JP2007099821A - Heat-conductive silicone grease composition and semiconductor device using the same - Google Patents

Heat-conductive silicone grease composition and semiconductor device using the same Download PDF

Info

Publication number
JP2007099821A
JP2007099821A JP2005288486A JP2005288486A JP2007099821A JP 2007099821 A JP2007099821 A JP 2007099821A JP 2005288486 A JP2005288486 A JP 2005288486A JP 2005288486 A JP2005288486 A JP 2005288486A JP 2007099821 A JP2007099821 A JP 2007099821A
Authority
JP
Japan
Prior art keywords
grease composition
silicone grease
conductive silicone
heat
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005288486A
Other languages
Japanese (ja)
Other versions
JP4942978B2 (en
Inventor
Chisato Hoshino
千里 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Momentive Performance Materials Inc
Original Assignee
Momentive Performance Materials Japan LLC
Momentive Performance Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Japan LLC, Momentive Performance Materials Inc filed Critical Momentive Performance Materials Japan LLC
Priority to JP2005288486A priority Critical patent/JP4942978B2/en
Publication of JP2007099821A publication Critical patent/JP2007099821A/en
Application granted granted Critical
Publication of JP4942978B2 publication Critical patent/JP4942978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Lubricants (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-conductive silicone grease composition excellent in thermal conductivity and electrical insulation properties and to provide a semiconductor device using the same. <P>SOLUTION: The heat-conductive silicone grease composition comprises 100 pts.wt. (A) liquid silicone, 100 to 500 pts.wt. (B) metal powder having an average particle diameter of 0.5 to 100 μm, and 50 to 800 pts.wt. metal oxide powder and/or metal nitride powder (C) having an average particle diameter of 0.1 to 10 μm and has a volume resistivity of not less than 1×10<SP>11</SP>Ωcm. The semiconductor device is composed of a heat-generating electronic part and a heatsink between which the heat-conductive silicone grease composition intervenes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱伝導性及び電気絶縁性に優れた熱伝導性シリコーングリース組成物及びそれを用いた半導体装置に関する。   The present invention relates to a thermally conductive silicone grease composition excellent in thermal conductivity and electrical insulation and a semiconductor device using the same.

従来、電子部品の多くには、使用時の温度上昇による損傷や性能低下等を防止するため、ヒートシンク等の放熱体が広く用いられている。電子部品から発生する熱を放熱体に効率よく伝導させるため、一般に電子部品と放熱体との間に熱伝導性材料が使用される。   Conventionally, in many electronic parts, a heat radiator such as a heat sink has been widely used in order to prevent damage or performance degradation due to temperature rise during use. In order to efficiently conduct heat generated from the electronic component to the heat radiating body, a heat conductive material is generally used between the electronic component and the heat radiating body.

熱伝導性材料としては、例えば特許文献1には、シリコーンオイルをベースとして、アルミニウム粉末などの金属粉末を配合した熱伝導性グリース組成物が提案されている。また、特許文献2には、アルミニウム粉末及び酸化亜鉛粉末を配合した付加反応硬化型の熱伝導性シリコーン組成物が提案されている。   As a thermally conductive material, for example, Patent Document 1 proposes a thermally conductive grease composition in which metal powder such as aluminum powder is blended based on silicone oil. Patent Document 2 proposes an addition reaction curable heat conductive silicone composition containing an aluminum powder and a zinc oxide powder.

しかしながら、従来の熱伝導性材料は、金属粉末等を高充填すると熱伝導性能を改善することができるが、電気絶縁性を維持することが難しい。また、電子部品の多くは一般的に高い電気絶縁性が求められるため、このような場合には使用することが困難であった。
特開2000−063873号公報 特開2002−327116号公報
However, the conventional heat conductive material can improve the heat conduction performance when highly filled with metal powder or the like, but it is difficult to maintain the electrical insulation. In addition, since many electronic parts generally require high electrical insulation, it has been difficult to use in such cases.
JP 2000-063873 A JP 2002-327116 A

本発明の目的は、熱伝導性及び電気絶縁性に優れた熱伝導性シリコーングリース組成物及びそれを用いた半導体装置を提供することにある。   The objective of this invention is providing the heat conductive silicone grease composition excellent in heat conductivity and electrical insulation, and a semiconductor device using the same.

本発明者らは、上記目的を達成するために鋭意検討した結果、液状シリコーンに対する金属粉末の配合量と、金属酸化物粉末及び/又は金属窒化物粉末の配合量を最適化し、得られる組成物の体積抵抗率を1×1011Ω・cm以上とすることによって、熱伝導性とともに電気絶縁性に優れた熱伝導性シリコーングリース組成物が得られることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors have optimized the blending amount of the metal powder with respect to the liquid silicone and the blending amount of the metal oxide powder and / or the metal nitride powder, and the resulting composition It has been found that a heat conductive silicone grease composition having excellent electrical insulation as well as heat conductivity can be obtained by setting the volume resistivity of the resin to 1 × 10 11 Ω · cm or more.

