JP2007096947A - Piezoelectric oscillator - Google Patents

Piezoelectric oscillator Download PDF

Info

Publication number
JP2007096947A
JP2007096947A JP2005285415A JP2005285415A JP2007096947A JP 2007096947 A JP2007096947 A JP 2007096947A JP 2005285415 A JP2005285415 A JP 2005285415A JP 2005285415 A JP2005285415 A JP 2005285415A JP 2007096947 A JP2007096947 A JP 2007096947A
Authority
JP
Japan
Prior art keywords
circuit
piezoelectric
transistor
supply voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005285415A
Other languages
Japanese (ja)
Other versions
JP4788269B2 (en
JP2007096947A5 (en
Inventor
Masayuki Ishikawa
匡亨 石川
Yuichi Oinuma
雄一 老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005285415A priority Critical patent/JP4788269B2/en
Publication of JP2007096947A publication Critical patent/JP2007096947A/en
Publication of JP2007096947A5 publication Critical patent/JP2007096947A5/ja
Application granted granted Critical
Publication of JP4788269B2 publication Critical patent/JP4788269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a reduction of a startup time for all piezoelectric oscillators. <P>SOLUTION: A piezoelectric oscillator is provided with a piezoelectric oscillating circuit with a piezoelectric vibrator, a switch circuit for connecting an oscillation loop circuit of the piezoelectric oscillating circuit to a supply voltage line, and a control circuit for controlling an ON/OFF operation of the switch circuit. When an amplitude level of an excitation signal of the piezoelectric vibrator is within a maximum value ±0.1 λ after applying the supply voltage, the switch circuit performs the ON operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧電発振器に関し、特に非動作状態から発振動作状態となるまでの起動時間を短縮した圧電発振器に関する。   The present invention relates to a piezoelectric oscillator, and more particularly to a piezoelectric oscillator that shortens a startup time from a non-operation state to an oscillation operation state.

携帯電話はバッテリーの消費を抑えて長時間の連続使用ができるように基準発信源として使用する水晶発振器を間欠動作させて低消費電力化を図っている。
このように間欠動作する水晶発振器にあっては駆動開始から所望の出力信号を発振するまでに要する起動時間が短時間であることが望まれており、WO02/007302号公報に示すような構成のものがある。
図11は、先行文献に開示された水晶発振器の回路図を示すものである。
同図に示す水晶発振器100は、コルピッツ型の水晶発振回路101と、高速起動用回路102とを備えたものである。
水晶発振回路101は、発振用トランジスタ103のベースに、一端が容量104を介して接地と接続した水晶振動子105の他方端を接続し、ベースと接地との間に容量106と容量107とから成る直列回路を挿入接続し、この直列回路の接続中点とトランジスタ103のエミッタとを接続すると供に、エミッタと接地との間にエミッタ抵抗108を接続した構成を有する。
そして更に、ベース接地増幅回路を構成するためのトランジスタ109とトランジスタ103とをカスコード接続し、トランジスタ109のベースと接地との間に容量110を挿入接続し、トランジスタ109のコレクタと電源電圧Vccラインとの間にコレクタ抵抗111を挿入接続し、トランジスタ109のベースと電源電圧Vccラインとの間に定電流回路112を挿入接続し、抵抗113と抵抗114とからなる回路網によってトランジスタ103とトランジスタ109にベースバイアスを適宜印加する構成を備えたものである。
高速起動用回路102は、PNP型トランジスタ115のエミッタと電源電圧Vccラインとを抵抗116を介して接続し、トランジスタ115のベースと電源電圧Vccラインとを容量117を介して接続し、トランジスタ115のベースと接地とを容量118を介して接続し、トランジスタ115のコレクタと水晶振動子105の他方端とを抵抗119と抵抗120とから成る直列回路を介して接続した構成を有する。
そして、抵抗119と抵抗120とから成る直列回路の接続中点にトランジスタ121のベースを接続し、トランジスタ121のコレクタを抵抗122を介して電源電圧Vccラインに接続しトランジスタ115とトランジスタ121とをダーリントン接続すると供に、トランジスタ121のエミッタを水晶振動子105の他方端に接続したものである。
このような構成の水晶発振器は、電源電圧Vccの印加後に生じる容量117への電荷のチャージによってトランジスタ115がON動作することにより、トランジスタ121がON動作して水晶振動子105の他方端へ電源電圧Vccを起動促進用電圧として印加するよう動作するものである。
そして、水晶発振器100は、電源電圧Vccを印加した直後から水晶振動子105が起動促進用電圧の印加を受けて強励振するので、出力信号のレベルが所望のレベルに達するまでの時間が短時間なものとなる。
この場合、水晶発振器100が効率良く高速起動する為には水晶振動子105を強励振させるだけ十分に高い電位であって、急峻な立ち上がり特性を有する起動促進用電圧を水晶振動子105へ印加さえすれば良いと考えられていた。
その為、トランジスタ115がON動作するタイミングを電源電圧Vccがピーク値に達するまでに要する時間のみを規定し、当該所定の時間が得られるよう容量117と容量118との容量比を調整した構成とすれば良いと考えられていた。
Cellular phones are designed to reduce power consumption by intermittently operating a crystal oscillator that is used as a reference transmission source so that the battery can be used continuously for a long time.
In such a crystal oscillator that operates intermittently, it is desired that the startup time required from the start of driving to the oscillation of a desired output signal is short, and the configuration as shown in WO 02/007302 There is something.
FIG. 11 shows a circuit diagram of the crystal oscillator disclosed in the prior art.
A crystal oscillator 100 shown in FIG. 1 includes a Colpitts-type crystal oscillation circuit 101 and a fast start-up circuit 102.
In the crystal oscillation circuit 101, the other end of the crystal resonator 105, one end of which is connected to the ground via the capacitor 104, is connected to the base of the oscillation transistor 103, and the capacitor 106 and the capacitor 107 are connected between the base and the ground. A series circuit is inserted and connected, and the connection midpoint of this series circuit and the emitter of the transistor 103 are connected, and an emitter resistor 108 is connected between the emitter and the ground.
Further, the transistor 109 and the transistor 103 for constituting the grounded base amplifier circuit are cascode-connected, and a capacitor 110 is inserted and connected between the base of the transistor 109 and the ground, and the collector of the transistor 109 and the power supply voltage Vcc line are connected. A collector resistor 111 is inserted and connected between them, a constant current circuit 112 is inserted and connected between the base of the transistor 109 and the power supply voltage Vcc line, and the transistor 103 and the transistor 109 are connected to each other by a circuit network including the resistor 113 and the resistor 114. A configuration in which a base bias is appropriately applied is provided.
The fast start-up circuit 102 connects the emitter of the PNP transistor 115 and the power supply voltage Vcc line via the resistor 116, and connects the base of the transistor 115 and the power supply voltage Vcc line via the capacitor 117. The base and the ground are connected via a capacitor 118, and the collector of the transistor 115 and the other end of the crystal resonator 105 are connected via a series circuit including a resistor 119 and a resistor 120.
The base of the transistor 121 is connected to the connection midpoint of the series circuit composed of the resistors 119 and 120, the collector of the transistor 121 is connected to the power supply voltage Vcc line via the resistor 122, and the transistors 115 and 121 are connected to the Darlington. In addition to being connected, the emitter of the transistor 121 is connected to the other end of the crystal unit 105.
In the crystal oscillator having such a configuration, the transistor 115 is turned on by the charge of the capacitor 117 generated after application of the power supply voltage Vcc, so that the transistor 121 is turned on and the power supply voltage is supplied to the other end of the crystal resonator 105. It operates so as to apply Vcc as a startup promoting voltage.
In the crystal oscillator 100, since the crystal resonator 105 is strongly excited by receiving the activation promoting voltage immediately after the power supply voltage Vcc is applied, the time until the level of the output signal reaches a desired level is short. It will be something.
In this case, in order to start the crystal oscillator 100 efficiently and at high speed, the crystal oscillator 105 has a sufficiently high potential to vigorously excite, and even a start-up promoting voltage having a steep rise characteristic is applied to the crystal oscillator 105. It was thought that it should be done.
Therefore, only the time required for the power supply voltage Vcc to reach the peak value is defined as the timing at which the transistor 115 is turned on, and the capacitance ratio between the capacitors 117 and 118 is adjusted so that the predetermined time is obtained. It was thought that it should be done.

