JP2007099598A - Optical glass molding die and its manufacturing method - Google Patents

Optical glass molding die and its manufacturing method Download PDF

Info

Publication number
JP2007099598A
JP2007099598A JP2005295480A JP2005295480A JP2007099598A JP 2007099598 A JP2007099598 A JP 2007099598A JP 2005295480 A JP2005295480 A JP 2005295480A JP 2005295480 A JP2005295480 A JP 2005295480A JP 2007099598 A JP2007099598 A JP 2007099598A
Authority
JP
Japan
Prior art keywords
optical glass
peripheral portion
surface roughness
molding die
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005295480A
Other languages
Japanese (ja)
Inventor
Shotaro Miyake
正太郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2005295480A priority Critical patent/JP2007099598A/en
Publication of JP2007099598A publication Critical patent/JP2007099598A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • C03B2215/17Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals comprising one or more of the noble meals, i.e. Ag, Au, platinum group metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical glass molding die that prevents breaking and fusion of optical glass, and its manufacturing method. <P>SOLUTION: The optical glass molding die is a die intended for molding the optical glass having a double-convex shape and has a molding surface 14 obtained by forming a protection film 13 on one side 12 of a substrate 11. On the molding surface 14, the curvature is smaller at the periphery compared to that in the center and the surface roughness is larger at the periphery compared to that in the center. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学ガラス素子の成形用金型及びその製造方法に関し、詳しくは成形面の周辺部において中心部より曲率が小さくなる両凸形状の光学ガラス素子を金型により成形する際、光学ガラス素子の割れや融着が起こりにくい成形用金型及びその製造方法、及びかかる光学ガラス成形用金型により成形された光学ガラス素子に関する。   The present invention relates to a molding die for an optical glass element and a method for manufacturing the same, and more specifically, when a biconvex optical glass element having a curvature smaller than that of a central portion is molded by a mold at a peripheral portion of a molding surface. The present invention relates to a molding die in which cracking and fusion of the element are unlikely to occur, a manufacturing method thereof, and an optical glass element molded by the optical glass molding die.

近年、デジタル等において小型・軽量化などの要望から、肉厚の小さいレンズの需要が高まっている。両凸形状の光学レンズとしては、中央部から外側にかけて曲率が急激に小さくなるレンズが多い。これらのレンズの成形方法としては、成形面が保護膜により補強された成形用金型を用いたプレス成形が一般的である。しかしながら、光学ガラスにおける曲率が急激に減少する部分において保護膜との摩擦力が急激に増大するため、光学ガラスが割れたり、光学ガラスと金型との融着が起こったりする。また摩擦力が大きいと成形にかかる時間が長くなり生産性が低下する。成形時の温度を上げることによりガラスの粘度を低下させ、摩擦力を低下させることもできるが、成形時の温度が高いと保護膜の劣化が進み、保護膜の寿命が劣化してしまう。   In recent years, demand for small-thickness lenses has been increasing due to demands for reduction in size and weight in digital and the like. As a biconvex optical lens, there are many lenses whose curvature decreases rapidly from the center to the outside. As a molding method of these lenses, press molding using a molding die whose molding surface is reinforced with a protective film is generally used. However, since the frictional force with the protective film suddenly increases at the portion where the curvature of the optical glass is sharply reduced, the optical glass is broken or the optical glass and the mold are fused. In addition, when the frictional force is large, the time required for molding becomes long and productivity is lowered. Although the viscosity of the glass can be lowered and the frictional force can be lowered by raising the temperature at the time of molding, if the temperature at the time of molding is high, the protective film deteriorates and the life of the protective film deteriorates.

これらの問題を改善策するため、成形用金型の保護膜として、ガラスとの反応性の小さい貴金属系膜が用いられてきた[特開昭60-246230号(特許文献1)]。しかしながら、貴金属系膜は光学ガラスとの離型性が悪いという問題がある。また中心の曲率に対して一定割合以下の曲率を有する部分において摩擦が急激に上昇するため、やはり光学ガラスの割れや、光学ガラスと金型との融着が生じてしまう。   In order to remedy these problems, a noble metal film having a low reactivity with glass has been used as a protective film for a molding die [Japanese Patent Laid-Open No. 60-246230 (Patent Document 1)]. However, the noble metal-based film has a problem that the releasability from the optical glass is poor. In addition, since friction rapidly increases at a portion having a curvature equal to or less than a certain ratio with respect to the center curvature, the optical glass is also cracked and the optical glass and the mold are fused.

摩擦係数の小さいダイヤモンドライクカーボン(DLC)を用いることにより、成形される光学ガラスと金型との摩擦を低減することも提案されており[特開平09-315827号(特許文献2)]、特にポアフリーセラミックス(PF材)にDLCを成膜することにより、さらに摩擦を低減できる。しかしながら、成形後に光学ガラスの表面にDLCが残留して、その特性や外観が劣化する等の問題がある。   It has also been proposed to reduce the friction between the optical glass to be molded and the mold by using diamond-like carbon (DLC) having a small friction coefficient [Japanese Patent Laid-Open No. 09-315827 (Patent Document 2)], especially Friction can be further reduced by depositing DLC on pore-free ceramics (PF material). However, there is a problem that DLC remains on the surface of the optical glass after molding, and its characteristics and appearance deteriorate.

特開昭60-246230号公報JP-A-60-246230 特開平09-315827号公報Japanese Unexamined Patent Publication No. 09-315827

従って本発明の目的は、光学ガラスの割れや融着を防止する光学ガラス成形用金型及びその製造方法を提供することである。
本発明のもう一つの目的は、かかる光学ガラス成形用金型により成形された光学ガラス素子を提供することである。
Accordingly, an object of the present invention is to provide an optical glass molding die for preventing the optical glass from cracking and fusing and a method for producing the same.
Another object of the present invention is to provide an optical glass element formed by such an optical glass molding die.

上記目的に鑑み鋭意研究の結果、本発明者は、成形面の周辺部において中心部より曲率が小さくなる両凸形状の光学ガラス素子の成形用金型において、成形面の中心部の表面粗さより周辺部の表面粗さを大きくすることにより、光学ガラスを成形する際、光学ガラスの割れや融着を防止できることを発見し、本発明に想到した。   As a result of diligent research in view of the above-mentioned object, the present inventor found that, in the molding die for a biconvex optical glass element whose curvature is smaller than that of the central portion in the peripheral portion of the molding surface, the surface roughness of the central portion of the molding surface. It has been discovered that by increasing the surface roughness of the peripheral portion, the optical glass can be prevented from cracking and fusing when the optical glass is molded, and the present invention has been conceived.