すなわち、本発明の熱伝導性シリコーングリース組成物は、(A)液状シリコーン 100重量部、(B)平均粒径が0.5〜100μmの金属粉末 100〜500重量部、及び(C)平均粒径が0.1〜10μmの金属酸化物粉末及び/又は金属窒化物粉末 50〜800重量部を含有し、体積抵抗率が1×1011Ω・cm以上であることを特徴とする。 That is, the thermally conductive silicone grease composition of the present invention comprises (A) 100 parts by weight of liquid silicone, (B) 100 to 500 parts by weight of metal powder having an average particle size of 0.5 to 100 μm, and (C) average particles. It contains 50 to 800 parts by weight of metal oxide powder and / or metal nitride powder having a diameter of 0.1 to 10 μm, and has a volume resistivity of 1 × 10 11 Ω · cm or more.

また、本発明の半導体装置は、発熱性電子部品と放熱体とを有し、前記発熱性電子部品と前記放熱体との間に上記熱伝導性シリコーングリース組成物を介在させてなることを特徴とする。   The semiconductor device of the present invention includes a heat-generating electronic component and a heat radiator, and the heat-conductive silicone grease composition is interposed between the heat-generating electronic component and the heat radiator. And

上記構成により、熱伝導性及び電気絶縁性に優れた熱伝導性シリコーングリース組成物及びそれを用いた半導体装置を提供することが可能となる。   With the above configuration, it is possible to provide a thermally conductive silicone grease composition excellent in thermal conductivity and electrical insulation and a semiconductor device using the same.

以下、本発明の熱伝導性シリコーングリース組成物について説明する。   Hereinafter, the thermally conductive silicone grease composition of the present invention will be described.

[(A)成分]
本発明に用いられる(A)成分の液状シリコーンは、常温で液状である公知のシリコーン、例えば、ポリオルガノシロキサン、ポリオルガノシルアルキレン、ポリオルガノシラン及びそれらの共重合体等から適宜選択することが可能であるが、特に、下記一般式:
SiO(4−a)/2
で表されるオイル状のポリオルガノシロキサンを用いることが好ましい。これによって、良好な耐熱性、安定性及び電気絶縁性を得ることができる。上記式中において、R1は、独立に炭素数1〜18の一価炭化水素基から選択される1種もしくは2種以上の基である。R1としては、例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロヘキシル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基、3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基などが挙げられるが、特にメチル基、フェニル基、炭素数6〜18のアルキル基が好ましい。aは、液状シリコーンの合成のし易さから、1.8〜2.2の範囲がよく、特に1.9〜2.1が好ましい。
[(A) component]
The liquid silicone of component (A) used in the present invention may be appropriately selected from known silicones that are liquid at room temperature, such as polyorganosiloxane, polyorganosylalkylene, polyorganosilane, and copolymers thereof. In particular, the following general formula:
R 1 a SiO (4-a) / 2
It is preferable to use an oily polyorganosiloxane represented by: Thereby, good heat resistance, stability and electrical insulation can be obtained. In the above formula, R 1 is independently one or more groups selected from monovalent hydrocarbon group having 1 to 18 carbon atoms. R 1 is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group, a cyclohexyl group such as a cyclopentyl group, a cyclohexyl group, Vinyl group, alkenyl group such as allyl group, aryl group such as phenyl group and tolyl group, aralkyl group such as 2-phenylethyl group and 2-methyl-2-phenylethyl group, 3,3,3-trifluoropropyl group , 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, halogenated hydrocarbon group such as p-chlorophenyl group, etc., among others, methyl group, phenyl group, carbon number 6-18. Are preferred. From the viewpoint of easy synthesis of liquid silicone, a is preferably in the range of 1.8 to 2.2, particularly preferably 1.9 to 2.1.

また、(A)成分の粘度は、23℃において0.05〜10Pa・s、特に0.1〜5Pa・sであることが好ましい。0.05Pa・s未満であると、得られる組成物の安定性が悪化しオイル分離が起こり易くなる。一方、10Pa・sを越えると、得られる組成物の流動性が乏しくなる。   Moreover, it is preferable that the viscosity of (A) component is 0.05-10 Pa.s, especially 0.1-5 Pa.s in 23 degreeC. If it is less than 0.05 Pa · s, the stability of the resulting composition is deteriorated and oil separation tends to occur. On the other hand, when it exceeds 10 Pa · s, the fluidity of the resulting composition becomes poor.

[(B)成分]
本発明に用いられる(B)成分の金属粉末は、平均粒径が0.5〜100μm、好ましくは、0.5〜30μmのものが使用される。0.5μm未満であると、得られる組成物において所望の稠度が得られ難い。一方、100μmを超えると、得られる組成物の安定性が悪化し、オイル分離等が起こり易くなる。
[Component (B)]
The (B) component metal powder used in the present invention has an average particle size of 0.5 to 100 μm, preferably 0.5 to 30 μm. When it is less than 0.5 μm, it is difficult to obtain a desired consistency in the obtained composition. On the other hand, when it exceeds 100 μm, the stability of the resulting composition is deteriorated, and oil separation or the like easily occurs.

