JP2007099663A - Separating and recovering method of waste of polylactic acid - Google Patents

Separating and recovering method of waste of polylactic acid Download PDF

Info

Publication number
JP2007099663A
JP2007099663A JP2005290614A JP2005290614A JP2007099663A JP 2007099663 A JP2007099663 A JP 2007099663A JP 2005290614 A JP2005290614 A JP 2005290614A JP 2005290614 A JP2005290614 A JP 2005290614A JP 2007099663 A JP2007099663 A JP 2007099663A
Authority
JP
Japan
Prior art keywords
lactic acid
polylactic acid
temperature
optical purity
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005290614A
Other languages
Japanese (ja)
Other versions
JP4936351B2 (en
Inventor
Takashi Saeki
孝 佐伯
Hiroyuki Daimon
裕之 大門
Hideto Tsuji
秀人 辻
Koichi Fujie
幸一 藤江
Minoru Nakajima
実 中島
Kenichi Ishihara
健一 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Teijin Frontier Co Ltd
Original Assignee
Toyohashi University of Technology NUC
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Teijin Fibers Ltd filed Critical Toyohashi University of Technology NUC
Priority to JP2005290614A priority Critical patent/JP4936351B2/en
Publication of JP2007099663A publication Critical patent/JP2007099663A/en
Application granted granted Critical
Publication of JP4936351B2 publication Critical patent/JP4936351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for recovering lactic acid from a waste of a polylactic acid while separating the lactic acid by a prescribed range of optical purity. <P>SOLUTION: The lactic acid having the prescribed optical purity can be separated and recovered by heating a mixed waste of the two or more polylactic acids having different melting points to a high temperature of from about 110°C to about 200°C together with moisture in a high-temperature treatment apparatus 21, and recovering the reaction liquid at the prescribed time intervals of from about 10 min to about 24 hr while carrying out the heat treatment at a temperature of about 110°C to about 200°C after the initial treatment for about 1 hr or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリ乳酸廃棄物から回収される乳酸の光学純度を所定の範囲ごとに分離しつつ行う方法及び装置に関するものである。   The present invention relates to a method and an apparatus for carrying out separation while separating the optical purity of lactic acid recovered from polylactic acid waste into predetermined ranges.

プラスチックの一つであるポリ乳酸は、例えばトウモロコシ・サツマイモ等の植物を原料として生産することができることに加え、自然界中において微生物の作用によって分解されることから、いわゆる環境に優しい生分解性プラスチックとして知られている。このような生分解性プラスチックの需要は、増加の一途をたどっており、将来的にも更に需要が増大すると考えられている。しかしながら、土壌中の微生物によって、生分解性プラスチックを分解する場合には、相当の時間を必要とする。   Polylactic acid, which is one of the plastics, can be produced from plants such as corn and sweet potatoes as raw materials, and is decomposed by the action of microorganisms in nature, so-called environmentally friendly biodegradable plastics Are known. The demand for such biodegradable plastics continues to increase, and it is considered that the demand will increase further in the future. However, when biodegradable plastics are decomposed by microorganisms in the soil, considerable time is required.

一方、近年になって、環境に対する配慮という点から、汎用プラスチックを含む多くの製品に対してリサイクルを進めるための研究が盛んとなっている。これをポリ乳酸について見ると、廃棄処分された場合の分解性が良好であるという長所は認められているものの、リサイクルという点からは、必ずしも十分な研究はなされていない。例えば、特開平5−178977号には、ポリ乳酸を水分の存在下で100℃以上、0.1メガパスカル以上に加熱加圧して加水分解させる方法が、特開2003−300927号には、ポリ乳酸を水分の存在下で約200℃〜約350℃、約5分間〜約60分間処理することで、モノマー化する方法が開示されている。また、特開2003−313283号には、ポリ乳酸を水分の存在下で180℃〜250℃、1分間〜20分間処理することで、低分子量化する方法が開示されている。   On the other hand, in recent years, from the viewpoint of consideration for the environment, research for promoting recycling of many products including general-purpose plastics has become active. As for polylactic acid, although it has been recognized that it has good degradability when it is disposed of, it has not been sufficiently studied from the viewpoint of recycling. For example, Japanese Patent Laid-Open No. 5-178777 discloses a method in which polylactic acid is hydrolyzed by heating and pressing at 100 ° C. or higher and 0.1 megapascal or higher in the presence of moisture. A method of monomerizing by treating lactic acid in the presence of moisture at about 200 ° C. to about 350 ° C. for about 5 minutes to about 60 minutes is disclosed. Japanese Patent Application Laid-Open No. 2003-313283 discloses a method of reducing the molecular weight by treating polylactic acid in the presence of moisture at 180 ° C. to 250 ° C. for 1 minute to 20 minutes.

特開平5−178977号公報Japanese Patent Application Laid-Open No. 5-178777 特開2003−300927号公報JP 2003-3000927 A 特開2003−313283号公報JP 2003-313283 A

ポリ乳酸の単位となる乳酸には、D型、L型という光学的に異なる異性体が存在している。植物から製造される乳酸は、一般的にはL型である。ポリ乳酸の品質を一定に維持することを考えると、原材料の乳酸については、一定の光学純度を備えたものを使用することが好ましい(但し、このことは必ずしも、光学純度が100%に近い乳酸のみを使用することを意味しているわけではなく、光学純度が所定の範囲(例えば、60%〜70%程度)であれば、所定の品質を維持できることを示している)。この観点から従来技術を見ると、いずれも回収後に得られた物質のL/D比や収率に対する評価が不十分であることから、実際に応用するためには更なる研究開発を必要とする。   In lactic acid which is a unit of polylactic acid, there are optically different isomers of D type and L type. Lactic acid produced from plants is generally L-type. Considering that the quality of polylactic acid is kept constant, it is preferable to use lactic acid as a raw material having a certain optical purity (however, this means that lactic acid having an optical purity close to 100% is always used). This means that if the optical purity is within a predetermined range (for example, about 60% to 70%), the predetermined quality can be maintained). In view of the prior art from this point of view, evaluation of the L / D ratio and yield of substances obtained after recovery is insufficient, so further research and development are required for practical application. .

本発明は、上記した事情に鑑みてなされたものであり、その目的は、ポリ乳酸廃棄物から回収される乳酸の光学純度を所定の範囲ごとに分離しつつ行う方法及び装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus for separating the optical purity of lactic acid recovered from polylactic acid waste for each predetermined range. is there.

本発明者らは、鋭意検討の結果、ポリ乳酸の融点が、分子量よりもむしろ、ポリ乳酸を製造する際に使用されるモノマーである乳酸の光学純度によって変化するという現象を見いだし、この現象を応用することで、ポリ乳酸を含む廃棄物から回収される乳酸の光学純度を所定の範囲ごとに分離できることに成功し、基本的には本発明を完成するに至った。
こうして上記目的を達成するための第1の発明に係るモノマーである乳酸の分離回収方法は、ポリ乳酸を含む廃棄物であって、2点以上の相異なるポリ乳酸の融点を備えた混合廃棄物を水分と共に反応温度が約110℃〜約200℃の高温下で約1時間以上の初期処理を行い、その後に約110℃〜約200℃の温度で熱処理を行いつつ、約10分間〜約24時間の所定の時間区分ごとに反応液を回収することを特徴とすることを特徴とする。
As a result of intensive studies, the present inventors have found a phenomenon in which the melting point of polylactic acid changes depending on the optical purity of lactic acid, which is a monomer used in producing polylactic acid, rather than the molecular weight. By applying it, it succeeded in separating the optical purity of lactic acid recovered from the waste containing polylactic acid for each predetermined range, and basically completed the present invention.
Thus, the method for separating and recovering lactic acid which is a monomer according to the first invention for achieving the above object is a waste containing polylactic acid, which is a mixed waste having two or more different melting points of polylactic acid. With water, the reaction temperature is about 110 ° C. to about 200 ° C. at a high temperature for about 1 hour or more, and then heat treatment is performed at a temperature of about 110 ° C. to about 200 ° C. for about 10 minutes to about 24 The reaction solution is collected for each predetermined time segment of time.