すなわち、本発明は具体的に以下の手段により達成することができる。
(1) 両凸形状の光学ガラスの成形用であり、基材の一面に保護膜を形成してなる成形面を有し、前記成形面の周辺部において前記成形面の曲率が中心部と比べて小さくなる金型であって、前記周辺部の表面粗さが前記中心部の表面粗さより大きいことを特徴とする光学ガラスの成形用金型。
(2) 請求項1に記載の光学ガラス成形用金型において、前記光学ガラスが撮像系レンズである場合、前記成形面の曲率が周辺部において中心部における曲率の0.1〜20%になり、それ以外の場合は0.1〜40%になることを特徴とする金型。
(3) 請求項1又は2に記載の光学ガラス成形用金型において、前記周辺部が前記光学ガラスの光学的有効径内であり、前記周辺部の表面粗さは
0.1〜20 nmであり、かつ前記中心部の表面粗さの1.1〜20倍であることを特徴とする金型。
(4) 請求項3に記載の光学ガラス成形用金型において、前記中心部から前記周辺部にかけて表面粗さが連続的に変化することを特徴とする金型。
(5) 請求項3に記載の光学ガラス成形用金型において、前記中心部から前記周辺部にかけて表面粗さが急激に変化しており、かつ前記周辺部と前記中心部との表面粗さの比が1.1〜5倍であることを特徴とする金型。
(6) 請求項1又は2に記載の光学ガラス成形用金型において、前記周辺部が光学的有効径外であり、前記周辺部の表面粗さは0.1〜400 nmであり、かつ前記中心部の表面粗さの1.1〜400倍であることを特徴とする金型。
(7) 請求項1〜6のいずれかに記載の光学ガラス成形用金型において、前記基材は超硬、サーメット及びセラミックスからなる群から選ばれた少なくとも一種からなることを特徴とする金型。
(8) 請求項1〜7のいずれかに記載の光学ガラス成形用金型において、前記保護膜は貴金属からなる合金、セラミックス及び硬質炭素膜からなる群から選ばれた少なくとも一種からなることを特徴とする金型。
(9) 請求項1〜8のいずれかに記載の光学ガラス成形用金型の製造方法。
(10) 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基材の一面の周辺部に粗さ加工を施した後、保護膜を形成することを特徴とする方法。
(11) 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基材の一面に保護膜を形成中に、前記保護膜の周辺部に粗さ加工を施すことを特徴とする方法。
(12) 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基材の一面に保護膜の形成した後、前記保護膜の周辺部に粗さ加工を施すことを特徴とする方法。
(13) 請求項10〜12のいずれかに記載の光学ガラス成形用金型の製造方法であって、前記周辺部の表面粗さを研磨パッドにより付与することを特徴とする方法。
(14) 請求項10〜12のいずれかに記載の光学ガラス成形用金型の製造方法であって、前記周辺部の表面粗さを化学的作用により付与することを特徴とする方法。
(15) 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基板の一面を研磨砥粒及び研磨パッドにより研磨し、その際前記中心部と比べて前記周辺部での前記研磨パッドの押圧力を強くすることを特徴とする方法。
(16)請求項1〜8のいずれかの金型により成形されたことを特徴とする光学ガラス素子。
That is, the present invention can be specifically achieved by the following means.
(1) It is for molding a biconvex optical glass, has a molding surface formed by forming a protective film on one surface of a substrate, and the curvature of the molding surface in the peripheral part of the molding surface is compared with the central part A molding die for optical glass, wherein the surface roughness of the peripheral portion is larger than the surface roughness of the central portion.
(2) In the optical glass molding die according to claim 1, when the optical glass is an imaging lens, the curvature of the molding surface is 0.1 to 20% of the curvature at the central portion in the peripheral portion, In other cases, the mold is characterized by 0.1 to 40%.
(3) In the optical glass molding die according to claim 1 or 2, the peripheral portion is within the optical effective diameter of the optical glass, and the surface roughness of the peripheral portion is
A mold having a thickness of 0.1 to 20 nm and 1.1 to 20 times the surface roughness of the central portion.
(4) The optical glass molding die according to claim 3, wherein the surface roughness continuously changes from the central portion to the peripheral portion.
(5) In the optical glass molding die according to claim 3, the surface roughness abruptly changes from the central portion to the peripheral portion, and the surface roughness between the peripheral portion and the central portion is increased. A mold characterized in that the ratio is 1.1 to 5 times.
(6) The optical glass molding die according to claim 1 or 2, wherein the peripheral portion is outside the optically effective diameter, the surface roughness of the peripheral portion is 0.1 to 400 nm, and the central portion A mold having a surface roughness of 1.1 to 400 times.
(7) The mold for optical glass molding according to any one of claims 1 to 6, wherein the substrate is made of at least one selected from the group consisting of cemented carbide, cermet and ceramics. .
(8) The optical glass molding die according to any one of claims 1 to 7, wherein the protective film is made of at least one selected from the group consisting of an alloy made of a noble metal, a ceramic and a hard carbon film. Mold.
(9) The method for producing an optical glass mold according to any one of claims 1 to 8.
(10) The method for producing a mold for optical glass according to claim 9, wherein a protective film is formed after performing a roughing process on a peripheral portion of one surface of the substrate. .
(11) The method for manufacturing an optical glass molding die according to claim 9, wherein a roughness process is performed on a peripheral portion of the protective film while the protective film is formed on one surface of the base material. And how to.
(12) The method for producing an optical glass molding die according to claim 9, wherein a protective film is formed on one surface of the base material, and then a roughing process is performed on a peripheral portion of the protective film. And how to.
(13) The method for producing an optical glass molding die according to any one of claims 10 to 12, wherein the surface roughness of the peripheral portion is imparted by a polishing pad.
(14) The method for producing an optical glass molding die according to any one of claims 10 to 12, wherein the surface roughness of the peripheral portion is imparted by a chemical action.
(15) The method for manufacturing an optical glass molding die according to claim 9, wherein one surface of the substrate is polished with polishing abrasive grains and a polishing pad, and at that time, the peripheral portion is compared with the central portion. A method of increasing the pressing force of the polishing pad.
(16) An optical glass element formed by the mold according to any one of claims 1 to 8.

[1] 光学ガラス素子
本発明の光学ガラス成形用金型を用いて成形する光学ガラス素子としては、成形面14の周辺部で曲率が小さくなる非球面の両凸形状の光学ガラスが好適であり、曲率の急激に変化するものが特に好適である。光学ガラス素子を成形する際、曲率が変化する部分で特に摩擦力が大きくなるため、光学ガラス素子の割れや融着が起きやすいからである。光学ガラスの材料としては、光学系に使用されるものであれば特に限定されないが、BK7,F2,SF1等が好ましい。
[1] Optical glass element As an optical glass element molded using the optical glass molding die of the present invention, an aspherical biconvex optical glass having a small curvature at the periphery of the molding surface 14 is suitable. Particularly preferred is a material whose curvature changes rapidly. This is because, when the optical glass element is molded, the frictional force is particularly large at the portion where the curvature changes, and therefore, the optical glass element is easily cracked or fused. The material of the optical glass is not particularly limited as long as it is used in the optical system, but BK7, F2, SF1, etc. are preferable.

