JP2007101303A - Infrared gas analyzer - Google Patents

Infrared gas analyzer Download PDF

Info

Publication number
JP2007101303A
JP2007101303A JP2005290019A JP2005290019A JP2007101303A JP 2007101303 A JP2007101303 A JP 2007101303A JP 2005290019 A JP2005290019 A JP 2005290019A JP 2005290019 A JP2005290019 A JP 2005290019A JP 2007101303 A JP2007101303 A JP 2007101303A
Authority
JP
Japan
Prior art keywords
gas
infrared
pressure sensor
block
sensor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005290019A
Other languages
Japanese (ja)
Inventor
Noriaki Kanamaru
訓明 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005290019A priority Critical patent/JP2007101303A/en
Publication of JP2007101303A publication Critical patent/JP2007101303A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NDIR stable in performance by storing a pressure sensor package in an airtight space shielded from the outside air in a block and filling the airtight space with a sensitive gas of the same components as the sensitive gas filled in a front and rear chambers of a detecting section. <P>SOLUTION: The infrared analyzer comprises a cell section 30 for introducing a sample gas onto the optical path of infrared rays projected from a light source 21, and the detecting section 40 formed in a block 47 adjacent to the cell section and detecting infrared rays having passed through the cell section 30. The detecting section 40 comprises a front chamber 41 and a rear chamber 42, and a pressure sensor package S for detecting pressure difference between the sensitive gases filled into these two chambers. The package S is stored in an airtight space 54 shielded from the outside air in the block 47, and the airtight space 54 is filled with the sensitive gas of the same components as the sensitive gas filled in the front and rear chambers of the detecting section 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被測定成分ガスの赤外スペクトル吸収に伴うガス圧変動を利用して、試料ガス濃度(特定ガス種の濃度)を計測する赤外線ガス分析計に関し、詳しくは、内部にガスを封入して用いるガス検出部の構成に関するものである。   The present invention relates to an infrared gas analyzer for measuring a sample gas concentration (concentration of a specific gas species) using gas pressure fluctuations accompanying absorption of an infrared spectrum of a component gas to be measured. The present invention relates to the configuration of the gas detector used.

二つ以上の異なる原子からなる異核分子の多くは、波長1〜20μmの赤外光を照射すると、その化学種に特有の振動および回転の運動エネルギー準位の遷位が起こり、特定の赤外線スペクトルを吸収し、内部エネルギーや体積或いは圧力の増加等など、熱力学的な変化を引き起こす。非分散型赤外線ガス分析計(以下、NDIRという)は、このようなガス成分の特性を利用して、その濃度を計測する分析機器であって、例えば、特許文献1〜特許文献3に示すものがある。   Many heteronuclear molecules composed of two or more different atoms undergo a transition in the vibrational and rotational kinetic energy levels peculiar to the chemical species when irradiated with infrared light having a wavelength of 1 to 20 μm. Absorbs the spectrum and causes thermodynamic changes such as an increase in internal energy, volume or pressure. A non-dispersive infrared gas analyzer (hereinafter referred to as NDIR) is an analytical instrument that measures the concentration by utilizing the characteristics of such gas components. For example, those shown in Patent Documents 1 to 3 There is.

図2はこの種のシングルビーム式NDIRの基本的な構成を示す。このNDIRは、赤外光を発生させるための光源部20,試料ガス(被測定ガス)が導入されるセル部30、セル部30を通過した赤外光の強度を計測することで最終的な試料濃度を計測する検出部40の3つの要素から構成されている。   FIG. 2 shows the basic configuration of this type of single-beam NDIR. This NDIR is finally measured by measuring the intensity of infrared light that has passed through the light source unit 20 for generating infrared light, the cell unit 30 into which the sample gas (gas to be measured) is introduced, and the cell unit 30. It is comprised from three elements of the detection part 40 which measures a sample density | concentration.

光源部20は赤外光の発生を担い、光源であるヒーター21と、赤外光を断続してセル部30及び検出部40に入射させるためにモーター23によって回転するチョッパー22とから構成されている。   The light source unit 20 is responsible for generation of infrared light, and includes a heater 21 that is a light source, and a chopper 22 that is rotated by a motor 23 to intermittently cause infrared light to enter the cell unit 30 and the detection unit 40. Yes.