ポリ乳酸は、その元となるモノマーである乳酸の光学純度によって、融点が異なってくる。つまり、乳酸の光学純度が低くなるに応じて、ポリ乳酸の融点も下がってくる。このため、複数種類のポリ乳酸を含む廃棄物においては、各ポリ乳酸を構成する乳酸の光学純度に応じて、少なくとも2点以上の相異なるポリ乳酸の融点が存在することになる。これらの廃棄物を約110℃〜約200℃という比較的低温の領域で処理することにより、光学純度の低い乳酸から順に反応液に回収される。   Polylactic acid has a different melting point depending on the optical purity of lactic acid, which is a monomer as a base. That is, as the optical purity of lactic acid decreases, the melting point of polylactic acid also decreases. For this reason, in a waste containing a plurality of types of polylactic acid, at least two different melting points of polylactic acid exist depending on the optical purity of lactic acid constituting each polylactic acid. By treating these wastes in a relatively low temperature region of about 110 ° C. to about 200 ° C., lactic acid having a low optical purity is collected in the reaction solution in order.

ここで、「ポリ乳酸」とは、乳酸(CHCH(OH)COOH)を単位とし、複数の乳酸が連なって高分子量となった生分解性プラスチックの一種である。ポリ乳酸を製造する材料としての乳酸は、植物(例えば、トウモロコシ、キャツサバ、サトウキビ、ビート、サツマイモなど)から生産することができる。ポリ乳酸を製造するには、一般的に乳酸を環化しラクチドとし、これを開環重合してポリ乳酸とするが、本発明においては、ポリ乳酸の製造方法には依らないで実施することができる。 Here, “polylactic acid” is a kind of biodegradable plastic having a unit of lactic acid (CH 3 CH (OH) COOH) and a plurality of lactic acids connected to have a high molecular weight. Lactic acid as a material for producing polylactic acid can be produced from plants (for example, corn, bonito, sugar cane, beet, sweet potato, etc.). In order to produce polylactic acid, lactic acid is generally cyclized into lactide, which is ring-opened and polymerized to form polylactic acid. it can.

ポリ乳酸を構成する単体としての乳酸には、L型とD型という二種類の光学異性体が知られている。本発明は、L型及びD型のいずれの乳酸を単位として製造されたポリ乳酸、L型とD型とを任意の比で含むポリ乳酸、或いはポリL−乳酸とポリD−乳酸の混合物からなるポリ乳酸ステレオコンプレックスポリマーに対しても実施することができる。本発明によれば、融点(つまり、モノマーである乳酸の光学純度)が異なる複数種類のポリ乳酸を含む混合廃棄物から、所定の範囲(例えば、約70%〜約80%、約80%〜約90%、約90%〜約100%)ごとに、モノマーである乳酸の光学純度を区分しつつ回収することができる。
「モノマー」とは、必ずしも全てのポリ乳酸が、完全にモノマーとなることを意味しているのではなく、適当な割合(例えば50%以上)で、当初の混合廃棄物がモノマーとなることを意味している。
「廃棄物」とは、一旦所定の使用目的に使い終わり、不用として捨て去られたポリ乳酸以外に、捨て去られた各種プラスチック(例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタラート(PET))、各種金属(鉄、アルミニウム、銅、銀、鉛、コバルト、マンガン、これらの合金)、木材、紙、各種天然繊維(綿、麻、絹)等が含まれているものを言う。
Two types of optical isomers, L-type and D-type, are known for lactic acid as a simple substance constituting polylactic acid. The present invention relates to polylactic acid produced by using any of L-type and D-type lactic acid as a unit, polylactic acid containing L-type and D-type in any ratio, or a mixture of poly-L-lactic acid and poly-D-lactic acid. It can implement also to the polylactic acid stereocomplex polymer which becomes. According to the present invention, from a mixed waste containing a plurality of types of polylactic acid having different melting points (that is, optical purity of lactic acid as a monomer), a predetermined range (for example, about 70% to about 80%, about 80% to about About 90%, and about 90% to about 100%), the optical purity of lactic acid, which is a monomer, can be recovered while being sorted.
"Monomer" does not necessarily mean that all polylactic acid is completely converted to monomer, but that the original mixed waste becomes monomer at an appropriate ratio (for example, 50% or more). I mean.
“Waste” refers to various discarded plastics (for example, polyethylene (PE), polypropylene (PP), polystyrene (PS)) in addition to polylactic acid that has been used for a predetermined purpose and discarded as waste. , Polyvinyl chloride (PVC), polyethylene terephthalate (PET), various metals (iron, aluminum, copper, silver, lead, cobalt, manganese, alloys thereof), wood, paper, various natural fibers (cotton, hemp, (Silk) and so on.

「高温下」とは、ポリ乳酸の混合廃棄物を溶解、反応してモノマーである乳酸を回収可能な温度を意味しており、具体的には約110℃〜約200℃、好ましくは約120℃〜約180℃である。約110℃未満では乳酸混合廃棄物が反応し、解重合をさせることは困難になる。また約200℃を超えると分離回収することが困難になるだけでなく、乳酸自体の熱分解が起こることもある。
反応温度は、乳酸を光学純度に応じて、分離回収するために必要な因子である。反応温度が低すぎると、乳酸の分離回収に時間が掛かりすぎることに加えて、光学純度の高い乳酸が十分に回収されないおそれがある。一方、反応温度が高すぎると、光学純度の低い乳酸から高い乳酸までが時間によって十分に分離されることなく一度に回収されてしまう。本発明では、このような目的を達成するために、約110℃〜約200℃の温度を用いる。これらの温度域のうち、原料となるポリ乳酸を含む廃棄物を構成する乳酸の光学純度、及び分離精度に応じて、更に適当な温度域(例えば、約110℃〜約130℃、約130℃〜約150℃、約150℃〜約170℃、約170℃〜約200℃)を選択することができる。
“Under high temperature” means a temperature at which the mixed waste of polylactic acid is dissolved and reacted to recover lactic acid as a monomer. Specifically, the temperature is about 110 ° C. to about 200 ° C., preferably about 120 ° C. ° C to about 180 ° C. Below about 110 ° C., the lactic acid mixed waste reacts, making it difficult to depolymerize. When the temperature exceeds about 200 ° C., not only is it difficult to separate and collect, but thermal decomposition of lactic acid itself may occur.
The reaction temperature is a factor necessary for separating and recovering lactic acid according to the optical purity. If the reaction temperature is too low, it may take too much time to separate and collect lactic acid, and lactic acid with high optical purity may not be sufficiently recovered. On the other hand, if the reaction temperature is too high, lactic acid having low optical purity to high lactic acid are recovered at a time without being sufficiently separated by time. In the present invention, a temperature of about 110 ° C. to about 200 ° C. is used to achieve such an object. Among these temperature ranges, depending on the optical purity and separation accuracy of the lactic acid constituting the waste containing polylactic acid as a raw material, further appropriate temperature ranges (for example, about 110 ° C. to about 130 ° C., about 130 ° C. To about 150 ° C., about 150 ° C. to about 170 ° C., about 170 ° C. to about 200 ° C.).

「初期処理」の時間は、ポリ乳酸を構成する乳酸の光学純度、及び反応温度に応じて、約1時間以上で適当に変更することができる。例えば、約140℃の場合には約3時間程度の初期処理を、約120℃の場合には約6時間程度の初期処理を、それぞれ行い、その後に所定の時間区分ごとに反応液を回収することができる。
「所定の時間区分」とは、モノマーとして回収される乳酸の光学純度の幅を納める領域に従って、反応温度及びポリ乳酸を構成する乳酸の光学純度に応じて、適宜に設定することができる。時間区分は、例えば、約10分間、約20分間、約30分間、約40分間、約50分間、約1時間、約2時間、約3時間、約4時間、約5時間、約6時間、約12時間、約24時間などに設定することができるし、更に細かい時間単位で設定することもできる。時間区分は、一定の時間ごと(例えば、初期反応の後に、約20分間ごとの一定区分)に設定することもできるし、適宜に変更(例えば、初期処理の後に、約10分間ごとの区分で6回回収し、その後は約20分間ごとの区分とするなど)してもよい。
The “initial treatment” time can be appropriately changed in about 1 hour or more depending on the optical purity of lactic acid constituting the polylactic acid and the reaction temperature. For example, when the temperature is about 140 ° C., the initial treatment is performed for about 3 hours, and when the temperature is about 120 ° C., the initial treatment is performed for about 6 hours. Thereafter, the reaction solution is collected at predetermined time intervals. be able to.
The “predetermined time segment” can be appropriately set according to the reaction temperature and the optical purity of lactic acid constituting the polylactic acid according to a region in which the range of the optical purity of lactic acid recovered as a monomer is accommodated. The time segment can be, for example, about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 5 hours, about 6 hours, It can be set to about 12 hours, about 24 hours, etc., or can be set in finer time units. The time segment can be set at regular intervals (for example, a regular segment every approximately 20 minutes after the initial reaction) or can be changed as appropriate (for example, approximately every 10 minutes after the initial process). It may be collected 6 times, and then divided every about 20 minutes).

