JP2007093343A - X-ray inspection device - Google Patents

X-ray inspection device Download PDF

Info

Publication number
JP2007093343A
JP2007093343A JP2005281990A JP2005281990A JP2007093343A JP 2007093343 A JP2007093343 A JP 2007093343A JP 2005281990 A JP2005281990 A JP 2005281990A JP 2005281990 A JP2005281990 A JP 2005281990A JP 2007093343 A JP2007093343 A JP 2007093343A
Authority
JP
Japan
Prior art keywords
measurement
ray
measuring
measurement point
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005281990A
Other languages
Japanese (ja)
Other versions
JP2007093343A5 (en
JP4742782B2 (en
Inventor
Yoshihiro Tatezawa
嘉浩 立澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005281990A priority Critical patent/JP4742782B2/en
Publication of JP2007093343A publication Critical patent/JP2007093343A/en
Publication of JP2007093343A5 publication Critical patent/JP2007093343A5/ja
Application granted granted Critical
Publication of JP4742782B2 publication Critical patent/JP4742782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray inspection device capable of inputting each measuring point by simple input operation without requiring teaching, when successively measuring measuring objects that have identical shape. <P>SOLUTION: This device is equipped with a measuring position information input control part 33 for placing a plurality of measuring object groups S on a stage 14, by using a loading tool 15 for regularly arraying the measuring object groups having the same shape by fixed intervals, and urging the input of measuring position information containing a first-time measuring point position, a distance between measuring points and the repeated number of the times of measurement; a measuring point position calculation part 34 for calculating each measuring point position, based on the inputted measuring position information; and a stage-driving mechanism control part 35 for moving successively each calculated measuring point position into a measuring visual field of an X-ray measuring optical system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、工業製品などの透視検査またはCT検査などを行うためのX線検査装置に関し、さらに詳細には、同一形状の量産品を順次、X線測定視野内に移動して測定を行うX線検査装置に関する。   The present invention relates to an X-ray inspection apparatus for performing fluoroscopy inspection or CT inspection of industrial products and the like, and more specifically, X measurement is performed by sequentially moving mass-produced products having the same shape into an X-ray measurement field of view. The present invention relates to a line inspection apparatus.

工業製品などの透視検査を行うX線検査装置では、X線発生装置のX線源に対向するようにして、イメージインテンシファイア(以下、IIと略す)とCCDカメラとを組み合わせたX線検出器を配置し、さらにX線源とX線検出器との間に移動可能なステージを配置して、ステージ上に被測定物を載置するようにしてある。そして、ステージを移動して測定視野内(X線通過領域)に被測定物を移動し、X線測定を行う。最近はII、CCDカメラからなるX線検出器に代えて、フラットパネルX線検出器を使用したX線検査装置も利用されている。   In X-ray inspection equipment that performs fluoroscopic inspection of industrial products and the like, X-ray detection is performed by combining an image intensifier (hereinafter abbreviated as II) and a CCD camera so as to face the X-ray source of the X-ray generator. A movable stage is disposed between the X-ray source and the X-ray detector, and the object to be measured is placed on the stage. Then, the stage is moved to move the object to be measured within the measurement visual field (X-ray passage region), and X-ray measurement is performed. Recently, an X-ray inspection apparatus using a flat panel X-ray detector is used instead of an X-ray detector composed of II and CCD cameras.

X線検査では、多数の測定点を次々と測定することがある。このような場合に、産業用ロボットに予め検査対象物の複数の測定点をティーチングしておき、産業用ロボットにより検査対象物を移動して各測定点の透視像を得るようにした装置が開示されている(特許文献1参照)。ティーチングとは、予め、搬送ロボットなどの装置の駆動機構を操作して測定部位を実際に測定視野内に移動し、そのときの位置情報(あるいは位置情報とともに他のX線条件や画像処理条件)を記憶させることをいう。   In X-ray inspection, a large number of measurement points may be measured one after another. In such a case, an apparatus is disclosed in which a plurality of measurement points of an inspection object are taught in advance in an industrial robot, and the inspection object is moved by the industrial robot to obtain a perspective image of each measurement point. (See Patent Document 1). Teaching is performed by operating a driving mechanism of a device such as a transfer robot in advance to actually move the measurement site into the measurement field of view, and the position information at that time (or other X-ray conditions and image processing conditions together with the position information). Is to remember.

