JP2007097460A - 熱サイクル印加装置及び熱サイクル印加方法 - Google Patents
熱サイクル印加装置及び熱サイクル印加方法 Download PDFInfo
- Publication number
- JP2007097460A JP2007097460A JP2005290080A JP2005290080A JP2007097460A JP 2007097460 A JP2007097460 A JP 2007097460A JP 2005290080 A JP2005290080 A JP 2005290080A JP 2005290080 A JP2005290080 A JP 2005290080A JP 2007097460 A JP2007097460 A JP 2007097460A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- heat medium
- thermal cycle
- samples
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
【課題】熱サイクル印加時に、サンプル間の温度差が少ない熱サイクル印加装置を提供する。
【解決手段】熱サイクル印加装置は、熱媒体を供給する熱媒体供給手段と、前記熱媒体供給手段から供給された熱媒体を入口側から出口側に流す空洞部分と、前記熱媒体の流れの方向に沿って複数のサンプルを前記空洞部分に保持するサンプル保持部とを有するチャンバと、前記熱媒体によって前記複数のサンプルに熱サイクルを印加する制御手段と、前記チャンバとは別体として並列に設けられ、前記チャンバの前記出口側の一部と前記入口側の一部とに接続され、前記出口側から前記熱媒体の一部を前記チャンバの入口側に還流させるバイパス経路とを備える。
【選択図】図1
【解決手段】熱サイクル印加装置は、熱媒体を供給する熱媒体供給手段と、前記熱媒体供給手段から供給された熱媒体を入口側から出口側に流す空洞部分と、前記熱媒体の流れの方向に沿って複数のサンプルを前記空洞部分に保持するサンプル保持部とを有するチャンバと、前記熱媒体によって前記複数のサンプルに熱サイクルを印加する制御手段と、前記チャンバとは別体として並列に設けられ、前記チャンバの前記出口側の一部と前記入口側の一部とに接続され、前記出口側から前記熱媒体の一部を前記チャンバの入口側に還流させるバイパス経路とを備える。
【選択図】図1
Description
本発明は、検定サンプルに熱サイクルを印加する方法および熱サイクル印加装置に関し、特に、流体流を利用してサンプルキャリア内の検定サンプルに熱サイクルを印加する方法および熱サイクル印加装置に関する。
近年、ポリメラーゼ連鎖反応(PCR)と呼ばれる核酸増幅技術が普及し、広く医学・生物学の研究や臨床診断、環境検査等の分野で高感度な核酸分析が可能となった。このPCRは、2種類のプライマーを用いて特定配列を増幅する手法である。PCRは、2本鎖DNAを第1の温度で開裂する変性工程(概ね90〜98℃)、開裂した1本鎖DNAに第2の温度でプライマーを結合させるアニーリング工程(概ね50〜70℃)、DNAポリメラーゼ酵素の働きにより第3の温度でプライマーから1塩基ずつ相補鎖を合成する伸張工程(概ね60〜75℃)の3段階の工程を1サイクルとして進行し、1サイクル毎にプライマーに挟まれた特定の核酸領域が2倍に増幅する。そこで、第1〜第3の温度との間を遷移させる熱サイクルをn回繰り返すことによって2n倍のDNAを複製することができる(例えば、非特許文献1参照。)。
核酸増幅のために核酸を含むサンプルに上記の熱サイクルを印加する方法としては、複数のサンプルを金属製ブロックに格納して金属製ブロックを加熱又は冷却することでサンプルに熱サイクルを印加するブロックサイクル法や、熱サイクルの各段階ごとに複数の固定温度浴間でサンプルを移動させる固定温度浴法がある。
しかし、上記従来技術によるシステムには両方とも多数の問題点がある。
まず、ブロックサイクル法は、効率が悪く、作動させるのにエネルギーと時間がかかり過ぎ、好ましくない。例えば、ブロック構成のサンプルを熱サイクルにかけるランプ(ramp)速度を増大させる手段として、唯一実用的なのは、熱交換器に対する壁面の露出ができるだけ大きくなるようなサンプル管を設計することである。このようなサンプル管を使用すればランプ時間が短縮されるが、システムの基本的な非効率性は改善されない。したがって、サンプル管またはバイアル(vial)を再構成しなくても、必要な熱サイクルやランプ時間を達成できる熱サイクルシステムを提供することが好ましい。
まず、ブロックサイクル法は、効率が悪く、作動させるのにエネルギーと時間がかかり過ぎ、好ましくない。例えば、ブロック構成のサンプルを熱サイクルにかけるランプ(ramp)速度を増大させる手段として、唯一実用的なのは、熱交換器に対する壁面の露出ができるだけ大きくなるようなサンプル管を設計することである。このようなサンプル管を使用すればランプ時間が短縮されるが、システムの基本的な非効率性は改善されない。したがって、サンプル管またはバイアル(vial)を再構成しなくても、必要な熱サイクルやランプ時間を達成できる熱サイクルシステムを提供することが好ましい。
また、固定温度浴法では、熱サイクルを完了するにはサンプルを複数の温度浴間で移動させることが必要となるため、非効率である。また、サンプル位置による温度差を解消するには、サンプルの大きさを厳格に制限しなければならないことも多い。また、シリコンオイルはサンプルバイアルに付着し、作業環境の汚染という問題を引き起こす。さらに、バイアルを浴から取り出す前にバイアルからオイルを適切に除去しなければ、作業域が危険になることも有り得る。このような場合には、バイアルから適切にオイルを除去するには追加時間が必要となるため、システムはさらに非効率になる。