しかしながら、起動促進用電圧を水晶振動子に印加するタイミングを電源電圧Vccがピーク電圧に達した時となるよう設定した従来の水晶発振器は、水晶振動子105の周波数の違いによっては十分に高速起動しない場合があった。
WO02/07302号公報
However, the conventional crystal oscillator in which the timing for applying the activation promoting voltage to the crystal resonator is set to be when the power supply voltage Vcc reaches the peak voltage, the start-up voltage is sufficiently fast depending on the difference in the frequency of the crystal resonator 105. There was a case not to.
WO02 / 07302 Publication

解決しようとする課題は、非動作状態から発振動作状態となるまでの起動時間を短縮した圧電発振器を提供することである。   The problem to be solved is to provide a piezoelectric oscillator that shortens the startup time from the non-operating state to the oscillating operating state.

本発明は、高速起動用回路を備えた圧電発振器であり、圧電振動子の励振信号の1周期をλと表したときに、高速起動用回路から圧電振動子に供給する起動促進用電圧の供給タイミングを電源電圧印加時点から(2×λ×(2×n−1))/5〜(3×λ×(2×n−1))/5の範囲内(nは正の整数)としたことを特徴とする。   The present invention is a piezoelectric oscillator provided with a high-speed start-up circuit. When one period of the excitation signal of the piezoelectric vibrator is represented by λ, supply of a start-up promotion voltage supplied from the high-speed start-up circuit to the piezoelectric vibrator Timing is set within the range of (2 × λ × (2 × n−1)) / 5 to (3 × λ × (2 × n−1)) / 5 from the point of application of the power supply voltage (n is a positive integer) It is characterized by that.

本発明の圧電発振器は、高速起動用回路から圧電振動子又は発振ループ回路に供給する起動促進用電圧の印加タイミングを圧電振動子の励振信号の振幅レベルを基準にしたので、あらゆる圧電発振器に対して起動時間の短縮化を実現できるという利点がある。   The piezoelectric oscillator according to the present invention is based on the amplitude level of the excitation signal of the piezoelectric vibrator based on the application timing of the activation promoting voltage supplied from the high speed starting circuit to the piezoelectric vibrator or the oscillation loop circuit. This has the advantage that the startup time can be shortened.