また、X線検査では同一品種の大量生産品を、次々と測定視野内に移動して測定を行うことも多い。このような場合に、同一品種の複数の製品をステージ上に搭載するためのパレットと呼ばれる専用の搭載治具が用いられる。パレットには、製品をパレット上で縦横に一定間隔で規則正しく配列し、かつ、製品の搭載位置が変動しないようにするための位置決め手段が設けられている。例えば図6に示すように、製品(被測定物S)の外形形状に合わせた凹部を一定間隔ごとに形成しておき、各々の凹部に製品を入れるようにして位置決めを行うようにしてある。   In X-ray inspection, mass production products of the same type are often moved one after another into the measurement field of view for measurement. In such a case, a dedicated mounting jig called a pallet for mounting a plurality of products of the same product type on the stage is used. The pallet is provided with positioning means for regularly arranging the products vertically and horizontally on the pallet at regular intervals and preventing the product mounting position from fluctuating. For example, as shown in FIG. 6, recesses that match the outer shape of the product (measurement object S) are formed at regular intervals, and positioning is performed by placing the product in each recess.

パレットに搭載した複数の製品のX線検査を行う場合は、まず、初回測定対象となる製品についての検査部位の位置座標をティーチングにより装置に記憶し、続いて、次回測定対象となる製品の位置座標について同様に検査部位をティーチングにより記憶し、以下同様にして、すべてのパレット搭載製品の検査部位について、ひとつひとつティーチングにより記憶する操作を行う。ティーチングにより取得した位置情報は、シーケンス情報として記憶され、X線測定が開始されると、このシーケンス情報に基づいてX線測定視野内に各検査部位を順次移動させて次々と測定を行う。
(特許文献1参照)。
特開2001−153818号公報
When performing X-ray inspection of multiple products mounted on the pallet, first, the position coordinates of the inspection site for the product to be measured for the first time are stored in the device by teaching, and then the position of the product to be measured for the next time Similarly, the inspection part is memorized by teaching with respect to the coordinates, and in the same manner, the inspection part of all the pallet-mounted products is memorized by teaching one by one. The position information acquired by teaching is stored as sequence information, and when X-ray measurement is started, each examination site is sequentially moved within the X-ray measurement field based on this sequence information, and measurement is performed one after another.
(See Patent Document 1).
JP 2001-153818 A

パレットに搭載された多数の製品を、ティーチングを利用して次々と測定する場合、すべての製品に対し、ひとつひとつの製品の位置座標をティーチングにより記憶させておく必要があり、非常に手間がかかった。
また、パレット上には、同一形状の製品が規則正しく並んでおり、また、一般にX線検査装置の測定視野は狭く、表示装置の表示画面には、パレットの全体像ではなく局所的な透視X線画像が表示されるため、ティーチングの際に、その時点で表示画面に表示されている製品を誤って別の位置の製品であると認識し、その結果、測定されない製品が生じたり二重に測定される製品が生じたりするおそれがある。
When measuring many products mounted on a pallet one after another using teaching, it is necessary to memorize the position coordinates of each product by teaching for all products, which is very laborious. .
In addition, products of the same shape are regularly arranged on the pallet, and the measurement field of view of the X-ray inspection apparatus is generally narrow, and the local fluoroscopic X-ray is displayed on the display screen of the display device instead of the whole image of the pallet. Since the image is displayed, during teaching, the product currently displayed on the display screen is mistakenly recognized as a product at a different position, resulting in a product that is not measured or double measurement. May be produced.

そこで、本発明は、同一形状の被測定物群(製品)を規則的に配列する搭載治具(パレット)を用いて、これら被測定物を次々と測定する場合に、すべての被測定物の測定点についてティーチングを行う手間をなくし、さらにティーチング時に生じやすい位置混同のミスをなくすようにしたX線検査装置を提供することを目的とする。   Therefore, the present invention uses a mounting jig (pallet) that regularly arranges a group of measured objects (products) of the same shape, and when measuring these measured objects one after another, all the measured objects are measured. It is an object of the present invention to provide an X-ray inspection apparatus that eliminates the trouble of teaching a measurement point and further eliminates position confusion errors that are likely to occur during teaching.