[2] 光学ガラス成形用金型
金型10は、図1に示すように、基材11と、基材11の一面12に形成された保護膜13とからなり、保護膜13の表面には成形面14が形成されている。成形面14は光学ガラス素子のほぼ反転形状であり、成形面14の周辺部において中心部より曲率が小さくなっている。ここで周辺部とは、図1に示すように、中心部から曲率が小さくなる部分とその周囲を指す。周辺部の表面粗さは中心部の表面粗さより大きい。成形面14の周辺部の表面を粗くすることにより、周辺部における光学ガラス素子の割れや、光学ガラス素子と金型とが融着するのを防止することができる。
[2] Optical Glass Mold Die 10 includes a base material 11 and a protective film 13 formed on one surface 12 of the base material 11, as shown in FIG. A molding surface 14 is formed. The molding surface 14 has a substantially inverted shape of the optical glass element, and has a smaller curvature at the periphery of the molding surface 14 than at the center. Here, as shown in FIG. 1, the peripheral portion refers to a portion where the curvature decreases from the central portion and the periphery thereof. The surface roughness of the peripheral part is larger than the surface roughness of the central part. By roughening the surface of the peripheral part of the molding surface 14, it is possible to prevent the optical glass element from being cracked in the peripheral part and the optical glass element and the mold from being fused.

光学ガラスが撮像系レンズである場合、周辺部の曲率は中心部の曲率の0.1〜20%であるのが好ましい。また光学ガラスが撮像系レンズ以外の場合、周辺部の曲率は中心部の曲率の0.1〜40%であるのが好ましい。撮像系レンズは特に薄肉で小型である必要があるため、成形面14の周辺部の曲率が小さいのが望ましい。   When the optical glass is an imaging system lens, the curvature of the peripheral part is preferably 0.1 to 20% of the curvature of the central part. Further, when the optical glass is other than the imaging system lens, the curvature of the peripheral portion is preferably 0.1 to 40% of the curvature of the central portion. Since the imaging lens needs to be particularly thin and small, it is desirable that the curvature of the peripheral portion of the molding surface 14 be small.

保護膜13の成形面14は、中心部の曲率に対して所定の割合以下の曲率を有する周辺部の表面粗さは中心部の表面粗さより大きい。成形面14の中心部はダイヤモンド砥粒等により研磨されており、その表面粗さは0.1〜20 nmであるのが好ましい。ここで表面粗さとは、図2に示すように、成形面14の表面(粗さ曲線)を中心線から折り返し、その粗さ曲線と中心線によって得られた面積を長さLで割った値をナノメートル(nm)で表わしたものである。中心部の表面粗さが0.1 nm未満であると加工が困難であり、20 nm超であると得られる光学ガラスの光学特性が悪い。   On the molding surface 14 of the protective film 13, the surface roughness of the peripheral portion having a curvature equal to or less than a predetermined ratio with respect to the curvature of the central portion is larger than the surface roughness of the central portion. The center portion of the molding surface 14 is polished with diamond abrasive grains or the like, and the surface roughness is preferably 0.1 to 20 nm. As shown in FIG. 2, the surface roughness is a value obtained by folding the surface (roughness curve) of the molding surface 14 from the center line and dividing the area obtained by the roughness curve and the center line by the length L. Is expressed in nanometers (nm). If the surface roughness of the central portion is less than 0.1 nm, it is difficult to process, and if it exceeds 20 nm, the optical properties of the optical glass obtained are poor.

成形面14の周辺部が光学的有効範囲内にある場合、周辺部の表面粗さは0.1〜20 nmであるのが好ましく、0.2〜10 nmであるのがより好ましい。また中心部の表面粗さの1.1〜20倍であるのが好ましく、1.5〜10倍であるのがより好ましい。周辺部の表面粗さが0.2 nm未満、又は中心部の表面粗さの1.1倍未満であると光学ガラス素子の割れや融着が起こる。また周辺部の表面粗さが20 nm超、又は周辺部の表面粗さが20倍超であると、得られる光学ガラスの光学特性が悪い。   When the peripheral portion of the molding surface 14 is within the optically effective range, the surface roughness of the peripheral portion is preferably 0.1 to 20 nm, and more preferably 0.2 to 10 nm. Moreover, it is preferable that it is 1.1-20 times of the surface roughness of a center part, and it is more preferable that it is 1.5-10 times. When the surface roughness of the peripheral portion is less than 0.2 nm or less than 1.1 times the surface roughness of the central portion, the optical glass element is cracked or fused. Further, if the surface roughness of the peripheral portion exceeds 20 nm or the surface roughness of the peripheral portion exceeds 20 times, the optical properties of the obtained optical glass are poor.

中心部から周辺部にかけて表面粗さが連続的に変化しているのが好ましい。光学的有効範囲内で表面粗さが急激に変化すると、その箇所での光学ガラス素子の光学特性が悪くなる。表面粗さが急激に変化する場合は、周辺部の表面粗さは中心部の表面粗さの1.1〜5倍であるのが好ましく、1.5〜2.5倍であるのがより好ましい。   It is preferable that the surface roughness continuously changes from the central part to the peripheral part. If the surface roughness changes abruptly within the optically effective range, the optical properties of the optical glass element at that location deteriorate. When the surface roughness changes rapidly, the surface roughness of the peripheral part is preferably 1.1 to 5 times, more preferably 1.5 to 2.5 times the surface roughness of the central part.

成形面14の周辺部が光学的有効範囲外にある場合、周辺部の表面粗さは
0.1〜400 nmであるのが好ましく、0.2〜200 nmであるのがより好ましい。また中心部の表面粗さの1.1〜400倍であるのが好ましく、1.5〜200倍であるのがより好ましい。周辺部の表面粗さが0.1nm未満、又は中心部の表面粗さの1.1倍未満であると光学ガラス素子の割れや融着が起こる。また周辺部の表面粗さが400 nm超、又は周辺部の表面粗さが400倍超であると、やはり得られる光学ガラスの特性が悪い。
If the periphery of the molding surface 14 is outside the optical effective range, the surface roughness of the periphery is
It is preferably 0.1 to 400 nm, more preferably 0.2 to 200 nm. Moreover, it is preferable that it is 1.1 to 400 times the surface roughness of a center part, and it is more preferable that it is 1.5 to 200 times. When the surface roughness of the peripheral portion is less than 0.1 nm or less than 1.1 times the surface roughness of the central portion, the optical glass element is cracked or fused. Further, if the surface roughness of the peripheral portion exceeds 400 nm or the surface roughness of the peripheral portion exceeds 400 times, the characteristics of the obtained optical glass are also poor.