セル部30は、試料ガスが導入される部位であって、パイプ31の前後端にはCaF2等の赤外線透過性窓板32で封止されている。パイプ31の側面には一端から他端へガスが流れるようにガスの導出入孔33が形成されている。また、パイプ31の内面は赤外光を効率よく反射させるために、鏡面仕上げや金メッキ等のコーティングが施されている。   The cell part 30 is a part into which the sample gas is introduced, and the pipe 31 is sealed at the front and rear ends thereof with an infrared transmissive window plate 32 such as CaF2. A gas outlet / inlet 33 is formed on the side surface of the pipe 31 so that the gas flows from one end to the other end. The inner surface of the pipe 31 is coated with a mirror finish or gold plating in order to reflect infrared light efficiently.

検出部40は、アルミニウム製ブロック47で構成され、ブロック47内には受感ガスが封入された前室41と後室42が形成されており、この前、後2室間の圧力差を検出するセンサー44が前室41と後室42を連通する連通路43に配置されている。前室41の前方(赤外線入射側)はCaF2等の赤外線通過性窓板49で封止され、前室41及び後室42の間は同じくCaF2等の赤外線透過性窓板で仕切られ、後室42の背後は、外部からの赤外光入射を防ぐために例えば黒色のバックプレート46で遮断されている。前室41と後室42に封入される受感ガスは、NDIRの被測定対象となるCO等の高濃度のガス、あるいはAr、He、N等の不活性ガスで希釈されたガスが使用される。この受感ガスは、ガス導入管48により前後室41、42を真空排気したあとに充填され、充填後、ガス導入管48の開口部をカシメ等の手段によって閉塞することによって封止される。 The detection unit 40 is composed of an aluminum block 47, and a front chamber 41 and a rear chamber 42 filled with sensitive gas are formed in the block 47, and a pressure difference between the two rear chambers is detected before and after this. A sensor 44 is disposed in a communication passage 43 that communicates the front chamber 41 and the rear chamber 42. The front (infrared incident side) of the front chamber 41 is sealed with an infrared transmissive window plate 49 such as CaF2, and the front chamber 41 and the rear chamber 42 are similarly partitioned by an infrared transmissive window plate such as CaF2. The back side of 42 is blocked by, for example, a black back plate 46 in order to prevent the incidence of infrared light from the outside. The sensitive gas sealed in the front chamber 41 and the rear chamber 42 is a high-concentration gas such as CO 2 to be measured by NDIR, or a gas diluted with an inert gas such as Ar, He, or N 2. used. This sensitive gas is filled after the front and rear chambers 41 and 42 are evacuated by the gas introduction pipe 48, and after filling, the opening of the gas introduction pipe 48 is closed by means such as caulking.

試料ガス濃度を計測するにあたって、試料ガスが導入されたセル部30を通過してきた赤外光を検出部40の前室41,後室42に入射させる。この際、受感ガスの吸収スペクトルに相当する赤外光は、その殆どを前室中の受感ガスに分子振動エネルギーとして吸収され、この振動エネルギーが緩和により並進運動エネルギーに変換されることで圧力が上昇する。この時、前室と後室間に圧力差が生じるので、これを連通路43、43間に配置されたセンサー44によって検出するこの圧力差は試料ガスを通過する赤外線強度に依存しており、この赤外線強度は試料ガス中の赤外線吸収ガスの濃度に依存するものであるから、センサーにより検出した圧力差に基づいて試料ガス中の赤外線吸収ガス濃度を測定することができる。   In measuring the sample gas concentration, infrared light that has passed through the cell unit 30 into which the sample gas has been introduced is incident on the front chamber 41 and the rear chamber 42 of the detection unit 40. At this time, most of the infrared light corresponding to the absorption spectrum of the sensitive gas is absorbed by the sensitive gas in the anterior chamber as molecular vibrational energy, and this vibrational energy is converted into translational kinetic energy by relaxation. Pressure increases. At this time, since a pressure difference is generated between the front chamber and the rear chamber, this pressure difference detected by the sensor 44 disposed between the communication passages 43 and 43 depends on the intensity of infrared rays passing through the sample gas. Since the infrared intensity depends on the concentration of the infrared absorbing gas in the sample gas, the infrared absorbing gas concentration in the sample gas can be measured based on the pressure difference detected by the sensor.