(B)成分としては、例えばアルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、鉄粉末、ステンレス粉末等の各種金属粉末が挙げられ、1種単独または2種以上を混合して用いてもよいが、特に、アルミニウム粉末を用いることが好ましい。また、その形状は、球状、不定形状のいずれでもよい。   Examples of the component (B) include various metal powders such as aluminum powder, copper powder, silver powder, nickel powder, iron powder, stainless steel powder, etc. In particular, it is preferable to use aluminum powder. Further, the shape may be either spherical or indefinite.

(B)成分の配合量は、(A)成分であるポリオルガノシロキサン100重量部に対して、100〜500重量部、好ましくは150〜480重量部である。100重量部未満であると、得られる組成物の熱伝導率が低下し易くなる。一方、500重量部を越えると、得られる組成物において所望の体積抵抗率が得られ難くなる。   (B) The compounding quantity of a component is 100-500 weight part with respect to 100 weight part of polyorganosiloxane which is (A) component, Preferably it is 150-480 weight part. If it is less than 100 parts by weight, the thermal conductivity of the resulting composition tends to decrease. On the other hand, when it exceeds 500 parts by weight, it is difficult to obtain a desired volume resistivity in the obtained composition.

[(C)成分]
本発明に用いられる(C)成分の金属酸化物粉末及び/又は金属窒化物粉末は、(B)成分の金属粉末の隙間に入り込み易くする上で、平均粒径が0.1〜10μm、好ましくは0.2〜8μmのものが使用される。0.1μm未満であると、得られる組成物において所望の稠度が得られ難い。一方、10μmを超えると、(B)成分の金属粉末との組合せによる細密充填が困難になり、所望の熱伝導率を得られ難くなる。
[Component (C)]
The metal oxide powder and / or metal nitride powder of the component (C) used in the present invention has an average particle size of 0.1 to 10 μm, preferably in order to make it easy to enter the gap between the metal powder of the component (B). Is 0.2 to 8 μm. When it is less than 0.1 μm, it is difficult to obtain a desired consistency in the obtained composition. On the other hand, when it exceeds 10 μm, it becomes difficult to perform fine packing by combining with the metal powder of component (B), and it becomes difficult to obtain a desired thermal conductivity.

(C)成分としては、例えば酸化亜鉛粉末、酸化アルミニウム粉末、酸化マグネシウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末、窒化ケイ素粉末等の各種金属酸化物粉末及び/又は金属窒化物粉末が挙げられる。特に、酸化亜鉛粉末、酸化アルミニウム粉末及び窒化ホウ素粉末から選ばれる少なくとも1種を用いることが好ましく、1種単独または2種以上を混合して用いてもよい。また、その形状は、球状、不定形状のいずれでもよい。   Examples of the component (C) include various metal oxide powders such as zinc oxide powder, aluminum oxide powder, magnesium oxide powder, boron nitride powder, aluminum nitride powder, and silicon nitride powder, and / or metal nitride powder. In particular, it is preferable to use at least one selected from zinc oxide powder, aluminum oxide powder, and boron nitride powder, and one kind may be used alone, or two or more kinds may be used in combination. Further, the shape may be either spherical or indefinite.

(C)成分の配合量は、(A)成分であるポリオルガノシロキサン100重量部に対して、50〜800重量部、好ましくは100〜500重量部である。50重量部未満であると、(B)成分の金属粉末の隙間を埋めることができなくなるため、熱伝導率が低下する。一方、800重量部を越えると、得られる組成物において所望の稠度が得られ難くなる。   (C) The compounding quantity of component is 50-800 weight part with respect to 100 weight part of polyorganosiloxane which is (A) component, Preferably it is 100-500 weight part. If it is less than 50 parts by weight, the gap between the metal powders of the component (B) cannot be filled, so that the thermal conductivity is lowered. On the other hand, when it exceeds 800 parts by weight, it is difficult to obtain a desired consistency in the resulting composition.

したがって、(B)成分と(C)成分との合計量は、ベースオイルである(A)成分100重量部に対して、150〜1300重量部となる範囲で使用することが可能である。150重量部未満であると、熱伝導性が不十分となる。一方、1300重量部を超えると、得られる組成物の流動性が低下して作業性が悪化し易くなる。なお、(B)成分と(C)成分の配合量は、所望の熱伝導率と体積抵抗率を得る上で、同量または(B)成分が(C)成分より多くなる量であることが好ましい。   Therefore, the total amount of the component (B) and the component (C) can be used in a range of 150 to 1300 parts by weight with respect to 100 parts by weight of the component (A) that is the base oil. If it is less than 150 parts by weight, the thermal conductivity becomes insufficient. On the other hand, when it exceeds 1300 weight part, the fluidity | liquidity of the composition obtained will fall and workability | operativity will deteriorate easily. In addition, the blending amount of the component (B) and the component (C) is the same amount or an amount in which the component (B) is larger than the component (C) in order to obtain desired thermal conductivity and volume resistivity. preferable.