上記課題を解決するためになされた本発明のX線検査装置は、同一形状の被測定物群を一定間隔ごとに規則的に配列する搭載治具を用いてステージ上に複数の被測定物群を載置し、ステージを挟んで対向配置されたX線源とX線検出器とからなるX線測定光学系の測定視野内に各被測定物が順次移動するようにステージ駆動機構を制御しつつステージ上の各被測定物の透視X線像を撮影するX線検査装置において、初回測定点位置、測定点間距離、測定繰り返し回数を含む測定位置情報の入力を促す測定位置情報入力制御部と、入力された測定位置情報に基づいて各測定点位置を算出する測定点位置算出部と、算出された各測定点位置を順次X線測定光学系の測定視野内に移動するステージ駆動機構制御部とを備えるようにしている。   An X-ray inspection apparatus according to the present invention made to solve the above-described problems includes a plurality of object groups on a stage using a mounting jig that regularly arranges object groups having the same shape at regular intervals. The stage drive mechanism is controlled so that each object to be measured moves sequentially within the measurement field of view of the X-ray measurement optical system consisting of an X-ray source and an X-ray detector placed opposite to each other across the stage. In the X-ray inspection apparatus that captures a fluoroscopic X-ray image of each object to be measured on the stage, a measurement position information input control unit that prompts input of measurement position information including the initial measurement point position, the distance between the measurement points, and the number of measurement repetitions A measurement point position calculation unit that calculates each measurement point position based on the input measurement position information, and a stage drive mechanism control that sequentially moves the calculated measurement point positions into the measurement field of view of the X-ray measurement optical system And so on.

本発明によれば、測定位置情報入力制御部は初回測定点位置、測定点間距離、測定繰り返し回数を含む測定位置情報の入力を促す。具体的には、測定位置情報の入力画面を表示して、操作者に初回測定点位置、測定点間距離、測定繰り返し回数の入力を促す。これら3つの入力パラメータうち、初回測定点位置の入力は、入力画面上に初回測定対象の被測定物が映る画像を表示し、入力画面上で位置を指定するようにするのが望ましいが、位置指定ができるのであれば他の方法でもよい。例えば、初回測定点の位置座標が予めわかっているのであれば、直接座標データを入力するようにしてもよい。また、測定点間距離、測定繰り返し回数の入力パラメータは、入力画面上から直接数値で入力するのが望ましいが、これに限られない。例えば、測定点間距離は、入力画面上に隣り合う2つの被測定物が映る画像を表示し、2つの被測定物それぞれの測定点を指定する操作により、2つの測定点の座標差から測定点間距離を導きだすようにしてもよい。
入力される測定点間距離は、搭載治具上の被測定物間の間隔に一致し、測定繰り返し回数は被測定物の配列数に一致する。なお、搭載治具上に被測定物が一次元配置される場合は、X方向の測定点間距離とX方向の測定繰り返し回数の入力を促し、被測定物が二次元配置される場合は、X方向とY方向との測定点間距離、測定繰り返し回数の入力を促す。操作者によるこれら入力パラメータの入力が完了すると、測定点位置算出部は、初回測定点位置を基準に、測定点間の移動距離、測定繰り返し回数に基づいて、次々と各測定点の位置座標を算出する。そして、ステージ駆動機構制御部は、算出された座標に対応する各測定位置を、順次、測定視野内に移動する。これにより、各測定点位置について測定が行えるようにする。
According to the present invention, the measurement position information input control unit prompts input of measurement position information including the initial measurement point position, the distance between measurement points, and the number of measurement repetitions. Specifically, an input screen for measurement position information is displayed to prompt the operator to input the initial measurement point position, the distance between measurement points, and the number of measurement repetitions. Of these three input parameters, it is desirable to input the initial measurement point position by displaying an image of the object to be measured for the first measurement on the input screen and specifying the position on the input screen. Other methods may be used as long as they can be specified. For example, if the position coordinates of the first measurement point are known in advance, the coordinate data may be directly input. Further, it is desirable to input the input parameters such as the distance between measurement points and the number of measurement repetitions directly from the input screen, but the present invention is not limited to this. For example, the distance between measurement points is measured from the coordinate difference between two measurement points by displaying an image of two measurement objects adjacent to each other on the input screen and specifying the measurement points of the two measurement objects. You may make it derive the distance between points.
The input distance between the measurement points matches the distance between the objects to be measured on the mounting jig, and the number of measurement repetitions matches the number of the objects to be measured. When the object to be measured is arranged one-dimensionally on the mounting jig, the input of the distance between measurement points in the X direction and the number of measurement repetitions in the X direction is prompted, and when the object to be measured is arranged two-dimensionally, The user is prompted to input the distance between measurement points in the X and Y directions and the number of measurement repetitions. When the input of these input parameters by the operator is completed, the measurement point position calculation unit sequentially calculates the position coordinates of each measurement point based on the moving distance between the measurement points and the number of measurement repetitions based on the initial measurement point position. calculate. Then, the stage drive mechanism control unit sequentially moves each measurement position corresponding to the calculated coordinates into the measurement visual field. Thus, measurement can be performed for each measurement point position.