ポリ乳酸と水とを反応させる場合の水量としては、ポリ乳酸の1質量部に対して、約1質量部〜約100質量部、好ましくは約1質量部〜約80質量部、約1質量部〜約60質量部、更に好ましくは約1質量部〜約40質量部、更に好ましくは約1質量部〜約20質量部、更に好ましくは約1質量部〜約10質量部である。   The amount of water in the case of reacting polylactic acid with water is about 1 part by mass to about 100 parts by mass, preferably about 1 part by mass to about 80 parts by mass, about 1 part by mass with respect to 1 part by mass of polylactic acid. To about 60 parts by weight, more preferably from about 1 part by weight to about 40 parts by weight, more preferably from about 1 part by weight to about 20 parts by weight, and even more preferably from about 1 part by weight to about 10 parts by weight.

第2の発明に係るポリ乳酸の再生方法は、2点以上の相異なるポリ乳酸の融点を備えた混合廃棄物を水分と共に反応温度が約110℃〜約200℃の高温下で、約1時間以上の熱処理を行う初期処理工程、その後に約110℃〜約200℃の温度で熱処理を行いつつ、約10分間〜約24時間の所定の時間区分ごとに反応液を回収する分離回収工程、及び回収された乳酸のうち、所定の光学純度よりも低い区分の乳酸には、光学純度が約90%以上の乳酸を混合して所定の光学純度の乳酸を調整する光学純度調整工程を経て、ポリ乳酸を再生乳酸を回収することを特徴とする。
なお、上記発明において、分離回収工程と光学純度調整工程との間に、分離回収工程で得られた各区分の乳酸の光学純度を測定する測定工程を設けても良い。
In the method for regenerating polylactic acid according to the second invention, a mixed waste having two or more different melting points of polylactic acid is mixed with water at a high reaction temperature of about 110 ° C. to about 200 ° C. for about 1 hour. An initial treatment step for performing the above heat treatment, followed by a separation and recovery step for collecting the reaction solution at predetermined time intervals of about 10 minutes to about 24 hours while performing heat treatment at a temperature of about 110 ° C. to about 200 ° C., and Of the recovered lactic acid, the lactic acid of a category lower than the predetermined optical purity is mixed with lactic acid having an optical purity of about 90% or more to adjust the lactic acid with the predetermined optical purity, and then the polylactic acid is passed through the optical purity adjustment step. It is characterized by recovering lactic acid from regenerated lactic acid.
In the above invention, a measurement step for measuring the optical purity of lactic acid in each section obtained in the separation and recovery step may be provided between the separation and recovery step and the optical purity adjustment step.

図1には、光学純度が100%と60%との二種類のポリ乳酸廃棄物を回収、再生する方法に関し、従来技術(A)と本願発明の方法(B)とを比較したものである。従来方法では、2種類のポリ乳酸を含む混合廃棄物を一括して一定の温度(例えば、200℃)で処理することにより、ポリ乳酸をモノマー化し、乳酸を回収するという方法であった。この方法では、全体として一定の光学純度(例えば、80%)を備えた乳酸が回収されることとなる。   FIG. 1 shows a comparison between the prior art (A) and the method (B) of the present invention regarding a method for recovering and recycling two types of polylactic acid wastes with optical purity of 100% and 60%. . In the conventional method, the mixed waste containing two types of polylactic acid is collectively treated at a constant temperature (for example, 200 ° C.), thereby converting polylactic acid into a monomer and recovering lactic acid. In this method, lactic acid having a certain optical purity (for example, 80%) as a whole is recovered.

回収された乳酸については、バイオマスから製造された乳酸(光学純度100%)を添加することにより、例えば90%の光学純度を備えた乳酸として、ポリ乳酸を再生することができる。しかしながら、ポリ乳酸を材料とする製品については、必ずしも90%程度の光学純度を備える必要はなく、それよりも低い光学純度でも使用に耐え得ることが考えられる。このため、本願発明では、図1(B)に示すように、ポリ乳酸を含む混合廃棄物を高温高圧水反応を利用して、モノマーである乳酸を光学純度(融点の相違)に従って分離回収する。
本願発明では、乳酸の光学純度に変化を与え難い程度の温度条件が設定されているので、ポリ乳酸廃棄物中における乳酸の光学純度を変えるおそれが少なくなっている。この分離回収工程では、光学純度が低い乳酸から構成されたポリ乳酸から順にモノマー化されて反応液に回収される。
With respect to the collected lactic acid, polylactic acid can be regenerated as lactic acid having an optical purity of 90%, for example, by adding lactic acid produced from biomass (optical purity 100%). However, a product made of polylactic acid is not necessarily required to have an optical purity of about 90%, and it is conceivable that it can withstand use even with an optical purity lower than that. Therefore, in the present invention, as shown in FIG. 1 (B), the mixed waste containing polylactic acid is separated and recovered in accordance with the optical purity (difference in melting point) of lactic acid, which is a monomer, using a high-temperature and high-pressure water reaction. .
In the present invention, since the temperature condition is set so as not to change the optical purity of lactic acid, the possibility of changing the optical purity of lactic acid in the polylactic acid waste is reduced. In this separation / recovery step, the polylactic acid composed of lactic acid having low optical purity is sequentially monomerized and recovered in the reaction solution.

次に、必要な場合には、得られた乳酸の光学純度を測定し(測定工程)、光学純度が高い場合(例えば、図中上段の乳酸(100%)の場合)には、そのままポリ乳酸に再生することができる。一方、乳酸の光学純度が低い場合(例えば、図中下段の乳酸(60%)の場合)には、この乳酸に約90%以上の光学純度を備えた乳酸(例えば、バイオマスから製造されたもの)を混合することにより、所定の光学純度(例えば、80%)に調整した後(光学純度調整工程)、ポリ乳酸として再生する。   Next, if necessary, the optical purity of the obtained lactic acid is measured (measurement step). If the optical purity is high (for example, in the case of lactic acid (100%) in the upper part of the figure), the polylactic acid is used as it is. Can be played. On the other hand, when the optical purity of lactic acid is low (for example, in the case of lactic acid (60%) in the lower part of the figure), lactic acid having an optical purity of about 90% or more (for example, produced from biomass) ) To adjust to a predetermined optical purity (for example, 80%) (optical purity adjustment step), and then regenerated as polylactic acid.

また、本発明に係る乳酸の分離回収装置は、2点以上の相異なるポリ乳酸の融点を備えた混合廃棄物と水分とを内部に含んだ状態で約110℃〜約200℃の高温とする高温処理機と、この処理機の内部の反応液を外部に取り出す反応液取出し孔とが設けられていることを特徴とする。
上記装置としては、バッチ式(回分式)と連続式とを問わないで用いることができる。また、蒸気ではなく液体状の水を混合した状態でポリ乳酸を含む廃棄物を高温下で処理することができるためには、高温処理機をバッチ式として、0.1メガパスカルよりも大きな圧力下で処理することが好ましい。また、大量の混合廃棄物を処理できるようにするためには、連続式の高温処理機とすることが好ましい。
The apparatus for separating and recovering lactic acid according to the present invention is a high temperature of about 110 ° C. to about 200 ° C. in a state of containing mixed waste having two or more different melting points of polylactic acid and moisture therein. A high temperature processing machine and a reaction liquid take-out hole for taking out a reaction liquid inside the processing machine to the outside are provided.
As said apparatus, it can use regardless of a batch type (batch type) and a continuous type. In addition, in order to be able to treat polylactic acid-containing waste at high temperatures in a mixture of liquid water instead of steam, a high-temperature treatment machine is used as a batch type and a pressure higher than 0.1 megapascal. It is preferable to process under. In order to be able to treat a large amount of mixed waste, it is preferable to use a continuous high-temperature treatment machine.