その他の従来技術では、ヒータブロック型あるいは熱浴型の熱サイクルシステムの問題点を解決する機器もある。たとえば、空気を熱媒体としたサーマルサイクラにおいて、円柱状の空洞内に、試料容器を円周上に配置し、円の中心部から熱風と冷風の空気を交互に噴射させ、加熱及び冷却を行う方法がある(例えば、特許文献1参照。)。この方法では、一定温度に保持するときは空気を微流量にして、同時に空洞内に設けられたファンで空気を攪拌する。しかし、試料容器境界の空気流速が遅く、熱交換効率が悪いため、昇温・冷却速度が小さい(4〜10℃/sec)。そのため、熱サイクルを所定回数印加するために要する時間がかかり、核酸増幅のために要する所要時間が長くなる。
また、所定温度に維持された第一及び第二の流体流を混合して、サンプルチャンバに供給し、サンプルを熱サイクルにかける熱サイクル核酸検定装置がある(例えば、特許文献2参照。)。この装置では、排出された流体流を再循環させて用いている。ここでは、サンプルチャンバに供給する各流体流の混合比を可変させて目標温度を維持する。しかしこの場合には、風上側と風下側にあるサンプルの温度差が生じることが考えられる。
さらに、熱媒体として圧縮空気を用いる方法も考案されている(例えば、特許文献3参照。)。この方法では、熱媒体としたサーマルサイクラにおいて、筒状空洞内に試料容器を配置し、熱風と冷風の圧縮空気を空洞の片側から交互に噴射させ、加熱及び冷却を行い、一定温度に保持するときは空気を微流量にする。この方法では、試料容器境界の空気流速が非常に大きく、熱交換効率が高いため、昇温・冷却速度が大きくなり(10〜40℃/sec)、核酸増幅の所用時間が短い。しかし、熱サイクルにおいて、一定温度に保持する際に空気流量が少ない場合には、風上側と風下側にある試料間の温度差が大きくなり、制御温度に達しない場合には一つの熱サイクルが有効に機能しない場合があるので、試料間で有効な熱サイクル印加回数に差が生じて核酸増幅反応誤差が大きくなる。
Science、第230巻、第1350頁−第1354頁、1985年
特表2000−511435号公報
特表平9−508224号公報
WO2004/042086
上記従来技術では、熱サイクルを所定回数だけ印加するために要する時間が長くなり、その結果、例えば、サンプルとして核酸を用い、所定の酵素によって核酸増幅を行う場合には、核酸増幅のための所要時間が長くなる。また、多数の試料に対して熱サイクルを印加する場合には、熱媒体に接触する試料間の温度差が大きいという問題がある。
本発明の目的は、熱サイクルにおいて、圧縮ガスを用いることによって高速で温度遷移させることができると共に、熱サイクル中の一定温度に保持する際に試料間の温度差を少なくすることができる熱サイクル印加装置を提供することである。
本発明に係る熱サイクル印加装置は、熱媒体を供給する熱媒体供給手段と、
前記熱媒体供給手段から供給された熱媒体を入口側から出口側に流す空洞部分と、前記熱媒体の流れの方向に沿って複数のサンプルを前記空洞部分に保持するサンプル保持部とを有するチャンバと、
前記熱媒体によって前記複数のサンプルに熱サイクルを印加する制御手段と、
前記チャンバとは別体として並列に設けられ、前記チャンバの前記出口側の一部と前記入口側の一部とに接続され、前記チャンバの前記出口側から前記熱媒体の一部を前記入口側に還流させるバイパス経路と
を備えたことを特徴とする。
前記熱媒体供給手段から供給された熱媒体を入口側から出口側に流す空洞部分と、前記熱媒体の流れの方向に沿って複数のサンプルを前記空洞部分に保持するサンプル保持部とを有するチャンバと、
前記熱媒体によって前記複数のサンプルに熱サイクルを印加する制御手段と、
前記チャンバとは別体として並列に設けられ、前記チャンバの前記出口側の一部と前記入口側の一部とに接続され、前記チャンバの前記出口側から前記熱媒体の一部を前記入口側に還流させるバイパス経路と
を備えたことを特徴とする。
また、前記制御手段は、前記チャンバの空洞部分を流れる熱媒体の温度及び流量を制御して、前記複数のサンプルに熱サイクルを印加することができる。
さらに、前記バイパス経路の中で前記熱媒体が逆流することを制限する逆止機構を有するポンプを備えていてもよい。
またさらに、前記サンプル保持部は、前記熱媒体の流れの方向に対して千鳥配置されていることが好ましい。
また、前記熱媒体は、気体であってもよい。
本発明に係る熱サイクル印加方法は、熱媒体を入口側から出口側に流す空洞部分と、前記熱媒体の流れの方向に沿って複数のサンプルを前記空洞部分に保持するサンプル保持部とを有するチャンバに前記熱媒体を供給して前記複数のサンプルに熱サイクルを印加する熱サイクル印加方法であって、
熱媒体を供給するステップと、
前記チャンバの入口側から出口側に前記熱媒体を流すステップと、
前記チャンバと別体として並列に設けられ、前記チャンバの出口側の一部から入口側の一部とを接続するバイパス経路を介して、前記チャンバの出口側から前記熱媒体の一部を前記入口側に還流させるステップと、
前記熱媒体によって前記複数のサンプルに熱サイクルを印加するステップと
を含むことを特徴とする。
熱媒体を供給するステップと、
前記チャンバの入口側から出口側に前記熱媒体を流すステップと、
前記チャンバと別体として並列に設けられ、前記チャンバの出口側の一部から入口側の一部とを接続するバイパス経路を介して、前記チャンバの出口側から前記熱媒体の一部を前記入口側に還流させるステップと、
前記熱媒体によって前記複数のサンプルに熱サイクルを印加するステップと
を含むことを特徴とする。
また、前記熱サイクルを印加するステップでは、前記チャンバの空洞部分を流れる熱媒体の温度及び流量を制御して、前記複数のサンプルに熱サイクルを所定回数にわたって印加してもよい。