本発明における熱伝導性シリコーングリース組成物は、上記(A)〜(C)の各成分を基本成分とし、これらに必要に応じて、その他任意成分としてウエッター成分を配合してもよい。ウエッター成分は、(B)成分及び(C)成分の粉末表面をウエッター成分で処理することにより、前記粉末とベースオイルである(A)成分のポリオルガノポリシロキサンとの濡れ性を向上させるものである。   In the heat conductive silicone grease composition of the present invention, the above components (A) to (C) may be used as basic components, and a wetter component may be blended as other optional components as necessary. The wetter component improves the wettability of the powder and the polyorganopolysiloxane of the component (A) which is the base oil by treating the powder surface of the component (B) and the component (C) with the wetter component. .

ウエッター成分としては、下記一般式:
Si(OR4−b−c
で表されるアルコキシシランを用いることが好ましい。上記式中のRは、炭素数6〜15のアルキル基である。具体例としては、ヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。また、Rは、炭素数1〜8の飽和又は不飽和の一価の炭化水素基である。具体例としては、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロヘキシル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基、3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基などが挙げられるが、特にメチル基、エチル基が好ましい。Rは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素数1〜6の1種もしくは2種以上のアルキル基であり、特にメチル基、エチル基が好ましい。また、bは1〜3の整数であるが、特に1であることが好ましい。cは0〜2の整数、b+cは1〜3の整数である。
As a wetter component, the following general formula:
R 2 b R 3 c Si (OR 4 ) 4-b-c
It is preferable to use an alkoxysilane represented by R 2 in the above formula is an alkyl group having 6 to 15 carbon atoms. Specific examples include hexyl group, nonyl group, decyl group, dodecyl group, tetradecyl group and the like. R 3 is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms. Specific examples include alkyl groups such as methyl group, ethyl group, propyl group, hexyl group and octyl group, cyclohexyl groups such as cyclopentyl group and cyclohexyl group, alkenyl groups such as vinyl group and allyl group, phenyl group, tolyl group and the like. Aryl groups, aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group, 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluoro) Examples thereof include halogenated hydrocarbon groups such as an octyl) ethyl group and a p-chlorophenyl group, and a methyl group and an ethyl group are particularly preferable. R 4 is one or more alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group and an ethyl group are particularly preferable. Further, b is an integer of 1 to 3, but 1 is particularly preferable. c is an integer of 0 to 2, and b + c is an integer of 1 to 3.

ウエッター成分の配合量は、(B)成分及び(C)成分と、(A)成分との濡れ性を向上させる上で、(A)成分100重量部に対して、0.01〜10重量部の範囲が好ましい。   The blending amount of the wetter component is 0.01 to 10 parts by weight with respect to 100 parts by weight of the component (A) in order to improve the wettability between the component (B) and the component (C) and the component (A). The range of is preferable.

さらに、その他任意成分として公知の耐熱添加剤、シリカ等の粘度調整剤、着色剤、溶剤等を本発明の目的を損なわない範囲で添加してもよい。   Furthermore, other known heat-resistant additives, viscosity modifiers such as silica, colorants, solvents and the like may be added as long as they do not impair the object of the present invention.

本発明の熱伝導性シリコーングリース組成物を製造するには、上述した(A)〜(C)成分及びその他任意成分をプラネタリーミキサー等の混合機で混合することにより得ることができる。必要ならば50〜150℃に加熱しながら混合してもよい。更に混合後、均一仕上げのため、高剪断力下で混練操作を行うことが好ましい。混練装置としては、3本ロール、コロイドミル、サンドグラインダー等があるが、中でも3本ロールによる方法が好ましい。   In order to produce the thermally conductive silicone grease composition of the present invention, the above-described components (A) to (C) and other optional components can be obtained by mixing with a mixer such as a planetary mixer. If necessary, mixing may be performed while heating to 50 to 150 ° C. Further, after mixing, it is preferable to perform a kneading operation under a high shearing force for uniform finishing. As a kneading apparatus, there are a three roll, a colloid mill, a sand grinder, etc. Among them, a method using a three roll is preferable.

本発明の熱伝導性シリコーングリース組成物の稠度は、150〜450であることが好ましい。なお、稠度は、JIS K 2220に準拠した値である。25℃における稠度が、450を超えると、塗布時に液ダレを起こしやすくなる。一方、150未満であると、例えばシリンジやディスペンサ等を用いて電子部品に塗布する際に、吐出し難くなり所望の厚さに塗布することが困難になる。   The consistency of the thermally conductive silicone grease composition of the present invention is preferably 150 to 450. The consistency is a value based on JIS K 2220. If the consistency at 25 ° C. exceeds 450, liquid dripping is likely to occur during coating. On the other hand, when it is less than 150, when applying to an electronic component using, for example, a syringe or a dispenser, it becomes difficult to discharge and difficult to apply to a desired thickness.

本発明の熱伝導性シリコーングリース組成物は、体積抵抗率が1×1011Ω・cm以上、特に1×1012Ω・cm以上であることが好ましい。体積抵抗率が1×1011Ω・cm未満であると、電気的短絡の危険性が増加し、適応範囲が狭まる場合がある。 The heat conductive silicone grease composition of the present invention preferably has a volume resistivity of 1 × 10 11 Ω · cm or more, particularly 1 × 10 12 Ω · cm or more. If the volume resistivity is less than 1 × 10 11 Ω · cm, the risk of an electrical short circuit increases and the adaptive range may be narrowed.