金型10の基材11は、光学ガラス素子のプレス成形に使用されるため、高温高圧下でもその形状を維持し得るように、Cr2O3,Al2O3等を含むサーメット、WCを含む超硬あるいはWCのみからなる超硬、及びSiC,ZrO2,TiC等のセラミックス等を用いるのが好ましい。 Since the base material 11 of the mold 10 is used for press molding of an optical glass element, a cermet containing WC, Cr 2 O 3 , Al 2 O 3, etc. is used so that the shape can be maintained even under high temperature and pressure. It is preferable to use a cemented carbide containing only or WC, and ceramics such as SiC, ZrO 2 and TiC.

保護膜13はダイヤモンド膜,DLC等の硬質炭素膜や、水素化アモルファス炭素膜であるのが好ましい。中でも、摩擦係数が低くプレス成形が容易なDLCが特に好ましい。またインジウム,オスミウム,パラジウム,ロジウム,ルテニウム等の貴金属類を用いても良い。またTiAlN、CrN等のセラミックスを用いても良い。   The protective film 13 is preferably a diamond film, a hard carbon film such as DLC, or a hydrogenated amorphous carbon film. Among them, DLC having a low friction coefficient and easy press forming is particularly preferable. Further, precious metals such as indium, osmium, palladium, rhodium, ruthenium may be used. Further, ceramics such as TiAlN and CrN may be used.

[3] 光学ガラス成形用金型の製造方法
基材11の一面を光学ガラスのほぼ反転形状に研削研磨した後、保護膜13を形成する。炭素系膜13の成形面14の周辺部は粗し加工されており、粗し加工としては、研磨パッド等の機械的作用により行うのが好ましい。研磨パッド等の機械的作用によれば局所的に粗し加工を行うのが容易だからである。具体的には、(1) 基材11の成形面12の成形面の周辺部を粗す方法(部分粗し加工)、(2) 基材11の成形面12 の成形面の周辺部で研磨パッドに荷重することにより周辺部を粗す方法(部分荷重加工)、及び(3) 保護膜13の形成後に保護膜13の周辺部を粗す方法(部分粗し加工)等が挙げられる。以下、これらの方法について詳述する。
[3] Method for Producing Optical Glass Molding Mold One surface of the substrate 11 is ground and polished into a substantially inverted shape of the optical glass, and then the protective film 13 is formed. The peripheral portion of the molding surface 14 of the carbon-based film 13 is roughened, and the roughening is preferably performed by a mechanical action such as a polishing pad. This is because it is easy to perform roughing locally by mechanical action of a polishing pad or the like. Specifically, (1) a method of roughening the periphery of the molding surface 12 of the base material 11 (partial roughing), (2) polishing at the periphery of the molding surface of the molding surface 12 of the base material 11 Examples of the method include roughening the peripheral portion by applying a load to the pad (partial load processing), and (3) a method of roughening the peripheral portion of the protective film 13 after the formation of the protective film 13 (partial roughening processing). Hereinafter, these methods will be described in detail.

(1) 方法(1) を用いた場合
方法(1) を用いた光学ガラス成形用金型の製造方法の各工程を図3に示す。基材11の成形面12の全面を研磨する(工程(a))。具体的には、保持棒21の先端に球状のパッド部22を有する研磨パッド20を、基材11に対して傾けて設置する。基材11の成形面12に研磨砥粒をセットし、パッド部22を基材11の成形面12に押し当てながら研磨パッド20を回転させることにより研磨を行う。この状態で基材11を中央の縦軸11aを中心に回転させながら、研磨パッド20を基材11の成形面12の半径方向に移動させることにより、成形面12の全面を研磨することができる。研磨砥粒はダイヤモンド等が好ましく、径が0.25〜0.5μmであるものが好ましい。
(1) When Method (1) is Used Each step of the method for manufacturing an optical glass molding die using method (1) is shown in FIG. The entire molding surface 12 of the substrate 11 is polished (step (a)). Specifically, the polishing pad 20 having the spherical pad portion 22 at the tip of the holding rod 21 is installed inclined with respect to the base material 11. Polishing is performed by setting abrasive grains on the molding surface 12 of the substrate 11 and rotating the polishing pad 20 while pressing the pad portion 22 against the molding surface 12 of the substrate 11. In this state, the entire surface of the molding surface 12 can be polished by moving the polishing pad 20 in the radial direction of the molding surface 12 of the substrate 11 while rotating the substrate 11 about the central longitudinal axis 11a. . The abrasive grain is preferably diamond or the like, and preferably has a diameter of 0.25 to 0.5 μm.

基材11の成形面12に工程(a)で使用した砥粒よりも径の大きい研磨砥粒をセットし、研磨パッド20より小さい研磨パッド30を用いて、基材11の成形面12のうち周辺部のみを研磨する。研磨パッド30は工程1と同様に基材11に対して傾けて回転させ、かつ基材11は中心を縦軸として回転させた状態で、研磨パッド30を基材11の成形面12のうち周辺部のみで半径方向に移動させることにより、成形面12の周辺部に粗し加工を施す(工程(b))。本工程で使用する研磨砥粒はダイヤモンド等が好ましく、径が約1μmであるものが好ましい。   Set the abrasive grains larger in diameter than the abrasive grains used in step (a) on the molding surface 12 of the base material 11, and use the polishing pad 30 smaller than the polishing pad 20, Polish only the periphery. The polishing pad 30 is tilted and rotated with respect to the base material 11 in the same manner as in the step 1, and the base material 11 is rotated around the center as the vertical axis. By moving only the part in the radial direction, the peripheral part of the molding surface 12 is roughened (step (b)). The abrasive grain used in this step is preferably diamond or the like, and preferably has a diameter of about 1 μm.

基材11の成形面12に保護膜13を形成する(工程(c))。保護膜13の形成方法は、特に限定されないが、プラズマCVD法の蒸着法が好ましい。基材11の成形面12の周辺部の表面粗さが中心部と比べて大きいため、その上に形成した保護膜13の成形面14においても周辺部の表面粗さが中心部と比べて大きい金型が得られる(工程(d))。   A protective film 13 is formed on the molding surface 12 of the substrate 11 (step (c)). The method of forming the protective film 13 is not particularly limited, but a plasma CVD method is preferable. Since the surface roughness of the peripheral portion of the molding surface 12 of the substrate 11 is larger than that of the central portion, the surface roughness of the peripheral portion is also larger than that of the central portion of the molding surface 14 of the protective film 13 formed thereon. A mold is obtained (step (d)).

