JP2007098203A - Adsorbent made of activated carbon and its production method, and method for adsorbing phosphoric acid ion - Google Patents

Adsorbent made of activated carbon and its production method, and method for adsorbing phosphoric acid ion Download PDF

Info

Publication number
JP2007098203A
JP2007098203A JP2005287962A JP2005287962A JP2007098203A JP 2007098203 A JP2007098203 A JP 2007098203A JP 2005287962 A JP2005287962 A JP 2005287962A JP 2005287962 A JP2005287962 A JP 2005287962A JP 2007098203 A JP2007098203 A JP 2007098203A
Authority
JP
Japan
Prior art keywords
activated carbon
adsorbent
waste
calcium hydroxide
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005287962A
Other languages
Japanese (ja)
Other versions
JP4292243B2 (en
Inventor
Yukio Toda
幸生 遠田
Shota Takemura
昌太 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP2005287962A priority Critical patent/JP4292243B2/en
Publication of JP2007098203A publication Critical patent/JP2007098203A/en
Application granted granted Critical
Publication of JP4292243B2 publication Critical patent/JP4292243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reuse a waste phenolic resin to be an industrial waste material aiming at development of a novel adsorbent that a phenolic resin is carbonized and activated by focusing attention on the formability of the adsorbent by carbonizing and activating the phenolic resin. <P>SOLUTION: The adsorbent made of an activated carbon making the waste phenolic resin as a raw material comprises the activated carbon having a BET specific surface area of 460 m<SP>2</SP>/g or larger, and the yield of the activated carbon of 26 wt.% or higher. A process for producing the adsorbent made of the activated carbon comprises the steps of making the waste phenolic resin as the raw material, carbonizing it at 600 to 800°C and then activating this carbonized material at 1,000°C or higher. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はフェノール樹脂を炭化及び賦活処理することによって得られる活性炭からなる吸着材及びその製造方法並びにリン酸イオン吸着方法に関するものである。   The present invention relates to an adsorbent made of activated carbon obtained by carbonizing and activating a phenol resin, a method for producing the adsorbent, and a phosphate ion adsorbing method.

平成12年度秋田県産業廃棄物排出実態調査によると、約7万トンのプラスチックが産業廃棄物として排出され、その約70%の5万トンが最終処分されている。秋田県の場合、廃プラスチックの最終処分場への持ち込み費用は約3万円となっており、それらの処理費用が企業にとって大きなコスト負担となっている。
通常廃プラスチックの有効利用としては、マテリアルリサイクル、ケミカルリサイクル、サーマルリサイクルの3つに大別される。しかしながら、リサイクル方法については処理設備などの問題を考慮すると、その地域に最適なリサイクル方法があると思われる。
According to the 2000 Akita Prefecture Industrial Waste Discharge Survey, about 70,000 tons of plastic were discharged as industrial waste, of which about 50,000 tons, or 70%, were finally disposed of. In the case of Akita Prefecture, the cost of bringing waste plastic to the final disposal site is about 30,000 yen, which is a large cost burden for companies.
Usually, the effective use of waste plastics is broadly divided into three categories: material recycling, chemical recycling, and thermal recycling. However, in consideration of problems such as processing facilities, there seems to be an optimal recycling method for the region.

しかし、従来は、特に廃フェノール樹脂を利用した活性炭からなる効率的な吸着材の開発はなかった。活性炭を製造する場合の賦活の原理を説明した資料を参考までに挙げる(非特許文献1参照)。
第1節「賦活の原理」、基礎編第2章「活性炭の製造」、テクノシステム(株)発行(平成12年7月25日)
However, conventionally, there has been no development of an efficient adsorbent made of activated carbon using waste phenol resin. The document explaining the principle of activation in the case of producing activated carbon is cited for reference (see Non-Patent Document 1).
Section 1 “Principle of Activation”, Basic Chapter 2 “Manufacture of Activated Carbon”, Techno System Co., Ltd. (July 25, 2000)

本発明は、産業廃棄物の廃フェノール樹脂を有効に再利用するため、フェノール樹脂を炭化及び賦活処理して、BET比表面積を増加させ、かつ活性炭収率を向上させる活性炭からなる吸着材を得ることを課題とする。   The present invention obtains an adsorbent composed of activated carbon that increases the BET specific surface area and improves the activated carbon yield by carbonizing and activating the phenol resin in order to effectively reuse the waste phenol resin of industrial waste. This is the issue.

本発明は、フェノール樹脂を原料とし、炭化及び賦活処理を工夫することにより、BET比表面積を増加させ、活性炭収率を向上させることができるとの知見を得、さらに、フェノール樹脂に水酸化カルシウムを添加し、炭化及び賦活処理すると、リン酸イオンを選択的かつ効率的に吸着可能であるという知見を得た。   The present invention uses phenol resin as a raw material, and by devising carbonization and activation treatment, it has been found that the BET specific surface area can be increased and the activated carbon yield can be improved. As a result, it was found that phosphate ions can be selectively and efficiently adsorbed by carbonization and activation treatment.