また、本発明の熱伝導性シリコーングリース組成物は、熱線法で測定した25℃における熱伝導率が0.5W/(m・K)以上、特に1.0W/(m・K)以上であることが好ましい。熱伝導率が0.5W/(m・K)未満であると、熱伝導性能が不十分になる場合があり、用途が限定され易くなる。   In addition, the heat conductive silicone grease composition of the present invention has a thermal conductivity at 25 ° C. of 0.5 W / (m · K) or more, particularly 1.0 W / (m · K) or more as measured by a hot wire method. It is preferable. When the thermal conductivity is less than 0.5 W / (m · K), the thermal conductivity may be insufficient, and the application is likely to be limited.

したがって、本発明の熱伝導性シリコーングリース組成物は、熱伝導性とともに優れた電気絶縁性を発揮するため、発熱性電子部品と放熱体との間に介在される電気絶縁性の熱伝導性材料として好適である。   Therefore, since the thermally conductive silicone grease composition of the present invention exhibits excellent electrical insulation as well as thermal conductivity, an electrically insulating thermally conductive material interposed between the heat-generating electronic component and the heat radiator It is suitable as.

次に、本発明の半導体装置について図面を参照して説明する。図1は、本発明に係る半導体装置の一例を示す断面図である。   Next, the semiconductor device of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of a semiconductor device according to the present invention.

図1に示すように、本発明の半導体装置1は、配線基板2に実装された例えばCPU3等の発熱性電子部品とヒートシンク4等の放熱体との間に、上述した熱伝導性シリコーングリース組成物5を介在させてなる。このような半導体装置1は、配線基板2に実装されたCPU3に、例えばシリンジ等で熱伝導性シリコーングリース組成物5を塗布した後、ヒートシンク4と配線基板2とをクランプ6等で押圧することによって得られる。   As shown in FIG. 1, the semiconductor device 1 of the present invention includes a heat conductive silicone grease composition described above between a heat generating electronic component such as a CPU 3 mounted on a wiring board 2 and a heat sink such as a heat sink 4. The object 5 is interposed. In such a semiconductor device 1, the heat conductive silicone grease composition 5 is applied to the CPU 3 mounted on the wiring board 2 with a syringe or the like, and then the heat sink 4 and the wiring board 2 are pressed with the clamp 6 or the like. Obtained by.

CPU3とヒートシンク4との間に介在する熱伝導性シリコーングリース組成物5の厚さは、5〜300μmであることが好ましい。5μmより薄いと、押圧の僅かなずれによりCPU3とヒートシンク4との間に隙間が生じる恐れがある。一方、300μmより厚いと、熱抵抗が大きくなり、放熱効果が悪化し易くなる。   The thickness of the thermally conductive silicone grease composition 5 interposed between the CPU 3 and the heat sink 4 is preferably 5 to 300 μm. If the thickness is less than 5 μm, there is a possibility that a gap is generated between the CPU 3 and the heat sink 4 due to a slight shift in pressing. On the other hand, if it is thicker than 300 μm, the thermal resistance increases and the heat dissipation effect tends to deteriorate.

本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものではない。なお、実施例及び比較例中の粘度は、23℃において測定した値である。   The present invention will be described in detail with reference to examples, but the present invention is not limited to the examples. In addition, the viscosity in an Example and a comparative example is the value measured in 23 degreeC.

実施例および比較例で得られた熱伝導性シリコーングリース組成物は、以下のようにして評価し、結果を表1に示した。   The heat conductive silicone grease compositions obtained in the examples and comparative examples were evaluated as follows, and the results are shown in Table 1.

[熱伝導率]
25℃において、熱線法に従い、熱伝導率計(京都電子工業社製、QTM−500)を用いて測定した。
[Thermal conductivity]
At 25 ° C., measurement was performed using a thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.) according to the hot wire method.

[体積抵抗率]
MIL−S−8660Bに従い、測定した。
[Volume resistivity]
It measured according to MIL-S-8660B.

[実施例1]
粘度0.6Pa・sのC10変性シリコーンオイル100重量部、平均粒径が10μmのアルミニウム粉末450重量部、平均粒径が0.5μmである酸化亜鉛粉末450重量部、所定の耐熱添加剤0.5重量部をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合した後、3本ロール(小平製作所製)にて処理を行い、熱伝導性シリコーングリース組成物を製造した。
この組成物の特性を測定し、結果を表1に示した。
[Example 1]
100 parts by weight of C 10 modified silicone oil having a viscosity of 0.6 Pa · s, aluminum powder 450 parts by weight of the average particle size of 10 [mu] m, an average particle size of zinc oxide powder 450 parts by weight of 0.5 [mu] m, given heat additives 0 .5 parts by weight was charged into a planetary mixer (Dalton), stirred and mixed at room temperature for 1 hour, further stirred and mixed at 120 ° C. for 1 hour, and then treated with 3 rolls (manufactured by Kodaira Seisakusho). And a thermally conductive silicone grease composition was produced.
The properties of this composition were measured and the results are shown in Table 1.