本発明に係る熱サイクル印加装置によれば、温度及び流量を制御した熱媒体を用いることによって高速で温度遷移させることができる。また、熱サイクルにおいて、一定温度に保持する場合に、バイパス経路によって、チャンバの出口側から熱媒体の一部を入口側に還流させることによって、サンプル間の温度差を小さくすることができる。
本発明の実施の形態に係る熱サイクル印加装置について添付図面を用いて説明する。なお、図面において実質的に同一の部材には同一の符号を付している。
実施の形態1
図1は、本発明の実施の形態1に係る熱サイクル印加装置20の構成を示すブロック図である。この熱サイクル印加装置20は、圧縮ガス源1、マニホールド2、電磁弁3a、3b、3c、3d、冷却コイル4、熱風ヒータ5、チャンバ6、バイパス経路10を備える。この熱サイクル印加装置20では、圧縮ガス源1より供給された圧縮ガスがマニホールド2内に設置された電磁弁3a、3b、3c、3dに分配される。圧縮ガスは、マニホールド2内の電磁弁3a、3b、3c、3dの後で、冷却ラインと加熱ラインに分割される。冷却ラインでは冷却コイル4を通過して冷却された後、冷風がチャンバ6に供給される。一方、加熱ラインでは熱風ヒータ5を通過して加熱された後、熱風がチャンバ6に供給される。電磁弁3a、3b、3c、3dの制御により冷却ライン及び加熱ラインに供給される圧縮ガスの流量を制御して、制御された温度及び流量を有する冷風又は熱風がチャンバ6に供給される。チャンバ6内に供給された冷風又は熱風の圧縮ガスによって、チャンバ6内に保持されたサンプルに所定の熱サイクルが印加される。この熱サイクル印加装置20では、チャンバ6の出口部から圧縮ガスの一部を回収し、再び入口部に還流させるバイパス経路10を設けたことが大きな特徴である。本発明に係る熱サイクル印加装置では、チャンバ6の出口部から圧縮ガスの一部を回収し、再び入口部に還流させるバイパス経路10を設けたことで、チャンバ6内の入口付近のサンプルと出口付近のサンプルとの間の温度差を低減させ、温度分布を均一にすることができる。
図1は、本発明の実施の形態1に係る熱サイクル印加装置20の構成を示すブロック図である。この熱サイクル印加装置20は、圧縮ガス源1、マニホールド2、電磁弁3a、3b、3c、3d、冷却コイル4、熱風ヒータ5、チャンバ6、バイパス経路10を備える。この熱サイクル印加装置20では、圧縮ガス源1より供給された圧縮ガスがマニホールド2内に設置された電磁弁3a、3b、3c、3dに分配される。圧縮ガスは、マニホールド2内の電磁弁3a、3b、3c、3dの後で、冷却ラインと加熱ラインに分割される。冷却ラインでは冷却コイル4を通過して冷却された後、冷風がチャンバ6に供給される。一方、加熱ラインでは熱風ヒータ5を通過して加熱された後、熱風がチャンバ6に供給される。電磁弁3a、3b、3c、3dの制御により冷却ライン及び加熱ラインに供給される圧縮ガスの流量を制御して、制御された温度及び流量を有する冷風又は熱風がチャンバ6に供給される。チャンバ6内に供給された冷風又は熱風の圧縮ガスによって、チャンバ6内に保持されたサンプルに所定の熱サイクルが印加される。この熱サイクル印加装置20では、チャンバ6の出口部から圧縮ガスの一部を回収し、再び入口部に還流させるバイパス経路10を設けたことが大きな特徴である。本発明に係る熱サイクル印加装置では、チャンバ6の出口部から圧縮ガスの一部を回収し、再び入口部に還流させるバイパス経路10を設けたことで、チャンバ6内の入口付近のサンプルと出口付近のサンプルとの間の温度差を低減させ、温度分布を均一にすることができる。
また、熱媒体の温度をサンプルの目標温度よりも高温又は低温に設定しておき、この熱媒体をチャンバ6内に大流量で導入して、サンプルを目標温度に近い温度まで急速に加熱又は冷却することができる。さらに、熱媒体をチャンバ内に微少流量で導入し、あるいは、熱媒体の供給を停止させて、チャンバ6内の熱媒体に接触するサンプルを一定の目標温度で保持することができる。本発明の熱サイクル印加装置では、特にこの微少流量又は停止状態の場合に、バイパス経路10によりチャンバ6の出口部から圧縮ガスの一部を回収し、再び入口部に還流させることによって、チャンバ6内を攪拌できる。これによって上述のようにサンプル間の温度分布を均一にできる。
なお、本明細書中では、「チャンバ」もしくは「サンプルチャンバ」という用語は、サンプルを保持でき、所望の温度に変化させた圧縮ガスが送り込まれる部分を示す。また、「サンプル」という用語は、試験サンプル又は検定サンプルを指し、ここでは、検査対象から採取した試料と様々な試験試薬を混合したものである。また、サンプルチャンバには、1個から20個までのサンプルを懸架できる。
以下に、この熱サイクル印加装置20の各構成部材について説明する。
圧縮ガス源
圧縮ガス源1において、熱媒体として用いる圧縮ガスの圧力は0.05MPa〜1.0MPaの範囲内が好ましく、更に好ましくは0.2MPa〜0.5MPaの範囲がさらに好ましい。圧縮ガスの成分は、特に限定はないが、空気、二酸化炭素、窒素、アルゴンなどでもよい。特に好ましくは、廃棄およびリサイクルに関する問題を解消することができる空気がよい。また、圧縮ガスを用いることによってサンプルを高速に温度遷移させることができるので、非常に高速に制御した時間間隔で温度変化させる必要があるサンプルでは、ランプ時間が重要な因子であるので、特に有用である。
圧縮ガス源1において、熱媒体として用いる圧縮ガスの圧力は0.05MPa〜1.0MPaの範囲内が好ましく、更に好ましくは0.2MPa〜0.5MPaの範囲がさらに好ましい。圧縮ガスの成分は、特に限定はないが、空気、二酸化炭素、窒素、アルゴンなどでもよい。特に好ましくは、廃棄およびリサイクルに関する問題を解消することができる空気がよい。また、圧縮ガスを用いることによってサンプルを高速に温度遷移させることができるので、非常に高速に制御した時間間隔で温度変化させる必要があるサンプルでは、ランプ時間が重要な因子であるので、特に有用である。
