element heater for the dual-heated level that is self-regulated
JPH0260103A (en) Manufacture of resistor by flame-spray coating
JP2013197002A (en) Circuit protection element
JP4112078B2 (en) Substrate type resistance / temperature fuse
JPH087731A (en) Resistance/temperature fuse for board
US20060191899A1 (en) Method for producing an overtemperature protection device and corresponding overtemperature protection device