本発明によれば、実際に測定視野内に、測定位置がくるように移動させてティーチングを行う必要がなくなり、測定点数の大小に関わらず、簡単な入力操作で測定点を入力することができる。また、個々の測定点位置に移動してのティーチングを行わないため、ティーチング中の位置誤認によるティーチングミスを防ぐことができる。   According to the present invention, it is not necessary to perform teaching by moving the measurement position so that it actually falls within the measurement field of view, and it is possible to input measurement points with a simple input operation regardless of the number of measurement points. . In addition, since teaching is not performed by moving to individual measurement point positions, teaching errors due to misidentification of positions during teaching can be prevented.

(その他の課題を解決するための手段および効果)
上記発明において、測定位置情報としてステージの移動方向順に関する情報を含むようにしてもよい。具体的には、一次元配置される場合には、左端から右端に移動するか右端から左端移動するかを設定する。また、二次元配置される場合には、X方向に沿って左上端から右上端まで一方向に移動し、一行ずらして再び左端から右端に移動し、以下同様の移動を繰り返す横一方向移動(図7(a)参照)、X方向に沿って左上端から右上端まで一方向に移動し、一行ずらして右端から左端に逆方向に移動し、一行ずらして左端から右端に移動する横ジグザグ移動(図7(b)参照))、右下端から右上端まで一方向に移動し、一列戻って下端から上端まで一方向に移動する縦一方向移動(図7(c)参照)、その他様々な移動方向順を設定できるようにしてもよい。
これによれば、搭載治具上の被測定物の測定順を任意に設定できるので、測定順の自由度を高めることができ、例えば、X線検査装置による検査工程以外の別の工程で被測定物が搭載され、その搭載順にX線検査を行うことが望ましいときに搭載順に合わせて測定順を定めたりすることができる。
(Means and effects for solving other problems)
In the above invention, the measurement position information may include information related to the order of movement of the stage. Specifically, in the case of one-dimensional arrangement, whether to move from the left end to the right end or from the right end to the left end is set. In the case of a two-dimensional arrangement, it moves in one direction along the X direction from the upper left end to the upper right end, shifts by one line, moves again from the left end to the right end, and thereafter repeats the same movement in one horizontal direction ( Horizontal zigzag movement that moves in one direction along the X direction from the upper left end to the upper right end, shifts by one line, moves in the reverse direction from the right end to the left end, shifts by one line, and moves from the left end to the right end (See FIG. 7 (b))), moving in one direction from the lower right end to the upper right end, moving back in one row and moving in one direction from the lower end to the upper end (see FIG. 7 (c)), and various other You may enable it to set a moving direction order.
According to this, since the measurement order of the object to be measured on the mounting jig can be arbitrarily set, the degree of freedom in the measurement order can be increased. For example, the measurement order can be increased in another process other than the inspection process by the X-ray inspection apparatus. When a measurement object is mounted and it is desirable to perform X-ray inspection in the mounting order, the measurement order can be determined in accordance with the mounting order.