(2) 方法(2) を用いた場合
方法(2) を用いた光学ガラス成形用金型の製造方法の各工程を図4に示す。基材11の成形面12の全面を研磨する(工程(a))。研磨パッド20は方法(1) と同じものを用い、研磨砥粒は径が0.5μmのものを使用するのが好ましい。方法(1) と同様の方法で成形面12の全面研磨を行うが、その際に、成形面12の周辺部での研磨パッド20の押圧力を、中心部での押圧力より強くする。それにより、成形面12の周辺部を中心部より粗くすることができる。基材11の成形面12に保護膜13を形成ことにより(工程(b))。方法(1) と同様に保護膜13の周辺部の表面粗さが中心部と比べて大きい金型が得られる(工程(c))。
(2) When Method (2) is Used FIG. 4 shows each step of the method for manufacturing an optical glass molding die using method (2). The entire molding surface 12 of the substrate 11 is polished (step (a)). The polishing pad 20 is preferably the same as in the method (1), and the abrasive grains having a diameter of 0.5 μm are preferably used. The entire molding surface 12 is polished by the same method as the method (1). At this time, the pressing force of the polishing pad 20 at the periphery of the molding surface 12 is made stronger than the pressing force at the center. Thereby, the peripheral part of the molding surface 12 can be made rougher than the central part. By forming a protective film 13 on the molding surface 12 of the substrate 11 (step (b)). As in the method (1), a mold having a larger surface roughness in the peripheral part of the protective film 13 than in the central part is obtained (step (c)).

(3) 方法(3) を用いた場合
方法(3) を用いた光学ガラス成形用金型の製造方法の各工程を図5に示す。基材11の成形面12の全面を方法(1) と同様の方法で研磨する(工程(a))。基材11の成形面12に保護膜13を形成する(工程(b))。基材11の保護膜13の成形面14に細かさ1μmの研磨砥粒をセットし、研磨パッド20より小さい研磨パッド30を用いて、保護膜13の成形面14のうち周辺部のみを研磨する。研磨パッド30は工程1と同様に基材11に対して傾斜して回転させ、基材11は中心を縦軸として回転させ、研磨パッド30を保護膜13の成形面14のうち周辺部のみで半径方向にスライドさせることにより、保護膜13の成形面14の周辺部に粗し加工を施す(工程(c))。それにより保護膜13の周辺部の表面粗さが中心部と比べて大きい金型が得られる(工程(d))。
(3) When Method (3) is Used FIG. 5 shows each step of the method for manufacturing an optical glass mold using method (3). The entire molding surface 12 of the substrate 11 is polished by the same method as the method (1) (step (a)). A protective film 13 is formed on the molding surface 12 of the substrate 11 (step (b)). Abrasive grains having a fineness of 1 μm are set on the molding surface 14 of the protective film 13 of the substrate 11 and only the peripheral portion of the molding surface 14 of the protective film 13 is polished using a polishing pad 30 smaller than the polishing pad 20. . The polishing pad 30 is inclined and rotated with respect to the base material 11 in the same manner as in step 1, the base material 11 is rotated with the center as the vertical axis, and the polishing pad 30 is moved only at the peripheral portion of the molding surface 14 of the protective film 13. By sliding in the radial direction, the peripheral portion of the molding surface 14 of the protective film 13 is roughened (step (c)). Thereby, a mold is obtained in which the surface roughness of the peripheral portion of the protective film 13 is larger than that of the central portion (step (d)).

上述した方法の他に、保護膜13の形成中に周辺部に粗し加工を施しても良い。例えば、基材11の成形面12の表面に保護膜13を形成しながら、周辺部のみに研磨パッド20と研磨砥粒により研磨を施す方法等が挙げられる。またマスキングにより周辺部のみ露出させ部分的にスパッタリングすることにより粗し加工を施しても良い。また保護膜を形成した後、マスキングにより周辺部のみ露出させ、スパッタリング又は研磨パッドによる研磨により粗し加工を施しても良い。これらの機械的作用による方法以外にも、エッチング液等の加工液等の化学的作用により粗し加工を施しても良い。また上述した機械的作用による方法と、化学的作用による方法とを併せて粗し加工を施しても良い。   In addition to the above-described method, the peripheral portion may be roughened during the formation of the protective film 13. For example, there is a method in which the protective film 13 is formed on the surface of the molding surface 12 of the substrate 11 and polishing is performed only on the peripheral portion with the polishing pad 20 and the abrasive grains. Further, roughening may be performed by exposing only the peripheral portion by masking and partially sputtering. Further, after forming the protective film, only the peripheral portion may be exposed by masking and roughened by sputtering or polishing with a polishing pad. In addition to these mechanical action methods, roughening may be performed by a chemical action such as a processing liquid such as an etching liquid. Further, roughening may be performed by combining the above-described method using mechanical action and the method using chemical action.

以下、本発明を具体的実施例によりさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited thereto.

実施例1
炭化珪素(SiC)からなる基材11を所望の光学ガラスのほぼ反転形状に研削加工した。図3(a) に示すように、保持棒21の先端に半球状のパッド部22を有する研磨パッド20を、基材11に対して傾けて設置し、基材11の成形面12にダイヤモンドからなる研磨砥粒(径1μm)をセットした。研磨パッド20の先端のパッド部22を基材11の成形面12に押し当てながら研磨パッド20を回転させ、同時に基材11を中央の縦軸11aを中心として回転させながら、研磨パッド20を基材11の成形面12の半径方向に移動させることにより、成形面12の全面を研磨した。得られた成形面12の表面粗さは1nmであった。
Example 1
The substrate 11 made of silicon carbide (SiC) was ground into a substantially inverted shape of the desired optical glass. As shown in FIG. 3 (a), a polishing pad 20 having a hemispherical pad portion 22 at the tip of the holding rod 21 is installed at an angle with respect to the substrate 11, and diamond is formed on the molding surface 12 of the substrate 11. Abrasive grains (diameter 1 μm) were set. The polishing pad 20 is rotated while the pad portion 22 at the tip of the polishing pad 20 is pressed against the molding surface 12 of the substrate 11, and at the same time the substrate 11 is rotated about the central longitudinal axis 11a. By moving in the radial direction of the molding surface 12 of the material 11, the entire molding surface 12 was polished. The molding surface 12 thus obtained had a surface roughness of 1 nm.

次に成形面12に研磨砥粒(径1.5μm)をセットした。研磨パッド20より小さい研磨パッド30を成形面12に押し当てながら基材11に対して傾けて回転させ、かつ基材11は中心を縦軸として回転させた状態で、研磨パッド30を基材11の成形面12のうち周辺部のみで半径方向に移動させることにより、基材11の成形面12のうち中心部の曲率に対して20%以下の曲率の周辺部に粗し加工を施した。成形面12の周辺部の表面粗さは1.5 nmであった。成形面12にプラズマCVD法により、DLCからなる保護膜13を形成した。   Next, abrasive grains (diameter: 1.5 μm) were set on the molding surface 12. While pressing the polishing pad 30 smaller than the polishing pad 20 against the molding surface 12, the polishing pad 30 is rotated relative to the base material 11, and the base material 11 is rotated about the vertical axis. By moving the molding surface 12 in the radial direction only at the peripheral portion, the peripheral portion having a curvature of 20% or less of the curvature of the central portion of the molding surface 12 of the substrate 11 was roughened. The surface roughness of the periphery of the molding surface 12 was 1.5 nm. A protective film 13 made of DLC was formed on the molding surface 12 by plasma CVD.