マニホールド
圧縮ガスは、マニホールド部2で2種類の流路に分岐される。一方は、冷却ラインであって、熱交換コイル部に導かれ、冷却されてもよい。もしくは、空冷にて冷却されても良い。もう一方は、加熱ラインであって、熱風ヒータ5などにより加熱される。冷却ラインで冷却された圧縮ガスと、加熱ラインで加熱された圧縮ガスは、チャンバ6の入り口部で合流される。このマニホールド2から、冷却ラインからは、例えば、0℃〜30℃の圧縮ガスと、加熱ラインからは、例えば、150℃〜200℃の圧縮ガスがチャンバ6に入力され、所定の制御タイミングでチャンバ6内に送風される。マニホールド部2に設置された電磁弁3a、3b、3c、3dを制御して、圧縮ガスを所望の温度及び流量に調整することができる。電磁弁の個数には特に限定はないが、冷却用、加熱用それぞれに2種類ずつ設置しても良い。なお、設置する電磁弁3a、3b、3c、3dは、同一規格の電磁弁であってもよいが、異なる規格の電磁弁であっても良い。好ましくは、有効断面積が0.2mm2〜0.6mm2の電磁弁と有効断面積5mm2〜20mm2の電磁弁を冷却用と加熱用にそれぞれ設置するのが好ましい。
圧縮ガスは、マニホールド部2で2種類の流路に分岐される。一方は、冷却ラインであって、熱交換コイル部に導かれ、冷却されてもよい。もしくは、空冷にて冷却されても良い。もう一方は、加熱ラインであって、熱風ヒータ5などにより加熱される。冷却ラインで冷却された圧縮ガスと、加熱ラインで加熱された圧縮ガスは、チャンバ6の入り口部で合流される。このマニホールド2から、冷却ラインからは、例えば、0℃〜30℃の圧縮ガスと、加熱ラインからは、例えば、150℃〜200℃の圧縮ガスがチャンバ6に入力され、所定の制御タイミングでチャンバ6内に送風される。マニホールド部2に設置された電磁弁3a、3b、3c、3dを制御して、圧縮ガスを所望の温度及び流量に調整することができる。電磁弁の個数には特に限定はないが、冷却用、加熱用それぞれに2種類ずつ設置しても良い。なお、設置する電磁弁3a、3b、3c、3dは、同一規格の電磁弁であってもよいが、異なる規格の電磁弁であっても良い。好ましくは、有効断面積が0.2mm2〜0.6mm2の電磁弁と有効断面積5mm2〜20mm2の電磁弁を冷却用と加熱用にそれぞれ設置するのが好ましい。
チャンバ部
チャンバ6の構造は、断面積が300mm2以下の直方体形状が好ましく、更に好ましくは、断面積が150mm2以下の直方体形状であればよい。チャンバ6は、耐熱性に優れた熱伝導度が小さい材料で構成することが好ましく、熱伝導度が0.3W/mK以下の材料で構成することが特に好ましい。マイクロヒュージ管を保持するための挿入部8は、30本以下が好ましく、15本以下が特に好ましい。マイクロヒュージ管の挿入部8は、圧縮ガスの流れる方向に沿って設けることが好ましい。さらに、挿入部8は、千鳥配置に設定するのがよい。ここで、千鳥配置とは、各サンプルを保持する挿入部8が圧縮ガスの流れる方向に沿って配置されると共に、圧縮ガスの流れる方向に対して挿入部8が1本毎にジグザグになるように設けられた配置をいう。また、各マイクロヒュージ管の挿入部8間の間隔は、圧縮ガスの流れる方向に沿った成分として3〜10mmの範囲であればよく、4〜6mmの範囲内で等間隔配置するのが好ましい。
チャンバ6の構造は、断面積が300mm2以下の直方体形状が好ましく、更に好ましくは、断面積が150mm2以下の直方体形状であればよい。チャンバ6は、耐熱性に優れた熱伝導度が小さい材料で構成することが好ましく、熱伝導度が0.3W/mK以下の材料で構成することが特に好ましい。マイクロヒュージ管を保持するための挿入部8は、30本以下が好ましく、15本以下が特に好ましい。マイクロヒュージ管の挿入部8は、圧縮ガスの流れる方向に沿って設けることが好ましい。さらに、挿入部8は、千鳥配置に設定するのがよい。ここで、千鳥配置とは、各サンプルを保持する挿入部8が圧縮ガスの流れる方向に沿って配置されると共に、圧縮ガスの流れる方向に対して挿入部8が1本毎にジグザグになるように設けられた配置をいう。また、各マイクロヒュージ管の挿入部8間の間隔は、圧縮ガスの流れる方向に沿った成分として3〜10mmの範囲であればよく、4〜6mmの範囲内で等間隔配置するのが好ましい。
マイクロヒュージ管
マイクロヒュージ管は、チャンバ6内の一側面に設けられた挿入部8から空洞部に挿入されて保持される。このマイクロヒュージ管は、サンプル溶液部分が完全にチャンバ6内の圧縮ガスが流れる空洞部内に保持されるのが好ましい。更に、マイクロヒュージ管は、チャンバ内壁との距離が0.5mm以上離れている位置に設置できるよう設計されることがさらに好ましい。マイクロヒュージ管の詳細は、内部に空洞がある円筒形状が好ましく、外径φ1〜φ3mm、肉厚が0.2mm〜0.5mmものが好ましい。マイクロヒュージ(microfuge)管は、3μLから30μLの溶液を保持できるものがよい。なお、サンプルとして増幅する核酸が含まれる溶液を用いる場合には、その溶液部分がチャンバ6内の空洞部内に保持されることが好ましい。
マイクロヒュージ管は、チャンバ6内の一側面に設けられた挿入部8から空洞部に挿入されて保持される。このマイクロヒュージ管は、サンプル溶液部分が完全にチャンバ6内の圧縮ガスが流れる空洞部内に保持されるのが好ましい。更に、マイクロヒュージ管は、チャンバ内壁との距離が0.5mm以上離れている位置に設置できるよう設計されることがさらに好ましい。マイクロヒュージ管の詳細は、内部に空洞がある円筒形状が好ましく、外径φ1〜φ3mm、肉厚が0.2mm〜0.5mmものが好ましい。マイクロヒュージ(microfuge)管は、3μLから30μLの溶液を保持できるものがよい。なお、サンプルとして増幅する核酸が含まれる溶液を用いる場合には、その溶液部分がチャンバ6内の空洞部内に保持されることが好ましい。