図1は、本発明に基づく圧電発振器を説明する為の回路図である。
同図に示す圧電発振器1は、例えばコルピッツ型の水晶発振回路2と、高速起動用回路3とを備えたものである。
水晶発振回路2は、発振用トランジスタ4のベースに、一端が容量5を介して接地と接続した水晶振動子6の他方端を接続し、ベースと接地との間に容量7と容量8とから成る直列回路を挿入接続し、この直列回路の接続中点とトランジスタ4のエミッタとを接続すると供に、エミッタと接地との間にエミッタ抵抗9を接続した構成を有する。
そして更に、ベース接地増幅回路を構成するためのトランジスタ10とトランジスタ4とをカスコード接続し、トランジスタ10のベースと接地との間に容量11を挿入接続し、トランジスタ10のコレクタと電源電圧Vccとの間に抵抗12を挿入接続し、トランジスタ10のベースと電源電圧Vccラインとの間に定電流回路13を挿入接続し、抵抗14と抵抗15とから成る回路網によってトランジスタ4とトランジスタ10とにベースバイアスを適宜印加する構成を備えたものである。
高速起動用回路3は、所謂スイッチ回路であり、トランジスタ16のコレクタと電源電圧Vccラインとの間に抵抗17を挿入接続し、トランジスタ16のベースと電源電圧Vccラインとの間に容量18を挿入接続すると供に、トランジスタ16のベースと接地との間にダイオード19を逆方向接続するよう挿入した構成を備えたものである。
そして、このような構成の圧電発振器1は、電源電圧Vccを印加すると、スイッチ回路のON/OFF動作制御回路(ON/OFF動作制御素子)として機能する容量18に電荷がチャージし始め、これに伴いトランジスタ16にベース電流が供給されるので、トランジスタ16から成るスイッチ回路がON動作して電源電圧Vccラインと水晶振動子6の他方端とが電気的に接続するよう機能するものである。
そして、図1に示す圧電発振器1の場合では、所望の時定数を有する容量C18を選択することにより、トランジスタ16がONするタイミングを電源電圧Vccを印加した時点から所定の時間だけ遅延させことが可能である。
そして、本発明の特徴は、水晶振動子6又は発振ループ回路への起動促進用電圧の印加タイミングを水晶振動子6の励振信号の振幅レベルがほぼピーク値となった時としたことである。
即ち、圧電発振器1に於ける水晶振動子6の励振信号の1周期をλとして表したとき、水晶振動子6の励振信号の振幅が極大値となる時から前後0.1λの範囲内、更に望ましくは振幅が極大値となった時、又は他の表現としては、電源電圧Vccを印加した時では水晶振動子6の励振信号のレベルは一般的に極小値であるから電源電圧Vccを印加した時点から周期が(2×λ×(2×n−1))/5)〜(3×λ×(2×n−1))/5の範囲内の時、更に望ましくは周期が(λ×(2×n−1))/2の時にトランジスタ16がON動作するに伴い電源電圧Vccを起動促進用電圧として水晶振動子6又は発振ループ回路に印加するものであり、これにより水晶振動子6の励振動作をスムーズに促進させることが可能である(nは正の整数)。
そして、圧電発振器1が最も早期に且つスムーズに高速起動できる為に、圧電発振器1は、電源電圧Vccを印加した時点から周期が(2×λ)/5〜(3×λ)/5の範囲内の時、更に望ましくはλ/2の時に起動促進用電圧を水晶振動子6又は発振ループ回路に印加するよう高速起動用回路3が機能するものである所が特徴である。
この時間の設定については所望の時定数を有する容量C18を選択することにより実現できるものである。
以下に、本発明に基づく圧電発振器1の起動特性が高速化するものであることをシミュレーション結果に基づいて説明する。
図2〜図5は、水晶振動子6への起動促進用電圧の印加タイミングと圧電発振器1の起動特性との関係を示したものであり、図2は、水晶振動子6の励振信号が電源電圧Vcc印加時点を基準に2λに達した時に、図3は、水晶振動子6の励振信号が電源電圧Vcc印加時点を基準に1λに達した時に、図4は、水晶振動子6の励振信号が電源電圧Vcc印加時点を基準に1.5λに達した時に、図5は、水晶振動子6の励振信号が電源電圧Vcc印加時点を基準に0.5λに達した時にそれぞれ高速起動用回路3が水晶振動子6に起動促進用電圧を印加した場合の起動特性をシミュレーションした結果である。
尚、起動促進用電圧とは、電源電圧Vccが印加と供に増加し、ピーク電圧値に達した時点の電圧のことである。
水晶振動子6の励振信号は、電源電圧Vccを印加した時点では極小値の振幅レベルからスタートするので電源電圧Vccを印加した時点を基準に水晶振動子6の励振信号が2λに達した時の振幅レベルは極小値である。
この時に起動促進用電圧Pを水晶振動子6に印加すると図2に示すように起動促進用電圧Pの印加直後から水晶振動子6は励振動作が停止状態若しくは十分な励振動作が起きない状態となることが理解できる。
更に、水晶振動子6の励振信号がλに達した時にも水晶振動子6の振幅レベルが極小値であり、この時に起動促進用電圧Pを水晶振動子6に印加すると図3に示すように起動促進用電圧Pの印加直後から水晶振動子6は励振動作が停止状態若しくは十分な励振動作が起きない状態となることが理解できる。
一方、水晶振動子6の励振信号が1.5λに達した時《(λ×(2×n−1))/2、n=2の時》には水晶振動子6の励振レベルが極大値であり、この時に起動促進用電圧Pを水晶振動子6に印加すると図4に示すように起動促進用電圧Pを印加後でも水晶振動子6は励振動作を持続すると供にその振幅レベルが高い状態となることが理解できる。
更に、水晶振動子6の励振信号が0.5λに達した時《(λ×(2×n−1))/2、n=1の時》にも水晶振動子6の励振レベルが極大値であり、この時に起動促進用電圧Pを水晶振動子6に印加すると図5に示すように図4にて示した場合と比較しても水晶振動子6は強励振した状態となる。
そして、水晶振動子6の励振信号が極大値となる条件は、0.5λより早い時期には存在しないので、この0.5λの時(第1次ピーク振幅レベルの時)に起動促進用電圧を印加したときが最も圧電発振器1を高速起動させることができる。
尚、回路の設定条件の誤差によっては必ずしも起動促進用電圧を0.5λの時点で印加することができない場合があるが、起動促進用電圧を理想の0.5λの時点で印加したときの水晶振動子6の振幅レベルを基準にした場合、これよりレベルの減衰が約30%以内までの起動特性であれば圧電発振器1の起動特性としては著しく悪いものではない。
そこで、上述した30%減衰した励振レベルである起動特性が得られるような起動促進用電圧の印加タイミングについてシミュレーションした結果を図6に示す。
同図に示すように起動促進用電圧Pを水晶振動子6の励振信号が0.5λとなった時点で印加した場合の励振信号の振幅レベルに対して、30%減衰した振幅レベルを得るには、約0.6λの時点で水晶振動子または発振ループ回路に起動促進用電圧を印加すれば良いことが分った。
尚、約0.4λの時点に於いても0.6λと振幅レベルが等しいので同等の起動特性が得られる。
従って、水晶振動子6の励振信号の極大値に起動促進用電圧を印加した場合と比較して殆ど遜色ない起動特性が得られる条件は、水晶振動子6の励振信号の極大値に対して±0.1λ、即ち、(2×λ×(2×n−1))/5)〜(3×λ×(2×n−1))/5の範囲内の時(但し、n=正の整数)であり、更に、最も優れた起動特性が得られるタイミング0.5λと比較して殆ど遜色ない起動特性が得られる条件は(2×λ)/5〜(3×λ)/5の範囲内である。
以上、説明した通り、本発明の特徴は、電源電圧Vccのピークである起動促進用電圧を印加するタイミングを水晶振動子6の励振信号が振幅レベルの極大値に達した時にした所にあるから、圧電発振器を構成する際には、起動促進用電圧の立ち上がり時間や、スイッチ回路のON動作時間などを厳密に設定する必要があり、これを実現する為には、回路調整が高精度に行える圧電発振器であることが望ましい。
そこで、以下に回路調整を高精度に行える圧電発振器についてその構成等を説明する。
尚、水晶発振回路2の構成については図1に示すものと同じなので説明を省略する。
図7に示す圧電発振器1は、高速起動用回路3が、トランジスタ16のコレクタと電源Vccラインとの間に抵抗17を挿入接続し、トランジスタ16のベースにトランジスタ20のベースを接続し、トランジスタ20のコレクタと電源電圧Vccラインとの間に抵抗21を挿入接続し、更にトランジスタ20のベース・エミッタ間に抵抗22を挿入接続し、トランジスタ20のベースとトランジスタ23のエミッタとを抵抗24を介して接続し、トランジスタ23のベースを容量18とダイオード19の接続中点に接続した構成を有したものである。
このような構成の圧電発振器1の場合、起動促進用電圧を印加するタイミングの設定を調整するには、容量18と抵抗24の時定数を所望の値に設定すればよく、容量18のみで調整する場合と比較して調整部が2箇所であることから高い調整精度が得られるものである。
図8に示す圧電発振器1は、高速起動用回路3が、PNP型のトランジスタ16を備え、トランジスタ16のベースにトランジスタ25のコレクタを接続すると供に、トランジスタ16のベースと電源電圧Vccラインとの間に抵抗26を挿入接続し、トランジスタ25のエミッタと接地との間に抵抗27を挿入接続し、トランジスタ25のベースと電源電圧Vccラインとの間に容量18を挿入接続し、トランジスタ25のベースと接地との間にダイオード19を逆方向に接続した構成を有したものである。
このような構成の圧電発振器1の場合、起動促進用電圧を印加するタイミングの設定を調整するには、容量18と抵抗26と抵抗27の時定数を所望の値に設定すればよく、容量18のみで調整する場合等と比較して調整部が3箇所であることから高い調整精度が得られるものである。
図9に示す圧電発振器1は、高速起動用回路3が、トランジスタ28のエミッタと水晶振動子6の他方端とを抵抗29と抵抗30とから成る直列回路を介して接続し、当該直列回路の接続中点にトランジスタ16のベースを接続すると供にトランジスタ16のコレクタを抵抗17を介して電源電圧Vccラインに接続し、トランジスタ16のエミッタを水晶振動子6の他方端に接続し、トランジスタ18のベースと電源電圧Vccラインとの間に容量18を挿入接続すると供に、トランジスタ18のベースと接地との間にダイオード19を逆方向接続した構成を有したものである。
このような構成の圧電発振器1であっても、起動促進用電圧を印加するタイミングの設定を調整は容量18と抵抗17及び抵抗29の時定数を所望の値に設定することで可能であり、容量18のみで調整する場合等と比較して調整部が3箇所であることから高い調整制度が得られるものである。
更に、図10に示すように水晶発振回路2と高速起動用回路3とを別電源とした構成である。
このような構成の場合、高速起動用回路3の電源Vcc’そのものの投入タイミングを水晶発振回路2の電源電圧Vccの投入タイミングよりも遅延さることができるので、起動促進用電圧を印加するタイミングを設定する場合は、容量18と抵抗17及び抵抗29の時定数の調整に加え電源電圧Vcc’の投入タイミングを調整・設定すればよいので、より高い調整精度を求めることができる。
