JP2007100195A - Method for producing cold tool steel - Google Patents

Method for producing cold tool steel Download PDF

Info

Publication number
JP2007100195A
JP2007100195A JP2005294423A JP2005294423A JP2007100195A JP 2007100195 A JP2007100195 A JP 2007100195A JP 2005294423 A JP2005294423 A JP 2005294423A JP 2005294423 A JP2005294423 A JP 2005294423A JP 2007100195 A JP2007100195 A JP 2007100195A
Authority
JP
Japan
Prior art keywords
tool steel
cold tool
soaking
ingot
hot forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005294423A
Other languages
Japanese (ja)
Inventor
Takuma Okajima
琢磨 岡島
Hiroaki Yoshida
広明 吉田
Yukihiro Isogawa
幸宏 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005294423A priority Critical patent/JP2007100195A/en
Publication of JP2007100195A publication Critical patent/JP2007100195A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a cold tool steel with which the segregation of components in the cold tool steel is reduced and the characteristics of the cold tool steel can be improved. <P>SOLUTION: After introducing a strain by applying one series of hot forging to at least any one-direction in three directions mutually crossing at the right angle to an ingot 10 of the cold tool steel containing 7-13 mass% Cr, a soaking is applied at the temperature condition of 1,100-1,200°C for 6hr or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明はCrを質量%で7〜13%含有する冷間工具鋼の製造方法に関し、詳しくは成分偏析を低減するための技術手段に特徴を有する冷間工具鋼の製造方法に関する。   The present invention relates to a method for producing a cold tool steel containing 7 to 13% by mass of Cr, and more particularly to a method for producing a cold tool steel characterized by technical means for reducing component segregation.

従来の冷間工具鋼の製造方法では、図4に示しているようにインゴット200をソーキングした後に熱間鍛造加工を繰り返し行い、またその間に加熱を行って、最終的に目的とする鋼片204を得ていた。
尚図中202-1,202-2は熱間鍛造加工途中の中間鍛造品を表している。
In the conventional manufacturing method of cold tool steel, as shown in FIG. 4, after hot-forging is repeatedly performed after ingot 200 is soaked, and heating is performed in the meantime, the objective steel piece 204 is finally obtained. Was getting.
In the figure, 202-1 and 202-2 represent intermediate forged products during hot forging.

ここで熱間鍛造加工の中間で行われる加熱は、加工中に中間鍛造品が温度低下して加工割れを生じないように、途中でこれを昇温させるためのものであり、中間鍛造品が目的の温度且つ全体的に均一の温度となるのに必要な時間だけ加熱を行う。
即ちこの途中段階での加熱はあくまで中間鍛造品全体を昇温させることを目的として行われる。
Here, the heating performed in the middle of the hot forging process is for raising the temperature of the intermediate forged product in the middle so that the temperature of the intermediate forged product does not decrease during processing and the processing crack is generated. Heating is performed for a time required to reach a target temperature and a uniform temperature as a whole.
That is, the heating in this intermediate stage is performed only for the purpose of raising the temperature of the entire intermediate forged product.

一方インゴット200に対して行われるソーキングは、鋼成分を拡散させるためのもので、このソーキングでは、インゴット200を全体が均一の温度となるまで加熱した後、引き続いてこれをその加熱温度に所定時間保持し、その保持の間に成分を拡散させる。
ここではインゴット200を1240℃の温度で35時間かけてソーキング処理している。
On the other hand, the soaking performed on the ingot 200 is for diffusing steel components. In this soaking, the ingot 200 is heated until the entire temperature reaches a uniform temperature, and then the temperature is kept at the heating temperature for a predetermined time. Hold and allow the components to diffuse during the hold.
Here, the ingot 200 is soaked at a temperature of 1240 ° C. for 35 hours.