バイパス経路
本発明の最も重要な特徴は、チャンバ6の出口部から圧縮ガスの一部を回収し、再び入口部に戻すバイパス経路10を設けたことである。このバイパス経路10によって、圧縮ガスを還流させることができるので、サンプル間の温度分布を軽減させることができる。バイパス経路10は、チャンバ6の風下側に設けられたバイパス経路入口9aと、風上側に設けられたバイパス経路出口9bとを接続して設けられている。このバイパス経路入口9aと出口9bの内径は、φ2mm〜φ10mmが好ましく、φ3mm〜φ6mmが特に好ましい。また、バイパス経路入口9aと出口9bの間に、マイクロヒュージ管を保持するための全ての挿入部8が存在させることが好ましい。すなわち、バイパス経路10を接続するためのバイパス経路入口9aと出口9bとは、チャンバ6の一側面に設けられたマイクロヒュージ管を保持するための全ての挿入部8を挟んで設けることが好ましい。
本発明の最も重要な特徴は、チャンバ6の出口部から圧縮ガスの一部を回収し、再び入口部に戻すバイパス経路10を設けたことである。このバイパス経路10によって、圧縮ガスを還流させることができるので、サンプル間の温度分布を軽減させることができる。バイパス経路10は、チャンバ6の風下側に設けられたバイパス経路入口9aと、風上側に設けられたバイパス経路出口9bとを接続して設けられている。このバイパス経路入口9aと出口9bの内径は、φ2mm〜φ10mmが好ましく、φ3mm〜φ6mmが特に好ましい。また、バイパス経路入口9aと出口9bの間に、マイクロヒュージ管を保持するための全ての挿入部8が存在させることが好ましい。すなわち、バイパス経路10を接続するためのバイパス経路入口9aと出口9bとは、チャンバ6の一側面に設けられたマイクロヒュージ管を保持するための全ての挿入部8を挟んで設けることが好ましい。
圧縮ガス還流用ポンプ
チャンバ6の出口側から圧縮ガスの一部を入口側に還流させる方法は、チャンバ6の出口側の一部と入口側の一部とを接続するバイパス経路10を介してポンプ11を用いて強制的に還流させることによって実現できる。ここで使用されるポンプ11は、特に限定はないが、逆方向に流量制限がかかる逆止弁などの機構を有することが好ましい。更に好ましくは、ポンプヘッド部が小容量のダイヤフラムポンプがよい。また、ポンプ流量は、1L/min〜20L/minのものが好ましく、更に好ましくは4L/min〜10L/minがよい。
チャンバ6の出口側から圧縮ガスの一部を入口側に還流させる方法は、チャンバ6の出口側の一部と入口側の一部とを接続するバイパス経路10を介してポンプ11を用いて強制的に還流させることによって実現できる。ここで使用されるポンプ11は、特に限定はないが、逆方向に流量制限がかかる逆止弁などの機構を有することが好ましい。更に好ましくは、ポンプヘッド部が小容量のダイヤフラムポンプがよい。また、ポンプ流量は、1L/min〜20L/minのものが好ましく、更に好ましくは4L/min〜10L/minがよい。
チャンバ6内を流れる圧縮ガスの流量がポンプ11の能力範囲内の微少流量又は場合には、チャンバ6内の風下側と風上側とを接続するバイパス経路10内のポンプ11の働きにより、循環風量が発生しチャンバ6内を撹拌することができる。一方、チャンバ6内の風量がポンプ11の能力を越える大流量の場合には、ポンプ11に設置されている逆止弁の働きによってポンプ11で形成されたバイパス経路10の流量がほぼ0になるので、チャンバ6の流量が低下することはない。つまり、温度を安定化するため微風量が要求される場合は、バイパス経路10が機能して循環風量が発生しチャンバ6内を撹拌することができる。一方、急激な温度変化を要求されている場合は、逆止弁の働きでバイパス経路10が実質的に機能しない状態となって大流量の圧縮ガスがチャンバ6内をそのまま流れてサンプルに急速に温度変化を生じさせることができる。
図3は、実施の形態1に係る熱サイクル印加方法のフローチャートである。
(a)熱媒体を供給する。図1では、圧縮ガス源1からマニホールド2に熱媒体である圧縮ガスを供給する。
(b)チャンバ6の入口側7aから出口側7bに熱媒体である圧縮ガスを流す(S01)。
(c)チャンバ6と別体として並列に設けられ、チャンバ6の出口側の一部9aから入口側の一部9bとを接続するバイパス経路10を介して、チャンバ6の出口側7bから熱媒体の一部を入口側7aに還流させる(S02)。なお、チャンバ6内を流す圧縮ガスが微少流量又は停止状態の場合にのみバイパス経路10が機能する。
(d)温度及び流量が制御された熱媒体によって、熱サイクルを複数のサンプルに印加する(S03)。なお、熱サイクルとしては、例えば、第1温度から第2温度に遷移させ、第2温度で所定時間だけ保持し、その後、第2温度から第1温度に遷移させる熱サイクルとすることができる。熱サイクルの例としては、例えば、図4から図7に示す熱サイクルを印加できる。図5及び図7に示すように、熱サイクルは、さらに第3温度に遷移させ、第3温度で保持する工程を含んでもよい。
(e)以上の熱サイクルを所定回数、およそ20〜50回程度繰り返してサンプルに印加する。
以上によって、サンプルに熱サイクルを所定回数にわたって有効に印加することができる。
(a)熱媒体を供給する。図1では、圧縮ガス源1からマニホールド2に熱媒体である圧縮ガスを供給する。
(b)チャンバ6の入口側7aから出口側7bに熱媒体である圧縮ガスを流す(S01)。
(c)チャンバ6と別体として並列に設けられ、チャンバ6の出口側の一部9aから入口側の一部9bとを接続するバイパス経路10を介して、チャンバ6の出口側7bから熱媒体の一部を入口側7aに還流させる(S02)。なお、チャンバ6内を流す圧縮ガスが微少流量又は停止状態の場合にのみバイパス経路10が機能する。