また、上記発明において、測定位置情報入力制御部は、初回測定点位置の入力を促す際に搭載治具上の被測定物群の全体像を表示装置の画面に表示するとともに、画面上に位置指定のマーカを表示するようにしてもよい。
これにより、入力画面に被測定物群の全体像を表示することによって、被測定物群の全体像を見ながら初回測定点位置を指定できるので、位置誤認することなく初回測定点位置を指定することができる。
In the above invention, the measurement position information input control unit displays the entire image of the group of objects to be measured on the mounting jig on the screen of the display device when prompting the input of the initial measurement point position, and the position on the screen. A designated marker may be displayed.
This allows the initial measurement point position to be specified while displaying the overall image of the measured object group by displaying the entire image of the measured object group on the input screen, so the initial measured point position can be specified without misidentifying the position. be able to.

また、上記発明において、算出された各測定点位置を表示装置の画面に一覧表示するとともに、画面上で各測定点位置の編集を行う測定点位置情報表示編集部を備えるようにしてもよい。
これにより、一旦設定した測定点位置を、画面上でいずれの測定点位置についても微調整をすることができるので、簡単かつ正確な測定点位置調整を行うことができる。
In the above-described invention, a list of the calculated measurement point positions may be displayed on the screen of the display device, and a measurement point position information display editing unit that edits each measurement point position on the screen may be provided.
Thereby, since the measurement point position once set can be finely adjusted for any measurement point position on the screen, simple and accurate measurement point position adjustment can be performed.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.

図1は、本発明の一実施形態であるX線検査装置の構成を示すブロック図である。このX線検査装置1は、X線発生装置11とX線検出器12とで構成されるX線測定光学系13と、被測定物Sを載置するステージ14と、複数の被測定物Sをステージ14に載置する際に規則正しく配置するためのパレット15と、ステージ14をXYZ方向(ステージ面をXY面とする)に並進駆動およびZ軸に沿って回転駆動するためのステージ駆動機構16と、装置全体の制御を行う制御系20とにより構成される。   FIG. 1 is a block diagram showing a configuration of an X-ray inspection apparatus according to an embodiment of the present invention. The X-ray inspection apparatus 1 includes an X-ray measurement optical system 13 composed of an X-ray generator 11 and an X-ray detector 12, a stage 14 on which a measurement object S is placed, and a plurality of measurement objects S. A pallet 15 for regularly arranging the stage 14 on the stage 14 and a stage driving mechanism 16 for translationally driving the stage 14 in the XYZ directions (the stage surface is defined as the XY plane) and rotationally driving along the Z axis. And a control system 20 that controls the entire apparatus.

制御系20は汎用のコンピュータ装置により構成されるが、そのハードウェアをさらにブロック化して説明すると、CPU21と、キーボード22と、マウス23と、液晶パネルなどの表示装置24と、メモリ25とにより構成される。
また、CPU21が処理する機能をブロック化して説明すると、X線画像作成部31、X線画像表示部32、測定位置情報入力制御部33、測定点位置算出部34、ステージ駆動機構制御部35、測定点位置情報表示編集部36とに分けられる。
また、メモリ25は、初回測定点位置記憶領域38a、測定点間距離記憶領域38b、測定繰返し回数記憶領域38c、移動方向順記憶領域38d、算出測定点位置座標記憶領域38eを有する測定位置情報記憶領域38が設けられている。
The control system 20 is configured by a general-purpose computer device. The hardware of the control system 20 is further described. The control system 20 includes a CPU 21, a keyboard 22, a mouse 23, a display device 24 such as a liquid crystal panel, and a memory 25. Is done.
Further, the functions processed by the CPU 21 will be described as a block. An X-ray image creation unit 31, an X-ray image display unit 32, a measurement position information input control unit 33, a measurement point position calculation unit 34, a stage drive mechanism control unit 35, The measurement point position information display editing unit 36 is divided.
The memory 25 also has a measurement position information storage area having an initial measurement point position storage area 38a, a measurement point distance storage area 38b, a measurement repetition count storage area 38c, a moving direction order storage area 38d, and a calculated measurement point position coordinate storage area 38e. Region 38 is provided.