ところで冷間工具鋼は高合金鋼であり、鋳造によりインゴット200とする際、凝固過程で成分偏析が生じ易い問題がある。
而して例えば鋼中に含まれるCrの成分偏析が生じると組織が不均一となり、靭性等の特性が悪化してしまう。
また鋼片の各方向で組織に異方性が生じ、これに伴って靭性値にも異方性が生じてしまう。
尚、本願に対する先行技術として下記特許文献1に開示されたものがあるが、この特許文献1に開示のものは熱間工具鋼に関するものであるとともにインゴットの段階でソーキングを行うもので、本発明の課題を解決することができない。
By the way, the cold tool steel is a high alloy steel, and when the ingot 200 is formed by casting, there is a problem that component segregation is likely to occur during the solidification process.
Thus, for example, when segregation of Cr components contained in steel occurs, the structure becomes non-uniform, and properties such as toughness deteriorate.
In addition, anisotropy occurs in the structure in each direction of the steel slab, and accordingly, anisotropy also occurs in the toughness value.
In addition, although there exists what was disclosed by following patent document 1 as a prior art with respect to this application, what is disclosed by this patent document 1 is related with hot tool steel, and performs soaking in the stage of an ingot, and this invention The problem cannot be solved.

特開2003−286545号公報JP 2003-286545 A

本発明は以上のような事情を背景とし、冷間工具鋼における成分の偏析を低減し、冷間工具鋼の特性を改善することのできる冷間工具鋼の製造方法を提供することを目的としてなされたものである。   With the background as described above, the present invention aims to provide a method for producing cold tool steel that can reduce segregation of components in cold tool steel and improve the properties of cold tool steel. It was made.

而して請求項1のものは、Crを質量%で7〜13%含有する冷間工具鋼のインゴットに対して直交する3方向のうちの少なくとも何れか1方向に一連の熱間鍛造加工を施し歪みを導入した上で、1100〜1200℃の温度条件で6時間以上かけてソーキングを行うことを特徴とする。   Thus, according to the first aspect, a series of hot forging processes are performed in at least one of the three directions orthogonal to the ingot of the cold tool steel containing 7 to 13% by mass of Cr. After introducing the applied strain, soaking is performed for 6 hours or more under a temperature condition of 1100 to 1200 ° C.

請求項2のものは、請求項1において、前記熱間鍛造加工を前記直交する3方向のそれぞれの方向に施し歪みを導入した上で前記ソーキングを行うことを特徴とする。   According to a second aspect of the present invention, in the first aspect, the hot forging process is performed in each of the three orthogonal directions to introduce the strain, and then the soaking is performed.

請求項3のものは、請求項2において、前記ソーキングの前に行う前記一連の熱間鍛造加工が、前記インゴットをその軸方向に圧縮する据込鍛造加工と、その後において軸直角方向の直交する2方向に全体として30%以上の減面率で圧縮して軸方向に鍛伸する加工とを含んでいることを特徴とする。   According to a third aspect of the present invention, in the second aspect, the series of hot forging processes performed before the soaking is perpendicular to the upsetting forging process in which the ingot is compressed in the axial direction and thereafter in the direction perpendicular to the axis. It includes a process of compressing at a reduction rate of 30% or more as a whole in two directions and forging in the axial direction.

請求項4のものは、請求項1〜3の何れかにおいて、前記冷間工具鋼が更にMoを質量%で1.5〜5%含んだものであることを特徴とする。   A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the cold tool steel further contains 1.5 to 5% by mass of Mo.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、インゴットの段階でソーキングを行うと否とに拘らず、一旦インゴットに対して直交する3方向のうちの少なくとも何れか1方向に一連の熱間鍛造加工を施し歪みを導入した上で、その後に1100〜1200℃の温度条件で6時間以上(望ましくは12時間以上)かけてソーキングを行うものである。   As described above, the present invention performs a series of hot forging processes in at least one of three directions orthogonal to the ingot, regardless of whether or not soaking is performed at the ingot stage. After introduction, soaking is performed for 6 hours or longer (preferably 12 hours or longer) at a temperature of 1100 to 1200 ° C.