(d)温度及び流量が制御された熱媒体によって、熱サイクルを複数のサンプルに印加する(S03)。なお、熱サイクルとしては、例えば、第1温度から第2温度に遷移させ、第2温度で所定時間だけ保持し、その後、第2温度から第1温度に遷移させる熱サイクルとすることができる。熱サイクルの例としては、例えば、図4から図7に示す熱サイクルを印加できる。図5及び図7に示すように、熱サイクルは、さらに第3温度に遷移させ、第3温度で保持する工程を含んでもよい。
(e)以上の熱サイクルを所定回数、およそ20〜50回程度繰り返してサンプルに印加する。
以上によって、サンプルに熱サイクルを所定回数にわたって有効に印加することができる。
本発明の実施例1では、実施の形態1に係る熱サイクル印加装置を核酸増幅装置として用いる場合の具体的な例について説明する。この核酸増幅装置は、図1とほぼ同様の構成を有する。各構成部材について以下に説明する。
a)圧縮ガス源1としては、約0.6MPaの施設計装エアーから圧力レギュレータ(SMC製AR425)により0.3MPaに減圧した圧縮空気を入力した。
b)マニホールド2は、図1に示す圧縮ガス回路を有し、且つ、電磁弁3a、3b、3c、3dを4個固定できるようにジュラコンを材料にして加工製作した。電磁弁3a、3b、3c、3dには、CKD社製の型番「GFAB41−5−0−12C−3」の電磁弁と、CKD社製の型番「GFAB11−Z−12C−3」の電磁弁とを、冷却ラインおよび加熱ラインについてそれぞれ1個ずつ使用し、マニホールド2に配置した。
c)冷却コイル4には、内径φ5mmの銅管を約5m使用し、巻径約200mmのらせん状に巻いたものを使用した。その冷却コイル4を氷水中に浸漬して熱交換を行った。
d)ヒータ5には、竹綱製作所製SH1A(800W/100V)を使用し、熱風の温度を180℃に制御してチャンバ6に供給した。
b)マニホールド2は、図1に示す圧縮ガス回路を有し、且つ、電磁弁3a、3b、3c、3dを4個固定できるようにジュラコンを材料にして加工製作した。電磁弁3a、3b、3c、3dには、CKD社製の型番「GFAB41−5−0−12C−3」の電磁弁と、CKD社製の型番「GFAB11−Z−12C−3」の電磁弁とを、冷却ラインおよび加熱ラインについてそれぞれ1個ずつ使用し、マニホールド2に配置した。
c)冷却コイル4には、内径φ5mmの銅管を約5m使用し、巻径約200mmのらせん状に巻いたものを使用した。その冷却コイル4を氷水中に浸漬して熱交換を行った。
d)ヒータ5には、竹綱製作所製SH1A(800W/100V)を使用し、熱風の温度を180℃に制御してチャンバ6に供給した。
e)チャンバ6は、テフロン(登録商標)を材料にして加工製作した。その空洞部は高さ20mm、幅6mm、長さ100mmの直方体形状とし、マイクロヒュージ管をチャンバ6の上部から挿入し、底面から約1mm離して風向に対して中央36mm内に10本を千鳥配置になるように設置できる構造とした。
f)チャンバ6の空洞部の風下端から10mmの位置に設けられた内径4mmのバイパス経路入口9aと、風上端から10mmの位置に設けられた内径4mmのバイパス経路出口9bとを接続するバイパス経路10を設けた。このバイパス経路10内には、ポンプ11を設けた。ポンプ11は、榎本マイクロポンプ製MV−600Gのダイヤフラム型空気ポンプを使用し、ガス流量は約6L/minであった。このバイパス経路10によって、チャンバ6内を流れる圧縮空気が微少流量又は停止状態の際には、チャンバ6内の空気を撹拌することができる。
f)チャンバ6の空洞部の風下端から10mmの位置に設けられた内径4mmのバイパス経路入口9aと、風上端から10mmの位置に設けられた内径4mmのバイパス経路出口9bとを接続するバイパス経路10を設けた。このバイパス経路10内には、ポンプ11を設けた。ポンプ11は、榎本マイクロポンプ製MV−600Gのダイヤフラム型空気ポンプを使用し、ガス流量は約6L/minであった。このバイパス経路10によって、チャンバ6内を流れる圧縮空気が微少流量又は停止状態の際には、チャンバ6内の空気を撹拌することができる。
この実施例1では、図6に示すように、
i)加熱して90℃にする
ii)90℃から60℃に冷却する。
iii)60℃で約5秒間保持する。
という熱サイクルを30回繰り返して印加した。また、図4は、図6の部分拡大図である。このときの90℃への昇温時の昇温速度、及び、90℃から60℃への冷却時の冷却速度を測定し、バイパス経路10がない場合を比較例として測定した結果とを下記表1に示す。この表1によれば、バイパス経路10を追加しても昇温速度及び冷却速度の低下はほとんどないことがわかる。これは、大流量の圧縮空気を流す場合にはバイパス経路10のポンプ11の逆止弁によって実質的にバイパス経路10が機能せず、大流量の圧縮空気がそのままチャンバ6内を流れるためであると考えられる。
i)加熱して90℃にする
ii)90℃から60℃に冷却する。
iii)60℃で約5秒間保持する。
という熱サイクルを30回繰り返して印加した。また、図4は、図6の部分拡大図である。このときの90℃への昇温時の昇温速度、及び、90℃から60℃への冷却時の冷却速度を測定し、バイパス経路10がない場合を比較例として測定した結果とを下記表1に示す。この表1によれば、バイパス経路10を追加しても昇温速度及び冷却速度の低下はほとんどないことがわかる。これは、大流量の圧縮空気を流す場合にはバイパス経路10のポンプ11の逆止弁によって実質的にバイパス経路10が機能せず、大流量の圧縮空気がそのままチャンバ6内を流れるためであると考えられる。
なお、ここでは図6に示すような熱サイクルを印加したが、熱サイクルとしては上記の場合に限られず、例えば、図7に示す熱サイクルを印加することができる。図7の熱サイクルでは、
i)加熱して90℃にする。
ii)90℃から60℃に遷移させる。
iii)60℃で3秒間保持する。
iv)60℃から72℃に遷移させる。