[実施例2]
粘度0.6Pa・sのC10変性シリコーンオイル100重量部、平均粒径が10μmのアルミニウム粉末450重量部、平均粒径が0.5μmである酸化アルミニウム粉末300重量部、所定の耐熱添加剤0.5重量部をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合した後、3本ロール(小平製作所製)にて処理を行い、熱伝導性シリコーングリース組成物を製造した。
この組成物の特性を測定し、結果を表1に示した。
[Example 2]
100 parts by weight of C 10 modified silicone oil having a viscosity of 0.6 Pa · s, aluminum powder 450 parts by weight of the average particle size of 10 [mu] m, an average particle size of aluminum oxide powder 300 parts by weight of 0.5 [mu] m, given heat additives 0 .5 parts by weight was charged into a planetary mixer (Dalton), stirred and mixed at room temperature for 1 hour, further stirred and mixed at 120 ° C. for 1 hour, and then treated with 3 rolls (manufactured by Kodaira Seisakusho). And a thermally conductive silicone grease composition was produced.
The properties of this composition were measured and the results are shown in Table 1.

[実施例3]
粘度0.8Pa・sのジメチルシリコーンオイル100重量部、平均粒径が10μmのアルミニウム粉末450重量部、平均粒径が0.5μmである酸化亜鉛粉末400重量部をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合後、3本ロール(小平製作所製)にて処理を行い、熱伝導性シリコーングリース組成物を製造した。
この組成物の特性を測定し、結果を表1に示した。
[Example 3]
100 parts by weight of dimethyl silicone oil having a viscosity of 0.8 Pa · s, 450 parts by weight of aluminum powder having an average particle diameter of 10 μm, and 400 parts by weight of zinc oxide powder having an average particle diameter of 0.5 μm The mixture was stirred and mixed at room temperature for 1 hour, further stirred and mixed at 120 ° C. for 1 hour, and then treated with three rolls (manufactured by Kodaira Seisakusho) to produce a thermally conductive silicone grease composition.
The properties of this composition were measured and the results are shown in Table 1.

[実施例4]
粘度0.6Pa・sのC10変性シリコーンオイル100重量部、平均粒径が2μmのアルミニウム粉末400重量部、平均粒径が0.5μmである酸化亜鉛粉末200重量部をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合後、3本ロール(小平製作所製)にて処理を行い、熱伝導性シリコーングリース組成物を製造した。
この組成物の特性を測定し、結果を表1に示した。
[Example 4]
100 parts by weight of C 10 modified silicone oil having a viscosity of 0.6 Pa · s, aluminum powder 400 parts by weight of the average particle size of 2 [mu] m, an average particle size of zinc oxide powder 200 parts by weight of a planetary type mixer is 0.5 [mu] m (Dalton The mixture was stirred and mixed at room temperature for 1 hour, and further stirred and mixed at 120 ° C. for 1 hour, followed by treatment with three rolls (manufactured by Kodaira Seisakusho) to produce a thermally conductive silicone grease composition. .
The properties of this composition were measured and the results are shown in Table 1.

[比較例1]
粘度0.6Pa・sのC10変性シリコーンオイル100重量部、平均粒径が10μmのアルミニウム粉末800重量部、所定の耐熱添加剤0.5重量部をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合後、3本ロール(小平製作所製)にて処理を行い、熱伝導性シリコーングリース組成物を製造した。
この組成物の特性を測定し、結果を表1に示した。
[Comparative Example 1]
100 parts by weight of C 10 modified silicone oil having a viscosity of 0.6 Pa · s, aluminum powder 800 parts by weight of the average particle size of 10 [mu] m, a predetermined heat additive 0.5 part by weight of a planetary type mixer (Dalton Co., Ltd.) were charged The mixture was stirred and mixed at room temperature for 1 hour, further stirred and mixed at 120 ° C. for 1 hour, and then treated with three rolls (manufactured by Kodaira Seisakusho) to produce a thermally conductive silicone grease composition.
The properties of this composition were measured and the results are shown in Table 1.

[比較例2]
粘度0.6Pa・sのC10変性シリコーンオイル100重量部、平均粒径が10μmのアルミニウム粉末650重量部、平均粒径が0.5μmである酸化亜鉛粉末100重量部、所定の耐熱添加剤0.5重量部をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合後、3本ロール(小平製作所製)にて処理を行い、熱伝導性シリコーングリース組成物を製造した。
この組成物の特性を測定し、結果を表1に示した。

Figure 2007099821
[Comparative Example 2]
100 parts by weight of C 10 modified silicone oil having a viscosity of 0.6 Pa · s, aluminum powder 650 parts by weight of the average particle size of 10 [mu] m, an average particle size of zinc oxide powder 100 parts by weight of a 0.5 [mu] m, given heat additives 0 .5 parts by weight are charged into a planetary mixer (Dalton), mixed with stirring at room temperature for 1 hour, further stirred and mixed at 120 ° C for 1 hour, and then processed with three rolls (manufactured by Kodaira Seisakusho). A thermally conductive silicone grease composition was produced.
The properties of this composition were measured and the results are shown in Table 1.
Figure 2007099821

