JP2007093568A - Gravitational field motion type gravity measuring system - Google Patents

Gravitational field motion type gravity measuring system Download PDF

Info

Publication number
JP2007093568A
JP2007093568A JP2005310470A JP2005310470A JP2007093568A JP 2007093568 A JP2007093568 A JP 2007093568A JP 2005310470 A JP2005310470 A JP 2005310470A JP 2005310470 A JP2005310470 A JP 2005310470A JP 2007093568 A JP2007093568 A JP 2007093568A
Authority
JP
Japan
Prior art keywords
gravitational field
rotating body
gravity
field curve
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310470A
Other languages
Japanese (ja)
Inventor
Shoji Kasai
祥司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005310470A priority Critical patent/JP2007093568A/en
Publication of JP2007093568A publication Critical patent/JP2007093568A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-weight gravimeter convenient for carrying. <P>SOLUTION: By shifting the standpoint from falling rate of a measuring object, elongation of a spring, and magnetic repulsion to which conventional devices paid attention to gravitational field curve, gravity G is known by change in weight, caused by motion of an object within the gravitational field curve. Power is transmitted from a motor 1 to a rotator 3 which is horizontally arranged via a belt 2 to give a high rotational speed thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、重力場曲線内を運動する物体を使い、重力Gを測定すると言う発想により小型、軽量化を図った重力計に関する。  The present invention relates to a gravimeter that is reduced in size and weight by the idea of measuring gravity G using an object that moves in a gravitational field curve.

従来の重力計は質量のみに着目し、落下速度、バネの伸長、超伝導磁石の反発等などを精密に計測するものである。A conventional gravimeter focuses only on the mass and precisely measures the falling speed, the extension of the spring, the repulsion of the superconducting magnet, and the like.

以下、図1、図2、図3により従来の重力計について説明する。図1において、1は真空の円筒である。この中での落下速度を計測するものである。真空中の落下時間を測定して重力Gを測定する。Hereinafter, a conventional gravimeter will be described with reference to FIGS. In FIG. 1, 1 is a vacuum cylinder. The falling speed in this is measured. Gravity G is measured by measuring the fall time in vacuum.

図2は超伝導物質の磁力反発を利用した計器。2つの超伝導磁石の距離を測定し重力Gを測定する。
図3は精密バネ。バネの先端に基準器を取り付けその伸張から重力Gを測定する。
Figure 2 shows an instrument that uses the magnetic repulsion of a superconducting material. The distance between the two superconducting magnets is measured and the gravity G is measured.
Figure 3 shows a precision spring. A reference device is attached to the tip of the spring and the gravity G is measured from its extension.

以上に述べた従来の重力計は周辺装置も大きく、コストも架かり、運搬には非常な注意を要求された。The conventional gravimeter described above has a large peripheral device, costs, and great care has been required for transportation.

本発明は、このような従来の構成が有していた問題を解決しようとするものであり、軽量かつ持ち運びの利便性を実現することを目的とするものである。The present invention is intended to solve the problems of such a conventional configuration, and aims to realize light weight and convenience of carrying.

本発明は上記目的を達成するために、物理学の重力場曲線を利用する事に着目し、回転体と回転数計測カウンター、回転体駆動用モーターから構成することで上記問題を解決する。In order to achieve the above object, the present invention pays attention to the use of a gravitational field curve of physics, and solves the above problems by comprising a rotating body, a rotational speed measurement counter, and a rotating body driving motor.

上記第1の課題解決手段による作用は次の通りである。宇宙空間より飛来してくる物体が地球の重力場に捉えられたとき重力曲線にそって地球中心に向かい円弧状に回転しながら自由落下してくる。この時その物体に水平方向に速度を加えてやれば、落下状態も変わるという原理を利用する。
本発明の構造は簡素である。モータ1により動力がベルト2を介して水平に配置された回転体3に伝達され高回転速度を加える。
今、地上で重力Gの力を受けている回転体3は地表に留まっているとはいえ、実態は正に重力曲線内で力を受けている状態にあると定義できる。ここで水平方向に回転速度を得る事は、重力曲線内を渦巻き状に運動方向を変えることにつながる。この力がひいては落下状態を変える事になる。さらに水平方向に運動速度が加わるとやがて、重力場曲線内では地球中心外方へ座標を移動しようとする力が働いてくる。この力とG釣り合ったとき、すなわち回転体は鉛直方向にゼログラムである。
この時の回転数を読みとりデータと比較することで、その場所の重力Gが測定できる。
The operation of the first problem solving means is as follows. When an object flying from outer space is caught in the earth's gravitational field, it will fall freely while rotating in a circular arc toward the center of the earth along the gravity curve. At this time, if the speed is applied to the object in the horizontal direction, the principle that the falling state changes is used.
The structure of the present invention is simple. The power is transmitted by the motor 1 to the rotating body 3 disposed horizontally via the belt 2 to apply a high rotational speed.
Although the rotating body 3 receiving the force of gravity G on the ground remains on the ground surface, the actual state can be defined as being in a state of receiving the force within the gravity curve. Here, obtaining the rotational speed in the horizontal direction leads to changing the direction of motion in a spiral shape within the gravity curve. This force eventually changes the fall state. Furthermore, when the motion speed is applied in the horizontal direction, the force to move the coordinates outward from the center of the earth works within the gravitational field curve. When this force is balanced with G, that is, the rotating body is zero gram in the vertical direction.
By reading the rotational speed at this time and comparing it with the data, the gravity G at that location can be measured.

上述したように本発明の重力計は、簡単な構造、堅牢性、利便性、低コストが図れる。  As described above, the gravimeter of the present invention can achieve a simple structure, robustness, convenience, and low cost.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施の形態を図1から5に基づいて説明する  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図4においては、1は回転体を駆動するモーターであり、十分な強度で固定されている。3は回転体でベルトにより駆動される。4は回転センサーで回転体3の回転速度を計測する。回転体の重さが垂直方向に0グラムの時その速度を記録する。5は回転体3の軸受けである。回転体の重量はバネ6が自由伸長時の軸受けの上下位置より判別する。  In FIG. 4, reference numeral 1 denotes a motor for driving the rotating body, which is fixed with sufficient strength. 3 is a rotating body and is driven by a belt. Reference numeral 4 denotes a rotation sensor that measures the rotation speed of the rotating body 3. The speed is recorded when the weight of the rotating body is 0 gram in the vertical direction. Reference numeral 5 denotes a bearing of the rotating body 3. The weight of the rotating body is determined from the vertical position of the bearing when the spring 6 is freely extended.

従来の重力計の原理説明図  Illustration of the principle of a conventional gravimeter 従来の重力計の原理説明図  Illustration of the principle of a conventional gravimeter 従来の重力計の原理説明図  Illustration of the principle of a conventional gravimeter 本発明の実施形態を示す重力計の説明図  Explanatory drawing of a gravimeter showing an embodiment of the present invention 重力場に捕捉された物質の運動説明図  Illustration of the motion of a substance trapped in a gravitational field

符号の説明Explanation of symbols

1 モータ
2 駆動ベルト
3 回転体
4 速度センサー
5 軸受け
6 軸受けバネ
DESCRIPTION OF SYMBOLS 1 Motor 2 Drive belt 3 Rotating body 4 Speed sensor 5 Bearing 6 Bearing spring

Claims (1)

高速で駆動するモータ1にてベルト2を介し回転体3を水平方向に高速で回転させる構造を持つ。この回転体が水平方向に高速回転するとき、地球の重力場曲線内を水平高速運動することに等しい。この運動がさらに速度を増す時、重力場曲線の等高線に留まる事になる。
この時重力場曲線内での地球中心に向かう力と地球軌道外へ移動しようとする力がバランスしてゼログラムの瞬間が起きる。その時の回転体の速度を測定することで重力Gをしる。
The motor 1 that is driven at high speed has a structure in which the rotating body 3 is rotated in the horizontal direction at high speed via the belt 2. When this rotating body rotates at a high speed in the horizontal direction, it is equivalent to a high-speed horizontal movement in the gravity field curve of the earth. As this movement increases further, it will stay on the contours of the gravitational field curve.
At this time, the force toward the center of the earth in the gravitational field curve balances with the force to move out of the earth orbit, resulting in a zero-gram moment. Gravity G is measured by measuring the speed of the rotating body at that time.
JP2005310470A 2005-09-26 2005-09-26 Gravitational field motion type gravity measuring system Pending JP2007093568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310470A JP2007093568A (en) 2005-09-26 2005-09-26 Gravitational field motion type gravity measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310470A JP2007093568A (en) 2005-09-26 2005-09-26 Gravitational field motion type gravity measuring system

Publications (1)

Publication Number Publication Date
JP2007093568A true JP2007093568A (en) 2007-04-12

Family

ID=37979452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310470A Pending JP2007093568A (en) 2005-09-26 2005-09-26 Gravitational field motion type gravity measuring system

Country Status (1)

Country Link
JP (1) JP2007093568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061758A (en) * 2018-07-31 2018-12-21 湖北省地震局 Steel band offset falling bodies central drive mechanism for absolute gravimeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061758A (en) * 2018-07-31 2018-12-21 湖北省地震局 Steel band offset falling bodies central drive mechanism for absolute gravimeter
CN109061758B (en) * 2018-07-31 2023-08-18 湖北省地震局 Steel belt offset falling body center driving mechanism for absolute gravimeter

Similar Documents

Publication Publication Date Title
CN112219089B (en) Position detection system and position detection method
AU2011243299C1 (en) Device for damping of pendular movements and method of using same
US20080184799A1 (en) Device With A Sensor Arrangement
DK2023814T3 (en) A device for contact-defined movement of the at least one magnetic body
CN102879139A (en) Device and method for testing wire-wound moment of rotary table
CN2854513Y (en) Portable digital display horizontal inclinometer
CN102564409B (en) Rotor type micromechanical gyroscope with electromagnetically-driven framework structure
JP2007093568A (en) Gravitational field motion type gravity measuring system
JP2010096044A (en) Motor for rotary device using gravity, and rotary device using magnetism
CN101320097B (en) Double-leaf curved surface wheel type absolute gravimeter falling body quality falling apparatus
CN201707052U (en) Two-axis hydraulic gyroscope measuring device
CN103559818B (en) Direct-current weak current compensation Foucault pendulum experiment instrument
JP2014137298A5 (en)
JP4155546B2 (en) Spherical ultrasonic motor
CN203706516U (en) Cavendish torsion balance experimental platform
CN218781810U (en) High-precision gyroscope for surveying and mapping engineering
KR102360562B1 (en) Magnetic Positioning Mechanism for Fluid Supported Magnetic Rotating Display
CN204882598U (en) Device of flyer speed is measured with law of conservation of angular mo mentum
CN117928484B (en) Measuring device for homeland resource planning
CN205138498U (en) Northern appearance rotation mechanism is sought to top
CN216411594U (en) A reconnaissance ware for communication transmission pipeline
CN105241385B (en) The method for real-time measurement of object vibration displacement in inertial space
JP2019146477A (en) Precession rotation mechanism and power generation device
CN203118301U (en) Magnetic type rigid body rotation inertia experiment instrument
CN202886036U (en) Device for testing wire-wound moment of rotary table