この装置には、ポリ乳酸または乳酸を内部に置いた状態で高温とする反応槽が設けられている。また、蒸気ではなく液体状態の水を混合した状態でポリ乳酸または乳酸を高温下で処理することが好ましいことから、高温処理機が0.1メガパスカルよりも大きな高圧下で処理できるようにすることが好ましい。また、大量のポリ乳酸または乳酸を処理できるようにするためには、高温処理機を連続式とすることが好ましい。また、反応槽には、反応を促進させるためポリ乳酸と水とを撹拌する撹拌機を設けることが好ましい。   This apparatus is provided with a reaction vessel that is heated to a high temperature with polylactic acid or lactic acid placed inside. In addition, since it is preferable to treat polylactic acid or lactic acid at a high temperature in a state where liquid water is mixed instead of steam, the high-temperature processor can process at a high pressure higher than 0.1 megapascal. It is preferable. Moreover, in order to be able to process a large amount of polylactic acid or lactic acid, it is preferable that the high-temperature processor is a continuous type. The reaction tank is preferably provided with a stirrer for stirring the polylactic acid and water in order to promote the reaction.

本発明に係る乳酸の分離回収装置の例を示すと以下の通りである。
図2は、バッチ式の乳酸の分離回収装置20を示す。装置20には、ポリ乳酸廃棄物と水とを反応させる高温処理機21と、内部温度を上昇させる熱処理装置22が設けられている。熱処理装置22としては、例えば高温物質(例えば水蒸気など)を挿通可能なパイプを反応槽内部の混合物と接触させる装置、高温処理機21の内部に高温物質(例えば水蒸気など)を吹き込む装置などを用いることができる。高温処理機21には、内容物を撹拌可能な撹拌機23が設けられている。また、高温処理機21には、内部から流出するガス及び/または溶液を冷却する冷却器24が連結されている。冷却器24には、凝縮液を再度高温処理機21に戻す復帰路25と、排出用のベント路26が設けられている。
An example of an apparatus for separating and recovering lactic acid according to the present invention is as follows.
FIG. 2 shows a batch-type lactic acid separation and recovery device 20. The apparatus 20 is provided with a high-temperature processor 21 for reacting polylactic acid waste with water and a heat treatment apparatus 22 for raising the internal temperature. As the heat treatment apparatus 22, for example, an apparatus for bringing a pipe through which a high-temperature substance (for example, water vapor) can be brought into contact with the mixture inside the reaction tank, an apparatus for blowing a high-temperature substance (for example, water vapor) into the high-temperature processing machine 21, or the like is used. be able to. The high-temperature processor 21 is provided with a stirrer 23 that can stir the contents. The high-temperature processor 21 is connected to a cooler 24 for cooling the gas and / or solution flowing out from the inside. The cooler 24 is provided with a return path 25 for returning the condensate to the high-temperature processor 21 and a vent path 26 for discharging.

また、高温処理機21には、内部の反応液を外部に取り出す反応液取出し孔29が設けられており、ここには反応処理後の溶液を貯めておくホールドタンク27に連結するパイプ19が連結されている。取出し孔29には、所定の時間ごとに開放可能なバルブ(図示せず)が設けられている。なお、ホールドタンク27に貯留された溶液は、精製系28に送液される。
装置20の操作方法を説明すると次のようである。まず、高温処理機21に未反応のポリ乳酸を含む工程内の循環液17、又はポリ乳酸廃棄物16、未反応のポリ乳酸を含む工程内の循環液17及び水Wよりなる群から少なくとも2種を含む成分を投入し、投入後に熱処理装置22による加熱処理を行う。すると、廃棄物16と水W(及び循環液)17の混合物が昇温及び昇圧され、徐々に乳酸へと分解される。反応開始から適当な時間が経過したところで、適当な時間ごとにバルブを開放し、反応液を反応液取出し孔29からパイプ19を通して、ホールドタンク27に送液した後、精製系28へ送る。なお、工程内の循環液17とは、モノマー化工程の反応槽の残渣、精製系の残渣等から成る。
The high-temperature processor 21 is provided with a reaction liquid outlet hole 29 for taking out an internal reaction liquid to the outside, and a pipe 19 connected to a hold tank 27 for storing the solution after the reaction process is connected to the high temperature processor 21. Has been. The take-out hole 29 is provided with a valve (not shown) that can be opened every predetermined time. The solution stored in the hold tank 27 is sent to the purification system 28.
The operation method of the apparatus 20 will be described as follows. First, at least 2 from the group consisting of the circulating liquid 17 in the process containing unreacted polylactic acid in the high-temperature processor 21, or the polylactic acid waste 16, the circulating liquid 17 in the process containing unreacted polylactic acid, and water W. A seed-containing component is introduced, and after the introduction, a heat treatment by the heat treatment apparatus 22 is performed. Then, the mixture of the waste 16 and the water W (and the circulating liquid) 17 is heated and pressurized, and is gradually decomposed into lactic acid. When an appropriate time has elapsed from the start of the reaction, the valve is opened every appropriate time, and the reaction solution is sent from the reaction solution outlet hole 29 to the hold tank 27 through the pipe 19 and then sent to the purification system 28. The circulating liquid 17 in the process is composed of the residue of the reaction tank of the monomerization process, the residue of the purification system, and the like.

図3は、連続式の乳酸の分離回収装置30を示す。分離回収装置30には、ポリ乳酸の混合廃棄物と水とを反応させる高温処理機31と、この高温処理機31の内部温度を上昇させる熱処理装置32が設けられている。高温処理機31には、内容物を撹拌可能な撹拌機33と、加熱器43により加熱された水を供給可能な水供給路44が設けられている。また、高温処理機31には、ポリ乳酸廃棄物16と、水及び必要に応じて未反応のポリ乳酸を含む工程内の循環液17とを前処理する溶融槽34がパイプ35を介して連結されている。溶融槽34には、内容物を撹拌する撹拌機36と、内容物を加温する熱処理装置37とが設けられている。   FIG. 3 shows a continuous lactic acid separation and recovery apparatus 30. The separation / recovery device 30 is provided with a high-temperature treatment device 31 for reacting the mixed waste of polylactic acid and water, and a heat treatment device 32 for raising the internal temperature of the high-temperature treatment device 31. The high-temperature processor 31 is provided with a stirrer 33 that can stir the contents and a water supply path 44 that can supply water heated by the heater 43. In addition, a melting tank 34 for pre-processing the polylactic acid waste 16 and the circulating liquid 17 in the process containing water and unreacted polylactic acid as necessary is connected to the high-temperature treatment machine 31 through a pipe 35. Has been. The melting tank 34 is provided with a stirrer 36 for stirring the contents and a heat treatment device 37 for heating the contents.

また、高温処理機31には、内部の反応液を外部に取り出す反応液取出し孔29が設けられており、ここには反応処理後の溶液を貯めると共にベントガスの処理等を行うフラッシュタンク38がパイプ19を介して連結されている。取出し孔29には、所定の時間ごとに開放可能なバルブ(図示せず)が設けられている。また、フラッシュタンク38には、冷却器39が連結されている。冷却器39には、凝縮液を再度フラッシュタンク38に戻す復帰路40と、排出用のベント路41が設けられている。なお、フラッシュタンク38に貯留された溶液は、精製系42に送液される。   Further, the high temperature processor 31 is provided with a reaction liquid takeout hole 29 for taking out an internal reaction liquid to the outside, and a flash tank 38 for storing the solution after the reaction process and processing a vent gas and the like is connected to the pipe. 19 are connected. The take-out hole 29 is provided with a valve (not shown) that can be opened every predetermined time. A cooler 39 is connected to the flash tank 38. The cooler 39 is provided with a return path 40 for returning the condensate to the flash tank 38 again and a vent path 41 for discharging. The solution stored in the flash tank 38 is sent to the purification system 42.