本発明は、この知見に基づき、
その1)として、廃フェノール樹脂を原料とする活性炭からなる吸着材であって、BET比表面積460m/g以上、活性炭収率26wt%以上であることを特徴とする活性炭からなる吸着材を提供する。
その2)として、水酸化カルシウムを添加した廃フェノール樹脂を原料とする1)記載の活性炭からなる吸着材を提供する。
The present invention is based on this finding,
As part 1), an adsorbent made of activated carbon using waste phenolic resin as a raw material and having an BET specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more is provided. To do.
As part 2), an adsorbent made of activated carbon as described in 1) using a waste phenol resin added with calcium hydroxide as a raw material is provided.

その3)として、廃フェノール樹脂を原料とし、これを600〜800°C炭化処理し、次にこの炭化した材料を1000°C以上で賦活処理する活性炭からなる吸着材の製造方法を提供する。
その4)として、BET比表面積460m/g以上、活性炭収率26wt%以上の活性炭を製造する3)記載の活性炭からなる吸着材の製造方法を提供する。
その5)として、窒素ガスを使用して炭化処理を行い、次に賦活温度に達するまでを雰囲気ガスとして窒素ガスを使用し、賦活温度に達した後は炭酸ガスを使用して賦活処理を行う3)又は4)記載の吸着材の製造方法を提供する。
その6)として、廃フェノール樹脂に水酸化カルシウムを添加して炭化処理を行う3)〜5)のいずれかに記載の活性炭からなる吸着材の製造方法を提供する。
その7)として、添加する水酸化カルシウムを1〜10wt%添加する6)記載の吸着材の製造方法を提供する。
As part 3), there is provided a method for producing an adsorbent comprising activated carbon in which waste phenol resin is used as a raw material, carbonized at 600 to 800 ° C., and then the carbonized material is activated at 1000 ° C. or higher.
As 4), there is provided an adsorbent production method comprising activated carbon according to 3), wherein an activated carbon having a BET specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more is provided.
As part 5), carbonization is performed using nitrogen gas, nitrogen gas is used as an atmosphere gas until the activation temperature is reached, and activation treatment is performed using carbon dioxide gas after reaching the activation temperature. A method for producing the adsorbent according to 3) or 4) is provided.
As 6), the method for producing an adsorbent comprising activated carbon according to any one of 3) to 5) is provided, in which calcium hydroxide is added to waste phenol resin and carbonized.
As 7), the method for producing an adsorbent according to 6), wherein 1 to 10 wt% of calcium hydroxide is added is provided.

その8)として、水酸化カルシウムを添加した廃フェノール樹脂を原料とする活性炭からなる吸着材を用いてリン酸イオンを吸着することを特徴とするリン酸イオン吸着方法を提供する。
その9)として、水酸化カルシウムを添加した廃フェノール樹脂を原料とし、これを炭化及び賦活処理によって、BET比表面積460m/g以上、活性炭収率26wt%以上の活性炭からなる吸着材を用いてリン酸イオンを吸着することを特徴とするリン酸イオン吸着方法を提供する。
As part 8), there is provided a phosphate ion adsorption method characterized by adsorbing phosphate ions using an adsorbent made of activated carbon made of waste phenol resin added with calcium hydroxide as a raw material.
As part 9), an adsorbent made of activated carbon having a BET specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more is obtained by using a waste phenol resin added with calcium hydroxide as a raw material and carbonizing and activating it. A phosphate ion adsorption method characterized by adsorbing phosphate ions is provided.

本発明は、産業廃棄物である廃フェノールを上記の条件下で、炭化及び賦活処理を行うことで、市販活性炭レベル以上の吸着性能を有する吸着材として再利用することができるという著しい効果がある。
また、本発明における吸着材の性能は、他の共存イオンが存在している溶液中において、リン酸イオンのみを選択的にかつ迅速に吸着可能であり、リン酸イオンが原因となる水質汚染に対して水質浄化が容易にできるという優れた効果を有する。さらに、使用済みの吸着材はリン酸肥料として農地に還元が可能であるという効果もある。
INDUSTRIAL APPLICABILITY The present invention has a remarkable effect that waste phenol, which is an industrial waste, can be reused as an adsorbent having an adsorption performance equal to or higher than that of commercially available activated carbon by performing carbonization and activation treatment under the above conditions. .
In addition, the performance of the adsorbent in the present invention is such that only phosphate ions can be selectively and rapidly adsorbed in a solution in which other coexisting ions exist, and water pollution caused by phosphate ions can be prevented. On the other hand, it has an excellent effect that water purification can be easily performed. Furthermore, the used adsorbent can be reduced to farmland as phosphate fertilizer.

