JP2007099696A - Germicidal material for aerial application - Google Patents

Germicidal material for aerial application Download PDF

Info

Publication number
JP2007099696A
JP2007099696A JP2005292262A JP2005292262A JP2007099696A JP 2007099696 A JP2007099696 A JP 2007099696A JP 2005292262 A JP2005292262 A JP 2005292262A JP 2005292262 A JP2005292262 A JP 2005292262A JP 2007099696 A JP2007099696 A JP 2007099696A
Authority
JP
Japan
Prior art keywords
sterilizing
charge
germicidal
charged
talc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005292262A
Other languages
Japanese (ja)
Inventor
Mitsuo Hiyakumachi
Yoshinari Kato
Yoshihiro Taguchi
吉成 加藤
義広 田口
満朗 百町
Original Assignee
Mitsuo Hiyakumachi
Kato Sachiko
Taguchi Taeko
加藤 幸子
田口 妙子
満朗 百町
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuo Hiyakumachi, Kato Sachiko, Taguchi Taeko, 加藤 幸子, 田口 妙子, 満朗 百町 filed Critical Mitsuo Hiyakumachi
Priority to JP2005292262A priority Critical patent/JP2007099696A/en
Publication of JP2007099696A publication Critical patent/JP2007099696A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a germicidal material for aerial application capable of efficiently contacting harmful microorganisms with a germicidal agent. <P>SOLUTION: The germicidal material for aerial application charges the surface of a germicidal material with electric charge reverse to the charge of the surface of a harmful microorganism to attract the harmful microorganism floating in air and charged with electric charge reverse to the charge of the charged material scattered in air together with a germicidal agent and contact the microorganism with the germicide. The germicidal effect of the germicide is fully exhibited by the method to increase the controlling effect on the harmful microorganisms. The surface charge of harmful microorganism is positive at pH 4 or below and is negative at pH of higher than 4. Since the quantity of electric charge is ≥10 μV or ≤-10 μV or thereabout, the surface charge of the germicidal material for aerial application is preferably ≥10 μV or ≤-10 μV. The germicidal agent is an antagonistic microorganism, a chemical germicide or an antibacterial substance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空中散布用殺菌資材(以下、殺菌資材という。)に関するものである。   The present invention relates to an aerial sterilizing material (hereinafter referred to as a sterilizing material).
従来から農作物の施設栽培においては、地上部位等に発生する病害を防除するために化学殺菌剤等の農薬が散布されている。一般的に散布用農薬は、水溶液及び粉末タイプであり、噴霧式散布装置若しくは散粉器を用いて定期的に散布されている。   Conventionally, in agricultural cultivation of agricultural crops, agricultural chemicals such as chemical bactericides have been sprayed to control diseases that occur on the ground. Generally, agricultural chemicals for spraying are an aqueous solution and a powder type, and are sprayed regularly using a spray type spraying device or a duster.
近年、人畜に無害の粉末タイプの農薬が開発され、その散布用資材の検討がなされている。農作物の施設栽培では周年栽培が行われ、冬季の寒い期間は温度を上げるため温風暖房装置を稼働させている。この温風暖房装置を利用して粉末タイプの農薬を施設内に散布する方法が、特開2001−302407号公報に開示されている。   In recent years, powder-type pesticides that are harmless to human livestock have been developed, and materials for spraying have been studied. Agricultural crops are cultivated throughout the year, and warm air heaters are operated to raise the temperature during the cold winter season. Japanese Unexamined Patent Publication No. 2001-302407 discloses a method of spraying a powder type agricultural chemical into a facility using this hot air heating apparatus.
しかしながら、上記した方法による粉末タイプの農薬散布では、期待する殺菌効果が得られない場合がある。具体的には、灰色かび病に対しては効果があっても、トマト葉かび病(Fulvia)やキュウリ褐斑病(Corynespora)等に対しては効果が全く認められないという事例がある。このように、特定の病害に対しては高い防除効果を発揮するが、他の病害に対しては抗菌活性を有するにも拘らず防除効果を示さないという現象が発生している。これは、殺菌しようとする有害微生物と殺菌剤が効率的に接触していない為と考えられる。
特開2001−302407
However, there are cases in which the expected bactericidal effect cannot be obtained by spraying powder-type pesticides by the above method. Specifically, there is an example in which even if effective against gray mold, no effect is observed against tomato leaf mold (Fulvia) or cucumber brown spot (Corynespora). As described above, there is a phenomenon in which a high disease control effect is exhibited for a specific disease, but no disease control effect is exhibited against other diseases despite having antibacterial activity. This is probably because the harmful microorganisms to be sterilized and the bactericide are not in efficient contact.
JP 2001-302407 A
本発明は、上記問題点を解決するためなされたもので、有害微生物の表面が帯電していることに着目し、その逆の電荷を殺菌資材表面に帯電させることにより、効率的に有害微生物と殺菌剤を接触させることができる殺菌資材を提供することを目的とするものである。   The present invention has been made to solve the above-mentioned problems, paying attention to the fact that the surface of harmful microorganisms is charged, and by charging the surface of the sterilizing material with the opposite charge, the harmful microorganisms can be efficiently treated. It aims at providing the sterilization material which can be made to contact a disinfectant.
上記目的を達成するための請求項1に記載の殺菌資材は、微生物の表面に帯電する電荷と逆の電荷を、空中散布時表面に帯電させることができる帯電材料と殺菌剤とを混合したことを特徴とする。   In order to achieve the above object, the sterilizing material according to claim 1 is a mixture of a sterilizing agent and a charging material capable of charging the surface opposite to the charge charged on the surface of microorganisms when sprayed in the air. It is characterized by.