得られた金型10を用いて、K-PSFn3ガラス[(株)住田光学ガラス製]を550℃まで加熱した後、約30秒間保持し、所定の肉厚の光学ガラス素子に成形した。この光学ガラス素子の成形を1000回繰り返し行った。いずれの成形時においても、光学ガラス素子の割れや、金型との融着は起こらなかった。   Using the obtained mold 10, K-PSFn3 glass [manufactured by Sumita Optical Glass Co., Ltd.] was heated to 550 ° C., held for about 30 seconds, and formed into an optical glass element having a predetermined thickness. This molding of the optical glass element was repeated 1000 times. In any of the moldings, the optical glass element was not cracked or fused with the mold.

実施例2
炭化珪素(SiC)からなる基材11を所望の光学ガラスのほぼ反転形状に研削加工した。図4(a) に示すように、保持棒21の先端に半球状のパッド部22を有する研磨パッド20を、基材11に対して傾けて設置し、基材11の成形面12にダイヤモンドからなる研磨砥粒(径1μm)をセットした。研磨パッド20の先端のパッド部22を基材11の成形面12に押し当てながら研磨パッド20を回転させ、同時に基材11を中央の縦軸11aを中心として回転させながら、研磨パッド20を基材11の成形面12の半径方向に移動させることにより、成形面12の全面を研磨した。その際に、中心部の曲率に対して20%以下の曲率の周辺部に対して、研磨パッド20の押圧力を、中心部での押圧力より大きくした(中心部での押圧力を0.5 kg/m2とし、周辺部での押圧力を2.0 kg/m2とした)。得られた成形面12の表面粗さは中心部で1nm、周辺部で1.5 nmであった。成形面12にプラズマCVD法により、DLCからなる保護膜13を形成した。
Example 2
The substrate 11 made of silicon carbide (SiC) was ground into a substantially inverted shape of the desired optical glass. As shown in FIG. 4 (a), a polishing pad 20 having a hemispherical pad portion 22 at the front end of the holding rod 21 is inclined with respect to the base material 11, and diamond is applied to the molding surface 12 of the base material 11. Abrasive grains (diameter 1 μm) were set. The polishing pad 20 is rotated while the pad portion 22 at the tip of the polishing pad 20 is pressed against the molding surface 12 of the substrate 11, and at the same time the substrate 11 is rotated about the central longitudinal axis 11a. By moving in the radial direction of the molding surface 12 of the material 11, the entire molding surface 12 was polished. At that time, the pressing force of the polishing pad 20 was set to be larger than the pressing force at the central portion with respect to the peripheral portion having a curvature of 20% or less with respect to the curvature at the central portion (the pressing force at the central portion was 0.5 kg). / m 2 and the pressing force at the periphery was 2.0 kg / m 2 ). The surface roughness of the molding surface 12 obtained was 1 nm at the center and 1.5 nm at the periphery. A protective film 13 made of DLC was formed on the molding surface 12 by plasma CVD.

得られた金型10を用いて、K-PSFn3ガラス[(株)住田光学ガラス製]を550℃まで加熱した後、約30秒間保持し、所定の肉厚の光学ガラス素子に成形した。この光学ガラス素子の成形を1000回繰り返し行った。いずれの成形時においても、光学ガラス素子の割れや、金型との融着は起こらなかった。   Using the obtained mold 10, K-PSFn3 glass [manufactured by Sumita Optical Glass Co., Ltd.] was heated to 550 ° C., held for about 30 seconds, and formed into an optical glass element having a predetermined thickness. This molding of the optical glass element was repeated 1000 times. In any of the moldings, the optical glass element was not cracked or fused with the mold.

実施例3
炭化珪素(SiC)からなる基材11を所望の光学ガラスのほぼ反転形状に研削加工した。図5(a) に示すように、保持棒21の先端に半球状のパッド部22を有する研磨パッド20を、基材11に対して傾けて設置し、基材11の成形面12にダイヤモンドからなる研磨砥粒(径1μm)をセットした。研磨パッド20の先端のパッド部22を基材11の成形面12に押し当てながら研磨パッド20を回転させ、同時に基材11を中央の縦軸11aを中心として回転させながら、研磨パッド20を基材11の成形面12の半径方向に移動させることにより、成形面12の全面を研磨した。得られた成形面12の表面粗さは1nmであった。成形面12にプラズマCVD法により、DLCからなる保護膜13を形成した。
Example 3
The substrate 11 made of silicon carbide (SiC) was ground into a substantially inverted shape of the desired optical glass. As shown in FIG. 5 (a), a polishing pad 20 having a hemispherical pad portion 22 at the tip of the holding rod 21 is inclined with respect to the base material 11, and diamond is formed on the molding surface 12 of the base material 11. Abrasive grains (diameter 1 μm) were set. The polishing pad 20 is rotated while the pad portion 22 at the tip of the polishing pad 20 is pressed against the molding surface 12 of the substrate 11, and at the same time the substrate 11 is rotated about the central longitudinal axis 11a. By moving in the radial direction of the molding surface 12 of the material 11, the entire molding surface 12 was polished. The molding surface 12 thus obtained had a surface roughness of 1 nm. A protective film 13 made of DLC was formed on the molding surface 12 by plasma CVD.

保護膜13の成形面14において、中心部の曲率に対して20%以下の曲率の周辺部に対して、成形面12の研磨に使用した砥粒よりも大きな砥粒(径1.5μm)を基材11の周辺部にセットし、基材11を回転させた状態で、研磨パッド30を回転させながら押圧し、周辺部の範囲内で半径方向に移動させることにより、周辺部に粗し加工を施した。周辺部の表面粗さは1.5 nmであった。   On the molding surface 14 of the protective film 13, an abrasive grain (diameter 1.5 μm) larger than the abrasive grain used for polishing the molding surface 12 is used for the peripheral portion having a curvature of 20% or less with respect to the curvature of the central portion. Set in the peripheral part of the material 11, with the base material 11 rotated, press the polishing pad 30 while rotating it, and move it radially within the range of the peripheral part to roughen the peripheral part. gave. The surface roughness of the peripheral part was 1.5 nm.