表1から明らかなように、(A)成分のベースオイル100重量部に対する(B)成分の配合量が100〜500重量部であり、かつ、(C)成分の配合量が50〜800重量部である各実施例の熱伝導性シリコーングリース組成物は、熱伝導率を0.5W/(m・K)以上にするとともに、体積抵抗率を1×1011Ω・cm以上にすることができる。したがって、高い熱伝導性能と電気絶縁性を兼ね備えているため、発熱性電子部品と放熱体との間に介在される電気絶縁性の熱伝導性材料として好適である。 As is clear from Table 1, the blending amount of the component (B) is 100 to 500 parts by weight with respect to 100 parts by weight of the base oil of the component (A), and the blending amount of the component (C) is 50 to 800 parts by weight. The heat conductive silicone grease composition of each example can have a thermal conductivity of 0.5 W / (m · K) or more and a volume resistivity of 1 × 10 11 Ω · cm or more. Therefore, since it has both high thermal conductivity and electrical insulation, it is suitable as an electrically insulating thermal conductive material interposed between the heat-generating electronic component and the radiator.

本発明の半導体装置の一例を示す断面図。4 is a cross-sectional view illustrating an example of a semiconductor device of the present invention.

符号の説明Explanation of symbols

1…半導体装置、2…配線基板、3…CPU、4…ヒートシンク、5…熱伝導性シリコーングリース組成物、6…クランプ。

DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Wiring board, 3 ... CPU, 4 ... Heat sink, 5 ... Thermally conductive silicone grease composition, 6 ... Clamp.

Claims (8)

(A)液状シリコーン 100重量部、
(B)平均粒径が0.5〜100μmの金属粉末 100〜500重量部、
及び
(C)平均粒径が0.1〜10μmの金属酸化物粉末及び/又は金属窒化物粉末 50〜800重量部を含有し、体積抵抗率が1×1011Ω・cm以上であることを特徴とする熱伝導性シリコーングリース組成物。
(A) 100 parts by weight of liquid silicone,
(B) 100 to 500 parts by weight of metal powder having an average particle size of 0.5 to 100 μm,
And (C) containing 50 to 800 parts by weight of metal oxide powder and / or metal nitride powder having an average particle size of 0.1 to 10 μm and having a volume resistivity of 1 × 10 11 Ω · cm or more. A heat conductive silicone grease composition.
前記(A)成分の23℃における粘度が、0.05〜10Pa・sであることを特徴とする請求項1に記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to claim 1, wherein the component (A) has a viscosity at 23 ° C. of 0.05 to 10 Pa · s. 前記(A)成分は、下記一般式:
SiO(4−a)/2
(R1は独立に炭素数1〜18の一価炭化水素基、aは1.8≦a≦2.2である。)で表されるポリオルガノシロキサンであることを特徴とする請求項1又は2に記載の熱伝導性シリコーングリース組成物。
The component (A) has the following general formula:
R 1 a SiO (4-a) / 2
2. A polyorganosiloxane represented by the formula ( 1 ) wherein R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, and a is 1.8 ≦ a ≦ 2.2. Or the heat conductive silicone grease composition of 2.
前記(B)成分が、アルミニウム粉末であることを特徴とする請求項1乃至3のいずれか1項に記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to any one of claims 1 to 3, wherein the component (B) is an aluminum powder. 前記(C)成分が、酸化亜鉛粉末、酸化アルミニウム粉末及び窒化ホウ素粉末から選ばれる少なくとも1種であることを特徴とする請求項1乃至4のいずれか1項に記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to any one of claims 1 to 4, wherein the component (C) is at least one selected from zinc oxide powder, aluminum oxide powder, and boron nitride powder. object. 熱伝導性シリコーングリース組成物の25℃における稠度が、150〜450であることを特徴とする請求項1乃至5のいずれか1項に記載の熱伝導性シリコーングリース組成物。   The heat conductive silicone grease composition according to any one of claims 1 to 5, wherein the heat conductive silicone grease composition has a consistency of 150 to 450 at 25 ° C. 熱伝導性シリコーングリース組成物の熱線法で測定した25℃における熱伝導率が、0.5W/(m・K)以上であることを特徴とする請求項1乃至6のいずれか1項に記載の熱伝導性シリコーングリース組成物。   7. The thermal conductivity at 25 ° C. measured by a hot wire method of the thermally conductive silicone grease composition is 0.5 W / (m · K) or more, 7. Thermally conductive silicone grease composition. 発熱性電子部品と放熱体とを有し、前記発熱性電子部品と前記放熱体との間に請求項1乃至7のいずれか1項に記載の熱伝導性シリコーングリース組成物を介在させてなることを特徴とする半導体装置。   It has a heat generating electronic component and a radiator, and the heat conductive silicone grease composition according to any one of claims 1 to 7 is interposed between the heat generating electronic component and the heat radiator. A semiconductor device.
JP2005288486A 2005-09-30 2005-09-30 Thermally conductive silicone grease composition and semiconductor device using the same Active JP4942978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288486A JP4942978B2 (en) 2005-09-30 2005-09-30 Thermally conductive silicone grease composition and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288486A JP4942978B2 (en) 2005-09-30 2005-09-30 Thermally conductive silicone grease composition and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2007099821A true JP2007099821A (en) 2007-04-19
JP4942978B2 JP4942978B2 (en) 2012-05-30