請求項2に記載の殺菌資材は、請求項1に記載の構成において、前記帯電材料が表面に帯電する表面電荷が、10μV以上若しくは−10μV以下であることを特徴とする。   The sterilizing material according to claim 2 is characterized in that, in the configuration according to claim 1, the surface charge charged on the surface of the charging material is 10 μV or more or −10 μV or less.
請求項3に記載の殺菌資材は、請求項1又は請求項2に記載の構成において、前記殺菌剤が拮抗微生物であることを特徴とする。   The sterilizing material according to claim 3 is the structure according to claim 1 or 2, wherein the sterilizing agent is an antagonistic microorganism.
請求項4に記載の殺菌資材は、請求項1又は請求項2に記載の構成において、前記殺菌剤が化学殺菌剤であることを特徴とする。   The sterilizing material according to claim 4 is the structure according to claim 1 or 2, wherein the sterilizing agent is a chemical sterilizing agent.
請求項5に記載の殺菌資材は、請求項1又は請求項2に記載の構成において、前記殺菌剤が抗菌物質であることを特徴とする。   The sterilizing material according to claim 5 is the structure according to claim 1 or 2, wherein the sterilizing agent is an antibacterial substance.
また、請求項6に記載の殺菌資材は、請求項1乃至請求項5の何れかに記載の構成において、混合した前記帯電材料と殺菌剤との比重が2.0以下であり、粒子径が100μm以下であることを特徴とする。   Further, the sterilizing material according to claim 6 is the configuration according to any one of claims 1 to 5, wherein the specific gravity of the mixed charging material and the sterilizing agent is 2.0 or less, and the particle diameter is It is 100 μm or less.
上記請求項1に記載の殺菌資材によれば、殺菌剤とともに大気中に散布される帯電物質の帯電電荷と逆の電荷を帯電して大気中に浮遊する有害微生物を誘引して、殺菌剤と接触させることが可能となり、添加した殺菌剤の殺菌効果を十分に発現することができる。   According to the sterilizing material according to claim 1, the sterilizing agent attracts harmful microorganisms floating in the atmosphere by charging a charge opposite to the charged charge of the charged substance dispersed in the atmosphere together with the sterilizing agent, It becomes possible to make it contact, and the bactericidal effect of the added bactericidal agent can fully be expressed.
請求項2に記載の殺菌資材によれば、帯電物質の表面に帯電した電荷が10μV以上若しくは−10μV以下であるから、有害微生物を電気的に効率良く誘引することが可能となる。有害微生物の表面電荷はPHにより変化しPH4以下では+電荷を帯び、PH4以上で−電荷を帯びる。そして、その電荷量は約10μV以上若しくは−10μVであることから、空中散布用殺菌表面の電荷は、10μV以上若しくは−10μV以下であることが望ましい。   According to the sterilizing material of the second aspect, since the charge charged on the surface of the charged substance is 10 μV or more or −10 μV or less, harmful microorganisms can be attracted electrically and efficiently. The surface charge of harmful microorganisms varies depending on PH, and when PH4 or less, it has a positive charge, and when PH4 or more, it has a negative charge. And since the charge amount is about 10 μV or more or −10 μV, it is desirable that the charge on the sterilization surface for air spraying is 10 μV or more or −10 μV or less.
請求項3乃至請求項5の殺菌資材によれば、使用する殺菌剤がそれぞれ、拮抗微生物、化学殺菌剤、抗菌物質であり、これらは帯電物質に帯電した電荷を放出させることがないとともに、帯電した電荷を打ち消すことがない。従って、殺菌資材が確実に有害微生物を誘引接触して、殺菌剤の殺菌効果を十分に発現することができる。   According to the sterilizing material of claims 3 to 5, the sterilizing agents to be used are antagonistic microorganisms, chemical sterilizing agents, and antibacterial substances, respectively, which do not release charged charges on the charged substances, Will not cancel the charge. Therefore, the sterilizing material can surely attract and contact harmful microorganisms and sufficiently exhibit the sterilizing effect of the sterilizing agent.
請求項6に記載の殺菌資材によれば、混合した帯電材料と殺菌剤との比重が2.0以下であり、粒子径が100μm以下であるから、散布された後大気中に長時間浮遊でき、殺菌剤の殺菌効果を十分に発現することができる。   According to the sterilizing material according to claim 6, since the specific gravity of the mixed charging material and the sterilizing agent is 2.0 or less and the particle diameter is 100 μm or less, it can float in the atmosphere for a long time after being sprayed. The bactericidal effect of the bactericidal agent can be fully expressed.
本発明の殺菌資材を構成する帯電物質としては、ゼオライト、クレー類、珪藻土、タルク類、粘土及び白土等の鉱物質の粉末が用いられる。これらの中から適当な1種または複数種を選択して用いる。また、殺菌剤の付着性を高めるために、ポリアクリル酸、ポリビニルアルコールなどを添加することもできる。   As the charged substance constituting the sterilizing material of the present invention, mineral powders such as zeolite, clays, diatomaceous earth, talc, clay and white clay are used. One or more suitable types are selected from these and used. In addition, polyacrylic acid, polyvinyl alcohol, or the like can be added in order to enhance the adhesion of the bactericide.