本発明のフェノール樹脂の炭化及び賦活処理による吸着材及びその吸着材の特性評価を行うために種々の解析を行った。その詳細を以下に述べる。なお、当該吸着材の製造に際し、試料の大きさ及び昇温時間等は任意に設定できるものであり、下記に述べる数値条件に限定されるものではない。   In order to evaluate the characteristics of the adsorbent by carbonization and activation treatment of the phenol resin of the present invention and the adsorbent, various analyzes were performed. Details are described below. In the production of the adsorbent, the size of the sample, the temperature rising time, etc. can be arbitrarily set, and are not limited to the numerical conditions described below.

(廃フェノール樹脂(ノボラック樹脂)の利用)
企業から廃棄物として排出される、一般にノボラックと呼ばれるフェノール樹脂を使用した。その廃フェノール樹脂を予め13.2mm以下に粉砕したものを用いた。表1に工業分析値と発熱量測定結果を示す。
発熱量測定は、発熱量測定装置を使用した(島津社製 CA-4PJ)。表1より、廃フェノール樹脂の灰分がゼロで、揮発分、発熱量ともに高い値となっており、燃料として石炭の褐炭クラスに相当すると考えられる。
表2に、元素分析値を示す。元素分析はCHN元素分析装置を使用した(パーキンエルマー社製 2400使用)。元素としては、炭素が大部分しめており、その他の成分は主に酸素であると思われる。
(Use of waste phenolic resin (novolak resin))
A phenolic resin, generally called novolak, discharged from the company as waste was used. The waste phenolic resin previously pulverized to 13.2 mm or less was used. Table 1 shows industrial analysis values and calorific value measurement results.
A calorific value measuring device was used for calorific value measurement (CA-4PJ, manufactured by Shimadzu Corporation). From Table 1, the ash content of the waste phenol resin is zero, and both the volatile content and the calorific value are high, which is considered to correspond to the lignite class of coal as fuel.
Table 2 shows elemental analysis values. Elemental analysis used a CHN elemental analyzer (using Perkin Elmer 2400). As an element, carbon is mostly used, and the other components are mainly oxygen.

Figure 2007098203
Figure 2007098203

Figure 2007098203
Figure 2007098203

(熱分解基礎特性)
廃フェノール樹脂の炭化基礎特性を把握するため、熱天秤により分析した(RIGAKU社製 THERMOPLUS TG8120を使用)。熱天秤は、窒素ガスを流し、昇温速度10°C/minで熱分解した場合の重量減少率ならびにその速度を測定した。
(Basic characteristics of pyrolysis)
In order to grasp the basic characteristics of carbonization of waste phenol resin, it was analyzed with a thermobalance (using THERMOPLUS TG8120 manufactured by RIGAKU). The thermobalance measured the rate of weight loss and the rate when pyrolysis was performed at a rate of temperature increase of 10 ° C./min by flowing nitrogen gas.

(炭化・賦活挙動)
炭化・賦活実験は内径70mm、加熱長350mmの管状炉を使用し(田中テック社製MPH-6VGSを使用)、窒素ガス1L/min、昇温速度3.6°C/minで加熱し、所定温度まで到達後、所定時間保持し、その後自然冷却とした。また、賦活処理は賦活温度まで窒素ガスを1L/minで流し、賦活温度到達後、流量1L/minの炭酸ガスに切り換えた。
(Carbonization / activation behavior)
The carbonization / activation experiment uses a tubular furnace having an inner diameter of 70 mm and a heating length of 350 mm (using MPH-6VGS manufactured by Tanaka Tec Co., Ltd.), heated at a nitrogen gas of 1 L / min, and a heating rate of 3.6 ° C./min. After reaching the temperature, it was held for a predetermined time and then cooled naturally. In the activation treatment, nitrogen gas was flowed at 1 L / min to the activation temperature, and after reaching the activation temperature, the carbon dioxide gas was switched to a flow rate of 1 L / min.

(BET比表面積に及ぼす炭化及び賦活条件の影響)
炭化若しくは賦活後の炭化物のBET比表面積及び細孔分布はガス吸着量測定装置により測定した(Quantachrome社製 AUTOSORB-1)。吸着には、窒素ガスを使用し、吸着温度は77Kとした。
(Influence of carbonization and activation conditions on BET specific surface area)
The BET specific surface area and pore distribution of the carbonized or activated carbide were measured with a gas adsorption amount measuring device (AUTOSORB-1 manufactured by Quantachrome). Nitrogen gas was used for adsorption, and the adsorption temperature was 77K.

(賦活に及ぼす水酸化カルシウムの影響)
(水酸化カルシウム添加した場合の吸着材の吸着性能)
廃フェノール樹脂に水酸化カルシウムを5wt%添加し、800°C、60minの条件で炭化後、1000°Cで賦活した。その作製した試料0.5gを、リン酸イオンを含む溶液500mlに添加することにより、吸着材の吸着性能を解析した。
(Influence of calcium hydroxide on activation)
(Adsorption performance of adsorbent when calcium hydroxide is added)
5 wt% of calcium hydroxide was added to the waste phenol resin, carbonized under conditions of 800 ° C and 60 min, and then activated at 1000 ° C. The adsorption performance of the adsorbent was analyzed by adding 0.5 g of the prepared sample to 500 ml of a solution containing phosphate ions.