本発明によれば、インゴット鋳造の際の凝固過程でCr等の成分偏析が生じた場合であっても、その後の熱間鍛造加工及びソーキングによって成分偏析を良好に低減し、組織が均一で靭性等の特性に優れた冷間工具鋼を得ることができる。   According to the present invention, even when component segregation such as Cr occurs in the solidification process during ingot casting, the component segregation is favorably reduced by subsequent hot forging and soaking, and the structure is uniform and tough. It is possible to obtain a cold tool steel having excellent properties such as the above.

かかる本発明によって成分偏析が低減するのは次の理由によるものと考えられる。
即ちインゴットに対して熱間鍛造加工を施すと、歪みの導入により成分偏析を生じている箇所で濃度勾配が大となり、その後ソーキングを行ったときに濃度勾配の増大により成分の拡散が促進され、その結果として偏析していた成分が全体に良好に分散することによるものと考えられる。
The reason why the component segregation is reduced by the present invention is considered to be as follows.
That is, when hot forging processing is performed on the ingot, the concentration gradient becomes large at the location where the component segregation occurs due to the introduction of strain, and then the diffusion of the component is promoted by the increase of the concentration gradient when soaking is performed, As a result, it is considered that the segregated component is well dispersed throughout.

本発明では、ソーキングに先立つ熱間鍛造加工として直交する3方向のそれぞれの方向に加工を行うのが望ましい(請求項2)。
このようにすることで、直交する3方向のそれぞれに歪みがかかった状態、即ち互いに直交する3方向のそれぞれにおいて偏析成分の濃度勾配が増大した状態となり、従ってその後のソーキングによって偏析成分を各方向に良好に拡散させ得て、偏析成分を良好に全体に分散させることができ、鋼組織を均一な組織とすることができるとともに上記異方性の問題もより有利に改善することができる。
In the present invention, it is desirable to perform processing in each of three orthogonal directions as hot forging prior to soaking.
By doing so, each of the three orthogonal directions is distorted, that is, the concentration gradient of the segregation component is increased in each of the three orthogonal directions. The segregation component can be well dispersed throughout, the steel structure can be made uniform, and the anisotropy problem can be improved more advantageously.

本発明において、上記一連の熱間鍛造加工の後に行うソーキングは成分を拡散させるためのものであり、従って単に中間鍛造品が全体的に均一温度となるまで加熱を行っただけでは不十分で、その後において中間鍛造品をその到達温度に所定時間保持することが必要である。
従って本発明では、1100〜1200℃の温度条件で6時間以上かけてソーキングを行うことが必要である。
この温度条件よりも温度が低く、また時間が短いと成分を十分に拡散させることができない。
この場合においてそのソーキングは12時間以上かけて行うのが望ましく、より望ましくは15時間以上かけて行うのが良く、更に望ましくは20時間以上かけてソーキングを行う。
In the present invention, the soaking performed after the series of hot forging processes is for diffusing the components. Therefore, it is not sufficient to simply perform heating until the intermediate forged product has a uniform temperature as a whole. After that, it is necessary to hold the intermediate forged product at the ultimate temperature for a predetermined time.
Therefore, in the present invention, it is necessary to perform soaking at a temperature of 1100 to 1200 ° C. over 6 hours.
If the temperature is lower than this temperature condition and the time is short, the components cannot be sufficiently diffused.
In this case, the soaking is preferably performed over 12 hours, more preferably over 15 hours, and even more preferably over 20 hours.

本発明においては、ソーキングの前に行う上記一連の熱間鍛造加工を、インゴットをその軸方向に圧縮する据込鍛造加工と、その後において軸直角方向の直交する2方向に全体として30%以上の減面率で圧縮してこれを軸方向に鍛伸する加工とを含んだものとなすことができる(請求項3)。
ソーキング前にこのような熱間鍛造加工を行うことで、その後のソーキングの際に偏析成分を良好に拡散せしめることができる。
ここでインゴットをその軸方向に圧縮する据込鍛造加工は、圧縮率30%以上で行うことが望ましい。
In the present invention, the series of hot forging processes performed before soaking is performed by upsetting forging process in which the ingot is compressed in the axial direction, and thereafter 30% or more as a whole in two orthogonal directions perpendicular to the axis. And a process of forging in the axial direction by compressing with a reduction in area (claim 3).
By performing such hot forging before soaking, the segregation component can be diffused satisfactorily during the subsequent soaking.
Here, it is desirable that the upset forging process in which the ingot is compressed in the axial direction is performed at a compression rate of 30% or more.