殺菌剤としは、バチルス属細菌、シュードモナス属細菌、エルビニア属菌、ストレプトマイセス属菌等の拮抗微生物、ベノミル、キャプタン、アゾキシストロビン等の化学殺菌剤、或いは銀、銅又はニッケル等を含む無機物質の抗菌物質を用いる。これらは帯電物質に帯電した電荷を放出させることがないとともに、帯電した電荷を打ち消すことがない。   Bactericides include antagonistic microorganisms such as Bacillus bacteria, Pseudomonas bacteria, Erbinia bacteria, Streptomyces bacteria, chemical fungicides such as benomyl, captan, azoxystrobin, or silver, copper or nickel Use inorganic antibacterial substances. These do not cause the charged substance to discharge a charged charge, and do not cancel the charged charge.
上記帯電物質と殺菌剤とを混合して構成される殺菌資材は、散布された後大気中に長時間浮遊させるため、比重が2.0以下であり、粒子径が100μm以下であるように調質する。また、大気中に浮遊する有害微生物の表面電荷が、PHにより変化しPH4以下では+電荷を帯び、PH4以上で−電荷を帯びていることから、これらを効率良く誘引するため、大気中への散布時に帯電物質の表面電荷が10μV以上若しくは−10μV以下に帯電していることが必要である。   The sterilizing material constituted by mixing the charged substance and the sterilizing agent is suspended in the atmosphere for a long time after being sprayed, so that the specific gravity is 2.0 or less and the particle diameter is 100 μm or less. Quality. In addition, the surface charge of harmful microorganisms floating in the atmosphere changes with PH, and when PH4 or less, it has a positive charge, and when it is PH4 or more, it has a negative charge. It is necessary that the surface charge of the charged substance is charged to 10 μV or more or −10 μV or less when sprayed.
上記条件に鑑みて、帯電物質と有害微生物との誘引付着実験を行なった。帯電物質として粒子径20μmのタルク0.1gを用い静電荷15μVを印加して帯電させた。有害微生物として灰色かび病胞子約30,000個を用いた。これらを容積5リットルのガラス容器内に入れて、小形扇風機により攪拌した。そして、ガラス容器内にスライドグラスを置き、その上に落下するタルク粒子を採取した。このスライドグラスをカバーグラスでマウントして、顕微鏡によりタルクと灰色かび病胞子との付着状態を観察した。   In view of the above conditions, an attractive adhesion experiment between a charged substance and harmful microorganisms was conducted. As a charging substance, 0.1 g of talc having a particle diameter of 20 μm was used and charged by applying an electrostatic charge of 15 μV. About 30,000 gray mold spores were used as harmful microorganisms. These were placed in a glass container having a volume of 5 liters and stirred with a small electric fan. Then, a slide glass was placed in the glass container, and talc particles falling on it were collected. The slide glass was mounted with a cover glass, and the state of adhesion between talc and gray mold spores was observed with a microscope.
この結果、タルク1粒当たり1〜20個の灰色かび病胞子が付着しているのが観察でき、これにより全ての灰色かび病胞子がタルクに付着することが分かった。この実験結果により、農作物に付着した有害微生物が大気中に吹上って浮遊すれば、帯電物質としてのタルクに誘引されて付着されることが示唆される。帯電物質としては、このタルクの他にゼオライト、クレー類、珪藻土、粘土及び白土等の鉱物質の粉末を用いても、容易に同様の結果が得られることが想到できる。   As a result, it was observed that 1 to 20 gray mold spores were attached per grain of talc, and it was found that all gray mold spores adhered to talc. This experimental result suggests that if harmful microorganisms adhering to agricultural products blow up and float in the atmosphere, they are attracted to and attached to talc as a charged substance. It can be conceived that the same result can be easily obtained by using powders of mineral substances such as zeolite, clays, diatomaceous earth, clay and clay as well as the talc as the charged substance.
次に、帯電放出と単純散布による殺菌効果の差(摩擦による帯電効果)を実験した。この場合、帯電方法は、ポリパイプに設けた殺菌資材の放出孔に帯電用のポリシールを貼り付け、放出時にこのポリシールと帯電物質が摩擦することにより帯電させる。そして、殺菌効果をトマト葉かび病及びキュウリ褐斑病を防除することにより確かめた。このため、トマト及びキュウリの促成栽培施設にそれぞれ以下の処理を行なう処理区を設けた。
(1)バチルス・ズブチリス菌胞子を微細なタルクに混和して吸着させ1010cfu/gとし、ポリパイプを用いて毎日上向きに放出(放出時にタルク5gに静電荷15μVを印加して帯電させた。)した処理区A、
(2)バチルス・ズブチリス水和剤(商品名ボトキラー水和剤)を、暖房機ダクトを用いて1ヶ月間毎日15g散布した処理区B、
(3)バチルス・ズブチリス水和剤(商品名ボトキラー水和剤)を、10cfu/mlの濃度で300リットル/10アールを毎月2回散布した処理区C、
(4)無処理区Dを設置した。
Next, an experiment was conducted on the difference in sterilization effect between charging and simple spraying (charging effect by friction). In this case, as a charging method, a charging policy is attached to a discharge hole of a sterilizing material provided in a polypipe, and charging is performed by rubbing between the policy and the charged substance at the time of discharge. And the bactericidal effect was confirmed by controlling tomato leaf mold and cucumber brown spot. For this reason, the processing area which performs the following processes in the forcing cultivation facility of tomato and cucumber, respectively was provided.