FIG. 1 is a circuit diagram for explaining a piezoelectric oscillator according to the present invention.
The piezoelectric oscillator 1 shown in the figure includes, for example, a Colpitts-type crystal oscillation circuit 2 and a fast startup circuit 3.
In the crystal oscillation circuit 2, the other end of a crystal resonator 6 having one end connected to the ground via a capacitor 5 is connected to the base of the oscillation transistor 4, and the capacitor 7 and the capacitor 8 are connected between the base and the ground. A series circuit is inserted and connected, and the connection midpoint of this series circuit and the emitter of the transistor 4 are connected, and an emitter resistor 9 is connected between the emitter and the ground.
Further, the transistor 10 and the transistor 4 for constituting the grounded base amplification circuit are cascode-connected, and the capacitor 11 is inserted and connected between the base of the transistor 10 and the ground, and the collector of the transistor 10 and the power supply voltage Vcc are connected. A resistor 12 is inserted and connected, a constant current circuit 13 is inserted and connected between the base of the transistor 10 and the power supply voltage Vcc line, and the base of the transistor 4 and the transistor 10 is formed by a circuit network including the resistor 14 and the resistor 15. A configuration in which a bias is appropriately applied is provided.
The fast start-up circuit 3 is a so-called switch circuit, in which a resistor 17 is inserted and connected between the collector of the transistor 16 and the power supply voltage Vcc line, and a capacitor 18 is inserted between the base of the transistor 16 and the power supply voltage Vcc line. In addition to being connected, a structure is provided in which a diode 19 is inserted in the reverse direction between the base of the transistor 16 and the ground.
Then, when the power supply voltage Vcc is applied, the piezoelectric oscillator 1 having such a configuration starts to charge the capacitor 18 that functions as an ON / OFF operation control circuit (ON / OFF operation control element) of the switch circuit. Accordingly, since the base current is supplied to the transistor 16, the switch circuit including the transistor 16 is turned on so that the power supply voltage Vcc line and the other end of the crystal resonator 6 are electrically connected.
In the case of the piezoelectric oscillator 1 shown in FIG. 1, by selecting the capacitor C18 having a desired time constant, the timing at which the transistor 16 is turned on can be delayed by a predetermined time from the time when the power supply voltage Vcc is applied. Is possible.
A feature of the present invention is that the timing of applying the activation promoting voltage to the crystal resonator 6 or the oscillation loop circuit is set when the amplitude level of the excitation signal of the crystal resonator 6 is almost at the peak value.
That is, when one period of the excitation signal of the crystal unit 6 in the piezoelectric oscillator 1 is expressed as λ, the amplitude of the excitation signal of the crystal unit 6 becomes a maximum value within a range of 0.1λ before and after the maximum value. Desirably, when the amplitude reaches a maximum value, or as another expression, when the power supply voltage Vcc is applied, the level of the excitation signal of the crystal resonator 6 is generally a minimum value, so that the power supply voltage Vcc is applied. When the cycle is within the range of (2 × λ × (2 × n−1)) / 5) to (3 × λ × (2 × n−1)) / 5 from the time point, the cycle is more preferably (λ × When the transistor 16 is turned on at (2 × n−1)) / 2, the power supply voltage Vcc is applied to the crystal resonator 6 or the oscillation loop circuit as the activation promoting voltage. Can be smoothly promoted (n is a positive integer).
Since the piezoelectric oscillator 1 can be started at the earliest and smoothly at high speed, the period of the piezoelectric oscillator 1 is in the range of (2 × λ) / 5 to (3 × λ) / 5 from the time when the power supply voltage Vcc is applied. The high-speed start-up circuit 3 functions so as to apply the start-up promoting voltage to the crystal resonator 6 or the oscillation loop circuit at λ / 2.
This time setting can be realized by selecting a capacitor C18 having a desired time constant.
Hereinafter, it will be described based on simulation results that the startup characteristics of the piezoelectric oscillator 1 according to the present invention are increased in speed.