分離回収装置30の操作方法を説明すると次のようである。まず、溶融槽34にポリ乳酸廃棄物16及び必要に応じて未反応のポリ乳酸等を含む工程内の循環液17を投入しておき、熱処理装置37で加熱しつつ、撹拌機36による撹拌処理を行うことにより、投入された混合物を溶融液状態にする。次いで、該溶融液を連続的に溶融槽34から高温処理機31へ移送しつつ、新たに加熱された水を水供給路44を通して連続的に高温処理機31へ供給する。高温処理機31は熱処理装置32の稼働によって、投入されたポリ乳酸廃棄物が乳酸へと分解される。反応開始から適当な時間が経過したところで、適当な時間ごとにバルブを開放し、反応液を反応液取出し孔29からパイプ19を通して、フラッシュタンク38へ反応液を抜き出し、大気圧下まで減圧する。この時、水及び乳酸等の一部が気化され、その気化熱の分、反応液の内温が降下される。   The operation method of the separation and recovery device 30 will be described as follows. First, the circulating liquid 17 in the process containing the polylactic acid waste 16 and unreacted polylactic acid, etc., if necessary, is put into the melting tank 34 and stirred by the stirrer 36 while being heated by the heat treatment device 37. To put the charged mixture into a molten state. Next, the newly heated water is continuously supplied to the high temperature processor 31 through the water supply path 44 while the molten liquid is continuously transferred from the melting tank 34 to the high temperature processor 31. In the high-temperature processor 31, the charged polylactic acid waste is decomposed into lactic acid by the operation of the heat treatment apparatus 32. When an appropriate time has elapsed from the start of the reaction, the valve is opened every appropriate time, and the reaction solution is extracted from the reaction solution outlet hole 29 through the pipe 19 to the flash tank 38 and depressurized to atmospheric pressure. At this time, a part of water, lactic acid and the like is vaporized, and the internal temperature of the reaction solution is lowered by the amount of heat of vaporization.

本発明の方法及び装置を用いることにより、純度が異なる乳酸から構成されたポリ乳酸を含む廃棄物を分解し、モノマーとしての乳酸の光学純度を所定の幅に区分しつつ回収することができる。この技術を応用することで、ポリ乳酸のリサイクル処理を効果的に進めることができる。   By using the method and apparatus of the present invention, waste containing polylactic acid composed of lactic acid having different purity can be decomposed and recovered while sorting the optical purity of lactic acid as a monomer within a predetermined range. By applying this technology, the recycling process of polylactic acid can be effectively advanced.

次に、本発明の実施形態について、図表を参照しつつ詳細に説明するが、本発明の技術的範囲は、下記の実施形態によって限定されるものではなく、その要旨を変更することなく、様々に改変して実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。
まず、分離回収装置の構成及び測定パラメータについて説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the technical scope of the present invention is not limited by the following embodiments, and various changes can be made without changing the gist thereof. It can be carried out with modification. Further, the technical scope of the present invention extends to an equivalent range.
First, the configuration and measurement parameters of the separation and recovery device will be described.

<分離回収装置>
図4には、実施例に使用したポリ乳酸廃棄物の分離回収装置1(以下には、単に「装置1」と記載する)を示した。この装置1には、温度制御可能な溶融塩槽2(例えば、耐圧硝子株式会社製、TSC−B600型を用いることができる。)と、その溶融塩槽2の内部に浸漬される耐熱・耐圧な密閉型の処理容器3(例えば、ステンレス製(SUS316)バッチ式反応管(外径12.7mm、肉厚1.24mm、内径10.2mm、長さ10cm、内容積8.2mL)を用いることができる。)と、圧力センサ4とが設けられている。
<Separation and recovery device>
FIG. 4 shows a polylactic acid waste separation and recovery apparatus 1 (hereinafter simply referred to as “apparatus 1”) used in the examples. In this apparatus 1, a temperature-controllable molten salt tank 2 (for example, TSC-B600 type manufactured by Pressure Glass Co., Ltd.) and a heat resistance / pressure resistance immersed in the molten salt tank 2 can be used. A sealed processing vessel 3 (for example, stainless steel (SUS316) batch type reaction tube (outer diameter 12.7 mm, wall thickness 1.24 mm, inner diameter 10.2 mm, length 10 cm, inner volume 8.2 mL)) And a pressure sensor 4 is provided.

溶融塩槽2の内部には、ヒータ6と回転翼5が設けられている。ヒータ6の電源を入れた状態で、回転翼5を回転させることによって、溶融塩槽2内の液体(例えば、KNO(45%)とNaNO(55%)の混合物を用いることができる)を混合して、均一な温度とすることができる。なお、ヒータ6には、図示しないコンピュータが設けられており、溶融塩槽2内の温度を所定の範囲内に制御することができる。この処理装置1では、溶融塩槽2の内部を約120℃〜約300℃の範囲内において所定の温度に制御しながら、ポリ乳酸と水分の高温処理を行えるようになっている。 A heater 6 and a rotary blade 5 are provided inside the molten salt tank 2. The liquid in the molten salt tank 2 (for example, a mixture of KNO 3 (45%) and NaNO 3 (55%) can be used) by rotating the rotor blade 5 with the heater 6 turned on. To obtain a uniform temperature. The heater 6 is provided with a computer (not shown), and the temperature in the molten salt tank 2 can be controlled within a predetermined range. In this processing apparatus 1, high temperature treatment of polylactic acid and moisture can be performed while controlling the inside of the molten salt tank 2 to a predetermined temperature within a range of about 120 ° C to about 300 ° C.

処理容器3は、例えばステンレス(例えば、SUS316)、ハステロイ、またはインコネル(Ni、Cr、Moなどを含む合金)から構成することができる。処理容器3の上部には、蓋体が取り付けられるようになっており、処理容器3の内部空間を密閉した状態で、適度な温度とすることができる。試験時には、処理容器3の内部に任意の倍率で希釈した試料を投入し、上蓋を容器に載せて密閉する。その後、処理容器3と圧力センサ4とを接続する。
処理容器3を密閉した後、予め設定温度に加熱しておいた溶融塩槽2に処理容器3を投入し、この時点を0分として、高温処理を開始する。
The processing container 3 can be made of, for example, stainless steel (for example, SUS316), hastelloy, or inconel (an alloy containing Ni, Cr, Mo, or the like). A lid is attached to the upper part of the processing container 3, and an appropriate temperature can be obtained with the internal space of the processing container 3 sealed. At the time of the test, a sample diluted at an arbitrary magnification is put into the processing container 3, and the upper lid is placed on the container and sealed. Thereafter, the processing container 3 and the pressure sensor 4 are connected.
After sealing the processing container 3, the processing container 3 is put into the molten salt tank 2 that has been heated to a preset temperature in advance, and this time is set to 0 minutes, and high-temperature processing is started.

<実験方法および結果>
1.乳酸の光学純度とポリ乳酸の融点との関係
光学純度が88%〜100%のL−乳酸から製造されたポリ乳酸(重量平均分子量22万)の融点を評価した。その融点は、示差操作熱量分析装置を用いて実施・解析を行った。
試験は、処理容器3の内部に、0.24gの試料(ポリ乳酸)と4.8gの精製水とを投入し、試料:精製水の質量比を1:20として実施した。
<Experimental method and results>
1. Relationship between optical purity of lactic acid and melting point of polylactic acid The melting point of polylactic acid (weight average molecular weight 220,000) produced from L-lactic acid having an optical purity of 88% to 100% was evaluated. The melting point was carried out and analyzed using a differential operation calorimeter.
In the test, 0.24 g of the sample (polylactic acid) and 4.8 g of purified water were put into the processing container 3 and the mass ratio of sample: purified water was 1:20.

処理容器3を密閉し、内部の空気をアルゴンで置換した後、所定の温度に暖めておいた溶融塩槽2の内部に浸けた。所定の処理時間が経過した後に、素速く処理容器3を溶融塩槽2から取り出し、冷水槽に浸けて速やかに室温に戻すことで、余分な反応を回避した。反応後の産物は、イオン排除カラムを付けたHPLC有機酸解析システム(LC−10A、島津製作所製)を用いて解析した。
試験結果を図5に示した。その結果、L−乳酸の光学純度が88%〜100%に上がるに連れて、ポリ乳酸の融点も144℃〜186℃まで上昇することが分かった。
The processing vessel 3 was sealed, the air inside was replaced with argon, and then immersed in the molten salt bath 2 that had been heated to a predetermined temperature. After a predetermined processing time had elapsed, the processing vessel 3 was quickly removed from the molten salt bath 2, immersed in a cold water bath and quickly returned to room temperature, thereby avoiding an excessive reaction. The product after the reaction was analyzed using an HPLC organic acid analysis system (LC-10A, manufactured by Shimadzu Corporation) equipped with an ion exclusion column.
The test results are shown in FIG. As a result, it was found that as the optical purity of L-lactic acid increased from 88% to 100%, the melting point of polylactic acid also increased from 144 ° C to 186 ° C.