図3は、NDIRに使用されるセンサー44の詳細を示すものであって、マイクロマシニング技術によって加工されたミクロンオーダーのシリコンダイアフラム1が、ガラス等の基板2でテンションをかけて固着して形成されており、圧力によるダイアフラム1の変化を静電容量変化として検出するものである。このセンサー44は、本体保護の観点からセンサー単体で市販されることは少なく、一般的にパッケージ化されて市場に供給されている。   FIG. 3 shows the details of the sensor 44 used in NDIR. The micron-order silicon diaphragm 1 processed by the micromachining technology is fixed by applying tension to the substrate 2 such as glass. The change of the diaphragm 1 due to the pressure is detected as a change in capacitance. The sensor 44 is rarely marketed as a single sensor from the viewpoint of protection of the main body, and is generally packaged and supplied to the market.

図4は、パッケージ化された圧力センサーSを示すものであって、一体成形された樹脂製のモールド部材3の内部にセンサー44が電子回路基板4上に配置された状態で分解不能に組み込まれている。モールド部材3の内部は、センサー44と、貫通孔を有する電子回路基板4によって、連通孔8に連なる上部空間5と、圧力導入孔9に連なる下部空間6に隔離され、更に下部空間6はカバー7によって覆われていて、圧力導入孔8、9から夫々導入される圧力P1、P2の圧力差を感知できるようになっている。また、電子回路基板4の回路で前段処理された信号は端子10より出力される。この圧力センサーパッケージSは図5に示すように、圧力導入孔8、9を夫々備えた筒状の差し込み部11、11を前室41並びに後室42に通じる連通孔43に差し込んで取り付けられる。
特開平09−049797号公報 特開平09−304278号公報 特開2003−83891号公報
FIG. 4 shows a packaged pressure sensor S, which is incorporated in an inseparable manner in a state in which the sensor 44 is disposed on the electronic circuit board 4 in an integrally molded resin mold member 3. ing. The interior of the mold member 3 is separated into an upper space 5 connected to the communication hole 8 and a lower space 6 connected to the pressure introducing hole 9 by a sensor 44 and an electronic circuit board 4 having a through hole. 7 so that the pressure difference between the pressures P1 and P2 introduced from the pressure introduction holes 8 and 9 can be sensed. Further, a signal processed in the previous stage by the circuit of the electronic circuit board 4 is output from the terminal 10. As shown in FIG. 5, the pressure sensor package S is attached by inserting cylindrical insertion portions 11, 11 each having pressure introduction holes 8, 9 into communication holes 43 communicating with the front chamber 41 and the rear chamber 42.
JP 09-049797 A Japanese Patent Laid-Open No. 09-304278 JP 2003-83891 A

しかし、上記した構成にあっては、カバー7で隔離される空間6、即ち、圧力感知側が、検出部の作用系といえるものであり、カバー7の外側に必然的に形成される空間12が外部大気に開放されているので、電子回路基板4とモールド部材3,並びに電子回路基板4とカバー10とのシールが不完全だと、例えばシール剤がガス通過性を有する高分子素材であった場合など、内部に充填されている受感ガスやシール材のガス拡散による通過などでリークするし、外気が内部に流入してガス交換が生じて受感ガス成分が変化し、計測精度が劣化するといった問題点があった。   However, in the above-described configuration, the space 6 isolated by the cover 7, that is, the pressure sensing side can be said to be an action system of the detection unit, and the space 12 that is inevitably formed outside the cover 7. Since the electronic circuit board 4 and the mold member 3 and the electronic circuit board 4 and the cover 10 are not completely sealed because they are open to the outside atmosphere, for example, the sealing agent is a polymer material having gas permeability. In some cases, leakage occurs due to the gas passing through the inside of the sensitive gas or the sealing material due to gas diffusion, etc., or the outside air flows into the interior and gas exchange occurs, resulting in a change in the sensitive gas component, which degrades the measurement accuracy. There was a problem such as.