v)72℃で3秒間保持する。
という熱サイクルを30回にわたって印加する場合を示している。この熱サイクルでは、図6の熱サイクルと比較すると、第1の温度(90℃)、第2の温度(60℃)に加えて、第3の温度(72℃)での工程を設けている。また、図5は、図7の部分拡大図である。このように、使用する酵素が働く温度に応じて熱サイクルを構成する温度を選択すればよい。また、この熱サイクルの回数は、サンプルに応じて適宜選択すればよい。例えば、核酸増幅がおよそ109(=230倍)倍程度必要な場合には、30サイクル程度行えばよい。
i)加熱して90℃にする。
ii)90℃から60℃に遷移させる。
iii)60℃で3秒間保持する。
iv)60℃から72℃に遷移させる。
v)72℃で3秒間保持する。
という熱サイクルを30回にわたって印加する場合を示している。この熱サイクルでは、図6の熱サイクルと比較すると、第1の温度(90℃)、第2の温度(60℃)に加えて、第3の温度(72℃)での工程を設けている。また、図5は、図7の部分拡大図である。このように、使用する酵素が働く温度に応じて熱サイクルを構成する温度を選択すればよい。また、この熱サイクルの回数は、サンプルに応じて適宜選択すればよい。例えば、核酸増幅がおよそ109(=230倍)倍程度必要な場合には、30サイクル程度行えばよい。
また、下記表2には、上記熱サイクルにおいて、60℃で5秒間保持時の10本のマイクロヒュージ管の温度分布を測定した結果を示す。バイパス経路10がない比較例の場合は、制御温度である60℃から2℃以上高い場所もあり、全体でも2℃以上の温度差が発生しているのに対して、本発明の実施例1のバイパス経路10を有する場合は、すべての位置で制御温度である60℃に対して±0.5℃以内に収まっており全体でも1℃以内の差であった。このことは、バイパス経路10を設けたことによりチャンバ6内を還流させることによってサンプル間の温度差が減少し、均一な温度分布が得られたことを表している。
この核酸増幅装置によれば、温度及び流量を制御した圧縮空気を用いるので、従来に比べて非常に高速に温度遷移させることができると共に、バイパス経路を用いて圧縮空気を還流させてチャンバ内を攪拌できるので、熱サイクルにおいて、一定温度に保持する場合にもサンプル間の温度差を低減でき、均一な温度分布を得ることができる。そこで、核酸増幅を迅速に行うことができ、遺伝子判定、病原菌に対する薬剤選択などを迅速化できるので、産業界に大きく寄与することが期待される。
本発明に係る熱サイクル印加装置は、温度及び流量を制御した圧縮ガスを用いてサンプルを高速に温度遷移させることができ、バイパス経路を用いて圧縮ガスを還流させてチャンバ内を攪拌できるので、熱サイクルにおいて、一定温度に保持する場合にもサンプル間の温度差を低減でき、均一な温度分布を得ることができる。そこで、この熱サイクル印加装置は、サンプルに多数回の熱サイクルを印加する核酸増幅装置としても有用である。
1 圧縮ガス源、2 マニホールド、3a、3b、3c、3d 電磁弁、4 冷却コイル、5 ヒータ、6 チャンバ、7a チャンバ入口、7b チャンバ出口、8、8a、8b、8c、8d、8e、8f、8g、8h、8i、8j マイクロヒュージ管挿入部、9a バイパス経路入口、9b バイパス経路出口、10 バイパス経路、11 ポンプ、20 熱サイクル印加装置
Claims (7)
- 熱媒体を供給する熱媒体供給手段と、
前記熱媒体供給手段から供給された熱媒体を入口側から出口側に流す空洞部分と、前記熱媒体の流れの方向に沿って複数のサンプルを前記空洞部分に保持するサンプル保持部とを有するチャンバと、
前記熱媒体によって前記複数のサンプルに熱サイクルを印加する制御手段と、
前記チャンバとは別体として並列に設けられ、前記チャンバの前記出口側の一部と前記入口側の一部とに接続され、前記チャンバの前記出口側から前記熱媒体の一部を前記入口側に還流させるバイパス経路と
を備えたことを特徴とする熱サイクル印加装置。 - 前記制御手段は、前記チャンバの空洞部分を流れる熱媒体の温度及び流量を制御して、熱サイクルを前記複数のサンプルに印加することを特徴とする請求項1に記載の熱サイクル印加装置。
- 前記バイパス経路の中で前記熱媒体が逆流することを制限する逆止機構を有するポンプを備えたことを特徴とする請求項1に記載の熱サイクル印加装置。
- 前記サンプル保持部は、前記熱媒体の流れの方向に対して千鳥配置されていることを特徴とする請求項1に記載の熱サイクル印加装置。
- 前記熱媒体は、気体であることを特徴とする請求項1に記載の熱サイクル印加装置。
- 熱媒体を入口側から出口側に流す空洞部分と、前記熱媒体の流れの方向に沿って配置された複数のサンプルを前記空洞部分に保持するサンプル保持部とを有するチャンバに前記熱媒体を供給して前記複数のサンプルに熱サイクルを印加する熱サイクル印加方法であって、
熱媒体を供給するステップと、
前記チャンバの入口側から出口側に前記熱媒体を流すステップと、
前記チャンバと別体として並列に設けられ、前記チャンバの出口側の一部から入口側の一部とを接続するバイパス経路を介して、前記チャンバの出口側から前記熱媒体の一部を前記入口側に還流させるステップと、
前記熱媒体によって前記複数のサンプルに熱サイクルを印加するステップと
を含むことを特徴とする熱サイクル印加方法。 - 前記熱サイクルを印加するステップでは、前記チャンバの空洞部分を流れる熱媒体の温度及び流量を制御して、前記複数のサンプルに前記熱サイクルを所定回数にわたって印加することを特徴とする請求項6に記載の熱サイクル印加方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005290080A JP2007097460A (ja) | 2005-10-03 | 2005-10-03 | 熱サイクル印加装置及び熱サイクル印加方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005290080A JP2007097460A (ja) | 2005-10-03 | 2005-10-03 | 熱サイクル印加装置及び熱サイクル印加方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007097460A true JP2007097460A (ja) | 2007-04-19 |