X線測定光学系13を構成するX線発生装置11は、透視X線照射用のX線管を備えている。X線検出器12は、X線管に対向するように配置されるIIと、このIIの後側に一体的に取り付けられたCCDカメラとからなり、IIが透視X線を検出することにより形成した蛍光像をCCDカメラで撮影することにより、透視X線像の映像信号が出力されるようにしてある。   The X-ray generator 11 constituting the X-ray measurement optical system 13 includes an X-ray tube for fluoroscopic X-ray irradiation. The X-ray detector 12 includes II arranged so as to face the X-ray tube, and a CCD camera integrally attached to the rear side of the II, and is formed by II detecting fluoroscopic X-rays. An image signal of a fluoroscopic X-ray image is output by photographing the fluorescent image obtained with a CCD camera.

ステージ14は、パレット15が固定できるようにしてあり、ステージ14を移動するとパレット15も一体に移動するようになっている。
パレット15は、従来例と同じものが用いられており(図6参照)、X方向に4列、Y方向に3行、計12個の被測定物Sの取り付け位置が形成してある。
ステージ駆動機構16は、モータが搭載され、CPU21からの制御信号に基づいてステージ14を並進駆動したり、回転駆動したりする。
The stage 14 is configured so that the pallet 15 can be fixed. When the stage 14 is moved, the pallet 15 is also moved together.
The pallet 15 is the same as that of the conventional example (see FIG. 6), and has a total of 12 mounting positions for the measured object S, 4 columns in the X direction and 3 rows in the Y direction.
The stage drive mechanism 16 is equipped with a motor and drives the stage 14 in translation or rotationally based on a control signal from the CPU 21.

次に、CPU21の各機能ブロックについて説明する。
X線画像作成部31は、X線検出器12から送られてきた透視X線像の映像信号を、次々とデジタル画像に変換し、コマ画像データを作成する制御を行う。
なお、後述する初回測定位置入力画面で、パレット15の全体像を表示することができるようにするために、パレット15の各部分のコマ画像データを蓄積し、これらを合成して全体像を作成する制御も行う。
X線画像表示部32は、作成されたコマ画像データを表示装置24に順次送って表示することにより、透視X線動画像を表示する。
Next, each functional block of the CPU 21 will be described.
The X-ray image creation unit 31 performs control to convert the video signals of the fluoroscopic X-ray images sent from the X-ray detector 12 into digital images one after another and create frame image data.
In order to be able to display the entire image of the pallet 15 on the initial measurement position input screen described later, the frame image data of each part of the pallet 15 is accumulated and synthesized to create the entire image. Control is also performed.
The X-ray image display unit 32 displays the fluoroscopic X-ray moving image by sequentially sending the created frame image data to the display device 24 for display.

測定位置情報入力制御部33は、パレット15の被測定物に対するX線測定を行う前に、操作者に初回測定点位置の入力を促す初回測定位置入力画面33aと、測定点間距離および測定繰返し回数、移動方向順の入力を促す測定点間距離・測定繰返し回数・移動方向順入力画面33bとを表示装置24に表示し、操作者によるキーボード22あるいはマウス23を用いたパラメータ入力を受け付ける制御を行う。
なお、移動方向順については、設定を変更しなければ、予め指定してある移動方向(例えば図7(a)の「横一方向移動」)にしておき、必要に応じて、測定点間距離・測定繰返し回数・移動方向順入力画面33bにおいて、移動方向順についても入力変更できるようにしてある。
入力された各パラメータ情報は、測定位置情報記憶部38の初回測定位置記憶領域38a、測定点間距離記憶領域38b、測定繰返し回数記憶領域38c、移動方向順記憶領域38dに蓄積される。
The measurement position information input control unit 33 performs an initial measurement position input screen 33a that prompts the operator to input an initial measurement point position, X-ray measurement for the object to be measured on the pallet 15, a distance between measurement points, and a measurement repetition. Control for accepting parameter input by the operator using the keyboard 22 or the mouse 23 is displayed on the display device 24 and the distance between measurement points, the number of repetitions of measurement, and the moving direction order input screen 33b prompting the input of the number of times and the moving direction order. Do.
As for the order of movement direction, if the setting is not changed, the movement direction specified in advance (for example, “moving in one horizontal direction” in FIG. 7A) is set, and the distance between measurement points is set as necessary. The number of repetitions of measurement / moving direction order input screen 33b can be changed in the moving direction order.
The input parameter information is accumulated in the initial measurement position storage area 38a, the measurement point distance storage area 38b, the measurement repetition count storage area 38c, and the movement direction order storage area 38d of the measurement position information storage unit 38.

