JP2007099565A - Solid propellant composition containing nanosize iron oxide - Google Patents

Solid propellant composition containing nanosize iron oxide Download PDF

Info

Publication number
JP2007099565A
JP2007099565A JP2005291951A JP2005291951A JP2007099565A JP 2007099565 A JP2007099565 A JP 2007099565A JP 2005291951 A JP2005291951 A JP 2005291951A JP 2005291951 A JP2005291951 A JP 2005291951A JP 2007099565 A JP2007099565 A JP 2007099565A
Authority
JP
Japan
Prior art keywords
iron oxide
solid propellant
propellant composition
average particle
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291951A
Other languages
Japanese (ja)
Inventor
Ikuko Fujimura
郁子 藤村
Hidetoshi Kawasaki
秀俊 川崎
Hakobu Umasaki
運 馬崎
Toshiyuki Anami
敏行 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Asahi Kasei Chemicals Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005291951A priority Critical patent/JP2007099565A/en
Publication of JP2007099565A publication Critical patent/JP2007099565A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid propellant composition capable controlling combustion rate in wide range to extend the design range of a rocket motor and to improve the performance and a method of controlling the combustion rate of the solid propellant composition. <P>SOLUTION: Iron oxide having 1-50 nm average particle diameter is blended with a solid propellant composition containing an oxidizing agent consisting essentially of ammonium perchlorate and a binder. As the iron oxide, one or more kinds of FeO, Fe<SB>2</SB>O<SB>3</SB>and Fe<SB>3</SB>O<SB>4</SB>can be used. The iron oxide previously mixed with the binder or a plasticizer is preferably used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ロケット用の推進剤として利用される固体推進薬組成物に関する。   The present invention relates to a solid propellant composition used as a propellant for a rocket.

ロケットモータに用いられる固体推進薬は、酸化剤と燃料兼結合剤からなるコンポジット推進薬と、ニトログリセリンとニトロセルロースを主成分とするダブルベース推進薬とに大別される。現在、これらの固体推進薬の中で過塩素酸アンモニウムを酸化剤とし、アルミニウム粉を金属燃料とし、ポリブタジエンを主成分とする燃料兼結合剤からなるコンポジット推進薬が、その優れた燃焼特性と機械的特性により広く使用されている。   Solid propellants used in rocket motors are roughly classified into composite propellants composed of an oxidizer and a fuel / binder, and double base propellants composed mainly of nitroglycerin and nitrocellulose. Currently, among these solid propellants, composite propellants consisting of a fuel and binder mainly composed of ammonium perchlorate as an oxidizer, aluminum powder as a metal fuel, and polybutadiene as a main component have excellent combustion characteristics and machinery. Widely used due to its mechanical properties.

近年、ロケットモータの設計範囲の拡大と高性能化を目的として、固体推進薬に対して幅広い燃焼速度の調整が求められるようになっている。固体推進薬の燃焼速度を調整する方法の一つとして燃焼触媒を用いる方法がある。酸化鉄は過塩素酸アンモニウムを含む固体推進薬の燃焼速度を高め短時間に大きな推力を得ることができる正燃焼触媒として知られている(例えば特許文献1参照)
一方、固体推進薬の燃焼速度を低下させ長時間の使用を可能とする負燃焼触媒としてはフッ化リチウムのようなリチウム化合物が知られている。(例えば非特許文献1参照)
In recent years, a wide range of combustion speed adjustments have been required for solid propellants for the purpose of expanding the design range and improving the performance of rocket motors. One method for adjusting the combustion rate of the solid propellant is to use a combustion catalyst. Iron oxide is known as a positive combustion catalyst capable of increasing the combustion rate of a solid propellant containing ammonium perchlorate and obtaining a large thrust in a short time (see, for example, Patent Document 1).
On the other hand, lithium compounds such as lithium fluoride are known as negative combustion catalysts that reduce the burning rate of solid propellants and enable long-term use. (For example, see Non-Patent Document 1)

特公平7−25631号公報Japanese Patent Publication No. 7-25631 社団法人 火薬学会編「エネルギー物質ハンドブック」、1999年3月1日、p242“The Energy Material Handbook” edited by the Japan Society of Thermopharmaceuticals, March 1, 1999, p242