2 to 5 show the relationship between the application timing of the activation promoting voltage to the crystal resonator 6 and the activation characteristics of the piezoelectric oscillator 1, and FIG. FIG. 3 shows the excitation signal of the crystal resonator 6 when the excitation signal of the crystal resonator 6 reaches 1λ with reference to the application time of the power supply voltage Vcc. 5 reaches 1.5λ with respect to the application time point of the power supply voltage Vcc, and FIG. 5 shows a circuit 3 for fast startup when the excitation signal of the crystal unit 6 reaches 0.5λ with reference to the application time point of the power supply voltage Vcc. These are the results of simulating the start-up characteristics when the start-up promoting voltage is applied to the crystal resonator 6.
The startup promoting voltage is a voltage at the time when the power supply voltage Vcc increases with application and reaches a peak voltage value.
The excitation signal of the crystal resonator 6 starts from the minimum amplitude level when the power supply voltage Vcc is applied. Therefore, when the power supply voltage Vcc is applied, the excitation signal of the crystal resonator 6 reaches 2λ. The amplitude level is a local minimum.
At this time, when the activation promoting voltage P is applied to the crystal resonator 6, as shown in FIG. 2, immediately after the activation promoting voltage P is applied, the crystal resonator 6 is in a state where the excitation operation is stopped or a sufficient excitation operation does not occur. I understand that
Further, even when the excitation signal of the crystal unit 6 reaches λ, the amplitude level of the crystal unit 6 is a minimum value. When the activation promoting voltage P is applied to the crystal unit 6 at this time, as shown in FIG. It can be understood that immediately after the activation promotion voltage P is applied, the crystal unit 6 is in a state where the excitation operation is stopped or a sufficient excitation operation does not occur.
On the other hand, when the excitation signal of the crystal resonator 6 reaches 1.5λ << (λ × (2 × n-1)) / 2, when n = 2}, the excitation level of the crystal resonator 6 is a maximum value. At this time, if the activation promoting voltage P is applied to the crystal resonator 6, as shown in FIG. 4, the crystal resonator 6 continues its excitation operation even after the activation promoting voltage P is applied, and its amplitude level is high. It can be understood that it becomes a state.
Furthermore, when the excitation signal of the crystal unit 6 reaches 0.5λ << (λ × (2 × n-1)) / 2, when n = 1}, the excitation level of the crystal unit 6 is also the maximum value. At this time, when the activation promoting voltage P is applied to the crystal resonator 6, as shown in FIG. 5, the crystal resonator 6 is strongly excited as compared with the case shown in FIG.
Since there is no condition for the excitation signal of the crystal resonator 6 to reach the maximum value at a time earlier than 0.5λ, the activation promoting voltage at the time of 0.5λ (at the first peak amplitude level). The piezoelectric oscillator 1 can be activated at the highest speed when is applied.
Note that, depending on the error in the circuit setting conditions, it may not always be possible to apply the startup promoting voltage at the time of 0.5λ, but the crystal when the startup promoting voltage is applied at the ideal time of 0.5λ. When the amplitude level of the vibrator 6 is used as a reference, the start-up characteristic of the piezoelectric oscillator 1 is not extremely bad as long as the start-up characteristic has a level attenuation of about 30% or less.
Therefore, FIG. 6 shows the result of a simulation of the application timing of the start-up promoting voltage that can obtain the start-up characteristic with the excitation level attenuated by 30%.
As shown in the figure, to obtain the amplitude level attenuated by 30% with respect to the amplitude level of the excitation signal when the activation promoting voltage P is applied when the excitation signal of the crystal resonator 6 becomes 0.5λ. It has been found that it is sufficient to apply a startup promoting voltage to the crystal resonator or the oscillation loop circuit at a time of about 0.6λ.
Even at the time of about 0.4λ, since the amplitude level is equal to 0.6λ, the same starting characteristics can be obtained.
Therefore, the condition for obtaining a startup characteristic that is almost inferior to the case where the startup acceleration voltage is applied to the maximum value of the excitation signal of the crystal unit 6 is ±± with respect to the maximum value of the excitation signal of the crystal unit 6. 0.1λ, that is, within a range of (2 × λ × (2 × n−1)) / 5) to (3 × λ × (2 × n−1)) / 5 (where n = positive In addition, the condition for obtaining a start characteristic almost inferior to the timing 0.5λ at which the best start characteristic is obtained is in the range of (2 × λ) / 5 to (3 × λ) / 5. Is within.