(1) Bacillus subtilis spores were admixed with fine talc and adsorbed to 10 10 cfu / g, and released upward using a polypipe (charged by applying 15 μV of static charge to 5 g of talc at the time of release). ) Treatment area A,
(2) Treatment area B in which 15 g of Bacillus subtilis wettable powder (trade name: Botokiller wettable powder) is sprayed daily for 1 month using a heater duct,
(3) Treatment Zone C in which Bacillus subtilis wettable powder (trade name: Botokiller wettable powder) was sprayed twice a month at a concentration of 10 9 cfu / ml, 300 liters / 10 are.
(4) Untreated section D was installed.
トマトは促成栽培(9月下旬定植)で、定植1ヶ月後から上記処理区A〜Cと無処理区Dについて、30日毎に葉かび病の発病株率と発病葉率を調べた。その結果を表1、表2に示す。尚、調査期間中は、殺菌剤の散布は行わなかった。   Tomato was forcibly cultivated (fixed planting in late September), and from 1 month after the planting, the above-mentioned treated sections A to C and untreated section D were examined every 30 days for the pathogenic strain rate and the diseased leaf rate. The results are shown in Tables 1 and 2. During the survey period, the disinfectant was not sprayed.
表1及び表2に示すように、帯電放出した処理区Aでは、90日後にトマト葉かび病の発病が認められたが、120日後でも発生は著しく少なかった。一方、ダクト散布した処理区Bでは、30日後に葉かび病の発病が認められ、120日後には30%の発病株率であった。また、水溶液の2回散布の処理区Cでは、処理区A,Bの倍以上の量のバチルス・ズブチリス菌を散布しているにもかかわらず、120日後には発病株率85%、発病葉率21.5%と著しく高い発病率となった。一方、無処理区Dは、120日後に発病株率100%、発病葉率30.6%と著しく高い発病率となった。この結果、殺菌剤と帯電物質とを混和させ、放出時に帯電物質に帯電させる方法は、トマト葉かび病に対し高い防除効果があることが分かる。   As shown in Tables 1 and 2, in the treatment group A from which the charge was released, the onset of tomato leaf mold was observed after 90 days, but the occurrence was extremely small even after 120 days. On the other hand, in treatment area B sprayed with ducts, onset of leaf mold was observed after 30 days, and the disease strain rate was 30% after 120 days. In addition, in the treatment area C in which the aqueous solution was sprayed twice, although the amount of Bacillus subtilis was more than double that of the treatment areas A and B, the diseased strain rate was 85% and the diseased leaves were 120 days later. The rate was significantly high at 21.5%. On the other hand, in the untreated section D, the disease incidence rate was 100% after 120 days and the disease incidence rate was 30.6%. As a result, it can be seen that the method of mixing the bactericide and the charged substance and charging the charged substance at the time of release has a high control effect against tomato leaf mold.
次に、キュウリは促成栽培(10月上旬定植)で、定植45日後から処理を開始し、1ヶ月毎に褐斑病の発葉率を求めた。その結果を表3、表4に示す。尚、調査期間中は、殺菌剤の散布は行わなかった。   Next, the cucumber was forcing cultivation (fixed planting in early October), and the treatment was started 45 days after the fixed planting, and the leafing rate of brown spot was determined every month. The results are shown in Tables 3 and 4. During the survey period, the disinfectant was not sprayed.
表3及び表4に示すように、帯電放出した処理区Aでは、キュウリ褐斑病の発生は認められなかった。一方、ダクト散布した処理区Bでは、90日後に発病が認められ、120日後には80%の発病株率であった。また、水溶液の2回散布の処理区Cでは、処理区A,Bの倍以上のバチルス菌を散布しているにもかかわらず120日後には発病株率100%、発病葉率56%と著しく高い発病率となった。一方、無処理区Dでは90日後には発病株率100%、発病葉率55%と著しく高い葉病率となった。この結果、殺菌剤と帯電物質とを混和させ、放出時に帯電物質に帯電させる方法は、キュウリ褐斑病に対して高い防除効果を示すことが分かる。   As shown in Table 3 and Table 4, in the treatment area A where the charge was released, the occurrence of cucumber brown spot disease was not observed. On the other hand, in treatment area B sprayed with ducts, disease was observed after 90 days, and the disease strain rate was 80% after 120 days. Further, in the treatment area C in which the aqueous solution was sprayed twice, although the Bacillus bacteria more than double of the treatment areas A and B were sprayed, the disease rate was 100% and the diseased leaf rate was 56% after 120 days. The incidence was high. On the other hand, in the untreated section D, the leaf disease rate was remarkably high at 90% after 90 days, with the disease leaf rate being 100% and the disease leaf rate being 55%. As a result, it can be seen that the method of mixing the bactericide and the charged substance and charging the charged substance at the time of release shows a high control effect against cucumber brown spot disease.
これらの結果、上記のいわゆる帯電放出方法は、トマト葉かび病、キュウリ褐斑病のみでなく、各種作物のうどんこ病(Powdery mildew)、灰色かび病(Botrytis)、べと病(Downy mildew)及び輪紋病(Alternaria)等の多数の農作物の地上部の病害に対して防除効果が発揮されることは容易に想到できる。   As a result, the so-called charged release method described above is not limited to tomato leaf mold and cucumber brown spot, but also to various powdery mildew (Powder mildew), gray mold (Botrytis) and downy mildew (Downy mildew). In addition, it is easily conceivable that the controlling effect is exerted on the above-ground diseases of a large number of agricultural products such as ring rot (Alternaria).