(結果及び考察)
(廃フェノール樹脂の熱分解基礎特性)
図1に熱天秤により測定した廃フェノール樹脂の熱分解挙動を示す。廃フェノール樹脂は340°C付近まで徐々に重量が減少し、340°C付近で重量が一旦停止する。これは、廃フェノール樹脂が溶融したためと考えられる。そして、その後500°C付近まで重量が再び減少し、重量減少速度は405°C付近で最大となった。
(Results and discussion)
(Basic thermal decomposition characteristics of waste phenolic resin)
FIG. 1 shows the thermal decomposition behavior of waste phenol resin measured by a thermobalance. The weight of the waste phenol resin gradually decreases to around 340 ° C., and the weight temporarily stops around 340 ° C. This is considered because the waste phenol resin melted. Then, the weight decreased again to around 500 ° C., and the rate of weight reduction reached a maximum around 405 ° C.

(炭化挙動)
図2に炭化温度と保持時間を変えた場合の廃フェノール樹脂の熱分解挙動を示す。図2に示すように、炭化収率は保持時間いずれの場合も、炭化温度600°C〜800°Cまでやや収率が減少するものの、800°C以上ではほぼ一定の値となった。
表1の工業分析の揮発分量も62.8wt%であり、800°Cまでに廃フェノール樹脂中の揮発分が放出されたため、800°C以降炭化収率がほぼ一定になったものと考えられる。
(Carbonization behavior)
FIG. 2 shows the thermal decomposition behavior of waste phenolic resin when the carbonization temperature and holding time are changed. As shown in FIG. 2, the carbonization yield was almost constant at 800 ° C. or higher, although the yield slightly decreased from the carbonization temperature of 600 ° C. to 800 ° C. in any holding time.
The amount of volatile matter in the industrial analysis of Table 1 is also 62.8 wt%, and since the volatile matter in the waste phenol resin was released by 800 ° C, it is considered that the carbonization yield became almost constant after 800 ° C. .

(賦活挙動)
図4に炭化温度600°C、保持時間60分で得られた炭化収率42.5wt%の炭化物を1000°Cで賦活処理した場合の賦活温度と賦活収率の関係を示す。賦活時間の経過とともに賦活反応が進行し、賦活収率が低下している。そして、賦活時間180minでは賦活収率が37.6wt%まで減少した。反応が進行しているのが分かる。
(Activation behavior)
FIG. 4 shows the relationship between the activation temperature and the activation yield when the carbide having a carbonization yield of 42.5 wt% obtained at a carbonization temperature of 600 ° C. and a holding time of 60 minutes is activated at 1000 ° C. The activation reaction proceeds with the lapse of the activation time, and the activation yield decreases. And in activation time 180min, the activation yield decreased to 37.6 wt%. You can see the reaction going on.

(BET比表面積に及ぼす炭化・賦活条件の影響)
図5及び図6に、賦活処理後の活性炭収率とBET比表面積測定結果を示す。参考までに市販されている脱臭剤の活性炭収率とBET比表面積の測定結果も併せて示した。
活性炭収率は炭化収率と賦活収率を乗算した値となり、炭化800°C60min(賦活1000°C120min)、炭化600°C60min(賦活1000°C120min)のBET比表面積、活性収率は、いずれも800m/g以上、25wt%以上を達成した。
また、調査結果によると市販の活性炭収率は約12.0%であり、比表面積、活性炭収率ともにヤシ殻活性炭を上回る性能の吸着材を得ることができた。
(Influence of carbonization and activation conditions on BET specific surface area)
In FIG.5 and FIG.6, the activated carbon yield after an activation process and a BET specific surface area measurement result are shown. For reference, the measurement results of the activated carbon yield and BET specific surface area of a commercially available deodorant are also shown.
The activated carbon yield is a value obtained by multiplying the carbonization yield and the activation yield, and the BET specific surface area and the activity yield of carbonization 800 ° C 60 min (activation 1000 ° C 120 min) and carbonization 600 ° C 60 min (activation 1000 ° C 120 min) are both 800 m 2 / g or more and 25 wt% or more were achieved.
According to the survey results, the yield of commercially available activated carbon was about 12.0%, and an adsorbent with performance exceeding both coconut shell activated carbon could be obtained in terms of specific surface area and activated carbon yield.