2.ポリ乳酸からの乳酸回収率と反応時間との関係
次に、ポリ乳酸を160℃〜200℃で処理したときの反応時間と、乳酸回収率との関係を調べた。ポリ乳酸として、融点が約175℃のものを選択した。試験は、上記1と同様にして回分式分離回収装置を用いて行った。溶融塩槽2を160℃、170℃、180℃、190℃、および200℃に設定しておき、ここにポリ乳酸(0.24g)と精製水(4.8g)とを投入した処理容器3を浸漬した。反応開始後、5分〜180分で処理容器3を溶融塩槽2から取り出し、速やかに室温に戻した後、反応後の産物をHPLC有機酸解析システムにより解析した。
2. Relationship between lactic acid recovery from polylactic acid and reaction time Next, the relationship between the reaction time when polylactic acid was treated at 160 ° C. to 200 ° C. and the lactic acid recovery rate was examined. Polylactic acid having a melting point of about 175 ° C. was selected. The test was performed using a batch separation and recovery apparatus in the same manner as in 1 above. The molten salt tank 2 is set at 160 ° C., 170 ° C., 180 ° C., 190 ° C., and 200 ° C., and a processing vessel 3 in which polylactic acid (0.24 g) and purified water (4.8 g) are added thereto. Soaked. After the start of the reaction, the processing vessel 3 was taken out from the molten salt tank 2 within 5 to 180 minutes and quickly returned to room temperature, and then the product after the reaction was analyzed by an HPLC organic acid analysis system.

試験結果を図6に示した。その結果、融点よりも低い温度である160℃においても、60分以降には、乳酸の回収が認められた。また、処理温度が高いほど、乳酸が回収される時間が早いことが分かった。なお、いずれの温度においても、180分の反応時間で、ほぼ100%の乳酸回収率が得られた。
図5および図6より、光学純度が異なるL−乳酸より製造された(つまり、異なる融点を備えた)ポリ乳酸が混在する場合には、反応温度を融点付近(融点よりも低い温度を含む)で制御することにより、得られる乳酸の光学純度を適当に制御しつつ回収できる可能性が示された。
The test results are shown in FIG. As a result, recovery of lactic acid was observed after 60 minutes even at 160 ° C., which is lower than the melting point. It was also found that the higher the treatment temperature, the faster the time for collecting lactic acid. At any temperature, a lactic acid recovery rate of almost 100% was obtained with a reaction time of 180 minutes.
5 and 6, when polylactic acid produced from L-lactic acid having different optical purity (that is, having different melting points) coexists, the reaction temperature is around the melting point (including a temperature lower than the melting point). By controlling with, the possibility that it can be recovered while appropriately controlling the optical purity of the obtained lactic acid was shown.

3.融点の異なるポリ乳酸からの乳酸の回収実験(1)
分子量、構成L−乳酸の光学純度、および融点の異なる3種類のポリ乳酸を水分と共に熱処理し、回収された乳酸の収率を評価した。
表1には、3種類のポリ乳酸の分子量、L−乳酸の光学純度、および融点を示した。なお、PLA−80の融点は予想値であり、140℃〜160℃の間にあるものと思われた。
3. Experiments on recovery of lactic acid from polylactic acid with different melting points (1)
Three types of polylactic acid having different molecular weight, constitutional L-lactic acid optical purity, and melting point were heat-treated with moisture, and the yield of recovered lactic acid was evaluated.
Table 1 shows the molecular weight of three types of polylactic acid, the optical purity of L-lactic acid, and the melting point. In addition, the melting point of PLA-80 was an expected value, which seemed to be between 140 ° C and 160 ° C.

Figure 2007099663
Figure 2007099663

各ポリ乳酸を140℃で処理したときの反応時間と乳酸回収率との関係を調べた。試験は、上記1と同様にして、回分式分離回収装置を用いて行った。溶融塩槽2を140℃に設定しておき、ここにポリ乳酸(0.24g)と精製水(4.8g)とを投入した処理容器3を浸漬した。反応開始後、30分〜12時間で処理容器3を溶融塩槽2から取り出し、速やかに室温に戻した後、反応後の産物をHPLC有機酸解析システムにより解析した。   The relationship between the reaction time and the lactic acid recovery rate when each polylactic acid was treated at 140 ° C. was examined. The test was conducted in the same manner as in 1 above using a batch separation and recovery apparatus. The molten salt tank 2 was set to 140 ° C., and the processing vessel 3 charged with polylactic acid (0.24 g) and purified water (4.8 g) was immersed therein. 30 minutes to 12 hours after the start of the reaction, the processing vessel 3 was taken out from the molten salt bath 2 and quickly returned to room temperature, and then the product after the reaction was analyzed by an HPLC organic acid analysis system.

試験結果を図7および図8に示した。図7には、#5000と#9010とを比較したグラフを、図8には、♯5000とPLA−80とを比較したグラフをそれぞれ示した。その結果、融点の低いポリ乳酸の方が、早く乳酸として回収されることが分かった。なお、いずれのポリ乳酸を用いた場合にも、乳酸の回収率は、約9時間の反応時間で、ほぼ100%であった。
このことより、融点の異なる複数のポリ乳酸が混在していた場合に、一定の反応温度で処理しつつ、適当な時間において反応液を分取することにより、所定の光学純度を備えた乳酸を回収可能であることが示された。
The test results are shown in FIG. 7 and FIG. FIG. 7 shows a graph comparing # 5000 and # 9010, and FIG. 8 shows a graph comparing # 5000 and PLA-80. As a result, it was found that polylactic acid having a lower melting point was recovered as lactic acid earlier. In any of the polylactic acids, the recovery rate of lactic acid was almost 100% with a reaction time of about 9 hours.
From this, when a plurality of polylactic acids having different melting points are mixed, by treating the reaction solution at an appropriate time while processing at a constant reaction temperature, lactic acid having a predetermined optical purity can be obtained. It was shown to be recoverable.

4.融点の異なるポリ乳酸からの乳酸の回収実験(2)
上記3で使用した3種類のポリ乳酸のうちの2種類(#5000およびPLA−80)を120℃で水と共に熱処理し、回収された乳酸の収率を評価した。
試験は、上記1と同様にして、回分式分離回収装置を用いて行った。溶融塩槽2を120℃に設定しておき、ここにポリ乳酸(0.24g)と精製水(4.8g)とを投入した処理容器3を浸漬した。反応開始後、1時間〜72時間(3日間)で処理容器3を溶融塩槽2から取り出し、速やかに室温に戻した後、反応後の産物をHPLC有機酸解析システムにより解析した。
4). Experiments on recovery of lactic acid from polylactic acid with different melting points (2)
Two of the three types of polylactic acid used in 3 above (# 5000 and PLA-80) were heat-treated with water at 120 ° C., and the yield of recovered lactic acid was evaluated.
The test was conducted in the same manner as in 1 above using a batch separation and recovery apparatus. The molten salt tank 2 was set to 120 ° C., and the processing vessel 3 charged with polylactic acid (0.24 g) and purified water (4.8 g) was immersed therein. After the start of the reaction, the processing vessel 3 was taken out from the molten salt bath 2 within 1 hour to 72 hours (3 days) and quickly returned to room temperature, and then the product after the reaction was analyzed by an HPLC organic acid analysis system.