得られた金型10を用いて、K-PSFn3ガラス[(株)住田光学ガラス製]を550℃まで加熱した後、約30秒間保持し、所定の肉厚の光学ガラス素子に成形した。この光学ガラス素子の成形を1000回繰り返し行った。いずれの成形時においても、光学ガラス素子の割れや、金型との融着は起こらなかった。   Using the obtained mold 10, K-PSFn3 glass [manufactured by Sumita Optical Glass Co., Ltd.] was heated to 550 ° C., held for about 30 seconds, and formed into an optical glass element having a predetermined thickness. This molding of the optical glass element was repeated 1000 times. In any of the moldings, the optical glass element was not cracked or fused with the mold.

比較例1
保護膜13の成形面14の周辺部に粗し加工を行わない以外は実施例1と同じ条件で光学ガラス成形用金型を製造した。この金型を用いて実施例1と同じ条件で光学ガラス成形を繰り返し行ったところ、100回目に光学ガラス素子の割れが見られた。
Comparative Example 1
An optical glass molding die was manufactured under the same conditions as in Example 1 except that the roughening process was not performed on the periphery of the molding surface 14 of the protective film 13. When this glass mold was used to repeat optical glass molding under the same conditions as in Example 1, the optical glass element was cracked at the 100th time.

本発明の一実施例による光学ガラス成形用金型を概略的に示す断面図である。1 is a cross-sectional view schematically showing an optical glass mold according to an embodiment of the present invention. 表面粗さの算出方法を示す図である。It is a figure which shows the calculation method of surface roughness. 本発明の一実施例による光学ガラス成形用金型の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the optical glass shaping die by one Example of this invention. 本発明の別の実施例による光学ガラス成形用金型の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the optical glass shaping | molding die by another Example of this invention. 本発明の別の実施例による光学ガラス成形用金型の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the optical glass shaping | molding die by another Example of this invention.

符号の説明Explanation of symbols

10・・・光学ガラス成形用金型
11・・・基材
11a・・・縦軸
12・・・成形面
13・・・保護膜
14・・・成形面
20,30・・・研磨パッド
21・・・保持棒
22・・・パッド部
10 ... Mold for optical glass molding
11 ... Base material
11a ・ ・ ・ Vertical axis
12 ... Molded surface
13 ... Protective film
14 ... Molded surface
20, 30 ... Polishing pad
21 ... Holding rod
22 ・ ・ ・ Pad part

Claims (16)

両凸形状の光学ガラスの成形用であり、基材の一面に保護膜を形成してなる成形面を有し、前記成形面の周辺部において前記成形面の曲率が中心部と比べて小さくなる金型であって、前記周辺部の表面粗さが前記中心部の表面粗さより大きいことを特徴とする光学ガラスの成形用金型。 It is for molding biconvex optical glass, has a molding surface formed by forming a protective film on one surface of the substrate, and the curvature of the molding surface is smaller at the periphery of the molding surface than at the center A mold for molding optical glass, wherein the surface roughness of the peripheral portion is larger than the surface roughness of the central portion. 請求項1に記載の光学ガラス成形用金型において、前記光学ガラスが撮像系レンズである場合、前記成形面の曲率が周辺部において中心部における曲率の0.1〜20%になり、それ以外の場合は0.1〜40%になることを特徴とする金型。 The optical glass molding die according to claim 1, wherein when the optical glass is an imaging lens, the curvature of the molding surface is 0.1 to 20% of the curvature at the central portion in the peripheral portion, and in other cases A mold characterized by 0.1 to 40%. 請求項1又は2に記載の光学ガラス成形用金型において、前記周辺部が前記光学ガラスの光学的有効径内であり、前記周辺部の表面粗さは0.1〜20 nmであり、かつ前記中心部の表面粗さの1.1〜20倍であることを特徴とする金型。 3. The optical glass molding die according to claim 1, wherein the peripheral portion is within the optical effective diameter of the optical glass, the surface roughness of the peripheral portion is 0.1 to 20 nm, and the center A mold characterized by being 1.1 to 20 times the surface roughness of the part. 請求項3に記載の光学ガラス成形用金型において、前記中心部から前記周辺部にかけて表面粗さが連続的に変化することを特徴とする金型。 4. The mold for optical glass molding according to claim 3, wherein the surface roughness continuously changes from the central part to the peripheral part. 請求項3に記載の光学ガラス成形用金型において、前記中心部から前記周辺部にかけて表面粗さが急激に変化しており、かつ前記周辺部と前記中心部との表面粗さの比が1.1〜5倍であることを特徴とする金型。 4. The optical glass molding die according to claim 3, wherein the surface roughness is abruptly changed from the central portion to the peripheral portion, and the ratio of the surface roughness between the peripheral portion and the central portion is 1.1. A mold characterized in that it is ˜5 times. 請求項1又は2に記載の光学ガラス成形用金型において、前記周辺部が光学的有効径外であり、前記周辺部の表面粗さは0.1〜400 nmであり、かつ前記中心部の表面粗さの1.1〜400倍であることを特徴とする金型。 The optical glass molding die according to claim 1 or 2, wherein the peripheral portion is outside the optically effective diameter, the peripheral portion has a surface roughness of 0.1 to 400 nm, and the central portion has a surface roughness. A mold characterized by 1.1 to 400 times the length. 請求項1〜6のいずれかに記載の光学ガラス成形用金型において、前記基材は超硬、サーメット及びセラミックスからなる群から選ばれた少なくとも一種からなることを特徴とする金型。 The mold for optical glass molding according to any one of claims 1 to 6, wherein the substrate is made of at least one selected from the group consisting of cemented carbide, cermet and ceramics. 請求項1〜7のいずれかに記載の光学ガラス成形用金型において、前記保護膜は貴金属からなる合金、セラミックス及び硬質炭素膜からなる群から選ばれた少なくとも一種からなることを特徴とする金型。 The optical glass molding die according to any one of claims 1 to 7, wherein the protective film is made of at least one selected from the group consisting of a noble metal alloy, a ceramic, and a hard carbon film. Type. 請求項1〜8のいずれかに記載の光学ガラス成形用金型の製造方法。 The manufacturing method of the optical glass shaping die in any one of Claims 1-8. 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基材の一面の周辺部に粗さ加工を施した後、保護膜を形成することを特徴とする方法。 10. The method for manufacturing an optical glass molding die according to claim 9, wherein a protective film is formed after performing a roughing process on a peripheral portion of one surface of the base material. 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基材の一面に保護膜を形成中に、前記保護膜の周辺部に粗さ加工を施すことを特徴とする方法。 10. The method for producing an optical glass molding die according to claim 9, wherein a roughing process is performed on a peripheral portion of the protective film while the protective film is formed on one surface of the base material. . 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基材の一面に保護膜の形成した後、前記保護膜の周辺部に粗さ加工を施すことを特徴とする方法。 10. The method for producing an optical glass molding die according to claim 9, wherein a protective film is formed on one surface of the substrate, and then a roughing process is performed on a peripheral portion of the protective film. . 請求項10〜12のいずれかに記載の光学ガラス成形用金型の製造方法であって、前記周辺部の表面粗さを研磨パッドにより付与することを特徴とする方法。 13. The method for producing an optical glass molding die according to claim 10, wherein the surface roughness of the peripheral portion is imparted by a polishing pad. 請求項10〜12のいずれかに記載の光学ガラス成形用金型の製造方法であって、前記周辺部の表面粗さを化学的作用により付与することを特徴とする方法。 13. The method for producing an optical glass molding die according to claim 10, wherein the surface roughness of the peripheral portion is imparted by a chemical action. 請求項9に記載の光学ガラス成形用金型の製造方法であって、前記基板の一面を研磨砥粒及び研磨パッドにより研磨し、その際前記中心部と比べて前記周辺部での前記研磨パッドの押圧力を強くすることを特徴とする方法。 10. The method of manufacturing an optical glass molding die according to claim 9, wherein one surface of the substrate is polished with polishing abrasive grains and a polishing pad, and the polishing pad at the peripheral portion is compared with the central portion at that time. A method characterized by increasing the pressing force of the. 請求項1〜8のいずれかの金型により成形されたことを特徴とする光学ガラス素子。 An optical glass element formed by the mold according to claim 1.
JP2005295480A 2005-10-07 2005-10-07 Optical glass molding die and its manufacturing method Withdrawn JP2007099598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295480A JP2007099598A (en) 2005-10-07 2005-10-07 Optical glass molding die and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295480A JP2007099598A (en) 2005-10-07 2005-10-07 Optical glass molding die and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007099598A true JP2007099598A (en) 2007-04-19

Family

ID=38026891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295480A Withdrawn JP2007099598A (en) 2005-10-07 2005-10-07 Optical glass molding die and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007099598A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087837A1 (en) * 2007-01-16 2008-07-24 Konica Minolta Opto, Inc. Mold for glass substrate molding, method for producing glass substrate, method for producing glass substrate for information recording medium, and method for producing information recording medium
US7830617B2 (en) 2005-06-22 2010-11-09 Nanophotonics Ltd. Optical components including lens having at least one aspherical refractive surface
KR101198459B1 (en) 2012-04-30 2012-11-06 경남과학기술대학교 산학협력단 Method for Manufactuaring Silicon Carbide Molding Core Using Aspheric Glass Lens
JPWO2015151690A1 (en) * 2014-04-04 2017-04-13 オリンパス株式会社 Optical element molding die set and optical element manufacturing method
KR20200142101A (en) * 2018-05-11 2020-12-21 엔테그리스, 아이엔씨. Molds comprising ceramic material surfaces and methods of making and using related molds
US20210325646A1 (en) * 2017-02-24 2021-10-21 Fujifilm Corporation Lens, zoom lens, and imaging lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971428A (en) * 1995-09-06 1997-03-18 Olympus Optical Co Ltd Mold for optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971428A (en) * 1995-09-06 1997-03-18 Olympus Optical Co Ltd Mold for optical element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830617B2 (en) 2005-06-22 2010-11-09 Nanophotonics Ltd. Optical components including lens having at least one aspherical refractive surface
WO2008087837A1 (en) * 2007-01-16 2008-07-24 Konica Minolta Opto, Inc. Mold for glass substrate molding, method for producing glass substrate, method for producing glass substrate for information recording medium, and method for producing information recording medium
CN101588996B (en) * 2007-01-16 2012-02-22 柯尼卡美能达精密光学株式会社 Mold for glass substrate molding, method for producing glass substrate, method for producing glass substrate for information recording medium, and method for producing information recording medium
US8245537B2 (en) 2007-01-16 2012-08-21 Konica Minolta Opto, Inc. Mold for glass substrate molding, method for producing glass substrate, method for producing glass substrate for information recording medium, and method for producing information recording medium
KR101198459B1 (en) 2012-04-30 2012-11-06 경남과학기술대학교 산학협력단 Method for Manufactuaring Silicon Carbide Molding Core Using Aspheric Glass Lens
JPWO2015151690A1 (en) * 2014-04-04 2017-04-13 オリンパス株式会社 Optical element molding die set and optical element manufacturing method
US20210325646A1 (en) * 2017-02-24 2021-10-21 Fujifilm Corporation Lens, zoom lens, and imaging lens
US11860346B2 (en) * 2017-02-24 2024-01-02 Fujifilm Corporation Lens, zoom lens, and imaging lens
KR20200142101A (en) * 2018-05-11 2020-12-21 엔테그리스, 아이엔씨. Molds comprising ceramic material surfaces and methods of making and using related molds
KR102411338B1 (en) * 2018-05-11 2022-06-22 엔테그리스, 아이엔씨. Methods of making and using molds comprising ceramic material surfaces and related molds
US11572298B2 (en) 2018-05-11 2023-02-07 Entegris, Inc. Molds that include a ceramic material surface, and related methods for making and using the molds

Similar Documents

Publication Publication Date Title
JP2007099598A (en) Optical glass molding die and its manufacturing method
US20060026996A1 (en) Ceramic mold with carbon nanotube layer
US20060141093A1 (en) Composite mold and method for making the same
JP2007148401A (en) Axial symmetric glass lens
JP2004359481A (en) Method for manufacturing replica pattern for lens molding
TW201130752A (en) Glass preform and method of manufacture thereof
US20060162388A1 (en) Composite mold and method for making the same
JP2001302260A (en) Method for molding optical element
US20060150684A1 (en) Composite mold and method for making the same
US20060201205A1 (en) Mold for molding optical lenses
CN100999375A (en) Mould for moulding glass lens
JP2003073134A (en) Method for forming optical element and mold
JPH11268920A (en) Forming mold for forming optical element and its production
JP5570047B2 (en) Optical glass element molding die and manufacturing method thereof
JP2005343783A (en) Mold
JP2003277078A (en) Die for glass molding and method for manufacturing the sane, method for manufacturing glass optical element, glass optical element and diffraction optical element
US20070116796A1 (en) Mold for molding lenses
JP2006124214A (en) Method of molding optical device and die for molding optical device
JP3109219B2 (en) Glass optical element molding die and method of manufacturing the same
JP2009073693A (en) Optical element-molding die, and method for producing the same
JPH10231129A (en) Mold for press molding and glass molded product by the mold
JPWO2007102519A1 (en) Optical glass mold and optical glass press molding method using the same
JPH09194216A (en) Die for forming optical element
JP2000319027A (en) Optical element forming die and forming method using the same
JP2003048723A (en) Press forming method and press formed equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080501

A621 Written request for application examination

Effective date: 20080731

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100621

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100825