(賦活に及ぼす水酸化カルシウムの影響)
図7より、水酸化カルシウムを添加することにより、賦活速度に大幅な増加が見られた。また、図8より水酸化カルシウムを添加しない場合は、賦活時間60minでBET比表面積が約490m/gに到達する。これによれば、賦活時間にほぼ比例関係にBET比表面積が増加するのが分る。
これに対し、水酸化カルシウムを添加した場合、賦活時間10minで約460m/gのBET比表面積を得ることができた。このように、水酸化カルシウムを添加した場合は、短時間で所定のBET比表面積を増加させることができる。しかし、長時間の賦活処理は、例えば図8に示すように、60分でBET比表面積がゼロとなってしまう。したがって、BET比表面積の調整を図る場合には、賦活処理時間の適度な調整が必要である。
以上より、廃フェノール樹脂に水酸化カルシウムを添加することにより、賦活速度を大幅に増加することができ、賦活時間の大幅な短縮が可能である。これは、水酸化カルシウムを添加による大きな効果の一つである。
水酸化カルシウム添加量の添加効果を発揮させるためには1〜10wt%とすることが望ましい。また、この水酸化カルシウムは、工業用で純度は95%以上のものを使用するのが良い。
(Influence of calcium hydroxide on activation)
From FIG. 7, a significant increase in activation rate was observed by adding calcium hydroxide. Further, as shown in FIG. 8, when calcium hydroxide is not added, the BET specific surface area reaches about 490 m 2 / g in the activation time of 60 minutes. According to this, it can be seen that the BET specific surface area increases in proportion to the activation time.
On the other hand, when calcium hydroxide was added, a BET specific surface area of about 460 m 2 / g could be obtained in an activation time of 10 minutes. Thus, when calcium hydroxide is added, a predetermined BET specific surface area can be increased in a short time. However, a long-time activation process, for example, as shown in FIG. 8, causes the BET specific surface area to become zero in 60 minutes. Therefore, when adjusting the BET specific surface area, it is necessary to appropriately adjust the activation treatment time.
From the above, by adding calcium hydroxide to the waste phenol resin, the activation rate can be greatly increased, and the activation time can be greatly shortened. This is one of the great effects of adding calcium hydroxide.
In order to exhibit the effect of adding calcium hydroxide, the content is desirably 1 to 10 wt%. The calcium hydroxide is preferably used for industrial use with a purity of 95% or more.

(水酸化カルシウム添加した炭化及び賦活物の吸着性能)
廃フェノール樹脂に水酸化カルシウムを5wt%添加後、炭化及び賦活処理したリン酸吸着試験結果を図9に示す。試料作製条件は800°C、60min保持で炭化を行った後、1000°C、10min保持で賦活した。
溶液は500mlとし、試料は0.5gとした。溶液中にリン酸イオンが25.2wtppm含有している。
図9から明らかなように、廃フェノール樹脂に水酸化カルシウムを添加しない吸着材は溶液中のリン酸濃度がほとんど変わらないのに対し、水酸化カルシウムを5wt%添加した場合には、溶液に吸着材を投入後、約10minで、約3ppmまで急激にリン酸濃度が低下し、その後吸着時間120minで、約1.5ppmまで減少した。
(Carbonation added with calcium hydroxide and adsorption performance of activated materials)
FIG. 9 shows the phosphoric acid adsorption test results of carbonization and activation treatment after adding 5 wt% of calcium hydroxide to the waste phenol resin. Sample preparation conditions were carbonization at 800 ° C. for 60 minutes, and then activated at 1000 ° C. for 10 minutes.
The solution was 500 ml and the sample was 0.5 g. The solution contains 25.2 wtppm of phosphate ions.
As is clear from FIG. 9, the adsorbent that does not add calcium hydroxide to the waste phenol resin has almost no change in the phosphoric acid concentration in the solution, whereas when 5 wt% of calcium hydroxide is added, the adsorbent is adsorbed to the solution. After adding the material, the phosphoric acid concentration rapidly decreased to about 3 ppm in about 10 minutes, and then decreased to about 1.5 ppm in the adsorption time of 120 minutes.

これは、炭化及び賦活物に含まれる水酸化カルシウムが1000°Cの加熱により、最終的に酸化カルシウム(CaO)の形態となり、その酸化カルシウムがリン酸イオンと反応したものと考えられる。
以上から、本発明の活性炭からなる吸着材は、廃フェノール樹脂を原料とし、BET比表面積460m/g以上、活性炭収率26wt%以上である活性炭からなる吸着材を提供することができる。この活性炭は、通常で得られる活性炭に比べ、BET比表面積及び活性炭収率が非常に大きく、吸着材として優れた特性を有する。
This is presumably because the calcium hydroxide contained in the carbonized and activated product finally becomes calcium oxide (CaO) by heating at 1000 ° C., and the calcium oxide has reacted with phosphate ions.
From the above, the adsorbent made of activated carbon of the present invention can provide an adsorbent made of activated carbon using a waste phenol resin as a raw material and having a BET specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more. This activated carbon has a very large BET specific surface area and activated carbon yield, and has excellent properties as an adsorbent, compared with the activated carbon obtained in the usual manner.