本発明はまた、Cr(7〜13%)に加えてMoを質量%で1.5〜5%含んだ冷間工具鋼に対し好適に適用可能である(請求項4)。
尚、冷間工具鋼はCr含有量が7〜9%である場合、Mo:1.5〜5%を必須成分として含有したものとなしておくことができる。
The present invention can also be suitably applied to cold tool steel containing 1.5 to 5% by mass of Mo in addition to Cr (7 to 13%) (Claim 4).
In addition, when the Cr content is 7 to 9%, the cold tool steel can contain Mo: 1.5 to 5% as an essential component.

次に本発明の実施形態を以下に具体的に説明する。
表1に示す成分の冷間工具鋼No.1〜No.3のそれぞれを、図1に示すようにφ1000mm(直径)×1500mm(高さ)のインゴット10に鋳造し、これを表1のソーキング(I)に示す各条件でソーキング(I)を施した。
Next, embodiments of the present invention will be specifically described below.
Cold tool steel No. 1 with the components shown in Table 1. 1-No. Each of 3 was cast into an ingot 10 of φ1000 mm (diameter) × 1500 mm (height) as shown in FIG. 1, and this was subjected to soaking (I) under the conditions shown in the soaking (I) of Table 1.

Figure 2007100195
Figure 2007100195

続いて圧縮率50%でこれをその軸方向(図中Z方向)に圧縮する据込鍛造加工を施して中間鍛造品12-1とした後、Z方向と直交するX方向,Y方向のそれぞれに減面率45%で圧縮を加えて中間鍛造品12-2を得、更に続いて中間鍛造品12-2の各コーナー部をP方向,Q方向にそれぞれ圧縮する加工(減面率はそれぞれ5%)を施して幅750mmの8角柱の中間鍛造品12-3に鍛伸した。
尚、中間鍛造品12-1から中間鍛造品12-3への加工の減面率は全体で50%とした。
Subsequently, after performing an upset forging process that compresses this in the axial direction (Z direction in the figure) at a compression rate of 50% to obtain an intermediate forged product 12-1, each of the X direction and Y direction orthogonal to the Z direction is obtained. The intermediate forged product 12-2 is obtained by compression at a surface reduction rate of 45%, and then each corner portion of the intermediate forged product 12-2 is compressed in the P direction and the Q direction respectively (the surface reduction rate is respectively 5%) and forged into an octagonal column intermediate forging 12-3 with a width of 750 mm.
In addition, the area reduction rate of the processing from the intermediate forged product 12-1 to the intermediate forged product 12-3 was set to 50% as a whole.

その後、中間鍛造品12-3に対して表1のソーキング(II)の各条件でソーキング(II)を行った後、再び中間鍛造品12-1,12-2と同様の形状の中間鍛造品14-1,14-2への鍛造を行い、更に中間鍛造品14-2を表1の加熱条件で加熱した上で、更に鍛造加工を継続して目的とする最終の鋼片16を得た(サイズは300×740×5300mm)。   Thereafter, after performing soaking (II) on the intermediate forged product 12-3 under the conditions of soaking (II) in Table 1, intermediate forged products having the same shape as the intermediate forged products 12-1 and 12-2 again. After forging into 14-1 and 14-2, and further heating the intermediate forged product 14-2 under the heating conditions shown in Table 1, the forging process was continued to obtain the final steel slab 16 of interest. (The size is 300 × 740 × 5300 mm).