そこで、本出願人は、図6に示すようなNDIRの検出部を試作案した。図6の(イ)は、圧力センサー未搭載の検出部の金属ブロック47であって、組み込まれる圧力センサーパッケージSを収めるだけの収納室49がブロック47の下方に開放した状態で設けられている。また収納室49の側壁にはセンサーリード線取出し孔50が設けられている。この収納室49に、図6の(ロ)に示すように、下方から圧力センサーパッケージSを収納して、その外周をエポキシ接着剤層51で隙間無く埋めた状態で蓋52を接合することによって収納室開口部を閉じ、外気より圧力センサーパッケージSを遮断するようにしたものである。   Therefore, the present applicant has made a prototype of an NDIR detection unit as shown in FIG. 6A is a metal block 47 of the detection unit not mounted with a pressure sensor, and a storage chamber 49 that only accommodates the pressure sensor package S to be incorporated is opened below the block 47. FIG. . A sensor lead wire extraction hole 50 is provided in the side wall of the storage chamber 49. As shown in FIG. 6B, the pressure sensor package S is stored in the storage chamber 49 from below, and the lid 52 is joined in a state where the outer periphery thereof is filled with the epoxy adhesive layer 51 without a gap. The storage chamber opening is closed and the pressure sensor package S is shut off from the outside air.

しかしながら、この手段では、圧力センサーパッケージS内部の空間20に大気が残存するので、この残存大気がスローリークにより検出部の作用系に拡散し、不純物による検出部の干渉応答や感度変化が避けられなかった。   However, with this means, since the atmosphere remains in the space 20 inside the pressure sensor package S, the remaining atmosphere diffuses into the action system of the detection unit due to the slow leak, and the interference response and sensitivity change of the detection unit due to impurities can be avoided. There wasn't.

そこで本発明は、圧力センサーパッケージをブロック内の外気から遮断された気密空間に収納し、この気密空間に検出部の前室並びに後室に充填された受感ガスと同じ成分の受感ガスを充填することによって、上記した従来課題を克服したNDIRを提供することを主たる目的とするものである。   Therefore, the present invention accommodates the pressure sensor package in an airtight space that is shielded from the outside air in the block, and in this airtight space, a sensitive gas having the same composition as the sensitive gas filled in the front chamber and the rear chamber of the detection unit is stored. The main object is to provide an NDIR that overcomes the above-described conventional problems by filling.

上記目的を達成する為に本発明では次のような技術的手段を講じた。即ち、本発明は、光源から投射された赤外線の光路上に試料ガスが導入されるセル部と、セル部に隣接するブロックに形成されセル部を通過した赤外線を検出する検出部を備えた赤外線分析計であって、前記検出部が、ブロックの壁面に囲まれた前室及び後室と、これら2室に充填された受感ガスの圧力差を検出する圧力センサーパッケージとを備え、該圧力センサーパッケージはブロック内の外気から遮断された気密空間に収納され、この気密空間に検出部の前室並びに後室に充填された受感ガスと同じ受感ガスが充填されている構造としたものである。   In order to achieve the above object, the present invention takes the following technical means. That is, the present invention provides an infrared ray including a cell portion into which a sample gas is introduced on an optical path of infrared rays projected from a light source, and a detection portion that is formed in a block adjacent to the cell portion and detects infrared rays that have passed through the cell portion. In the analyzer, the detection unit includes a front chamber and a rear chamber surrounded by a wall surface of the block, and a pressure sensor package for detecting a pressure difference between the sensitized gas filled in the two chambers. The sensor package is housed in an airtight space that is blocked from the outside air in the block, and the airtight space is filled with the same sensitive gas as that in the front and rear chambers of the detector. It is.

本発明の赤外線ガス分析計は上記のごとく構成したから、圧力センサーパッケージを収納した気密空間から残存大気がなくなり、気密空間には検出部の前室並びに後室内の受感ガスと同じ成分の受感ガスで満たされるので、万一、圧力センサーパッケージ内の隔離部分から機密空間にリークが生じても、同じ成分の受感ガスが混ざり合うだけで、不純物による検出部の干渉応答や感度変化は生じることがなく、性能的に安定した赤外線ガス分析計を得ることができるとともに、市販の圧力センサーパッケージを赤外線ガス分析計の検知素子としてそのまま利用できるのでコストダウンを図ることができる、といった効果がある。なお、「同じ受感ガス」とは、成分比率がほぼ同等のガスを指す。前後室内の受感ガスとほぼ同じ圧力にすることがさらに好ましい。   Since the infrared gas analyzer of the present invention is configured as described above, there is no remaining air in the airtight space containing the pressure sensor package, and the airtight space receives the same components as the sensitized gas in the front chamber and the rear chamber of the detector. Because it is filled with gas sensitivities, even if leaks occur in the confidential space from the isolated part in the pressure sensor package, the interference gas of the detection part due to impurities is not affected by the interference of the same components, and the sensitivity changes In addition, it is possible to obtain an infrared gas analyzer that is stable in terms of performance, and that a commercially available pressure sensor package can be used as it is as a detection element of the infrared gas analyzer, thereby reducing costs. is there. Note that “the same sensitive gas” refers to gases having almost the same component ratio. More preferably, the pressure is almost the same as the sensitivity gas in the front and rear chambers.