(水酸化カルシウム添加によるリン酸イオンの選択的吸着性能)
廃フェノール樹脂に水酸化カルシウムを5wt%添加後、炭化及び賦活処理した本発明の活性炭からなる吸着材を用いて、リン酸イオンとそれ以外のイオンが共存する場合の、リン酸吸着試験結果を10に示す。
試料作製条件は、上記と同様に800°C、60min保持で炭化を行った後、1000°C、10min保持で賦活した活性炭からなる吸着材である。溶液は500mlとし、試料は0.5gとした。溶液中には、共存イオンとして、リン酸イオン(PO 3−)、塩素イオン(Cl)、硝酸イオン(NO )、硫酸イオン(SO 2−)が、それぞれ2wtppm含有されている場合である。
(Selective adsorption performance of phosphate ion by adding calcium hydroxide)
Phosphate adsorption test results when phosphate ions and other ions coexist using the adsorbent made of activated carbon of the present invention carbonized and activated after adding 5 wt% calcium hydroxide to waste phenol resin As shown in FIG .
The sample preparation condition is an adsorbent made of activated carbon activated by holding at 800 ° C. for 10 min and then activated at 1000 ° C. for 10 min after carbonization at 800 ° C. for 60 min. The solution was 500 ml and the sample was 0.5 g. The solution contains 2 wtppm each of phosphate ions (PO 4 3− ), chlorine ions (Cl ), nitrate ions (NO 3 ), and sulfate ions (SO 4 2− ) as coexisting ions. Is the case.

10から明らかなように、廃フェノール樹脂に水酸化カルシウムを添加しない吸着材は、溶液中のリン酸濃度がほとんど変わらないのに対し、水酸化カルシウムを5wt%添加した場合には、溶液に吸着材を投入後、約120分で、約0.5wtppmまで急激にリン酸濃度が低下し、その後約1日で殆んど0にまで減少した。
このように、水酸化カルシウムを添加した廃フェノール樹脂を原料とすることによって得られた本発明の活性炭からなる吸着材は、リン酸イオン吸着性に著しく優れ、選択的かつ迅速に吸着することができることが分る。
As is clear from FIG. 10, the adsorbent in which calcium hydroxide is not added to the waste phenol resin has almost no change in the phosphoric acid concentration in the solution, whereas when 5 wt% of calcium hydroxide is added, In about 120 minutes after introducing the adsorbent, the phosphoric acid concentration rapidly decreased to about 0.5 wtppm, and then decreased to almost 0 in about 1 day.
Thus, the adsorbent made of activated carbon of the present invention obtained by using waste phenol resin added with calcium hydroxide as a raw material is remarkably excellent in phosphate ion adsorptivity, and can be adsorbed selectively and rapidly. I know what I can do.

以上から、活性炭からなる吸着材の製造に際しては、廃フェノール樹脂を原料とし、これを600〜800°C炭化処理し、次にこの炭化した材料を1000°C以上で賦活処理することによって、BET比表面積460m/g以上、活性炭収率26wt%以上の活性炭を容易にかつ安定して製造することができる。
通常、炭化処理は窒素ガスを使用して行い、次に賦活処理は、賦活温度に達するまでを雰囲気ガスとして窒素ガスを使用し、賦活温度に達した後は炭酸ガスを使用して行うのが効率的な方法であり、望ましい。
また、この水酸化カルシウムを添加することにより、賦活速度を大幅に増加させることができるという特性も有する。添加効果を高めるためには、水酸化カルシウム添加量を1〜10wt%に調整するのが望ましい。
From the above, in the production of an adsorbent made of activated carbon, waste phenol resin is used as a raw material, this is carbonized at 600 to 800 ° C., and then this carbonized material is activated at 1000 ° C. or higher to obtain BET. Activated carbon having a specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more can be easily and stably produced.
Usually, the carbonization treatment is performed using nitrogen gas, and then the activation treatment is performed using nitrogen gas as an atmospheric gas until the activation temperature is reached, and then using carbon dioxide gas after reaching the activation temperature. It is an efficient method and is desirable.
Moreover, it has the characteristic that an activation rate can be increased significantly by adding this calcium hydroxide. In order to enhance the effect of addition, it is desirable to adjust the amount of calcium hydroxide added to 1 to 10 wt%.

本発明は、産業廃棄物である廃フェノールを、特定条件下、炭化及び賦活処理を行うことで、市販活性炭レベル以上の吸着性能を有する吸着材として再利用することが可能となる。また、本発明における吸着材の性能は、リン酸イオン迅速に吸着することが可能である。さらに、本発明は、吸着材がリン酸イオンのみを選択的に吸着可能という性質を利用することで、特にリン酸イオンが原因となる水質汚染の問題解決に有効である。   In the present invention, waste phenol, which is industrial waste, can be reused as an adsorbent having an adsorption performance equal to or higher than that of a commercially available activated carbon by performing carbonization and activation treatment under specific conditions. Moreover, the performance of the adsorbent in the present invention is capable of rapidly adsorbing phosphate ions. Furthermore, the present invention is particularly effective in solving the problem of water pollution caused by phosphate ions by utilizing the property that the adsorbent can selectively adsorb only phosphate ions.