上記ソーキング(II)前の中間鍛造品12-3及びソーキング(II)後の中間鍛造品12-3のそれぞれから試料を採取してCr成分の偏析状態を観察した結果と、図4に示す従来の製造方法即ちインゴット200の段階でソーキングを行い、熱間鍛造後はソーキングを行わない製造方法におけるソーキング前後、具体的にはソーキング前のインゴット200,ソーキング後のインゴット200からそれぞれ試料を採取してCr成分の偏析状態を観察した結果、本実施形態にて製造したものは偏析が低減していた。   Samples taken from each of the intermediate forged product 12-3 before soaking (II) and the intermediate forged product 12-3 after soaking (II) and the segregation state of the Cr component were observed, and the prior art shown in FIG. Sample is taken before and after the soaking in the manufacturing method in which the soaking is not performed after hot forging, specifically, the ingot 200 before soaking and the ingot 200 after soaking. As a result of observing the segregation state of the Cr component, segregation was reduced in the product produced in this embodiment.

以上のようにインゴット10に対して先ず熱間鍛造加工を施した上で、その後にソーキング(II)を行った場合にCr成分の偏析が良好に低減しているのは次のような理由によるものと考えられる。
図2(ロ)は熱間鍛造加工を施していない状態でのCr成分の濃度分布を横軸に距離を、縦軸に濃度を取って模式的に表したもので、このときのCrの濃度勾配はΔC/Δd=Kで表される。
一方図2(イ)は熱間鍛造加工を施した後のCrの濃度分布を表したもので、この場合の濃度分布ΔC/Δd=Kは図2(ロ)の濃度勾配ΔC/Δd=Kよりも大となる。
このようにソーキング前の熱間鍛造加工によりCr成分の濃度勾配Kが、熱間鍛造加工前の濃度勾配Kに比べて増大することにより、その後のソーキングによってCr成分の拡散が促進され、これによりCr成分の偏析が低減するものと考えられる。
As described above, when the ingot 10 is first subjected to hot forging and then subjected to soaking (II), the segregation of Cr component is favorably reduced for the following reason. It is considered a thing.
Fig. 2 (b) schematically shows the Cr component concentration distribution without hot forging, with the distance on the horizontal axis and the concentration on the vertical axis. The gradient is expressed as ΔC 0 / Δd 0 = K 0 .
On the other hand, FIG. 2 (a) shows the Cr concentration distribution after hot forging, and the concentration distribution ΔC / Δd = K in this case is the concentration gradient ΔC 0 / Δd 0 in FIG. 2 (b). = K is greater than 0 .
As described above, the concentration gradient K of the Cr component is increased by the hot forging process before soaking as compared with the concentration gradient K 0 before the hot forging process, so that the diffusion of the Cr component is promoted by the subsequent soaking. This is considered to reduce the segregation of Cr components.

表2は表1のNo.1〜No.3のそれぞれについて、図1に示す本実施形態にて製造した場合のCrの偏析レベルを、図4に示す従来の製造方法にて製造した場合の偏析レベルと比較して表している。但し表中の数値はCrの偏析レベルを指数で表しており、数値の小さい方が偏析の程度が少ないことを表している。
表2にも示しているように本実施形態によればCrの偏析を良好に低減できることが分かる。
Table 2 shows No. 1 in Table 1. 1-No. 3, the segregation level of Cr when manufactured in the present embodiment shown in FIG. 1 is compared with the segregation level when manufactured by the conventional manufacturing method shown in FIG. 4. However, the numerical values in the table represent the segregation level of Cr as an index, and the smaller the numerical value, the smaller the degree of segregation.
As shown in Table 2, it can be seen that according to this embodiment, the segregation of Cr can be satisfactorily reduced.