(その他の問題を解決するための手段及び効果)
上記発明において、ブロックの下部に圧力センサーパッケージを外部から装着することができる収納空間が形成され、この収納空間に圧力センサーパッケージを収納したあとに蓋で収納空間の開口部を密閉することにより前記気密空間が形成されている構成とするのがよい。
これにより圧力センサーパッケージのブロックへの組付けが容易であると共に、気密空間も簡単に形成することが可能となる。
(Means and effects for solving other problems)
In the above invention, a storage space in which the pressure sensor package can be mounted from the outside is formed in the lower part of the block, and after the pressure sensor package is stored in the storage space, the opening of the storage space is sealed with a lid. It is preferable that an airtight space is formed.
As a result, the pressure sensor package can be easily assembled to the block, and an airtight space can be easily formed.

以下において本発明にかかるNDIRについて図面を用いて説明する。図1は本発明に係るNDIRの検出部を示す断面図である。NDIRの他の構成、即ち光源部及びセル部の構成は、先に図2で示した構造と同じであるから省略してある。検出部40’も、圧力センサーパッケージSを収納する部分を除き、図2で示したものと同じ構造で構成されており、故に、複雑化を避けるために、図2と同じ構成要素は同じ符号を附した。   The NDIR according to the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an NDIR detector according to the present invention. The other configurations of NDIR, that is, the configurations of the light source unit and the cell unit are omitted because they are the same as those shown in FIG. The detection unit 40 ′ is also configured with the same structure as that shown in FIG. 2 except for the portion that houses the pressure sensor package S. Therefore, in order to avoid complication, the same components as those in FIG. Was attached.

検出部40’は、アルミニウム製ブロック47’で構成され、ブロック47’内には受感ガスが封入された前室41と後室42が形成されており、この前室41、後室42に連なる連通路43が設けられている。前室41並びに後室42は赤外光透過性の窓板で仕切られ、後室42の背後は、外部からの赤外光入射を防ぐために例えば黒色のバックプレート46で遮断されている。バックプレートは、場合によってはアルミなどの金属プレートを使用したり、或いは異種の受感ガスを封入した検出器を連設する場合には、赤外線通過性窓板を用いることもできる。前室41と後室42に封入される受感ガスは、NDIRの被測定対象となるCO等の高濃度のガス、あるいはAr、He、N等の不活性ガスで希釈されたガスが使用される。この受感ガスは、ガス導入管48により前後室41、42を真空排気したあとに充填され、充填後、ガス導入管48の開口部をカシメ等の手段によって閉塞することによって封止される。 The detection unit 40 ′ is composed of an aluminum block 47 ′, and a front chamber 41 and a rear chamber 42 in which a sensitive gas is sealed are formed in the block 47 ′. A continuous communication path 43 is provided. The front chamber 41 and the rear chamber 42 are partitioned by an infrared light transmissive window plate, and the back of the rear chamber 42 is blocked by, for example, a black back plate 46 to prevent infrared light from entering from the outside. As the back plate, a metal plate such as aluminum may be used depending on the case, or an infrared transmitting window plate may be used when a detector in which a different kind of sensitive gas is sealed is connected. The sensitive gas sealed in the front chamber 41 and the rear chamber 42 is a high-concentration gas such as CO 2 to be measured by NDIR, or a gas diluted with an inert gas such as Ar, He, or N 2. used. This sensitive gas is filled after the front and rear chambers 41 and 42 are evacuated by the gas introduction pipe 48, and after filling, the opening of the gas introduction pipe 48 is closed by means such as caulking.