次に殺菌剤の種類を代えた場合の有害微生物に対する効果を調べた。トマト灰色かび病とキュウリべと病(Pseudoperonospora)に対する殺菌剤の種類を代えて、タルクに添加結合させて帯電放出した。抗菌剤は、拮抗微生物としてバチルス・ズブチリス(細菌)、シュードモナス・フルオレッセンス(細菌)、化学殺菌剤としてベノミル剤、キャプタン剤及びアゾキシストロビン剤、抗菌物質として銀、銅及びニッケルを用いた。そして、トマト及びキュウリの促成栽培施設に、それぞれの殺菌剤を放出する放出区を設けた。   Next, the effect on harmful microorganisms when the type of fungicide was changed was investigated. Instead of the type of fungicides against tomato gray mold and cucumber downy mildew (Pseudoperonospora), they were added and combined with talc to release the charge. Antibacterial agents used were Bacillus subtilis (bacteria) and Pseudomonas fluorescens (bacteria) as antagonistic microorganisms, benomyl agents, captan agents and azoxystrobin agents as chemical fungicides, and silver, copper and nickel as antibacterial agents. And the release area which discharge | releases each fungicide was provided in the forcing cultivation facility of a tomato and a cucumber.
トマト灰色かび病に対しては、バチリス・ズブチリス(細菌)(10cfu/g)を放出する放出区E、ベノミル剤(500mg/g)を放出する放出区F、アゾキシストロビン剤500mg/g)を放出する放出区G、銀(3mg/g)を放出する放出区H、ニッケル(30mg/g)を放出する放出区Iをそれぞれ設けた。 For tomato gray mold, release group E releasing B. subtilis (bacteria) (10 9 cfu / g), release group F releasing benomyl agent (500 mg / g), azoxystrobin agent 500 mg / g) releasing zone G, silver (3 mg / g) releasing zone H, and nickel (30 mg / g) releasing zone I.
キュウリべと病に対しては、シュードモナス・フルオレッセンス(細菌)(10cfu/g)を放出する放出区J、キャプタン剤(700mg/g)を放出する放出区K、アゾキシストロビン剤(500mg/g)を放出する放出区L、銀(3mg/g)を放出する放出区M、銅(420mg/g)を放出する放出区N、ニッケル(30mg/g)を放出する放出区Oをそれぞれ設けた。 For cucumber downy mildew, Pseudomonas fluorescens (bacteria) (10 9 cfu / g) release zone J, captan agent (700 mg / g) release zone K, azoxystrobin agent ( 500 mg / g) release zone L, silver (3 mg / g) release zone M, copper (420 mg / g) release zone N, nickel (30 mg / g) release zone O Each was provided.
放出方法は、これら殺菌剤を1μm以下の微粉としてタルクと混合した殺菌資材を帯電放出した。帯電方法は、放出用の直径30cmのポリパイプに2〜3m間隔で直径1〜5cmの放出孔を設け、この放出孔に帯電用のポリシールを貼り付け、放出時にこのポリシールとタルクが摩擦することにより帯電する。放出要領は、送風機にポリパイプを接続し施設内に上向きに約風速10m/sで毎時15分間、栽培期間中毎日5gを放出した。   In the release method, a sterilizing material obtained by mixing these bactericides with talc as a fine powder of 1 μm or less was charged and discharged. In the charging method, discharge holes having a diameter of 1 to 5 cm are provided at intervals of 2 to 3 m in a polypipe having a diameter of 30 cm for discharge, and the policyl for charging is attached to the discharge hole, and this policyl and talc rub against each other at the time of discharge. It will be charged. The release procedure was as follows. A polypipe was connected to the blower, and 5 g was released every day during the cultivation period for 15 minutes per hour at an upward wind speed of about 10 m / s.
病害発生の調査方法は、上記のトマト葉かび病及びキュウリ褐斑病と同様の方法で行った。そして、対照区としてそれぞれタルクのみ放出した放出区Pと無放出区を設けた。また、施設内の地面にポテトデキストロース平板(PDA培地)を配置し、落下した糸状菌を捕集しコロニーを数えた。その結果をトマト灰色かび病に対する防除効果を表5に、キュウリべと病に対する防除効果を表6に示す。   The method for investigating the occurrence of the disease was performed by the same methods as those for tomato leaf mold and cucumber brown spot. Then, as a control group, a release zone P in which only talc was released and a non-release zone were provided. In addition, a potato dextrose plate (PDA medium) was placed on the ground in the facility, and the fallen filamentous fungi were collected to count colonies. The results are shown in Table 5 for the control effect against tomato gray mold and Table 6 for the control effect against cucumber downy mildew.
表5に示す放出区E〜Iに見られるように、タルクにそれぞれ殺菌剤を添加結合させて毎日施設内の空気中に放出し続けると、トマトの灰色かび病に対して高い防除効果を示すことが実証された。また、地面に配置したPDA培地上に捕集した糸状菌の発生は著しく少なかった。タルクのみを放出する放出区P及び無放出区では、トマト灰色かび病に対する防除効果は認められない。   As seen in the release zones E to I shown in Table 5, when talc is added and combined with a bactericidal agent and continuously released into the air in the facility every day, it exhibits a high control effect against gray mold disease of tomatoes. It was proved. Moreover, the occurrence of filamentous fungi collected on the PDA medium placed on the ground was remarkably small. In the release zone P that releases only talc and the non-release zone, no control effect against tomato gray mold disease is observed.