測定点位置算出部34は、入力された初回測定点位置、測定点間距離、測定繰返し回数に基づいて、初回測定点以外の各測定点の位置を算出する。算出された各測定点位置の座標は算出測定点位置座標記憶領域38eに蓄積される。
ステージ駆動機構制御部35は、ステージ14を移動し、算出された各測定点を初回測定点から順次、測定視野に移動させる制御を行う。
測定点位置情報表示編集部36は、測定点位置算出部34により算出された各測定点位置の座標を表示装置24の画面に一覧表示する。そして、キーボード22による入力操作により、各測定点位置の座標値を変更することで、測定点位置を微調整できるようにしてある。
The measurement point position calculation unit 34 calculates the position of each measurement point other than the first measurement point based on the input initial measurement point position, the distance between measurement points, and the number of measurement repetitions. The calculated coordinates of each measurement point position are accumulated in the calculated measurement point position coordinate storage area 38e.
The stage drive mechanism control unit 35 performs control to move the stage 14 and sequentially move the calculated measurement points from the first measurement point to the measurement visual field.
The measurement point position information display editing unit 36 displays a list of the coordinates of each measurement point position calculated by the measurement point position calculation unit 34 on the screen of the display device 24. Then, the measurement point position can be finely adjusted by changing the coordinate value of each measurement point position by an input operation using the keyboard 22.

次に本装置によるX線測定動作について説明する。図2はX線検査装置1による測定動作を示すフローチャートである。
まず、ステージ14上に被測定物S群を載置したパレット15を設置し固定する(S101)。ステージ14の透視X線像を撮影し、パレット15全体の透視X線画像を作成する(S102)。パレット全体の透視X線画像は、パレット15の局所的な透視X線画像を合成して作成するか、あるいは、撮影倍率を変えることによってパレット15の全体像を撮影することが可能な場合には、一時的にパレット15全体が撮影できる位置にステージ14を移動して全体像を撮影するようにする。このようにして作成されたパレット全体の透視X線画像とステージ14とは、位置関係が対応付けられており、透視X線画像上で特定の位置を指定すると対応するパレット位置が指定できるようにしてある。
Next, the X-ray measurement operation by this apparatus will be described. FIG. 2 is a flowchart showing the measurement operation by the X-ray inspection apparatus 1.
First, the pallet 15 on which the measurement object S group is placed is placed and fixed on the stage 14 (S101). A fluoroscopic X-ray image of the stage 14 is taken, and a fluoroscopic X-ray image of the entire palette 15 is created (S102). A fluoroscopic X-ray image of the entire palette is created by combining local fluoroscopic X-ray images of the palette 15 or when the entire image of the palette 15 can be captured by changing the imaging magnification. Then, the stage 14 is temporarily moved to a position where the entire pallet 15 can be imaged, and the entire image is captured. The positional relationship between the fluoroscopic X-ray image of the entire pallet created in this way and the stage 14 is associated, and when a specific position is specified on the fluoroscopic X-ray image, the corresponding pallet position can be specified. It is.