Family

ID=38027086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288486A Active JP4942978B2 (en) 2005-09-30 2005-09-30 Thermally conductive silicone grease composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4942978B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185212A (en) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk Thermal conductive grease
WO2011108358A2 (en) 2010-03-03 2011-09-09 Dow Corning Toray Co., Ltd. Dispenser for highly viscous fluid
US10683444B2 (en) 2015-05-22 2020-06-16 Momentive Performance Materials Japan Llc Thermally conductive composition
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
WO2021246397A1 (en) 2020-06-05 2021-12-09 デンカ株式会社 Two-pack curable heat conductive grease composition, heat conductive grease and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158609A (en) * 1999-11-29 2001-06-12 Denki Kagaku Kogyo Kk Aluminum nitride powder for filling resin and use thereof
JP2002003718A (en) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd Heat conductive silicone composition and semiconductor apparatus
JP2002194379A (en) * 2000-12-27 2002-07-10 Ge Toshiba Silicones Co Ltd Heat-releasing grease
WO2002072702A1 (en) * 2001-03-09 2002-09-19 Dow Corning Toray Silicone Co., Ltd. Greasy silicone composition
JP2004010880A (en) * 2002-06-12 2004-01-15 Denki Kagaku Kogyo Kk Resin composition and heat radiating member
JP2004210856A (en) * 2002-12-27 2004-07-29 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2005170971A (en) * 2003-12-08 2005-06-30 Denki Kagaku Kogyo Kk Grease

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158609A (en) * 1999-11-29 2001-06-12 Denki Kagaku Kogyo Kk Aluminum nitride powder for filling resin and use thereof
JP2002003718A (en) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd Heat conductive silicone composition and semiconductor apparatus
JP2002194379A (en) * 2000-12-27 2002-07-10 Ge Toshiba Silicones Co Ltd Heat-releasing grease
WO2002072702A1 (en) * 2001-03-09 2002-09-19 Dow Corning Toray Silicone Co., Ltd. Greasy silicone composition
JP2004010880A (en) * 2002-06-12 2004-01-15 Denki Kagaku Kogyo Kk Resin composition and heat radiating member
JP2004210856A (en) * 2002-12-27 2004-07-29 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2005170971A (en) * 2003-12-08 2005-06-30 Denki Kagaku Kogyo Kk Grease

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185212A (en) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk Thermal conductive grease
WO2011108358A2 (en) 2010-03-03 2011-09-09 Dow Corning Toray Co., Ltd. Dispenser for highly viscous fluid
US10683444B2 (en) 2015-05-22 2020-06-16 Momentive Performance Materials Japan Llc Thermally conductive composition
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
WO2021246397A1 (en) 2020-06-05 2021-12-09 デンカ株式会社 Two-pack curable heat conductive grease composition, heat conductive grease and electronic device

Also Published As

Publication number Publication date
JP4942978B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4860229B2 (en) Thermally conductive grease composition
JP4219793B2 (en) Silicone grease composition for heat dissipation
CN107532001B (en) Thermally conductive composition
JP6223590B2 (en) Thermally conductive composition
JP4933094B2 (en) Thermally conductive silicone grease composition
JP5640945B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP3922367B2 (en) Thermally conductive silicone grease composition
JP2008222776A (en) Heat-conductive silicone grease composition
JP2009096961A (en) Heat-conductive silicone grease composition excellent in reworkability
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP2010013521A (en) Heat conductive silicone composition
JP6610491B2 (en) Thermally conductive silicone composition and semiconductor device
JP2009138036A (en) Thermally-conductive silicone grease composition
JP2015140395A (en) Thermal conductive silicone grease composition
JP4942978B2 (en) Thermally conductive silicone grease composition and semiconductor device using the same
WO2018221637A1 (en) Thermally conductive polysiloxane composition
JP5373545B2 (en) Thermally conductive silicone grease composition for heat dissipation and method of using the same
WO2012067247A1 (en) High durability thermally conductive composite and low pump-out grease
JP2005330426A (en) Heat-dissipating silicone grease composition
JP2006169343A (en) Method for producing heat-releasing silicone grease composition
JP2009221310A (en) Heat-conductive silicone grease composition
WO2020202800A1 (en) Heat-conducting silicone composition, method for manufacturing same, and semiconductor device
WO2021246397A1 (en) Two-pack curable heat conductive grease composition, heat conductive grease and electronic device
JP7237884B2 (en) Thermally conductive silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Ref document number: 4942978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250