表6に示すように、キュウリべと病に対しても上記のトマト灰色かび病の場合と略同様の効果が認められた。また、コロニー数もタルクのみを放出する放出区P及び無放出区比較して著しく少なかった。   As shown in Table 6, almost the same effect as in the case of the above-mentioned tomato gray mold disease was also observed against cucumber downy mildew. In addition, the number of colonies was remarkably small as compared with the release zone P that released only talc and the non-release zone.
次に、殺菌資材の比重を変えて大気中に放出した場合の、高さ別の飛散量を調査した。タルクに抗菌物質である銀セラミック微粉を添加結合させ、比重をそれぞれ0.1、0.5、0.8、1.0、1.5、2.0及び3.0に調質した。これらの粉末状の殺菌資材を、直径20cmのポリパイプに吐出孔2cmを開けて10アール当たり5gを地上から上向きに放出した。放出はポリパイプを動力散粉機に取り付けその風を用いて行った。そして、地上からの高さが、0、30、60、90、120及び150cmの位置にワセリンを塗ったスライドグラスを静置し、2時間後に回収して高さ別に付着した粒子数を顕微鏡下でミクロメーターを用いて調べた。その結果を表7に示す・   Next, the amount of scattering by height when the specific gravity of the sterilizing material was changed and released into the atmosphere was investigated. Silver ceramic fine powder as an antibacterial substance was added and bonded to talc, and the specific gravity was tempered to 0.1, 0.5, 0.8, 1.0, 1.5, 2.0 and 3.0, respectively. These powdery sterilizing materials were discharged upward from the ground by 5 g per 10 ares by making a discharge hole 2 cm in a 20 cm diameter polypipe. The discharge was carried out by using a polypipe attached to a power duster. The slide glass coated with petroleum jelly was placed at a height of 0, 30, 60, 90, 120, and 150 cm from the ground, and after 2 hours, the number of particles collected by height was measured under the microscope. And examined using a micrometer. The results are shown in Table 7.
表7に示すように、粉末状の殺菌資材は比重2までは浮遊するが、それ以上では十分浮遊しないことが分かった。このため帯電放出する場合のタルクまたはその他の帯電物質の比重は2以下であることが適当であると考えられる。   As shown in Table 7, it was found that the powdered sterilizing material floats up to a specific gravity of 2, but does not float sufficiently beyond that. For this reason, it is considered appropriate that the specific gravity of talc or other charged substance in the case of charge discharge is 2 or less.
次に殺菌資材が放出された後の帯電物質の粒子径毎の飛散状況を調査した。粒子径がそれぞれ5、10、20、40、60、80、120、及び150μmのタルクに、拮抗微生物であるバチルス・ズブチリス菌の胞子を添加してよく攪拌した殺菌資材を乾燥させたものを、トマト栽培施設内において直径20cmのポリパイプに直径0.5〜2cmの吐出孔を開けて10アール当たり5gを放出した。放出はポリパイプを動力散粉機に取り付け、その風を用い60分間送風し続けた。そして、株上にNA平板培地を設置して、放出精度を調べた。また、地上からの高さが、0、30、60、90、120及び150cmの位置にワセリンを塗ったスライドグラスを静置し、2時間後に回収して高さ別に付着した粒子数を顕微鏡下でミクロメーターを用いて調べた。その結果を表8に示す。   Next, the scattering situation for each particle diameter of the charged substance after the sterilizing material was released was investigated. What dried the sterilization material which added the spore of Bacillus subtilis which is an antagonistic microorganism to the talc whose particle size is 5, 10, 20, 40, 60, 80, 120 and 150 μm, respectively, and well stirred, In a tomato cultivation facility, a discharge pipe having a diameter of 0.5 to 2 cm was formed in a 20 cm diameter polypipe to release 5 g per 10 ares. For the release, a polypipe was attached to a power duster, and the air was continuously blown for 60 minutes. And NA plate culture medium was installed on the strain | stump | stock, and discharge | release precision was investigated. In addition, let the slide glass coated with petrolatum stand at heights 0, 30, 60, 90, 120 and 150 cm from the ground, and collect the number of particles collected by height after 2 hours under the microscope. And examined using a micrometer. The results are shown in Table 8.
表8に示すように、タルクの粒子径が5〜60μmでは、比較的よく飛散し均一に散布された。しかし、粒子径が80μmを越えると著しく飛散は不良となり、粒子径が120及び150μmの場合は、殆ど飛散しなかった。また、飛散状況が均一ではなく偏りが認められた。従って、大気中への帯電放出に利用できるタルク粒子径は5〜100μmが適当であることが分かった。   As shown in Table 8, when the particle diameter of talc was 5 to 60 μm, it was scattered relatively well and uniformly dispersed. However, when the particle diameter exceeded 80 μm, scattering was extremely poor, and when the particle diameter was 120 and 150 μm, almost no scattering occurred. In addition, the scattering situation was not uniform and biased. Accordingly, it has been found that the talc particle size that can be used for the charge release into the atmosphere is suitably 5 to 100 μm.