温度に対する重量減少率及び重量減少速度の挙動を示す図である。It is a figure which shows the behavior of the weight decreasing rate and the weight decreasing speed with respect to temperature. 炭化温度に対する炭化収率を示す図である。It is a figure which shows the carbonization yield with respect to the carbonization temperature. 炭化温度に対するBET比表面積を示す図である。It is a figure which shows the BET specific surface area with respect to the carbonization temperature. 賦活時間に対する賦活収率を示す図である。It is a figure which shows the activation yield with respect to activation time. 炭化及び賦活処理に対する活性炭収率を示す図である。It is a figure which shows the activated carbon yield with respect to carbonization and an activation process. 炭化及び賦活処理に対する比表面積を示す図である。It is a figure which shows the specific surface area with respect to carbonization and activation process. 賦活時間と賦活収率との関係を示す図である。It is a figure which shows the relationship between activation time and activation yield. 比表面積と賦活時間との関係を示す図である。It is a figure which shows the relationship between a specific surface area and activation time. 吸着時間に対する溶液中のリン酸濃度を示す図である。It is a figure which shows the phosphoric acid concentration in the solution with respect to adsorption time. リン酸イオン以外に他のイオンが共存する場合のリン酸イオンの選択吸着性を示す図である。It is a figure which shows the selective adsorption property of a phosphate ion in case other ions coexist besides a phosphate ion.

Claims (9)

廃フェノール樹脂を原料とする活性炭からなる吸着材であって、BET比表面積460m/g以上、活性炭収率26wt%以上であることを特徴とする活性炭からなる吸着材。 An adsorbent made of activated carbon using waste phenolic resin as a raw material, wherein the adsorbent is made of activated carbon, and has a BET specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more. 水酸化カルシウムを添加した廃フェノール樹脂を原料とする請求項1記載の活性炭からなる吸着材。   The adsorbent comprising activated carbon according to claim 1, wherein the raw material is waste phenol resin to which calcium hydroxide is added. 廃フェノール樹脂を原料とし、これを600〜800°C炭化処理し、次にこの炭化した材料を1000°C以上で賦活処理することを特徴とする活性炭からなる吸着材の製造方法。   A method for producing an adsorbent comprising activated carbon, characterized in that waste phenol resin is used as a raw material, carbonized at 600 to 800 ° C., and then the carbonized material is activated at 1000 ° C. or higher. BET比表面積460m/g以上、活性炭収率26wt%以上の活性炭を製造することを特徴とする請求項3記載の活性炭からなる吸着材の製造方法。 4. The method for producing an adsorbent comprising activated carbon according to claim 3, wherein activated carbon having a BET specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more is produced. 窒素ガスを使用して炭化処理を行い、次に賦活温度に達するまでを雰囲気ガスとして窒素ガスを使用し、賦活温度に達した後は炭酸ガスを使用して賦活処理を行うことを特徴とする請求項3又は4記載の吸着材の製造方法。   It is characterized by performing carbonization treatment using nitrogen gas, using nitrogen gas as an atmosphere gas until the next activation temperature is reached, and performing activation treatment using carbon dioxide gas after reaching the activation temperature. The manufacturing method of the adsorbent of Claim 3 or 4. 廃フェノール樹脂に水酸化カルシウムを添加して炭化処理を行うことを特徴とする請求項3〜5のいずれかに記載の活性炭からなる吸着材の製造方法。   The method for producing an adsorbent comprising activated carbon according to any one of claims 3 to 5, wherein calcium hydroxide is added to waste phenol resin to perform carbonization. 水酸化カルシウムを1〜10wt%添加することを特徴とする請求項6記載の吸着材の製造方法。   The method for producing an adsorbent according to claim 6, wherein 1 to 10 wt% of calcium hydroxide is added. 水酸化カルシウムを添加した廃フェノール樹脂を原料とする活性炭からなる吸着材を用いてリン酸イオンを吸着することを特徴とするリン酸イオン吸着方法。   A phosphate ion adsorption method comprising adsorbing phosphate ions using an adsorbent made of activated carbon made of waste phenol resin added with calcium hydroxide as a raw material. 水酸化カルシウムを添加した廃フェノール樹脂を原料とし、これを炭化及び賦活処理によって、BET比表面積460m/g以上、活性炭収率26wt%以上の活性炭からなる吸着材を用いてリン酸イオンを吸着することを特徴とするリン酸イオン吸着方法。
Waste phenol resin added with calcium hydroxide is used as a raw material, and this is carbonized and activated to adsorb phosphate ions using an adsorbent made of activated carbon with a BET specific surface area of 460 m 2 / g or more and an activated carbon yield of 26 wt% or more. And a phosphate ion adsorption method.
JP2005287962A 2005-09-30 2005-09-30 Phosphate ion adsorbent comprising activated carbon, method for producing the same, and phosphate ion adsorbing method Active JP4292243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287962A JP4292243B2 (en) 2005-09-30 2005-09-30 Phosphate ion adsorbent comprising activated carbon, method for producing the same, and phosphate ion adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287962A JP4292243B2 (en) 2005-09-30 2005-09-30 Phosphate ion adsorbent comprising activated carbon, method for producing the same, and phosphate ion adsorbing method