ブロック47’の下部に、図3,図4で示したものと同じ構造の圧力センサーパッケージSを収納するための収納空間が設けられ、圧力センサーパッケージSの筒状の差し込み部11、12を前室41並びに後室42に通じる連通孔43に差し込むことによって圧力センサーパッケージSが収納空間に装着される。そして、圧力センサーパッケージSとの間に若干の空間54を残すようにして、蓋55で空間54を気密に密閉するようにしている。   A storage space for storing the pressure sensor package S having the same structure as that shown in FIGS. 3 and 4 is provided at the lower part of the block 47 ′. The pressure sensor package S is mounted in the storage space by being inserted into the communication hole 43 communicating with the chamber 41 and the rear chamber 42. A slight space 54 is left between the pressure sensor package S and the space 54 is hermetically sealed with a lid 55.

外気と遮断されたこの空間54(気密空間)には、前室41並びに後室42へのガス充填と同じように、ガス導入管56により真空排気したあとに受感ガスが充填され、充填後、ガス導入管56の開口部をカシメ等の手段によって閉塞することによって封止される。充填される受感ガスは、前室41並びに後室42に充填される受感ガスと同じ成分のものが使用される。   This space 54 (airtight space), which is blocked from the outside air, is filled with a sensitive gas after being evacuated by the gas introduction pipe 56 in the same manner as the gas filling to the front chamber 41 and the rear chamber 42. The gas inlet tube 56 is sealed by closing the opening of the gas inlet tube 56 by means such as caulking. As the sensitized gas to be filled, those having the same components as the sensitized gas filled in the front chamber 41 and the rear chamber 42 are used.

圧力センサーパッケージSのセンサー44の電子回路基板4から電力供給並びに信号を取り出すためのリード線57が接続され、このリード線57を取り出すためにブロック47’に形成された孔58はシール材59で完全に密閉されている。   A lead wire 57 for connecting a power supply and a signal from the electronic circuit board 4 of the sensor 44 of the pressure sensor package S is connected, and a hole 58 formed in the block 47 ′ for taking out the lead wire 57 is formed by a sealing material 59. It is completely sealed.

上記の構成により、圧力センサーパッケージを含むブロック47’内の全ての空間から残存大気がなくなり、気密の空間54には前室41並びに後室42内の受感ガスと同じ成分の受感ガスで満たされるので、万一、圧力センサーパッケージS内の隔離部分、即ち、電子回路基板4とモールド部材3との間や、カバー7の接合部分からガスのリークが生じても、同じ成分の受感ガスが混ざり合うだけで、不純物による検出部の干渉応答や感度変化は生じることがなく、性能的に安定したNDIRを得ることができる。   With the above configuration, the remaining atmosphere is eliminated from all the spaces in the block 47 ′ including the pressure sensor package, and the airtight space 54 has a sensitized gas having the same component as the sensitized gas in the front chamber 41 and the rear chamber 42. Even if gas leaks from the isolated part in the pressure sensor package S, that is, between the electronic circuit board 4 and the mold member 3 or from the joint part of the cover 7, the same component is perceived. By simply mixing the gases, there is no interference response or sensitivity change of the detection part due to impurities, and a stable NDIR can be obtained.

本発明は、市販の圧力センサーパッケージを、性能的に安定した検知素子として使用可能なNDIRを製造する際に利用することができる。   The present invention can be used when manufacturing a NDIR that can be used as a performance-stable sensing element using a commercially available pressure sensor package.

本発明の一実施例である赤外線ガス分析計の検出部の構造を示す断面図。Sectional drawing which shows the structure of the detection part of the infrared gas analyzer which is one Example of this invention. 従来の赤外線ガス分析計の概略的な構成図。The schematic block diagram of the conventional infrared gas analyzer. 圧力センサーの拡大断面図。The expanded sectional view of a pressure sensor. 圧力センサーパッケージの断面図。Sectional drawing of a pressure sensor package. 圧力センサーパッケージを装着した従来の赤外線ガス分析計の検出部を示す断面図。Sectional drawing which shows the detection part of the conventional infrared gas analyzer equipped with the pressure sensor package. 圧力センサーパッケージを装着した従来の他の例を示すもので、(イ)は装着前であり、(ロ)は装着後を示す。The other example of the conventional mounting | wearing with the pressure sensor package is shown, (A) is before mounting | wearing, (B) shows after mounting | wearing.