試験結果を図9に示した。その結果、図8と同様に、融点の低いポリ乳酸であるPLA−80の方が、♯5000よりも早く乳酸として回収されることが再確認された。但し、PLA−80は、約1日間の反応でほぼ100%が乳酸として回収された一方、♯5000からの乳酸の回収には、約3日間が必要であることが分かった。また、反応開始から約2日目を経過した後に、両ポリ乳酸が回収される率の差違は、40%以上と大きかった。こうして、上記3および4の結果により、融点の異なるポリ乳酸から得られる乳酸を分別回収し、回収された乳酸の光学活性を所定の幅に留めるには、(1)できるだけ低温度で熱処理を行うか、(2)高温度で熱処理した場合には、回収するための時間幅を狭くする、ことが有効であると分かった。   The test results are shown in FIG. As a result, as in FIG. 8, it was reconfirmed that PLA-80, which is polylactic acid having a low melting point, was recovered as lactic acid earlier than # 5000. However, it was found that about 100% of PLA-80 was recovered as lactic acid in the reaction for about 1 day, while about 3 days were required for recovery of lactic acid from # 5000. Further, after about 2 days from the start of the reaction, the difference in the rate at which both polylactic acids were recovered was as large as 40% or more. Thus, in order to separate and recover lactic acid obtained from polylactic acid having different melting points based on the results of 3 and 4 above, and to keep the optical activity of the recovered lactic acid within a predetermined range, (1) heat treatment is performed at as low a temperature as possible. However, it was found that (2) when the heat treatment was performed at a high temperature, it was effective to narrow the time width for recovery.

5.融点の異なるポリ乳酸からの乳酸の回収実験(3)
上記4で使用した2種類のポリ乳酸(♯5000およびPLA−80)を混合し、120℃で水と共に熱処理し、回収された乳酸の収率および光学活性を評価した。
試験は、上記1と同様にして、回分式分離回収装置を用いて行った。溶融塩槽2を140℃に設定しておき、ここにポリ乳酸(約0.25g)と精製水(4.8g)とを投入した処理容器3を浸漬した。反応開始後、24時間(1日間)で処理容器3を溶融塩槽2から取り出し、速やかに室温に戻した後、反応後の産物をHPLC有機酸解析システムにより解析した。2種類のポリ乳酸の混合量、樹脂残存量、樹脂残存率、乳酸回収率、および光学純度を表2に示した。この試験は、4回のものを独立して行った。なお、光学純度は、L−乳酸の割合をαとし、D−乳酸の割合を(1−α)としたとき、|1−2α|によって求められる(PLA−80の光学純度は、|1−2*0.2|=60%である)。
5. Experiments on recovery of lactic acid from polylactic acid with different melting points (3)
Two types of polylactic acid (# 5000 and PLA-80) used in the above 4 were mixed and heat-treated with water at 120 ° C., and the yield and optical activity of the recovered lactic acid were evaluated.
The test was conducted in the same manner as in 1 above using a batch separation and recovery apparatus. The molten salt tank 2 was set at 140 ° C., and the processing vessel 3 charged with polylactic acid (about 0.25 g) and purified water (4.8 g) was immersed therein. After 24 hours (one day) after the start of the reaction, the processing vessel 3 was taken out from the molten salt bath 2 and quickly returned to room temperature, and then the product after the reaction was analyzed by an HPLC organic acid analysis system. Table 2 shows the mixing amount of the two types of polylactic acid, the residual resin amount, the residual resin rate, the lactic acid recovery rate, and the optical purity. This test was performed four times independently. The optical purity can be obtained by | 1-2α | when the ratio of L-lactic acid is α and the ratio of D-lactic acid is (1-α). (The optical purity of PLA-80 is | 1- 2 * 0.2 | = 60%).

Figure 2007099663
Figure 2007099663

また、反応終了後に残存していた樹脂については、200℃、60分間の熱処理反応を行ったところ、ほぼ100%の乳酸が回収された。このとき回収された乳酸の光学純度は、約100%であった。
これらの結果より、120℃、24時間の熱処理反応により、PLA−80はすべて乳酸として回収されたこと、および♯5000の一部も分解されたものの、ほとんどは樹脂として残存していたことがわかった。
The resin remaining after the reaction was subjected to a heat treatment reaction at 200 ° C. for 60 minutes. As a result, almost 100% of lactic acid was recovered. The optical purity of the lactic acid collected at this time was about 100%.
From these results, it was found that PLA-80 was recovered as lactic acid by a heat treatment reaction at 120 ° C. for 24 hours, and part of # 5000 was decomposed, but most remained as a resin. It was.

更に、表2の記載の通り、光学純度67.3%で得られた乳酸(0.15g)に対して、光学純度98.0%の乳酸(0.62g)を混合し、該混合液の光学純度を測定したところ、光学純度は92%となり90%以上の光学純度に調整することができた。   Furthermore, as shown in Table 2, lactic acid (0.62 g) with an optical purity of 98.0% was mixed with lactic acid (0.15 g) obtained with an optical purity of 67.3%. When the optical purity was measured, the optical purity was 92% and could be adjusted to an optical purity of 90% or more.

このように、本実施形態によれば、融点の異なるポリ乳酸が混在した廃棄物において、水分と共に適当な熱処理を行いつつ、所定の時間ごとに乳酸を回収することにより、回収される乳酸の光学純度を所定の範囲ごとに分離できることができる。この技術を応用することにより、ポリ乳酸のリサイクル処理を効果的に進めることができる。   As described above, according to the present embodiment, in the waste mixed with polylactic acid having different melting points, the lactic acid is recovered by collecting lactic acid every predetermined time while performing an appropriate heat treatment together with moisture. The purity can be separated for each predetermined range. By applying this technology, the recycling process of polylactic acid can be effectively advanced.

ポリ乳酸廃棄物の分離回収工程の概要を示す図である。(A)は現状のフロー図を示し、(B)は本発明のフロー図を示す。It is a figure which shows the outline | summary of the isolation | separation collection process of a polylactic acid waste. (A) shows the present flow chart, and (B) shows the flow chart of the present invention. 本発明に係るバッチ式の乳酸の分離回収装置を例示する図面である。1 is a diagram illustrating a batch-type lactic acid separation and recovery apparatus according to the present invention. 本発明に係る連続式の乳酸の分離回収装置を例示する図面である。1 is a drawing illustrating a continuous lactic acid separation and recovery apparatus according to the present invention. 本実施形態におけるバッチ式の乳酸の分離回収装置の概要を示す図である。It is a figure which shows the outline | summary of the batch-type separation and collection apparatus of lactic acid in this embodiment. L−乳酸の割合とポリ乳酸の融点との関係を示すグラフである。It is a graph which shows the relationship between the ratio of L-lactic acid and melting | fusing point of polylactic acid. 反応時間と乳酸回収率との関係を示すグラフである。It is a graph which shows the relationship between reaction time and lactic acid recovery. 反応時間と乳酸回収率との関係を示すグラフである。It is a graph which shows the relationship between reaction time and lactic acid recovery. 反応時間と乳酸回収率との関係を示すグラフである。It is a graph which shows the relationship between reaction time and lactic acid recovery. 反応時間と乳酸回収率との関係を示すグラフである。It is a graph which shows the relationship between reaction time and lactic acid recovery.

符号の説明Explanation of symbols

1・・・分離回収装置
2・・・溶融塩槽
3・・・処理容器
4・・・圧力センサ
5・・・回転翼
6・・・ヒーター
16・・・ポリ乳酸廃棄物
17・・・工程内の循環液
19,35・・・パイプ
20,30…分離回収装置
21,31…高温処理機
22,32,37・・・熱処理装置
23,33,36・・・撹拌機
24,39・・・冷却器
25,40・・・復帰路
26,41・・・排出用のベント路
27・・・ホールドタンク
28,42・・・精製系
29…反応液取出し孔
W・・・水
34・・・溶融槽
38・・・フラッシュタンク
43・・・加熱機
44・・・水供給路
DESCRIPTION OF SYMBOLS 1 ... Separation-and-recovery apparatus 2 ... Molten salt tank 3 ... Processing container 4 ... Pressure sensor 5 ... Rotor blade 6 ... Heater 16 ... Polylactic acid waste 17 ... Process Circulating fluid 19, 35 ... Pipes 20, 30 ... Separation and recovery devices 21, 31 ... High-temperature treatment machines 22, 32, 37 ... Heat treatment devices 23, 33, 36 ... Stirrers 24, 39 ... Coolers 25, 40 ... return paths 26, 41 ... discharge vent path 27 ... hold tanks 28, 42 ... purification system 29 ... reaction liquid takeout hole W ... water 34 ... -Melting tank 38 ... Flash tank 43 ... Heater 44 ... Water supply path

Claims (5)