Figure 2007100195
Figure 2007100195

次に表3は本実施形態にて得た鋼片16の図3中L方向,T方向,H方向からそれぞれシャルピー試験片(JIS3号試験片)を採取してシャルピー衝撃試験を行った結果を、図4に示す従来の製造方法にて得た鋼片204におけるシャルピー衝撃試験の結果と比較して示している。
尚シャルピー試験片は、試験片の長手方向がL方向,T方向,H方向となるようにそれぞれ採取した。
Next, Table 3 shows the result of Charpy impact test by collecting Charpy test pieces (JIS No. 3 test pieces) from the L direction, T direction and H direction in FIG. 3 of the steel piece 16 obtained in this embodiment. FIG. 4 shows a comparison with the result of a Charpy impact test on a steel piece 204 obtained by the conventional manufacturing method shown in FIG.
The Charpy test piece was sampled such that the longitudinal direction of the test piece was the L direction, the T direction, and the H direction.

Figure 2007100195
Figure 2007100195

表3から明らかなように、本実施形態の製造方法の場合、L方向,T方向,H方向の何れにおいてもシャルピー衝撃値は、従来の製造方法による場合に比べてほぼ一定していて、シャルピー衝撃値に特段の異方性は認められず、また全体的にその値が従来の製造方法における値に比べて高いレベルを示している。
即ち本実施形態によれば、図4の従来の製造方法に比べてシャルピー衝撃値が高く、またその異方性も改善されていることが分かる。
尚、上記実施形態では中間鍛造品12-1から中間鍛造品12-3への加工の減面率を全体で50%としているが、減面率30%で加工を行った場合においても良好な結果が得られた。
As apparent from Table 3, in the manufacturing method of the present embodiment, the Charpy impact value is almost constant in any of the L direction, the T direction, and the H direction as compared with the conventional manufacturing method. There is no particular anisotropy in the impact value, and overall, the value is higher than the value in the conventional manufacturing method.
That is, according to this embodiment, it can be seen that the Charpy impact value is higher than that of the conventional manufacturing method of FIG. 4 and the anisotropy is also improved.
In the above embodiment, the overall reduction in area from the intermediate forged product 12-1 to the intermediate forged product 12-3 is 50%. However, even when the reduction is performed at an area reduction of 30%, it is good. Results were obtained.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

本発明の実施形態の冷間工具鋼の製造方法の工程説明図である。It is process explanatory drawing of the manufacturing method of the cold tool steel of embodiment of this invention. 熱間鍛造加工によるCr成分の濃度勾配の変化を示した図である。It is the figure which showed the change of the density | concentration gradient of Cr component by a hot forging process. シャルピー衝撃試験片の採取方向を示した図である。It is the figure which showed the sampling direction of the Charpy impact test piece. 従来の冷間工具鋼の製造方法の工程説明図である。It is process explanatory drawing of the manufacturing method of the conventional cold tool steel.

符号の説明Explanation of symbols

10 インゴット
12-1,12-2,12-3,14-1,14-2 中間鍛造品
16 鋼片
10 Ingot 12-1, 12-2, 12-3, 14-1, 14-2 Intermediate forged product 16 Steel slab

Claims (4)

Crを質量%で7〜13%含有する冷間工具鋼のインゴットに対して直交する3方向のうちの少なくとも何れか1方向に一連の熱間鍛造加工を施し歪みを導入した上で、1100〜1200℃の温度条件で6時間以上かけてソーキングを行うことを特徴とする冷間工具鋼の製造方法。   After introducing a series of hot forging processes in at least one of the three directions orthogonal to the ingot of the cold tool steel containing 7 to 13% by mass of Cr, 1100 A method for producing cold tool steel, wherein soaking is performed at a temperature condition of 1200 ° C. over 6 hours or more. 請求項1において、前記熱間鍛造加工を前記直交する3方向のそれぞれの方向に施し歪みを導入した上で前記ソーキングを行うことを特徴とする冷間工具鋼の製造方法。   The method of manufacturing cold tool steel according to claim 1, wherein the soaking is performed after the hot forging process is performed in each of the three orthogonal directions to introduce strain. 請求項2において、前記ソーキングの前に行う前記一連の熱間鍛造加工が、前記インゴットをその軸方向に圧縮する据込鍛造加工と、その後において軸直角方向の直交する2方向に全体として30%以上の減面率で圧縮して軸方向に鍛伸する加工とを含んでいることを特徴とする冷間工具鋼の製造方法。   In Claim 2, the series of hot forging performed before the soaking includes upsetting forging for compressing the ingot in its axial direction, and thereafter 30% as a whole in two orthogonal directions perpendicular to the axis. The manufacturing method of the cold tool steel characterized by including the process for which it compresses by the above-mentioned area reduction rate and forges in an axial direction. 請求項1〜3の何れかにおいて、前記冷間工具鋼が更にMoを質量%で1.5〜5%含んだものであることを特徴とする冷間工具鋼の製造方法。   The method for producing cold tool steel according to any one of claims 1 to 3, wherein the cold tool steel further contains 1.5 to 5% by mass of Mo.
JP2005294423A 2005-10-07 2005-10-07 Method for producing cold tool steel Pending JP2007100195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294423A JP2007100195A (en) 2005-10-07 2005-10-07 Method for producing cold tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294423A JP2007100195A (en) 2005-10-07 2005-10-07 Method for producing cold tool steel