As described above, the feature of the present invention is that the timing for applying the activation promoting voltage, which is the peak of the power supply voltage Vcc, is set when the excitation signal of the crystal unit 6 reaches the maximum value of the amplitude level. When constructing a piezoelectric oscillator, it is necessary to strictly set the rise time of the start-up promotion voltage and the ON operation time of the switch circuit. To achieve this, circuit adjustment can be performed with high accuracy. A piezoelectric oscillator is desirable.
Therefore, the configuration and the like of a piezoelectric oscillator that can perform circuit adjustment with high accuracy will be described below.
The configuration of the crystal oscillation circuit 2 is the same as that shown in FIG.
In the piezoelectric oscillator 1 shown in FIG. 7, the fast start circuit 3 has a resistor 17 inserted and connected between the collector of the transistor 16 and the power supply Vcc line, and the base of the transistor 20 is connected to the base of the transistor 16. A resistor 21 is inserted and connected between the collector of the transistor 20 and the power supply voltage Vcc line, a resistor 22 is inserted and connected between the base and emitter of the transistor 20, and the base of the transistor 20 and the emitter of the transistor 23 are connected via the resistor 24. In this configuration, the base of the transistor 23 is connected to the connection midpoint of the capacitor 18 and the diode 19.
In the case of the piezoelectric oscillator 1 having such a configuration, in order to adjust the setting of the timing for applying the activation promoting voltage, the time constants of the capacitor 18 and the resistor 24 may be set to desired values. Compared with the case where it does, since there are two adjustment parts, a high adjustment precision is obtained.
The piezoelectric oscillator 1 shown in FIG. 8 includes a PNP-type transistor 16 in the high-speed startup circuit 3, and the collector of the transistor 25 is connected to the base of the transistor 16, and the base of the transistor 16 and the power supply voltage Vcc line are connected. A resistor 26 is inserted and connected, a resistor 27 is inserted and connected between the emitter of the transistor 25 and the ground, a capacitor 18 is inserted and connected between the base of the transistor 25 and the power supply voltage Vcc line, and the base of the transistor 25 is connected. The diode 19 is connected in the reverse direction between the ground and the ground.
In the case of the piezoelectric oscillator 1 having such a configuration, in order to adjust the setting of the timing for applying the activation promoting voltage, the time constants of the capacitor 18, the resistor 26, and the resistor 27 may be set to desired values. Compared with the case where the adjustment is performed only by the adjustment, since there are three adjustment portions, a high adjustment accuracy can be obtained.
In the piezoelectric oscillator 1 shown in FIG. 9, the fast start circuit 3 connects the emitter of the transistor 28 and the other end of the crystal resonator 6 via a series circuit including a resistor 29 and a resistor 30. When the base of the transistor 16 is connected to the connection midpoint, the collector of the transistor 16 is connected to the power supply voltage Vcc line via the resistor 17, the emitter of the transistor 16 is connected to the other end of the crystal unit 6, and the transistor 18 A capacitor 18 is inserted and connected between the base and the power supply voltage Vcc line, and a diode 19 is reversely connected between the base of the transistor 18 and the ground.
Even in the piezoelectric oscillator 1 having such a configuration, the setting of the timing for applying the activation promoting voltage can be adjusted by setting the time constants of the capacitor 18, the resistor 17, and the resistor 29 to desired values. Compared with the case where adjustment is performed only with the capacity 18, etc., a high adjustment system can be obtained because there are three adjustment sections.
Further, as shown in FIG. 10, the crystal oscillation circuit 2 and the fast startup circuit 3 are configured as separate power sources.
In such a configuration, the timing of applying the power supply Vcc ′ itself of the fast start-up circuit 3 can be delayed from the timing of applying the power supply voltage Vcc of the crystal oscillation circuit 2, so that the timing of applying the start-up promoting voltage is set. In the case of setting, it is only necessary to adjust / set the input timing of the power supply voltage Vcc ′ in addition to the adjustment of the time constants of the capacitor 18, the resistor 17, and the resistor 29, so that higher adjustment accuracy can be obtained.