ポリ乳酸を含む廃棄物であって、2点以上の相異なるポリ乳酸の融点を備えた混合廃棄物を水分と共に反応温度が約110℃〜約200℃の高温下で約1時間以上の初期処理を行い、その後に約110℃〜約200℃の温度で熱処理を行いつつ、約10分間〜約24時間の所定の時間区分ごとに反応液を回収することを特徴とするモノマーである乳酸の分離回収方法。 Initial treatment of waste containing polylactic acid having two or more different polylactic acid melting points with moisture at a reaction temperature of about 110 ° C. to about 200 ° C. for about 1 hour or more And then recovering the reaction solution at predetermined time intervals of about 10 minutes to about 24 hours while performing heat treatment at a temperature of about 110 ° C. to about 200 ° C. Collection method. ポリ乳酸を含む廃棄物であって、2点以上の相異なるポリ乳酸の融点を備えた混合廃棄物を水分と共に反応温度が約110℃〜約200℃の高温下で約1時間以上の熱処理を行う初期処理工程、その後に約110℃〜約200℃の温度で熱処理を行いつつ、約10分間〜約24時間の所定の時間区分ごとに反応液を回収する分離回収工程、及び回収された乳酸のうち、所定の光学純度よりも低い区分の乳酸には、光学純度が約90%以上の乳酸を混合して所定の光学純度の乳酸を調整する光学純度調整工程を経て、乳酸を回収することを特徴とする乳酸の分離回収方法。 Heat treatment for about 1 hour or more at a high temperature of about 110 ° C. to about 200 ° C. with a mixture of wastes containing polylactic acid and having two or more different melting points of polylactic acid together with moisture An initial treatment step, a separation / recovery step for recovering the reaction solution at predetermined time intervals of about 10 minutes to about 24 hours while performing heat treatment at a temperature of about 110 ° C. to about 200 ° C., and recovered lactic acid Among these, lactic acid in a section lower than the predetermined optical purity is collected through a step of adjusting the optical purity by adjusting lactic acid having a predetermined optical purity by mixing lactic acid having an optical purity of about 90% or more. A method for separating and recovering lactic acid. 2点以上の相異なるポリ乳酸の融点を備えた混合廃棄物と水分とを内部に含んだ状態で約110℃〜約200℃の高温とする高温処理機と、この処理機の内部の反応液を外部に取り出す反応液取出し孔とが設けられていることを特徴とする乳酸の分離回収装置。 A high-temperature treatment machine that has a high temperature of about 110 ° C. to about 200 ° C. in a state of containing mixed waste having two or more different melting points of polylactic acid and moisture therein, and a reaction liquid inside the treatment machine And a reaction liquid take-out hole for taking out the product to the outside. 前記分離回収装置は、ポリ乳酸と液体状態の水とを混合した状態で0.1メガパスカルよりも大きい圧力とすることが可能な連続式のものであることを特徴とする請求項3に記載の乳酸の分離回収装置。 4. The separation and recovery device is a continuous type capable of setting a pressure higher than 0.1 megapascal in a state where polylactic acid and liquid water are mixed. Lactic acid separation and recovery equipment. 前記分離回収装置は、ポリ乳酸と液体状態の水とを混合した状態で0.1メガパスカルよりも大きい圧力とすることが可能なバッチ式のものであることを特徴とする請求項3に記載の乳酸の分離回収装置。 The separation and recovery apparatus is a batch type apparatus capable of setting a pressure higher than 0.1 megapascal in a state where polylactic acid and liquid water are mixed. Lactic acid separation and recovery equipment.
JP2005290614A 2005-10-04 2005-10-04 Separation and recovery method of polylactic acid waste Active JP4936351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290614A JP4936351B2 (en) 2005-10-04 2005-10-04 Separation and recovery method of polylactic acid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290614A JP4936351B2 (en) 2005-10-04 2005-10-04 Separation and recovery method of polylactic acid waste

Publications (2)

Publication Number Publication Date
JP2007099663A true JP2007099663A (en) 2007-04-19
JP4936351B2 JP4936351B2 (en) 2012-05-23

Family

ID=38026944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290614A Active JP4936351B2 (en) 2005-10-04 2005-10-04 Separation and recovery method of polylactic acid waste

Country Status (1)

Country Link
JP (1) JP4936351B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192209A (en) * 2008-01-17 2009-08-27 Unitika Ltd Biodegradable cleaning ball
JP2020172606A (en) * 2019-04-12 2020-10-22 マクセルホールディングス株式会社 Method for hydrothermally decomposing thermoplastic resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178977A (en) * 1991-12-27 1993-07-20 Toyo Ink Mfg Co Ltd Method for treating molded polymer article
JPH10182630A (en) * 1996-12-25 1998-07-07 Shimadzu Corp Regeneration and use of lactic acid-based by-product
JP2003300927A (en) * 2002-04-12 2003-10-21 Nagoya Industrial Science Research Inst Method for forming monomer of biodegradable polyester
JP2003313283A (en) * 2002-04-25 2003-11-06 Japan Science & Technology Corp Method for manufacturing polyester
WO2004000939A1 (en) * 2002-06-20 2003-12-31 Toray Industries, Inc. Polylactic acid base polymer composition, molding thereof and film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178977A (en) * 1991-12-27 1993-07-20 Toyo Ink Mfg Co Ltd Method for treating molded polymer article
JPH10182630A (en) * 1996-12-25 1998-07-07 Shimadzu Corp Regeneration and use of lactic acid-based by-product
JP2003300927A (en) * 2002-04-12 2003-10-21 Nagoya Industrial Science Research Inst Method for forming monomer of biodegradable polyester
JP2003313283A (en) * 2002-04-25 2003-11-06 Japan Science & Technology Corp Method for manufacturing polyester
WO2004000939A1 (en) * 2002-06-20 2003-12-31 Toray Industries, Inc. Polylactic acid base polymer composition, molding thereof and film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192209A (en) * 2008-01-17 2009-08-27 Unitika Ltd Biodegradable cleaning ball
JP2020172606A (en) * 2019-04-12 2020-10-22 マクセルホールディングス株式会社 Method for hydrothermally decomposing thermoplastic resin
JP7425539B2 (en) 2019-04-12 2024-01-31 マクセル株式会社 Hydrothermal decomposition method for thermoplastic resin

Also Published As

Publication number Publication date
JP4936351B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US7488783B2 (en) Method for the production of polyactide from a solution of lactic acid or one of the derivatives thereof
CN103781833B (en) Process and apparatus for recovering lactide from polylactide or glycolide from polyglycolide
KR101801176B1 (en) Method for the manufacture of a polyhydroxy-carboxylic acid
US9475790B2 (en) Method for preparing refined lactide from recovered polylactic acid
JP5355841B2 (en) Method for continuous purification of glycolic acid, method for producing glycolide and method for producing polyglycolic acid
EP2475689B1 (en) Method for stereospecifically recycling a pla polymer mixture
WO2007001043A1 (en) Process for production of lactic acid and equipment for the production
CN102766132A (en) Method for preparing lactide continuously
JP4936351B2 (en) Separation and recovery method of polylactic acid waste
JP4177992B2 (en) Monomerization method of biodegradable polyhydroxycarboxylic acid, etc.
JP7238416B2 (en) Lactide recovery method
JP2005330211A (en) Method for hydrolyzing biodegradable polyester into monomer, and apparatus for treating biodegradable polyester
CA2879358C (en) Method for removing an ester from a vapor mixture
JP4665073B2 (en) Recycling method of polylactic acid waste
JP4994314B2 (en) Method and apparatus for synthesizing lactide and polylactic acid
WO2007102488A1 (en) Process for the decomposition and reclamation of synthetic resins having ester-linkage structures
JP2007210889A (en) Method for monomerizing stereocomplex type polylactic acid
JP7000631B1 (en) Method for Producing Aliphatic Polyester, Aliphatic Polyester Resin and Aliphatic Polyester Resin Composition
JP2005298401A (en) Method for converting biodegradable polyester into monomer
CN220194028U (en) Continuous purification device of tetrachloro isophthalonitrile
JP2008179713A (en) Method for recycling polylactic acid resin
JP2006274231A (en) Method for obtaining monomer of polylactic acid
JP2000103901A (en) Selective heat-decomposition of synthetic polymeric compound
CN106008200A (en) Recycling process for chloroacetic acid mother liquor
JP2005264000A (en) Manufacturing process of biodegradable hydrophobic polyester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350