Publications (2)

Publication Number Publication Date
JP2007098203A true JP2007098203A (en) 2007-04-19
JP4292243B2 JP4292243B2 (en) 2009-07-08

Family

ID=38025671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287962A Active JP4292243B2 (en) 2005-09-30 2005-09-30 Phosphate ion adsorbent comprising activated carbon, method for producing the same, and phosphate ion adsorbing method

Country Status (1)

Country Link
JP (1) JP4292243B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172292A1 (en) * 2011-06-17 2012-12-20 Filtrona Filter Products Development Co. Pte. Ltd Tobacco smoke filter with activated carbon
JP2014080358A (en) * 2012-09-28 2014-05-08 Japan Enviro Chemicals Ltd Activated charcoal with reduced amount of elution of phosphorus, and method of producing the same
CN104801273A (en) * 2015-04-22 2015-07-29 煤炭科学技术研究院有限公司 Adsorbent for coalbed methane concentration as well as preparation method and application thereof
JP2016010742A (en) * 2014-06-27 2016-01-21 日ノ出工機株式会社 Digested liquid treatment system and method
CN109012596A (en) * 2018-09-06 2018-12-18 青岛科技大学 The resource utilization method of absorption resin is discarded in a kind of production of resorcinol
CN111333905A (en) * 2020-04-20 2020-06-26 中国科学院过程工程研究所 Recovery method of fiber reinforced composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172292A1 (en) * 2011-06-17 2012-12-20 Filtrona Filter Products Development Co. Pte. Ltd Tobacco smoke filter with activated carbon
JP2014080358A (en) * 2012-09-28 2014-05-08 Japan Enviro Chemicals Ltd Activated charcoal with reduced amount of elution of phosphorus, and method of producing the same
JP2016010742A (en) * 2014-06-27 2016-01-21 日ノ出工機株式会社 Digested liquid treatment system and method
CN104801273A (en) * 2015-04-22 2015-07-29 煤炭科学技术研究院有限公司 Adsorbent for coalbed methane concentration as well as preparation method and application thereof
CN109012596A (en) * 2018-09-06 2018-12-18 青岛科技大学 The resource utilization method of absorption resin is discarded in a kind of production of resorcinol
CN109012596B (en) * 2018-09-06 2021-03-09 青岛科技大学 Resource utilization method of waste adsorption resin in resorcinol production
CN111333905A (en) * 2020-04-20 2020-06-26 中国科学院过程工程研究所 Recovery method of fiber reinforced composite material

Also Published As

Publication number Publication date
JP4292243B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
Gong et al. Preparation of biochar with high absorbability and its nutrient adsorption–desorption behaviour
Ros et al. Dried sludges and sludge-based chars for H2S removal at low temperature: influence of sewage sludge characteristics
Yan et al. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon
Bagreev et al. Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide
Kilpimaa et al. Removal of phosphate and nitrate over a modified carbon residue from biomass gasification
Hsu et al. Adsorption of Cu2+ from water using raw and modified coal fly ashes
Monsalvo et al. Adsorption of 4-chlorophenol by inexpensive sewage sludge-based adsorbents
JP4292243B2 (en) Phosphate ion adsorbent comprising activated carbon, method for producing the same, and phosphate ion adsorbing method
Yin et al. Hierarchical porous biochar-based functional materials derived from biowaste for Pb (II) removal
Ros et al. A new generation of sludge-based adsorbents for H2S abatement at room temperature
Ji et al. Nitrogen and phosphorus adsorption behavior of ceramsite material made from coal ash and metallic iron
Vohra Adsorption-based removal of gas-phase benzene using granular activated carbon (GAC) produced from date palm pits
JP7174967B2 (en) phosphorus adsorbent
CN109621903B (en) Method for preparing sludge-based carbon zeolite functional material
CN105396551A (en) Iron-containing biochar prepared from rice roots and application thereof in adsorption and solidification of heavy metal ions
Chen et al. Gaseous hydrogen sulfide removal using macroalgae biochars modified synergistically by H2SO4/H2O2
Januševičius et al. The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods
Encinas‐Vázquez et al. Unraveling the mechanisms of lead adsorption and ageing process on high‐temperature biochar
Sierra et al. Preparation of carbon-based adsorbents from the pyrolysis of sewage sludge with CO2. Investigation of the acid washing procedure
KR101534830B1 (en) Method for manufacturing acid or alkali and neuter adsorbents using aluminum by-product, and acid or alkali and neuter adsorbents
KR101512562B1 (en) A process for producing biomass adsorbent from platanus leaves
KR101866200B1 (en) Adsorbent for removal of H2S comprising mine drainage sludge and method for preparing the same
KR102231353B1 (en) Adsorbent for removal of H2S comprising mine drainage sludge and method for preparing the same
Tang et al. Preparation of fly-ash-modified bamboo-shell carbon black and its mercury removal performance in simulated flue gases
JP2000203823A (en) Production of activated carbon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250