Family
ID=38025024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005290080A Withdrawn JP2007097460A (ja) | 2005-10-03 | 2005-10-03 | 熱サイクル印加装置及び熱サイクル印加方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007097460A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114107037A (zh) * | 2021-12-06 | 2022-03-01 | 广东轻工职业技术学院 | 一种自动控温的铁皮石斛内生真菌设备 |
-
2005
- 2005-10-03 JP JP2005290080A patent/JP2007097460A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114107037A (zh) * | 2021-12-06 | 2022-03-01 | 广东轻工职业技术学院 | 一种自动控温的铁皮石斛内生真菌设备 |
CN114107037B (zh) * | 2021-12-06 | 2024-03-08 | 广东轻工职业技术学院 | 一种自动控温的铁皮石斛内生真菌设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4477089B2 (ja) | 熱対流を利用した核酸配列増幅方法及び装置 | |
JP4758891B2 (ja) | 微小流体デバイス上の加熱、冷却および熱サイクリングのためのシステムおよび方法 | |
KR100938374B1 (ko) | 다수의 샘플을 포함하는 블럭의 열순환 장치, 시스템 및 방법 | |
US20090226971A1 (en) | Portable Rapid Microfluidic Thermal Cycler for Extremely Fast Nucleic Acid Amplification | |
Sun et al. | A circular ferrofluid driven microchip for rapid polymerase chain reaction | |
US8900854B2 (en) | Liquid reflux high-speed gene amplification device | |
JP5912034B2 (ja) | 液体還流型高速遺伝子増幅装置 | |
US20170114380A1 (en) | Systems and methods for the amplification of dna | |
US20140370519A1 (en) | Universal sample preparation system and use in an integrated analysis system | |
WO2009094061A1 (en) | Rapid microfluidic thermal cycler for nucleic acid amplification | |
JPH07506258A (ja) | 微細加工装置を用いたポリヌクレオチド増幅分析 | |
JP6027321B2 (ja) | 高速遺伝子増幅検出装置 | |
CN104662160A (zh) | 极端pcr | |
JP6004486B2 (ja) | マイクロ流体装置を活用した核酸増幅方法 | |
US20080176292A1 (en) | Portable buoyancy driven pcr thermocycler | |
WO2015037620A1 (ja) | 高速遺伝子増幅検出装置 | |
US20090275034A1 (en) | Temperature control system | |
JP2007097460A (ja) | 熱サイクル印加装置及び熱サイクル印加方法 | |
US10663989B2 (en) | Micro channel device temperature control | |
Gonzalez et al. | Gene transcript amplification from cell lysates in continuous-flow microfluidic devices | |
KR102412464B1 (ko) | 피씨알 장치 | |
JP2008199901A (ja) | 熱サイクル印加装置及び熱サイクル印加方法 | |
CN220467946U (zh) | 一种pcr微流控芯片 | |
JP2007110943A (ja) | ペルチェモジュールの温度制御装置 | |
KR20230077171A (ko) | 피씨알 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080131 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080424 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20091203 |