符号の説明Explanation of symbols

S 圧力センサーパッケージ
20 光源部
21 光源
30 セル部
40 検出部
41 前室
42 後室
47 ブロック
54 空間(気密空間)
S pressure sensor package 20 light source unit 21 light source 30 cell unit 40 detection unit 41 front chamber 42 rear chamber 47 block 54 space (airtight space)

Claims (1)

光源から投射された赤外線の光路上に試料ガスが導入されるセル部と、セル部に隣接するブロックに形成されセル部を通過した赤外線を検出する検出部を備えた赤外線分析計であって、
前記検出部が、ブロックの壁面に囲まれた前室及び後室と、これら2室に充填された受感ガスの圧力差を検出する圧力センサーパッケージとを備え、該圧力センサーパッケージはブロック内の外気から遮断された気密空間に収納され、この気密空間に、前室並びに後室に充填された受感ガスと同じ受感ガスが充填されていることを特徴とする赤外線ガス分析計。
An infrared analyzer including a cell part into which a sample gas is introduced onto an optical path of infrared light projected from a light source, and a detection part that detects infrared light that is formed in a block adjacent to the cell part and passes through the cell part,
The detection unit includes a front chamber and a rear chamber surrounded by a wall surface of the block, and a pressure sensor package for detecting a pressure difference between the sensitized gases filled in the two chambers, and the pressure sensor package is included in the block. An infrared gas analyzer, wherein the infrared gas analyzer is housed in an airtight space cut off from outside air, and the airtight space is filled with the same sensitive gas as the sensitive gas charged in the front chamber and the rear chamber.
JP2005290019A 2005-10-03 2005-10-03 Infrared gas analyzer Withdrawn JP2007101303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290019A JP2007101303A (en) 2005-10-03 2005-10-03 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290019A JP2007101303A (en) 2005-10-03 2005-10-03 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2007101303A true JP2007101303A (en) 2007-04-19

Family

ID=38028398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290019A Withdrawn JP2007101303A (en) 2005-10-03 2005-10-03 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2007101303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185867A (en) * 2012-03-06 2013-09-19 Fuji Electric Co Ltd Detector for infrared gas analyser
JP2016099117A (en) * 2014-11-18 2016-05-30 富士電機株式会社 Sensor part for infrared gas analyzer and detector for infrared gas analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185867A (en) * 2012-03-06 2013-09-19 Fuji Electric Co Ltd Detector for infrared gas analyser
JP2016099117A (en) * 2014-11-18 2016-05-30 富士電機株式会社 Sensor part for infrared gas analyzer and detector for infrared gas analyzer

Similar Documents

Publication Publication Date Title
US8695402B2 (en) Integrated IR source and acoustic detector for photoacoustic gas sensor
US7541587B2 (en) Gas sensor
JPS58500140A (en) Detection device for selective detection of gases based on optical spectroscopy
US10302554B2 (en) Acoustic wave detector
US6410918B1 (en) Diffusion-type NDIR gas analyzer with improved response time due to convection flow
CN109870414A (en) A kind of enhanced gas sensing probe of scattering
US7928394B1 (en) Testing device containing a gas sensor
US20180299330A1 (en) Electromagnetic radiation detector using a planar golay cell
JP2007101303A (en) Infrared gas analyzer
US8077316B2 (en) Chlorine dioxide sensor
US6255653B1 (en) Diffusion-type NDIR gas analyzer with improved response time due to convection flow
JP5919895B2 (en) Detector for infrared gas analyzer
JP2003139701A (en) Infrared gas analyzer
WO2018131279A1 (en) Liquid chromatograph detector
JP3610870B2 (en) Infrared gas analyzer
JP4138306B2 (en) Absorber capsule and infrared gas analyzer
JP3909396B2 (en) Infrared gas analyzer
JP2005147962A (en) Optical gas concentration detector
JPH10332579A (en) Golay cell and 13c measuring apparatus using the same
WO2021172082A1 (en) Detector and gas analyzer
CN212459390U (en) Gas detection device
JP3567848B2 (en) Infrared gas analyzer
CN209821055U (en) Anti-interference photoacoustic spectrum gas detection device
US11119037B2 (en) Small form factor spectrally selective absorber with high acceptance angle for use in gas detection
JP4132283B2 (en) Detector for infrared gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090909

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090918