本発明に基づく圧電発振器の一実施例を示す回路図である。It is a circuit diagram which shows one Example of the piezoelectric oscillator based on this invention. 起動促進用電圧の印加タイミングと圧電発振器の起動特性の関係Relationship between the timing of applying the acceleration voltage and the startup characteristics of the piezoelectric oscillator 起動促進用電圧の印加タイミングと圧電発振器の起動特性の関係Relationship between the timing of applying the acceleration voltage and the startup characteristics of the piezoelectric oscillator 起動促進用電圧の印加タイミングと圧電発振器の起動特性の関係Relationship between the timing of applying the acceleration voltage and the startup characteristics of the piezoelectric oscillator 起動促進用電圧の印加タイミングと圧電発振器の起動特性の関係Relationship between the timing of applying the acceleration voltage and the startup characteristics of the piezoelectric oscillator 起動促進用電圧の印加タイミングのシミュレーション結果Simulation results of application timing of startup acceleration voltage 本発明に基づく圧電発振器の他の実施例を示す回路図である。It is a circuit diagram which shows the other Example of the piezoelectric oscillator based on this invention. 本発明に基づく圧電発振器の他の実施例を示す回路図である。It is a circuit diagram which shows the other Example of the piezoelectric oscillator based on this invention. 本発明に基づく圧電発振器の他の実施例を示す回路図である。It is a circuit diagram which shows the other Example of the piezoelectric oscillator based on this invention. 本発明に基づく圧電発振器の他の実施例を示す回路図である。It is a circuit diagram which shows the other Example of the piezoelectric oscillator based on this invention. 従来の圧電発振器を説明する為の回路図である。It is a circuit diagram for demonstrating the conventional piezoelectric oscillator.