次に粒子径5、10、20、40、60、100及び150μmのタルクに、拮抗微生物であるバチルス・ズブチリス菌の胞子を混ぜ、10cfu/gの濃度とした。この粉体を攪拌して乾燥させ、上記の方法と同じ方法でトマト栽培施設内に放出した。放出は1日当たり5gとし、毎日午後5時から1時間おきに翌日午前7時までの14時間の間に都合15回で、一回当たり15分間送風した。これをトマト栽培初期から6ヶ月間実施し、1ヶ月毎に100葉当たりの葉かび病の発病葉率を調べた。その結果を表9に示す。 Next, the spore of Bacillus subtilis which is an antagonistic microorganism was mixed with talc having a particle size of 5, 10, 20, 40, 60, 100 and 150 μm to a concentration of 10 9 cfu / g. The powder was stirred and dried, and released into the tomato cultivation facility by the same method as described above. The discharge was set at 5 g per day, and air was blown for 15 minutes at a convenient time of 15 times during 14 hours from 5:00 pm every day to 7:00 am the next day. This was carried out for 6 months from the beginning of tomato cultivation, and the incidence of leaf mold per 100 leaves was examined every month. The results are shown in Table 9.
表9に示すように、タルクの粒子が最も細かい粒子径5μmでは、葉かび病発病葉率は粒子径10や20μmのものよりもやや劣ったが、40μmまでは殆ど同じレベルの高い防除効果を示した。粒子径が60μmを越えると防除効果が低下し、粒子径が150μmでは殆ど防除効果がなかった。このことは粒子が細かいほど浮遊する時間が長く、また、適度な粒子径であれば有害な微生物の吸着に優れるためと推定される。   As shown in Table 9, when the talc particles are the finest particle size of 5 μm, the leafy mildew incidence rate is slightly inferior to those of the particle size of 10 or 20 μm, but up to 40 μm has almost the same level of high control effect. Indicated. When the particle size exceeded 60 μm, the controlling effect was lowered, and when the particle size was 150 μm, there was almost no controlling effect. This is presumably because the finer the particles, the longer the floating time, and the better the adsorption of harmful microorganisms with an appropriate particle size.
次に、放出量を1日当たり10gする以外は、上記と同様の要領でキュウリ栽培施設内に放出し、1ヶ月毎にうどんこ病及び褐斑病の100葉当たりの発病葉数を調べた。表10にうどんこ病の発病葉率を示し、表11に褐斑病の発病葉率を示す。   Next, except that the amount released was 10 g per day, it was released into the cucumber cultivation facility in the same manner as described above, and the number of leaves per 100 leaves of powdery mildew and brown spot disease was examined every month. Table 10 shows the incidence of powdery mildew, and Table 11 shows the incidence of brown spot.
表10に示すようにキュウリうどんこ病の発病に対する防除効果は、タルクの粒子径が40又は60μmの場合に最も効果が高く、粒子径10μm以下及び150μm以上では効果がなかった。うどんこ病の防除には適度の大きさの粒子径が必要であることが分かる。   As shown in Table 10, the effect of controlling the onset of cucumber powdery mildew was most effective when the particle size of talc was 40 or 60 μm, and was ineffective when the particle size was 10 μm or less and 150 μm or more. It can be seen that a moderately sized particle size is required to control powdery mildew.
表11に示すように、キュウリ褐斑病に対する防除効果は、タルクの粒子径が20〜60μmで高い効果を示し、粒子径が10μm以下と100μmでは防除効果が劣った。また、粒子径150μmの場合は、殆ど防除効果がなかった。従って、キュウリ褐斑病菌を捕集するためのタルクの粒子径は、20〜60μmが適当であると考えられる。   As shown in Table 11, the control effect on cucumber brown spot disease was high when the particle size of talc was 20 to 60 μm, and the control effect was poor when the particle size was 10 μm or less and 100 μm. Further, when the particle diameter was 150 μm, there was almost no controlling effect. Therefore, it is considered that the particle diameter of talc for collecting cucumber brown spot fungus is appropriately 20 to 60 μm.
次に実際のキュウリ栽培田圃で、キュウリ褐斑病の発病葉率を調査した。粒子径5、10、20、30、40及び60μmのタルクを等量ずつ混ぜ、これにバチルス・ズブチリス菌の胞子を添加して10cfu/gの濃度とし、攪拌して乾燥させ、上記の放出方法と同じ要領で摩擦帯電させて放出した。放出は1日当たり5gとし、毎日午後7時から翌朝7時まで、1時間毎に15分間放出した。これをキュウリ栽培当初から6ヶ月間実施し、褐斑病の発病葉率を調べた。なお発病を促進するために褐斑病発生葉10枚を施設内に吊した。その結果を表12に示す。 Next, we investigated the incidence of cucumber brown spot in an actual cucumber cultivation field. Equal amounts of talc with a particle size of 5, 10, 20, 30, 40 and 60 μm are added, and then Bacillus subtilis spores are added to a concentration of 10 9 cfu / g, and the mixture is stirred and dried. It was discharged by triboelectric charging in the same manner as the release method. Release was 5 g per day and was released every hour for 15 minutes from 7 pm to 7 pm every day. This was carried out for 6 months from the beginning of cucumber cultivation, and the incidence of brown spot disease was examined. In order to promote the disease, 10 leaves with brown spot disease were suspended in the facility. The results are shown in Table 12.
表12に示すように、帯電放出の場合は、キュウリ褐斑病の発生は発生しなかった。このことは多数の病原菌の胞子が浮遊している施設内では、大きさの異なるタルクを組み合わせこれに殺菌剤を付着させて放出する方法が適していることが分かる。   As shown in Table 12, in the case of charge release, the occurrence of cucumber brown spot did not occur. This indicates that in a facility where a large number of pathogen spores are floating, a method of combining talc of different sizes with a bactericidal agent and releasing it is suitable.
以上の実施例で説明したように、本発明の殺菌資材は、有害微生物の表面に帯電する電荷と逆の電荷を殺菌資材表面に帯電させることにより、殺菌剤とともに大気中に散布される帯電物質の帯電電荷と逆の電荷を帯電して大気中に浮遊する有害微生物を誘引して、殺菌剤と接触させることが可能となり、添加した殺菌剤の殺菌効果を十分に発現して、有害微生物に対する防除効果を高めることができる。   As described in the above embodiments, the sterilizing material of the present invention is a charged substance that is dispersed in the atmosphere together with a sterilizing agent by charging the surface of the sterilizing material with a charge opposite to the charge charged on the surface of harmful microorganisms. It is possible to attract harmful microorganisms floating in the atmosphere by charging the charge opposite to the charged charge of the substance, making it contact with the sterilizing agent, fully expressing the sterilizing effect of the added sterilizing agent, The control effect can be enhanced.

Claims (6)

  1. 微生物の表面に帯電する電荷と逆の電荷を、空中散布時表面に帯電させることができる帯電材料と殺菌剤とを混合したことを特徴とする空中散布用殺菌資材。   A sterilizing material for air spraying, comprising a mixture of a sterilizing agent and a charging material capable of charging a surface opposite to the charge charged on the surface of microorganisms when sprayed in the air.
  2. 前記帯電材料が表面に帯電する表面電荷が、10μV以上若しくは−10μV以下であることを特徴とする請求項1に記載の空中散布用殺菌資材。   The sterilizing material for air spraying according to claim 1, wherein the surface charge of the charging material on the surface is 10 µV or more or -10 µV or less.
  3. 前記殺菌剤が、拮抗微生物であることを特徴とする請求項1又は請求項2に記載の空中散布用殺菌資材。   The sterilizing material for aerial application according to claim 1 or 2, wherein the sterilizing agent is an antagonistic microorganism.
  4. 前記殺菌剤が、化学殺菌剤であることを特徴とする請求項1又は請求項2に記載の空中散布用殺菌資材。   The said disinfectant is a chemical disinfectant, The sterilizing material for aerial spraying according to claim 1 or 2.
  5. 前記殺菌剤が、抗菌物質であることを特徴とする請求項1又は請求項2に記載の空中散布用殺菌資材。   The sterilizing material for air spraying according to claim 1 or 2, wherein the sterilizing agent is an antibacterial substance.
  6. 混合した前記帯電材料と殺菌剤との比重が2.0以下であり、粒子径が100μm以下であることを特徴とする請求項1乃至請求項5の何れかに記載の空中散布用殺菌資材。
    The sterilizing material for air spraying according to any one of claims 1 to 5, wherein a specific gravity of the charged material and the sterilizing agent mixed is 2.0 or less and a particle diameter is 100 µm or less.
JP2005292262A 2005-10-05 2005-10-05 Germicidal material for aerial application Pending JP2007099696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292262A JP2007099696A (en) 2005-10-05 2005-10-05 Germicidal material for aerial application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292262A JP2007099696A (en) 2005-10-05 2005-10-05 Germicidal material for aerial application

Publications (1)

Publication Number Publication Date
JP2007099696A true JP2007099696A (en) 2007-04-19

Family

ID=38026978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292262A Pending JP2007099696A (en) 2005-10-05 2005-10-05 Germicidal material for aerial application

Country Status (1)

Country Link
JP (1) JP2007099696A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214142A (en) * 1987-01-05 1988-09-06 To Bonapaachie E Co Spa De Method and apparatus for coating plant product with protective substance
JP2000051330A (en) * 1998-08-06 2000-02-22 Akira Mizuno Method and device for sterilizing and deodorizing barn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214142A (en) * 1987-01-05 1988-09-06 To Bonapaachie E Co Spa De Method and apparatus for coating plant product with protective substance
JP2000051330A (en) * 1998-08-06 2000-02-22 Akira Mizuno Method and device for sterilizing and deodorizing barn

Similar Documents

Publication Publication Date Title
Dizaj et al. Antimicrobial activity of the metals and metal oxide nanoparticles
JP6793633B2 (en) Bacterial spore composition for industrial use
Elgorban et al. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation
Massa et al. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles
Mirhosseini et al. Antibacterial activity of zinc oxide nanoparticle suspensions on food‐borne pathogens
Gurunathan Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans
Korunic ReviewDiatomaceous earths, a group of natural insecticides
Xiu et al. Negligible particle-specific antibacterial activity of silver nanoparticles
Glinel et al. Antibacterial surfaces developed from bio-inspired approaches
Xiu et al. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions
Ning et al. Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism
Rossoni et al. Comparison of sodium hypochlorite and peracetic acid as sanitising agents for stainless steel food processing surfaces using epifluorescence microscopy
Golob Current status and future perspectives for inert dusts for control of stored product insects
Rabindran et al. Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight
Flores et al. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa
JP6002757B2 (en) Composition and method of antibacterial metal nanoparticles
Deshmukh et al. Silver nanoparticles as an effective disinfectant: A review
Qudiesat et al. Assessment of airborne pathogens in healthcare settings
Dorobantu et al. Toxicity of silver nanoparticles against bacteria, yeast, and algae
Luoma Silver nanotechnologies and the environment
Cowan et al. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel
Díaz et al. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite
Chaw et al. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms
Li et al. Two-level antibacterial coating with both release-killing and contact-killing capabilities
Athanassiou et al. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.)(Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: influence of dose rate, temperature and exposure interval

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111214