Publications (1)

Publication Number Publication Date
JP2007100195A true JP2007100195A (en) 2007-04-19

Family

ID=38027414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294423A Pending JP2007100195A (en) 2005-10-07 2005-10-07 Method for producing cold tool steel

Country Status (1)

Country Link
JP (1) JP2007100195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096178A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, wheel made from light metal, and processes for production of those products
JP2018512281A (en) * 2015-03-26 2018-05-17 中国科学院金属研究所 Construction molding method for producing homogenized forged products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096178A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, wheel made from light metal, and processes for production of those products
JP2011177785A (en) * 2010-02-02 2011-09-15 Washi Kosan Co Ltd Forged billet, wheel made from light metal, and processes for production of those products
JP2018512281A (en) * 2015-03-26 2018-05-17 中国科学院金属研究所 Construction molding method for producing homogenized forged products

Similar Documents

Publication Publication Date Title
KR101599163B1 (en) Wire material for non-refined machine component steel wire for non-refined machine component non-refined machine component and method for manufacturing wire material for non-refined machine component steel wire for non-refined machine component and non-refined machine component
CN104313281B (en) A kind of production technology of high Oxygen potential fastener wire
WO2016121820A1 (en) Rod material for non-tempered machine component, steel rod for non-tempered machine component, and non-tempered machine component
JPS6296603A (en) Production of structural member made of heat-resistant high-strength al sintered alloy
CN109894473A (en) A kind of method that continuous casting billet directly forges production hot die steel
TW201608034A (en) Steel for mechanical structure for cold working, and method for producing same
CN112251664A (en) Ultra-fine grain alloy steel forging and manufacturing method thereof
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
JP4301525B2 (en) Compression forging method
JP6520465B2 (en) Method of manufacturing martensitic stainless steel pipe
JP2007100195A (en) Method for producing cold tool steel
JP2010229475A (en) Method for manufacturing high-strength high-toughness hot-forged product
JP5537248B2 (en) Machine structural steel, manufacturing method thereof, and machined part manufacturing method using machine structural steel
JP2010172947A (en) Method of super-high temperature hot forging
TWI643959B (en) Wire, steel wire and components
JP2007204840A (en) METHOD FOR MANUFACTURING WIRE OR BAR OF Ni-BASED ALLOY
JP2007100194A (en) Method for producing hot tool steel
JPH0967622A (en) Production of high strength non-heat treated steel wire for bolt, excellent in cold heading property
JP5030695B2 (en) High carbon steel excellent in break separation and production method thereof
EP0092629B1 (en) Process for the manufacture of rods and tubes from steels with great mechanical properties
JP2002210502A (en) Manufacturing method for extremely thick steel
JP4920144B2 (en) Steel for constant velocity joint outer
Scholl et al. Influences of Manufacturing‐Related Microstructural Variations on Fatigue in Carbide‐Rich Tool Steels
US20120192997A1 (en) Thermo-mechanical process to enhance the quality of grain boundary networks in metal alloys
RU2805951C1 (en) Rotor made of high strength stainless steel and method of its manufacturing