符号の説明Explanation of symbols

1圧電発振器、2水晶発振回路、3高速起動用回路、4トランジスタ、5容量、6水晶振動子、7容量、8容量、9抵抗、10トランジスタ、11容量、12抵抗、13定電流回路、14抵抗、15抵抗、16トランジスタ、17抵抗、18容量、19ダイオード、20トランジスタ、21抵抗、22抵抗、23トランジスタ、24抵抗、25トランジスタ、26抵抗、27抵抗、28トランジスタ、29抵抗、30抵抗
1 piezoelectric oscillator, 2 crystal oscillation circuit, 3 high-speed startup circuit, 4 transistor, 5 capacitor, 6 crystal resonator, 7 capacitor, 8 capacitor, 9 resistor, 10 transistor, 11 capacitor, 12 resistor, 13 constant current circuit, 14 Resistor, 15 resistor, 16 transistor, 17 resistor, 18 capacitor, 19 diode, 20 transistor, 21 resistor, 22 resistor, 23 transistor, 24 resistor, 25 transistor, 26 resistor, 27 resistor, 28 transistor, 29 resistor, 30 resistor

Claims (5)

圧電振動子を有する圧電発振回路と、該圧電発振回路の発振ループ回路と電源電圧ラインとを接続する為のスイッチ回路と、該スイッチ回路のON/OFF動作を制御する為の制御回路とを備え、前記電源電圧印加した後、前記圧電振動子の励振信号の振幅レベルが極大値±0.1λの範囲内である時に前記スイッチ回路がON動作するものであることを特徴とする圧電発振器。   A piezoelectric oscillation circuit having a piezoelectric vibrator, a switch circuit for connecting an oscillation loop circuit of the piezoelectric oscillation circuit and a power supply voltage line, and a control circuit for controlling ON / OFF operation of the switch circuit The piezoelectric oscillator is characterized in that, after the power supply voltage is applied, the switch circuit is turned on when the amplitude level of the excitation signal of the piezoelectric vibrator is within the range of the maximum value ± 0.1λ. 圧電振動子を有する圧電発振回路と、該圧電発振回路の発振ループ回路と電源電圧ラインとを接続する為のスイッチ回路と、該スイッチ回路のON/OFF動作を制御する為の制御回路とを備え、前記電源電圧印加した後、前記圧電振動子の励振信号の振幅レベルが極大値の時に前記スイッチ回路がON動作するものであることを特徴とする圧電発振器。   A piezoelectric oscillation circuit having a piezoelectric vibrator, a switch circuit for connecting an oscillation loop circuit of the piezoelectric oscillation circuit and a power supply voltage line, and a control circuit for controlling ON / OFF operation of the switch circuit The piezoelectric oscillator is characterized in that, after the power supply voltage is applied, the switch circuit is turned on when the amplitude level of the excitation signal of the piezoelectric vibrator is a maximum value. 圧電振動子を有する圧電発振回路と、該圧電発振回路の発振ループ回路と電源電圧ラインとを接続する為のスイッチ回路と、該スイッチ回路のON/OFF動作を制御する為の制御回路とを備え、前記電源電圧印加した時点から前記圧電振動子の励振信号の振幅レベルが(2×λ)/5〜(3×λ)/5の範囲内である時に前記スイッチ回路がON動作するものであることを特徴とする圧電発振器。   A piezoelectric oscillation circuit having a piezoelectric vibrator, a switch circuit for connecting an oscillation loop circuit of the piezoelectric oscillation circuit and a power supply voltage line, and a control circuit for controlling ON / OFF operation of the switch circuit The switch circuit is turned on when the amplitude level of the excitation signal of the piezoelectric vibrator is in the range of (2 × λ) / 5 to (3 × λ) / 5 from the time when the power supply voltage is applied. A piezoelectric oscillator characterized by that. 圧電振動子を有する圧電発振回路と、該圧電発振回路の発振ループ回路と電源電圧ラインとを接続する為のスイッチ回路と、該スイッチ回路のON/OFF動作を制御する為の制御回路とを備え、前記電源電圧印加した時点から前記圧電振動子の励振信号の振幅レベルがλ/2の時に前記スイッチ回路がON動作するものであることを特徴とする圧電発振器。   A piezoelectric oscillation circuit having a piezoelectric vibrator, a switch circuit for connecting an oscillation loop circuit of the piezoelectric oscillation circuit and a power supply voltage line, and a control circuit for controlling ON / OFF operation of the switch circuit The piezoelectric oscillator is characterized in that the switch circuit is turned on when the amplitude level of the excitation signal of the piezoelectric vibrator is λ / 2 from the time when the power supply voltage is applied. 前記スイッチ回路が、トランジスタであり、前記制御回路が前記トランジスタのベースと前記電源電圧ラインとの間に接続された容量であり、前記スイッチ回路は、前記容量のチャージ電流によって前記トランジスタにベース電流が供給されON動作するものであり、前記ON動作するタイミングを前記容量の時定数によって設定したものであることを特徴とする請求項1乃至請求項4記載の圧電発振器。
The switch circuit is a transistor, the control circuit is a capacitor connected between a base of the transistor and the power supply voltage line, and the switch circuit has a base current in the transistor by a charge current of the capacitor. 5. The piezoelectric oscillator according to claim 1, wherein the piezoelectric oscillator is supplied and is turned on, and the timing of turning on is set by a time constant of the capacitance.
JP2005285415A 2005-09-29 2005-09-29 Piezoelectric oscillator Expired - Fee Related JP4788269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285415A JP4788269B2 (en) 2005-09-29 2005-09-29 Piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285415A JP4788269B2 (en) 2005-09-29 2005-09-29 Piezoelectric oscillator

Publications (3)

Publication Number Publication Date
JP2007096947A true JP2007096947A (en) 2007-04-12
JP2007096947A5 JP2007096947A5 (en) 2008-10-09
JP4788269B2 JP4788269B2 (en) 2011-10-05

Family

ID=37982068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285415A Expired - Fee Related JP4788269B2 (en) 2005-09-29 2005-09-29 Piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP4788269B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205802A (en) * 1983-05-10 1984-11-21 Fujitsu Ltd Oscillating circuit with start trigger
JPH09270639A (en) * 1996-03-29 1997-10-14 Kinseki Ltd Oscillation circuit
JPH11298247A (en) * 1998-04-16 1999-10-29 Seiko Epson Corp Piezoelectric oscillator, system and method for controlling oscillator
WO2002007302A1 (en) * 2000-07-17 2002-01-24 Toyo Communication Equipment Co., Ltd. Piezoelectric oscillator
JP2002026659A (en) * 2000-07-11 2002-01-25 Mitsubishi Electric Corp Oscillation start unit and oscillation start method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205802A (en) * 1983-05-10 1984-11-21 Fujitsu Ltd Oscillating circuit with start trigger
JPH09270639A (en) * 1996-03-29 1997-10-14 Kinseki Ltd Oscillation circuit
JPH11298247A (en) * 1998-04-16 1999-10-29 Seiko Epson Corp Piezoelectric oscillator, system and method for controlling oscillator
JP2002026659A (en) * 2000-07-11 2002-01-25 Mitsubishi Electric Corp Oscillation start unit and oscillation start method
WO2002007302A1 (en) * 2000-07-17 2002-01-24 Toyo Communication Equipment Co., Ltd. Piezoelectric oscillator

Also Published As

Publication number Publication date
JP4788269B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4922360B2 (en) Piezoelectric oscillator
TWI313962B (en) Method and apparatus for a crystal oscillator to achieve fast start-up time, low power and frequency calibration
JP3048921B2 (en) Crystal oscillation circuit
US8736391B2 (en) Method to shorten crystal oscillator&#39;s startup time
EP3393038B1 (en) Crystal oscillator circuit and method for starting up a crystal oscillator
JP2006129459A (en) Oscillator starting control circuit
JP2010087571A (en) Oscillation circuit and method of controlling the same
US11082006B2 (en) Low power crystal oscillator
JP5592562B2 (en) Oscillator and IC chip
JP4685060B2 (en) Differential oscillator
JP4228527B2 (en) Oscillator
JP2008252783A (en) Piezoelectric oscillator
JP2006295362A (en) Applied voltage control circuit for voltage controlled oscillator circuit
JP4788269B2 (en) Piezoelectric oscillator
JP2843728B2 (en) Pulse width modulation amplifier circuit
JP2006279608A (en) Piezoelectric oscillator
JP2003032039A (en) Piezoelectric oscillation circuit
JP2009290379A (en) Oscillator
KR100723226B1 (en) Crystal oscillation circuit
JPH11284438A (en) Piezoelectric oscillator
JP3255581B2 (en) Oscillator circuit
JP4852969B2 (en) Oscillator circuit
JP5533051B2 (en) Oscillator with signal generator
JP2001185952A (en) Piezoelectric oscillator
JP2004104631A (en) Crystal oscillator circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees