JP2007093409A - Tvoc meter - Google Patents

Tvoc meter Download PDF

Info

Publication number
JP2007093409A
JP2007093409A JP2005283774A JP2005283774A JP2007093409A JP 2007093409 A JP2007093409 A JP 2007093409A JP 2005283774 A JP2005283774 A JP 2005283774A JP 2005283774 A JP2005283774 A JP 2005283774A JP 2007093409 A JP2007093409 A JP 2007093409A
Authority
JP
Japan
Prior art keywords
sample gas
tvoc
meter
oxygen concentration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283774A
Other languages
Japanese (ja)
Other versions
JP2007093409A5 (en
Inventor
Shinya Kobayashi
信弥 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005283774A priority Critical patent/JP2007093409A/en
Publication of JP2007093409A publication Critical patent/JP2007093409A/en
Publication of JP2007093409A5 publication Critical patent/JP2007093409A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TVCO meter capable of carrying out a measurement without being affected by amounts of carbon dioxide and oxygen in a sample gas. <P>SOLUTION: An oxygen concentration of the sample gas G1 flowing at a constant rate is measured by a magnetic type oxygen meter 2, and then the sample gas G1 is burned completely in a burning catalytic oxidizing furnace 3, and an oxygen concentration of the exhausted sample gas G2 is measured by a magnetic type oxygen meter 4, and an oxygen concentration difference is obtained by inputting electric signals E1, E2 proportional to respective measured values into an arithmetic processing device 5, and then the oxygen concentration difference is subjected to an arithmetic process, thereby obtaining the concentration of total volatile organic compounds (TVOC) of the sample gas G1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、大気ガスや雰囲気ガスに含まれる全(総)揮発性有機化合物(TVOC)濃度を測定するTVOC計に関する。   The present invention relates to a TVOC meter that measures the total (total) volatile organic compound (TVOC) concentration contained in atmospheric gas or atmospheric gas.

TVOCは、ベンゼン、キシレン、トルエンなど最大11種類の揮発性有機化合物の総量を指すもので、工場などの事業所における塗装、接着、印刷、化学製品製造等の作業現場や住宅の建築材料や接着材などから放出されるガスが該当するが、これらの揮発性有機化合物は化学物質過敏症やシックスハウス症候群などの原因物質であることが知られている。   TVOC refers to the total amount of volatile organic compounds of up to 11 types such as benzene, xylene, and toluene, and is used as a building material and adhesive for work sites such as painting, bonding, printing, and chemical product manufacturing in offices such as factories. The volatile organic compounds are known to be causative substances such as chemical hypersensitivity and Six House syndrome.

このため各揮発性有機化合物に対し、表1に示す室内環境ガイドラインとしての規制値が国の指針値として定められている(例えば、非特許文献1参照。)。

Figure 2007093409
特に、TVOCに対しては、0.4mg/m3(新築時1mg/m3)が国の暫定目標値として定められている。また、環境省告示第61号(平成17年6月10日)による大気汚染防止法により、TVOCを水素炎イオン化形分析計(FID計)(例えば、特許文献1参照。)または非分散型赤外線ガス分析計(NDIR計)を用いて測定するよう通達されている。 For this reason, for each volatile organic compound, a regulation value as an indoor environment guideline shown in Table 1 is defined as a national guideline value (see, for example, Non-Patent Document 1).
Figure 2007093409
In particular, for TVOC, 0.4 mg / m 3 (1 mg / m 3 at the time of new construction) is set as a provisional target value for the country. Further, according to the Air Pollution Control Act of Ministry of the Environment Notification No. 61 (June 10, 2005), TVOC is converted into a flame ionization analyzer (FID meter) (for example, see Patent Document 1) or non-dispersive infrared. It is notified to measure using a gas analyzer (NDIR meter).

図3にFID計を用いてTVOC濃度を測定する場合の構成例を示す。このFID計は石英製のノズル101の先端部と電極となるコレクタ102を反応炉103内に収容し、前記ノズル101に約300Vの高電圧104を前記コレクタ102に対して印加したものである。試料ガスG1と水素ガスH1を供給し、前記反応炉103に空気A1を供給するものである。前記ノズル101の先端の水素炎105中で下記反応式で表される反応が行われる。
CH+O2→CHO++e-
すなわち、試料ガスG1中の揮発性有機化合物が水素炎105中で燃焼し、有機物化合物濃度に比例したイオン電流がコレクタ102に捕集される。この電流をデータ処理装置106によりTVOC濃度に変換し出力・表示している。
FIG. 3 shows a configuration example in the case of measuring the TVOC concentration using an FID meter. In this FID meter, the tip of a quartz nozzle 101 and a collector 102 serving as an electrode are accommodated in a reaction furnace 103, and a high voltage 104 of about 300 V is applied to the nozzle 102 to the collector 102. The sample gas G1 and the hydrogen gas H1 are supplied, and the air A1 is supplied to the reaction furnace 103. In the hydrogen flame 105 at the tip of the nozzle 101, a reaction represented by the following reaction formula is performed.
CH + O 2 → CHO + + e -
That is, the volatile organic compound in the sample gas G1 burns in the hydrogen flame 105, and an ionic current proportional to the organic compound concentration is collected in the collector 102. This current is converted into a TVOC concentration by the data processing device 106 and output / displayed.

図4に単セル方式のNDIR計を用いてTVOC濃度を測定する場合の構成例を示す。このNDIR計は、試料ガスG1をバイパスするバイパス流路201と酸化触媒202が介在する酸化触媒流路203と、前記バイパス流路201と酸化触媒流路203を切り替える切替弁204と、前記切替弁204からの試料ガスG1を収容する試料セル205、赤外線を放射する光源206、静電容量型の検出器207及び前記切替弁204を交互に切り替えるとともに、前記検出器207からの電気信号を試料ガスG1のTVOC濃度に変換処理する信号変換器208から構成されている。前記バイパス流路201からの試料ガスG1中のCO2濃度と酸化触媒流路203を経由した試料ガスのCO2濃度を測定しそのCO2濃度差から揮発性有機化合物濃度を求めるものである。 FIG. 4 shows a configuration example in the case of measuring the TVOC concentration using a single cell type NDIR meter. The NDIR meter includes a bypass channel 201 that bypasses the sample gas G1 and an oxidation catalyst channel 203 that includes an oxidation catalyst 202, a switching valve 204 that switches between the bypass channel 201 and the oxidation catalyst channel 203, and the switching valve. The sample cell 205 that stores the sample gas G1 from 204, the light source 206 that emits infrared rays, the capacitance type detector 207, and the switching valve 204 are alternately switched, and the electrical signal from the detector 207 is converted into the sample gas. The signal converter 208 performs conversion processing to the TVOC density of G1. And requests the CO 2 concentration and CO 2 concentration measured volatile organic compound concentration from the CO 2 concentration difference of sample gas through the oxidation catalyst flow path 203 in the sample gas G1 from the bypass passage 201.

シックハウス(室内空気汚染)問題に関する検討会中間報告書の第4回〜第5回のまとめについて、厚生省、平成12年12月22日Ministry of Health and Welfare, December 22, 2000, regarding the 4th to 5th summary of the interim report of the study group on the sick house (indoor air pollution) issue 特開2003−202324号公報JP 2003-202324 A

上記のFID計を使用してTVOC濃度を測定する場合、試料ガス中の酸素濃度によって測定値が変わる、所謂、酸素干渉を受けるという問題がある。また、NDIR計を使用してTVOC濃度を測定する場合、原理上試料ガス中に二酸化炭素が大量に含まれている燃焼排ガス中のTVOC濃度の測定は困難であるという問題がある。
本発明は、このような事情に鑑みてなされたものであって、試料中に含まれる酸素や二酸化炭素の影響を受けずにTVOC濃度を測定できるTVOC計を提供することを目的とする。
When the TVOC concentration is measured using the FID meter, there is a problem that the measured value changes depending on the oxygen concentration in the sample gas, that is, so-called oxygen interference occurs. Further, when the TVOC concentration is measured using an NDIR meter, there is a problem that it is difficult to measure the TVOC concentration in combustion exhaust gas in which a large amount of carbon dioxide is contained in the sample gas in principle.
The present invention has been made in view of such circumstances, and an object thereof is to provide a TVOC meter capable of measuring a TVOC concentration without being affected by oxygen or carbon dioxide contained in a sample.

上記の目的を達成するため、本発明のTVOC計は試料ガスを一定流量吸入する吸入手段と、吸入された試料ガスの酸素濃度を測定する測定手段と、測定後の試料ガスを酸化燃焼させる酸化燃焼手段と、酸化燃焼後の試料ガスの酸素濃度を測定する測定手段と、酸化燃焼前後の試料ガスの酸素濃度差を算出し、この酸素濃度差に補正演算を行い試料ガス中の全揮発性有機化合物濃度を算出する演算手段とを備えているものである。   In order to achieve the above object, the TVOC meter according to the present invention includes a suction means for sucking a sample gas at a constant flow rate, a measurement means for measuring the oxygen concentration of the sucked sample gas, and an oxidation for oxidizing and burning the sample gas after measurement. Combustion means, measurement means for measuring the oxygen concentration of the sample gas after oxidative combustion, and the difference in oxygen concentration between the sample gas before and after oxidative combustion are calculated. And an arithmetic means for calculating the organic compound concentration.

本発明のTVOC計は試料ガスを酸化燃焼し、その前後の酸素濃度を酸素計で測定し、その酸素濃度の減少量を測定することによって試料ガス中に含まれる酸素や二酸化炭素の影響を受けずにTVOCの濃度を測定することができる。   The TVOC meter of the present invention is affected by the oxygen and carbon dioxide contained in the sample gas by oxidizing and burning the sample gas, measuring the oxygen concentration before and after that with the oxygen meter, and measuring the amount of decrease in the oxygen concentration. The concentration of TVOC can be measured.

本発明が提供する最良の形態のTVOC計は、試料ガスを一定流量吸入する吸入手段と、吸入された試料ガスの酸素濃度を測定する測定手段と、測定後の試料ガスを酸化燃焼させる酸化燃焼手段と、酸化燃焼後の試料ガスの酸素濃度を測定する測定手段と、酸化燃焼前後の試料ガスの酸素濃度差を算出し、この酸素濃度差に補正演算を行い試料ガス中の全揮発性有機化合物濃度を算出する演算手段とを備えているものである。   The TVOC meter of the best mode provided by the present invention includes an inhaling means for inhaling a sample gas at a constant flow rate, a measuring means for measuring the oxygen concentration of the inhaled sample gas, and oxidative combustion for oxidizing and burning the sample gas after measurement. Means, measuring means for measuring the oxygen concentration of the sample gas after oxidative combustion, and calculating the oxygen concentration difference between the sample gas before and after oxidative combustion, and performing a correction operation on the oxygen concentration difference to calculate the total volatile organics in the sample gas And an arithmetic means for calculating the compound concentration.

以下、図面を参照しつつ本発明の実施例の形態について述べる。図1は本発明の実施例によるTVOC計の概略構成図である。本TVOC計は、試料ガスG1を一定流量吸入するための流量制御系1と、吸入された試料ガスG1の酸素濃度O1を測定する磁気式酸素計2と、該磁気式酸素計2を通過した試料ガスG1中の有機化合物を完全燃焼して炭酸ガスと水に分解する燃焼触媒酸化炉3と、該燃焼触媒酸化炉3を通過した試料ガスG2の酸素濃度O2を測定する磁気式酸素計4と、前記磁気式酸素計2、4の電気信号E1、E2を減算してTVOC濃度に変換する演算処理装置5から構成されている。前記流量制御系1は、ガス流路11中に配設された流量制御弁12及び流量センサ13aと、流量制御装置13と、ポンプ14から構成されている。また、前記燃焼触媒酸化炉3は、石英ガラス製の燃焼管31と、その下部から順次収容されている白金網32、石英ウール33及び白金触媒34等から構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a TVOC meter according to an embodiment of the present invention. This TVOC meter passed through the flow rate control system 1 for sucking the sample gas G1 at a constant flow rate, the magnetic oximeter 2 for measuring the oxygen concentration O1 of the sucked sample gas G1, and the magnetic oximeter 2 A combustion catalytic oxidation furnace 3 that completely burns an organic compound in the sample gas G1 to decompose it into carbon dioxide gas and water, and a magnetic oximeter 4 that measures the oxygen concentration O2 of the sample gas G2 that has passed through the combustion catalytic oxidation furnace 3 And an arithmetic processing unit 5 that subtracts the electric signals E1 and E2 of the magnetic oximeters 2 and 4 and converts them into a TVOC concentration. The flow rate control system 1 includes a flow rate control valve 12 and a flow rate sensor 13 a disposed in the gas flow path 11, a flow rate control device 13, and a pump 14. The combustion catalyst oxidation furnace 3 includes a combustion tube 31 made of quartz glass, a platinum net 32, a quartz wool 33, a platinum catalyst 34, and the like sequentially accommodated from below.

前記磁気式酸素計2、4として公知の磁気風方式ドーナツ状測定室型や磁気風方式円筒測定室型などの磁気式酸素計を用いることができる。図2は磁気風方式ドーナツ状測定室型の磁気式酸素計2の構成を示すもので、ガラス製のリングセル21と、バイパス管22と、コイル23と、磁石24と、ブリッジ回路25とで構成されている。前記リングセル21には、リング状の試料ガス流路26の対称位置に試料ガスの入口27、出口28が配設されている。前記コイル23の中央から左右は前記ブリッジ回路25の各一辺を形成している。なお、磁気式酸素計4も磁気式酸素計2と同様の構成である。   As the magnetic oximeters 2 and 4, a known magnetic oximeter such as a magnetic wind type donut-shaped measurement chamber type or a magnetic wind type cylindrical measurement chamber type can be used. FIG. 2 shows the configuration of a magnetic oxymeter 2 of a magnetic wind type donut-shaped measurement chamber. A glass ring cell 21, a bypass pipe 22, a coil 23, a magnet 24, and a bridge circuit 25 are shown. It is configured. The ring cell 21 is provided with a sample gas inlet 27 and an outlet 28 at symmetrical positions of a ring-shaped sample gas flow path 26. The left and right sides of the coil 23 form one side of the bridge circuit 25. The magnetic oximeter 4 has the same configuration as the magnetic oximeter 2.

上記構成において試料ガスG1はポンプ14により吸引されるとともにその流量は流量センサ13aにより検出され、この検出信号は流量制御装置13内の流量設定値と比較され、その設定流量となるように流量制御弁12により制御される。この試料ガスG1を磁気式酸素計2の入口27から出口28に流すと、試料ガスG1中の酸素は前記磁石24で形成される磁界に吸引されることにより、バイパス管22の内部で左から右方向に酸素の磁気風が生じ、コイル23の左右の抵抗値に差が生じ、不平衡電圧が電気信号E1として検出される。この電気信号E1は一定流量の試料ガスG1に対して検出されるのでその大きさは酸素濃度O1に比例する。   In the above configuration, the sample gas G1 is sucked by the pump 14 and the flow rate thereof is detected by the flow rate sensor 13a. This detection signal is compared with the flow rate set value in the flow rate control device 13, and the flow rate control is performed so that the set flow rate is obtained. Controlled by valve 12. When this sample gas G1 is caused to flow from the inlet 27 to the outlet 28 of the magnetic oximeter 2, the oxygen in the sample gas G1 is attracted by the magnetic field formed by the magnet 24, thereby causing the oxygen inside the bypass pipe 22 to be viewed from the left. Oxygen magnetic wind is generated in the right direction, a difference occurs between the left and right resistance values of the coil 23, and an unbalanced voltage is detected as the electric signal E1. Since the electric signal E1 is detected for the sample gas G1 having a constant flow rate, the magnitude thereof is proportional to the oxygen concentration O1.

そして前記磁気式酸素計2から送出された試料ガスG1は次に前記燃焼触媒酸化炉3に供給される。この試料ガスG1は、燃焼触媒酸化炉3内の白金触媒34に接触して約680℃の完全燃焼温度で燃焼され、試料ガスG1は酸素の一部が揮発性有機化合物と結合して炭酸ガスおよび水に変換され試料ガスG2となって前記磁気式酸素計4に供給される。   The sample gas G1 sent from the magnetic oximeter 2 is then supplied to the combustion catalytic oxidation furnace 3. This sample gas G1 comes into contact with the platinum catalyst 34 in the combustion catalyst oxidation furnace 3 and burns at a complete combustion temperature of about 680 ° C., and the sample gas G1 combines carbon dioxide with a part of oxygen combined with a volatile organic compound. And converted into water to become the sample gas G2 and supplied to the magnetic oximeter 4.

前記試料ガスG2は前記磁気式酸素計4において、前記磁気式酸素計2と同様な測定方法により酸素濃度O2に比例した電気信号E2として検出される。前記電気信号E1、E2は演算処理装置5によって引き算(E1−E2)が行われるとともに、その差ΔEを例えば予め実験的に求めた下記演算式(1)に入力することにより、TVOC濃度が算出され出力・表示される。
Y=f(ΔE)……………(1)
なお上式において、YはTVOC濃度を示し、f(ΔE)はΔEの関数を示す。
The sample gas G2 is detected by the magnetic oximeter 4 as an electric signal E2 proportional to the oxygen concentration O2 by the same measurement method as the magnetic oximeter 2. The electric signals E1 and E2 are subtracted (E1−E2) by the arithmetic processing unit 5 and the difference ΔE is input to, for example, the following arithmetic expression (1) obtained experimentally in advance to calculate the TVOC concentration. Is output and displayed.
Y = f (ΔE) (1)
In the above equation, Y represents the TVOC concentration, and f (ΔE) represents a function of ΔE.

本発明のTVOC計の構成は上記実施例に限定されるものではなく、例えば試料ガスG1、G2中の酸素濃度の測定に公知のジルコニア酸素計を始め各種の酸素計を使用することもできる。また、図1に示した構成部品を一台の筐体内に収容してもよい。そして試料ガス中の酸素量が少ない場合は、酸素又は空気を試料ガスに加えて供給してもよい。   The configuration of the TVOC meter of the present invention is not limited to the above embodiment, and various oximeters including a known zirconia oximeter can be used for measuring the oxygen concentration in the sample gases G1 and G2, for example. Moreover, you may accommodate the component shown in FIG. 1 in one housing | casing. When the amount of oxygen in the sample gas is small, oxygen or air may be added to the sample gas and supplied.

本発明は工場などの事業所における塗装、接着、印刷、化学製品製造等の作業現場や住宅の建築材料や接着材などから放出されるガス中のTVOC濃度の測定に用いられる。   The present invention is used for measuring the concentration of TVOC in a gas emitted from a work site such as painting, bonding, printing, and chemical product manufacturing at a business site such as a factory, or from building materials or adhesives in a house.

実施例によるTVOC計の構成を示す図である。It is a figure which shows the structure of the TVOC meter by an Example. 実施例に係わる磁気式酸素計の構成を示す図である。It is a figure which shows the structure of the magnetic-type oximeter concerning an Example. FID計を用いてTVOC濃度を測定する場合の構成例を示す図である。It is a figure which shows the structural example in the case of measuring TVOC density | concentration using an FID meter. NDIR計を用いてTVOC濃度を測定する場合の構成例を示す図である。It is a figure which shows the structural example in the case of measuring TVOC density | concentration using an NDIR meter.

符号の説明Explanation of symbols

1 流量制御系
2 磁気式酸素計
3 燃焼触媒酸化炉
4 磁気式酸素計
5 演算処理装置
11 ガス流路
12 流量制御弁
13 流量制御装置
13a 流量センサ
14 ポンプ
21 リングセル
22 バイパス管
23 コイル
24 磁石
25 ブリッジ回路
26 試料ガス流路
27 入口
28 出口
31 燃焼管
32 白金網
33 石英ウール
34 白金触媒
101 ノズル
102 コレクタ
103 反応炉
104 高電圧
105 水素炎
106 データ処理装置
201 バイパス流路
202 酸化触媒
203 酸化触媒流路
204 切替弁
205 試料セル
206 光源
207 検出器
208 信号変換器
A1 空気
E1、E2 電気信号
G1、G2 試料ガス
H1 水素ガス
DESCRIPTION OF SYMBOLS 1 Flow control system 2 Magnetic oxygen meter 3 Combustion catalyst oxidation furnace 4 Magnetic oxygen meter 5 Arithmetic processing device 11 Gas flow path 12 Flow control valve 13 Flow control device 13a Flow sensor 14 Pump 21 Ring cell 22 Bypass pipe 23 Coil 24 Magnet 25 Bridge circuit 26 Sample gas flow path 27 Inlet 28 Outlet 31 Combustion pipe 32 Platinum net 33 Quartz wool 34 Platinum catalyst 101 Nozzle 102 Collector 103 Reactor 104 High voltage 105 Hydrogen flame 106 Data processing device 201 Bypass flow path 202 Oxidation catalyst 203 Oxidation Catalyst flow path 204 Switching valve 205 Sample cell 206 Light source 207 Detector 208 Signal converter A1 Air E1, E2 Electrical signal G1, G2 Sample gas H1 Hydrogen gas

Claims (1)

試料ガスを一定流量吸入する吸入手段と、吸入された試料ガスの酸素濃度を測定する測定手段と、測定後の試料ガスを酸化燃焼させる酸化燃焼手段と、酸化燃焼後の試料ガスの酸素濃度を測定する測定手段と、酸化燃焼前後の試料ガスの酸素濃度差を算出し、この酸素濃度差に補正演算を行い試料ガス中の全揮発性有機化合物濃度を算出する演算手段とを備えていることを特徴とするTVOC計。 Inhalation means for inhaling the sample gas at a constant flow rate, measurement means for measuring the oxygen concentration of the inhaled sample gas, oxidation combustion means for oxidizing and burning the sample gas after measurement, and oxygen concentration of the sample gas after oxidation combustion Measuring means for measuring, and calculating means for calculating the difference in oxygen concentration of the sample gas before and after oxidative combustion and calculating the total volatile organic compound concentration in the sample gas by correcting the difference in oxygen concentration TVOC meter characterized by
JP2005283774A 2005-09-29 2005-09-29 Tvoc meter Pending JP2007093409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283774A JP2007093409A (en) 2005-09-29 2005-09-29 Tvoc meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283774A JP2007093409A (en) 2005-09-29 2005-09-29 Tvoc meter

Publications (2)

Publication Number Publication Date
JP2007093409A true JP2007093409A (en) 2007-04-12
JP2007093409A5 JP2007093409A5 (en) 2007-12-20

Family

ID=37979308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283774A Pending JP2007093409A (en) 2005-09-29 2005-09-29 Tvoc meter

Country Status (1)

Country Link
JP (1) JP2007093409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658304A (en) * 2019-09-06 2020-01-07 暨南大学 Gas concentration quantification system and method based on catalytic conversion
CN117871451A (en) * 2024-03-12 2024-04-12 南京霍普斯科技有限公司 System for measuring combustion temperature and monitoring combustible explosive gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352058A (en) * 1986-08-22 1988-03-05 Karuto Kk Detection of concentration of organic gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352058A (en) * 1986-08-22 1988-03-05 Karuto Kk Detection of concentration of organic gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658304A (en) * 2019-09-06 2020-01-07 暨南大学 Gas concentration quantification system and method based on catalytic conversion
CN117871451A (en) * 2024-03-12 2024-04-12 南京霍普斯科技有限公司 System for measuring combustion temperature and monitoring combustible explosive gas

Similar Documents

Publication Publication Date Title
Utriainen et al. Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors
EP2516983B1 (en) Stack gas measurement device and method therefor
AU2010230254B2 (en) Selective detector for carbon monoxide
CN205620345U (en) Be used for CO to appear measuring oxygen sensor suddenly
JPH07225214A (en) Nox measuring apparatus
EP1327880A3 (en) Method and apparatus for monitoring gases in a combustion system
CN106802333A (en) A kind of NMHC on-line measuring device
Soo Gas sensors for monitoring air pollution
JP2011529192A (en) Air quality measuring device
JP2007093409A (en) Tvoc meter
JP2004157007A (en) Method and apparatus for measuring volatile organic compound
Cho et al. Detection of mixed BTEX with suppressed reaction specificity using tin oxide nanoparticles functionalized by multi-metalloporphyrins
WO2019154779A1 (en) Ozone and/or nitrogen dioxide sensing apparatus
JP2013083650A (en) Calibration technology for calibrating zirconium oxide oxygen sensor and calibrated sensor
Wama et al. Highly sensitive impedance-based propene sensor using stabilized zirconia and zinc oxide sensing-electrode
CN114113453B (en) Apparatus, system and method for detecting total organic carbon content in gas
JP2012042222A (en) Solid electrolyte-based co sensor
Kida et al. Preparation and measurement of standard organic gases using a diffusion method and a NASICON-based CO 2 sensor combined with a combustion catalyst
Kondrat’Eva et al. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions
Borecki et al. Miniature gas sensors heads and gas sensing devices for environmental working conditions—A review
JP4908683B2 (en) Nitric oxide analyzer and sensor element for measuring nitric oxide
JP2000155117A (en) Combustion oxidizing type element analyzer
CN214503446U (en) VOCs gas detection system based on ultraviolet light is supplementary goes on
CN215263127U (en) Total active nitrogen oxide NOy&#39;s monitoring facilities
Ghasemi Evaluation of Physical and Chemical Parameters Effects on Different Ozone Monitoring Technologies

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803