前記特許文献1で燃焼触媒として開示されている酸化鉄は固体推進薬の燃焼速度を増大させるものの、添加量に対する燃焼速度の変化量はそれ程大きくないため、目的とする効果を確保するためには添加量が必然的に多くなるが、その一方で、酸化鉄の添加量が増すと推進薬の比推力が低下する。このため、少量の添加で要求される燃焼速度が得られる触媒効果の高い燃焼触媒の開発が要望されていた。
本発明は、ロケットモータの設計範囲の拡大と高性能化を行うための、幅広い燃焼速度の調整が可能な固体推進薬組成物、および固体推進薬組成物の燃焼速度を調整する方法の提供を目的としている。
Although iron oxide disclosed as a combustion catalyst in Patent Document 1 increases the combustion rate of the solid propellant, the amount of change in the combustion rate relative to the addition amount is not so large, so in order to ensure the intended effect The amount added is inevitably increased, but on the other hand, the specific thrust of the propellant decreases as the amount of iron oxide added increases. For this reason, there has been a demand for the development of a combustion catalyst having a high catalytic effect that can achieve the required combustion rate with a small amount of addition.
The present invention provides a solid propellant composition capable of adjusting a wide range of burning rates and a method for adjusting the burning rate of a solid propellant composition in order to expand the design range and performance of a rocket motor. It is aimed.

本発明者らは、前記の問題点を考慮し鋭意研究した結果、特定の酸化鉄を用いることによって、これらの問題点が解決できることの知見を得て本発明を完成するに至った。即ち本発明は、以下の通りである。
(1)過塩素酸アンモニウムを主成分とする酸化剤及びバインダを含む固体推進薬組成物に平均粒径1〜50nmの酸化鉄を配合してなることを特徴とする固体推進薬組成物。
(2)過塩素酸アンモニウムを主成分とする酸化剤及びバインダを含む固体推進薬組成物に平均粒径1〜50nmの酸化鉄を配合することを特徴とする固体推進薬組成物の燃焼速度を調整する方法。
As a result of intensive studies in view of the above problems, the present inventors have obtained the knowledge that these problems can be solved by using specific iron oxide, and have completed the present invention. That is, the present invention is as follows.
(1) A solid propellant composition comprising iron oxide having an average particle size of 1 to 50 nm blended with a solid propellant composition containing an oxidant mainly composed of ammonium perchlorate and a binder.
(2) Combustion rate of a solid propellant composition characterized in that iron oxide having an average particle size of 1 to 50 nm is blended with a solid propellant composition containing an oxidizer mainly composed of ammonium perchlorate and a binder. How to adjust.

本発明の固体推進薬組成物は、幅広い燃焼速度の調整が可能であるため、ロケットモータの設計範囲の拡大と高性能化を達成することができる。   Since the solid propellant composition of the present invention can be adjusted over a wide range of combustion speeds, it is possible to expand the design range of the rocket motor and achieve high performance.

本発明について、以下具体的に説明する。
本発明の固体推進薬組成物は、過塩素酸アンモニウムを主成分とする酸化剤とバインダ(燃料兼結合剤)及び平均粒径が1〜50nmの範囲にあるナノサイズの酸化鉄を含有することを特徴としている。
本発明において使用される過塩素酸アンモニウムの平均粒径は、特に限定されないが、1〜500μmの範囲にあるものが好ましい。平均粒径が1μm未満の場合は推進薬の製造性が悪くなり、500μmを超えた場合は推進薬の燃焼速度が低下する。
The present invention will be specifically described below.
The solid propellant composition of the present invention contains an oxidizing agent mainly composed of ammonium perchlorate, a binder (fuel and binder), and nano-sized iron oxide having an average particle size in the range of 1 to 50 nm. It is characterized by.
The average particle diameter of ammonium perchlorate used in the present invention is not particularly limited, but is preferably in the range of 1 to 500 μm. When the average particle size is less than 1 μm, the productivity of the propellant is deteriorated, and when it exceeds 500 μm, the combustion rate of the propellant is decreased.

本発明において使用される燃料兼結合剤としては、従来公知の全てのバインダが使用可能である。例えば、末端水酸基ポリブタジエン(HTPB)、末端カルボキシル基ポリブタジエン(CTPB)、末端水酸基ポリエーテル(HTPE)、グリシジルアジドポリマー(GAP)や、3,3−ビス(アジドメチル)オキセタン(BAMO)と3−ニトラトメチル−3−メチルオキセタン(NMMO)の共重合体のようなアジド基及びニトラト基含有ポリマー等を主剤とするバインダである。   As the fuel and binder used in the present invention, all conventionally known binders can be used. For example, terminal hydroxyl group polybutadiene (HTPB), terminal carboxyl group polybutadiene (CTPB), terminal hydroxyl group polyether (HTPE), glycidyl azide polymer (GAP), 3,3-bis (azidomethyl) oxetane (BAMO) and 3-nitratomethyl- It is a binder mainly composed of an azide group- and nitrato group-containing polymer such as a copolymer of 3-methyloxetane (NMMO).

前記バインダには、硬化剤としてイソシアネート化合物、例えばイソホロンジイソシアネート、トリレジンイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメソシアネート、トリフェニルメタントリイソシアネート等が加えられる。また、架橋剤として多官能の水酸基をもつ化合物、例えばトリトリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ジグリセリン等や、多官能のイソシアネートをもつ化合物等を用いることができる。   An isocyanate compound such as isophorone diisocyanate, triresin isocyanate, hexamethylene diisocyanate, diphenyl mesocyanate, triphenylmethane triisocyanate or the like is added to the binder as a curing agent. In addition, a compound having a polyfunctional hydroxyl group such as tritrimethylolethane, trimethylolpropane, glycerin, hexanetriol, diglycerin, or the like, or a compound having polyfunctional isocyanate can be used as a crosslinking agent.

更に、硬化触媒として、ブチルチントリクロライド、ジブチルチンジアセテート、ジブチルチンジラウレート等の有機錫化合物や、フェリックアセチルアセトン、フェリックジフェニルアセチルアセトン等の有機鉄化合物、トリスパラ−エトキシフェニルビスマス、トリフェニルビスマス、無水マレイン酸等の触媒が使用できる。   Further, as a curing catalyst, organic tin compounds such as butyltin trichloride, dibutyltin diacetate, dibutyltin dilaurate, organic iron compounds such as ferric acetylacetone and ferric diphenylacetylacetone, trispara-ethoxyphenylbismuth, triphenylbismuth, maleic anhydride Etc. can be used.

また、必要に応じてジオクチルアジペート(DOA)、ジブチルジグリコールアジペート(BXA)、ジブチルフタレート(DBP)等の不活性可塑剤や、トリメチロールエタントリナイトレート(TMETN)、ブタントリオールトリナイトレート(BTTN)、ブチルニトラトメチルニトラミン(BuNENA)等のようなニトラト基、ニトラミン基を持った化合物や、GAP可塑剤のようなアジド基を持った化合物をエネルギー可塑剤として添加することができる。   If necessary, inert plasticizers such as dioctyl adipate (DOA), dibutyl diglycol adipate (BXA), dibutyl phthalate (DBP), trimethylol ethane trinitrate (TMETN), butane triol trinitrate (BTTN) ), A compound having a nitrato group or a nitramine group such as butylnitratomethylnitramine (BuNENA), or a compound having an azide group such as a GAP plasticizer can be added as an energy plasticizer.

本発明において使用される酸化鉄としては、例えば、FeO、Fe、Feを挙げることができ、その1種類または2種類以上を使用することができる。酸化鉄の粒子形状については特に限定されないが、配合する酸化鉄粒子の平均粒径は1〜50nmであることが必要である。また、配合後に固体推進薬組成物中に分散して存在する酸化鉄粒子もこの平均粒径を維持することが好ましい。
配合する酸化鉄粒子の平均粒径が1nm未満の場合は固体推進薬の製造性が悪くなり、50nmを超えた場合は固体推進薬の燃焼速度増大率が低下する傾向がある。また、このナノサイズの酸化鉄は、バインダもしくは可塑剤と予め混合したものを用いる方が好ましい。これにより、酸化鉄の粒子が凝集することによって起こる固体推進薬の燃焼速度増大率の低下を防止することができる。ナノサイズの酸化鉄の透過型電子顕微鏡写真を図1に示す。
Examples of the iron oxide used in the present invention include FeO, Fe 2 O 3 , and Fe 3 O 4, and one or more of them can be used. Although it does not specifically limit about the particle shape of an iron oxide, The average particle diameter of the iron oxide particle to mix | blend needs to be 1-50 nm. Moreover, it is preferable that the iron oxide particles dispersed and present in the solid propellant composition after blending also maintain this average particle size.
When the average particle diameter of the iron oxide particles to be blended is less than 1 nm, the productivity of the solid propellant is deteriorated, and when it exceeds 50 nm, the burning rate increase rate of the solid propellant tends to decrease. Further, it is preferable to use the nano-sized iron oxide previously mixed with a binder or a plasticizer. Thereby, the fall of the burning rate increase rate of a solid propellant which arises when the particle | grains of an iron oxide aggregate can be prevented. A transmission electron micrograph of nanosized iron oxide is shown in FIG.

本発明の固体推進薬組成物には用途に応じて、過塩素酸アンモニウム以外の酸化剤、助燃剤としての金属粉末及びその他の添加剤を加えることができる。
過塩素酸アンモニウム以外の酸化剤とは、例えば、硝酸アンモニウム、硝酸カリウム等の硝酸塩や、シクロテトラメチレンテトラニトラミン(HMX)、シクロトリメチレントリニトラミン(RDX)、ヘキサニトロヘキサアザイソウルチタン(HNIW)等のニトラミン化合物や、三酸化モリブデン、三酸化ビスマス等の金属酸化物があげられる。これらの酸化剤は、固体推進薬の安全性向上や環境に対する影響の低減及び高エネルギー化を達成するための手段として過塩素酸アンモニウムと併用される。
The solid propellant composition of the present invention may contain an oxidizing agent other than ammonium perchlorate, a metal powder as a combustion aid, and other additives depending on the application.
Examples of the oxidizing agent other than ammonium perchlorate include nitrates such as ammonium nitrate and potassium nitrate, cyclotetramethylenetetranitramine (HMX), cyclotrimethylenetrinitramine (RDX), and hexanitrohexazayl soul titanium (HNIW). ) And other metal oxides such as molybdenum trioxide and bismuth trioxide. These oxidizing agents are used in combination with ammonium perchlorate as a means for improving the safety of the solid propellant, reducing the influence on the environment, and achieving high energy.

助燃剤としての金属粉末としては、例えば、アルミニウム粉末、マグネシウム粉末等である。金属粉末の平均粒径は通常100μm以下であり、好ましくは0.1〜50μmである。平均粒径が100μmを超える場合は、金属粉末が完全燃焼しにくくなるため、固体推進薬の燃焼効率が低下する傾向にある。   Examples of the metal powder as the auxiliary combustion agent include aluminum powder and magnesium powder. The average particle diameter of the metal powder is usually 100 μm or less, preferably 0.1 to 50 μm. When the average particle size exceeds 100 μm, the metal powder is hardly combusted, and the combustion efficiency of the solid propellant tends to be reduced.

その他の添加剤としては、アルミナのような金属酸化物や炭化ジルコニウムのような金属炭化物を挙げることができる。これらは固体推進薬の振動燃焼抑制剤として使用することができる。   Examples of other additives include metal oxides such as alumina and metal carbides such as zirconium carbide. These can be used as vibration combustion inhibitors for solid propellants.

前記各成分の固体推進薬組成物中の配合量は、通常、酸化剤が50〜90重量%、燃料兼結合剤が10〜30重量%、ナノサイズの酸化鉄が0.1〜5重量%、助燃剤が0〜30重量%、その他の添加剤が0〜5重量%である。   The blending amount of each component in the solid propellant composition is usually 50 to 90% by weight for the oxidizing agent, 10 to 30% by weight for the fuel and binder, and 0.1 to 5% by weight for the nano-sized iron oxide. The auxiliary combustor is 0 to 30% by weight, and other additives are 0 to 5% by weight.

本発明の固体推進薬組成物の製造方法は、ナノサイズの酸化鉄を用いること以外は、通常の固体推進薬の製造方法がそのまま適用できる。例えば、全ての原材料を所定の温度で混和・脱泡し、その後、このスラリー薬を所定の型に減圧注型して、所定の温度と時間をかけて硬化させる方法である。尚、ナノサイズの酸化鉄については、バインダもしくは可塑剤に予め添加してペースト状にしたものを用いてもよい。   As a method for producing the solid propellant composition of the present invention, a normal method for producing a solid propellant can be applied as it is, except that nano-sized iron oxide is used. For example, all the raw materials are mixed and degassed at a predetermined temperature, and then the slurry is poured into a predetermined mold under reduced pressure and cured over a predetermined temperature and time. In addition, about nanosized iron oxide, you may use what was previously added to the binder or the plasticizer, and was made into the paste form.

本発明を実施例に基づいて説明する。
〔実施例1〕
末端水酸基ポリブタジエン(HTPB)12.5重量部にジオクチルアジペート(DOA)2.5重量部を加え混合した。この中に、平均粒径5nmの酸化鉄(Fe)0.5重量部を仕込み30分間混合した。次に、この混合物にイソホロンジイソシアネート(IPDI)1.0重量部と過塩素酸アンモニウム(AP)84.0重量部を加えて50℃で30分間混和・脱泡を行った。その後、このスラリー薬を所定の型に減圧注型して、60℃の条件下で10日間反応させることにより固体推進薬を得た。尚、ここで使用した平均粒径5nmの酸化鉄は、X線小角散乱装置により平均粒径の測定を行った。また、今回、平均粒径は最大分布径として求めた。まず、前処理として酸化鉄をエタノール中で超音波分散処理後に内径0.7mmの石英キャピラリーに封入した。測定されたデータは変換ソフトを使って通常の2θ−I(1次元散乱パターン)表示に変換した。解析は、粒子を球形と仮定し、また分布がΓ分布に従うとして、実験データとのフィッティングを行った。測定結果を図1に、解析結果を図2、3に示す。X線小角散乱による最大分布径は5.4nmであった。
The present invention will be described based on examples.
[Example 1]
2.5 parts by weight of dioctyl adipate (DOA) was added to 12.5 parts by weight of terminal hydroxyl group polybutadiene (HTPB) and mixed. In this, 0.5 weight part of iron oxide (Fe 2 O 3 ) having an average particle diameter of 5 nm was charged and mixed for 30 minutes. Next, 1.0 part by weight of isophorone diisocyanate (IPDI) and 84.0 parts by weight of ammonium perchlorate (AP) were added to this mixture and mixed and degassed at 50 ° C. for 30 minutes. Thereafter, the slurry was poured into a predetermined mold under reduced pressure and reacted at 60 ° C. for 10 days to obtain a solid propellant. In addition, the average particle diameter of the iron oxide having an average particle diameter of 5 nm used here was measured by an X-ray small angle scattering apparatus. In addition, this time, the average particle diameter was determined as the maximum distribution diameter. First, as a pretreatment, iron oxide was encapsulated in a quartz capillary having an inner diameter of 0.7 mm after ultrasonic dispersion treatment in ethanol. The measured data was converted into a normal 2θ-I (one-dimensional scattering pattern) display using conversion software. In the analysis, it was assumed that the particles were spherical, and fitting with experimental data was performed assuming that the distribution follows the Γ distribution. The measurement results are shown in FIG. 1, and the analysis results are shown in FIGS. The maximum distribution diameter by X-ray small angle scattering was 5.4 nm.

硬化した固体推進薬の燃焼速度は以下の方法により測定を行った。
固体推進薬から外径7mm、長さ70mmの円柱状の試料を切り出し、円柱の側面を1mm厚の樹脂層で被覆した。この試料の上部から約10mmのところに点火用のニクロム線を通し、20mmと60mmの箇所に燃焼速度測定用のヒューズ線を通した。このような試料はストランド試料と呼ばれる。ストランド試料を20℃に調温された圧力容器内に挿入し、窒素ガスで加圧した後に着火燃焼させて、2本のヒューズ線が切断した時間差とヒューズ線間の距離から固体推進薬の燃焼速度を求めた。測定結果を表2に示す。
また、本組成の固体推進薬の比推力は通常の理論性能計算により求めた。計算結果を表2に示す。
The burning rate of the cured solid propellant was measured by the following method.
A cylindrical sample having an outer diameter of 7 mm and a length of 70 mm was cut out from the solid propellant, and the side surface of the cylinder was covered with a 1 mm thick resin layer. A nichrome wire for ignition was passed through about 10 mm from the top of the sample, and a fuse wire for burning speed measurement was passed through the 20 mm and 60 mm locations. Such a sample is called a strand sample. Insert the strand sample into a pressure vessel adjusted to 20 ° C, pressurize it with nitrogen gas, ignite and burn it, and burn the solid propellant from the time difference between the two fuse wires and the distance between the fuse wires The speed was determined. The measurement results are shown in Table 2.
Further, the specific thrust of the solid propellant having this composition was obtained by ordinary theoretical performance calculation. The calculation results are shown in Table 2.

〔実施例2〜4〕
平均粒径5nmの酸化鉄の配合量を表1のように変えた以外は、実施例1と同様の操作を行って固体推進薬の製造を行い、その燃焼速度と比推力を求めた。結果を表2に示す。
[Examples 2 to 4]
Except that the blending amount of iron oxide having an average particle size of 5 nm was changed as shown in Table 1, the same procedure as in Example 1 was performed to produce a solid propellant, and the combustion rate and specific thrust were obtained. The results are shown in Table 2.

〔比較例1〕
平均粒径5nmの酸化鉄を配合しないこと以外は、実施例1と同様の操作を行って固体推進薬の製造を行い、その燃焼速度と比推力を求めた。結果を表2に示す。
[Comparative Example 1]
A solid propellant was produced in the same manner as in Example 1 except that iron oxide having an average particle size of 5 nm was not blended, and the combustion rate and specific thrust were obtained. The results are shown in Table 2.

〔比較例2〜5〕
平均粒径5nmの酸化鉄の代わりに平均粒径0.4μmの酸化鉄(Fe)を用いること以外は、表1の配合組成で実施例1と同様の操作を行って固体推進薬の製造を行い、その燃焼速度と比推力を求めた。結果を表2に示す。尚、ここで使用した平均粒径0.4μmの酸化鉄は、動的光散乱装置により平均粒径の測定を行った。また、今回、平均粒径は最大分布径として求めた。まず、前処理として酸化鉄を純水中で超音波分散処理した。動的光散乱測定結果を図4に示す。動的光散乱による最大分布径は0.36μm、メディアン径は0.43μmであった。
[Comparative Examples 2 to 5]
A solid propellant was obtained by performing the same operation as in Example 1 with the composition shown in Table 1, except that iron oxide (Fe 2 O 3 ) having an average particle diameter of 0.4 μm was used instead of iron oxide having an average particle diameter of 5 nm. The combustion rate and specific thrust were obtained. The results are shown in Table 2. In addition, the average particle diameter of the iron oxide having an average particle diameter of 0.4 μm used here was measured by a dynamic light scattering apparatus. In addition, this time, the average particle diameter was determined as the maximum distribution diameter. First, as a pretreatment, iron oxide was ultrasonically dispersed in pure water. The dynamic light scattering measurement results are shown in FIG. The maximum distribution diameter by dynamic light scattering was 0.36 μm, and the median diameter was 0.43 μm.

表2に示されている実施例1〜4と比較例1〜5を比較すると、本発明の固体推進薬が高い燃焼速度を有しており、幅広い燃焼速度の調整が可能であることが良く分かる。   Comparing Examples 1 to 4 and Comparative Examples 1 to 5 shown in Table 2, the solid propellant of the present invention has a high burning rate, and it is preferable that a wide range of burning rates can be adjusted. I understand.

本発明の固体推進薬組成物は、ロケットモータの分野で幅広い燃焼速度の調整が可能な推進剤として好適に用いられる。   The solid propellant composition of the present invention is suitably used as a propellant capable of adjusting a wide range of combustion rates in the field of rocket motors.

ナノサイズの酸化鉄の透過型電子顕微鏡写真を示す図である。It is a figure which shows the transmission electron micrograph of nanosize iron oxide. 平均粒径5nmの酸化鉄のX線小角散乱測定結果(2θ−I表示)を示す図である。It is a figure which shows the X-ray small angle scattering measurement result (2 (theta) -I display) of iron oxide with an average particle diameter of 5 nm. 平均粒径5nmの酸化鉄の粒径分布解析結果(フィッティング)を示す図である。It is a figure which shows the particle size distribution analysis result (fitting) of iron oxide with an average particle diameter of 5 nm. 平均粒径5nmの酸化鉄の粒径分布解析結果(得られた分布)を示す図である。It is a figure which shows the particle size distribution analysis result (obtained distribution) of the iron oxide with an average particle diameter of 5 nm. 平均粒径0.4μmの酸化鉄の動的光散乱測定結果を示す図である。It is a figure which shows the dynamic light-scattering measurement result of iron oxide with an average particle diameter of 0.4 micrometer.

Claims (2)

過塩素酸アンモニウムを主成分とする酸化剤及びバインダを含む固体推進薬組成物に平均粒径1〜50nmの酸化鉄を配合してなることを特徴とする固体推進薬組成物。   A solid propellant composition comprising iron oxide having an average particle size of 1 to 50 nm mixed with a solid propellant composition containing an oxidant mainly composed of ammonium perchlorate and a binder. 過塩素酸アンモニウムを主成分とする酸化剤及びバインダを含む固体推進薬組成物に平均粒径1〜50nmの酸化鉄を配合することを特徴とする固体推進薬組成物の燃焼速度を調整する方法。   A method for adjusting the burning rate of a solid propellant composition, comprising mixing a solid propellant composition containing ammonium perchlorate as a main component and an iron oxide having an average particle size of 1 to 50 nm in a solid propellant composition containing a binder. .
JP2005291951A 2005-10-05 2005-10-05 Solid propellant composition containing nanosize iron oxide Pending JP2007099565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291951A JP2007099565A (en) 2005-10-05 2005-10-05 Solid propellant composition containing nanosize iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291951A JP2007099565A (en) 2005-10-05 2005-10-05 Solid propellant composition containing nanosize iron oxide

Publications (1)

Publication Number Publication Date
JP2007099565A true JP2007099565A (en) 2007-04-19

Family

ID=38026858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291951A Pending JP2007099565A (en) 2005-10-05 2005-10-05 Solid propellant composition containing nanosize iron oxide

Country Status (1)

Country Link
JP (1) JP2007099565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633762B1 (en) * 2023-05-08 2024-02-02 국방과학연구소 Insensitive smokeless solid propellant composition comprising N-Guanylurea dinitramide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633762B1 (en) * 2023-05-08 2024-02-02 국방과학연구소 Insensitive smokeless solid propellant composition comprising N-Guanylurea dinitramide

Similar Documents

Publication Publication Date Title
JP3370118B2 (en) Stable solid rocket propellant composition
JP5041467B2 (en) Composite propellant
CN111925263B (en) High-combustion-speed azide micro-smoke propellant and preparation process thereof
KR101811956B1 (en) Solid propellants for propulsion system including a yellow iron oxide
JP2000154084A (en) Hexanitrohexazaisourotitanium composition and high performance explosive composition obtained by blending same
JP2007099565A (en) Solid propellant composition containing nanosize iron oxide
US4000025A (en) Incorporating ballistic modifiers in slurry cast double base containing compositions
KR102021126B1 (en) High pressure exponent solid composite propellant
CN115894139A (en) High-solid-content high-combustion-rate butylated hydroxytoluene composite solid propellant and preparation method thereof
JP2562501B2 (en) Rocket solid propellant
JP2981592B2 (en) Azide and nitrato group-containing solid propellants
KR20120137643A (en) Propellants composition
JPH05124886A (en) Ammonium perchlorate composite propellant
JP2981587B2 (en) Azide and nitrato group-containing solid propellants
JP3090820B2 (en) Smokeless composite propellant
US20230035372A1 (en) Tri-regime composite solid propellant
JPH07133180A (en) Gas generating agent composition
JP2007137707A (en) Combustion stabilized propellant
JP2006044975A (en) Solid propellant
JP3605879B2 (en) Gas generating agent
KR980009430A (en) Propellants using a polyethylene glycol-based binder and a nitramine-based oxidizing agent and a method for producing the same
JPH1192263A (en) Unsensitive solid propellant
JP4412625B2 (en) High thrust solid propellant
JPH01282181A (en) Composite propellant
JPH05221769A (en) High energy binder base composite propellant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309