続いて、測定位置情報の入力画面を表示する。ここでは、図3(a)に示すように、パレット15に載置された被測定物は、X方向に一定間隔aごと隔てて4列、Y方向に一定間隔bごと隔てて3行配置され、これらを左上端(図中1の位置)から右上端(図中4の位置)まで移動し、1行ずらして右端(図中5の位置)から左端(図中8の位置)に戻るようにしてジグザグに移動する順(「横方向ジグザグ移動」という)で測定を行うものとする。   Subsequently, an input screen for measuring position information is displayed. Here, as shown in FIG. 3 (a), the objects to be measured placed on the pallet 15 are arranged in four rows with a fixed interval a in the X direction and three rows with a fixed interval b in the Y direction. These are moved from the upper left end (position 1 in the figure) to the upper right end (position 4 in the figure), shifted by one line, and returned from the right end (position 5 in the figure) to the left end (position 8 in the figure). The measurement is performed in the order of moving in a zigzag manner (referred to as “lateral zigzag movement”).

初回測定点位置を設定するために、図3(b)に示すように、初回測定点位置の入力画面33aが表示装置24の画面に表示され(S103)、入力待ち状態となる(S104)。初回測定点位置の入力画面33aには、パレット15の透視X線画像の全体像40と、マーカ41とが表示され、マウス23によりマーカ41を移動して初回測定点の位置を指定する。マーカの位置が指定されると、その指定位置の座標が読み出され、初回測定点位置の座標として初回測定点位置記憶領域38aに記憶される。   In order to set the initial measurement point position, as shown in FIG. 3B, the initial measurement point position input screen 33a is displayed on the screen of the display device 24 (S103), and the input standby state is entered (S104). The initial measurement point position input screen 33a displays an overall image 40 of the fluoroscopic X-ray image of the pallet 15 and a marker 41. The marker 41 is moved by the mouse 23 to designate the position of the first measurement point. When the marker position is designated, the coordinates of the designated position are read out and stored in the first measurement point position storage area 38a as the coordinates of the first measurement point position.

続いて、測定点間距離および測定繰返し回数および移動方向順を設定するために、図3(c)に示すように、測定点間距離・測定繰返し回数・移動方向順の入力画面33bが表示装置24の画面に表示され(S105)、入力待ち状態になる(S106)。キーボード22によりX方向測定点間距離a、X方向測定繰返し回数4、Y方向測定点間距離b、Y方向測定繰返し回数3とともに、移動方向として「横方向ジグザグ移動」を設定する。なお、このとき入力できる移動方向順をわかりやすくするために、例えば図4に示すように、それぞれの移動方向順を簡易表示する画面42(横方向ジグザグ移動)、画面43(縦方向一方向移動)などをメモリに蓄積しておき、表示装置24の画面に表示して、操作者が画面を見ながら選択できるようにしてもよい。   Subsequently, in order to set the distance between measurement points, the number of repetitions of measurement, and the order of movement direction, an input screen 33b for the distance between measurement points, the number of repetitions of measurement, and the order of movement direction is displayed as shown in FIG. 24 is displayed on the screen 24 (S105), and an input waiting state is entered (S106). With the keyboard 22, “lateral zigzag movement” is set as the movement direction together with the distance a between the X direction measurement points, the X direction measurement repetition count 4, the Y direction measurement point distance b, and the Y direction measurement repetition count 3. In order to make it easy to understand the movement direction order that can be input at this time, for example, as shown in FIG. 4, a screen 42 (horizontal zigzag movement) for simple display of each movement direction order and a screen 43 (vertical one-way movement) ) Or the like may be stored in the memory and displayed on the screen of the display device 24 so that the operator can select it while viewing the screen.

入力画面33a、33bによる入力操作が終わると、各測定点位置が算出され、表示装置24に、図5に示すような測定点位置情報表示画面が表示される(S107)。この画面上でキーボード22による入力操作により、測定点位置の座標を変更する編集を行うことにより、測定点位置を微調整することもできる。   When the input operation on the input screens 33a and 33b is finished, the respective measurement point positions are calculated, and the measurement point position information display screen as shown in FIG. 5 is displayed on the display device 24 (S107). On the screen, the measurement point position can be finely adjusted by performing an editing operation for changing the coordinates of the measurement point position by an input operation using the keyboard 22.

以上の操作によって、入力作業を完了すると、測定が開始され(S108)、初回測定点位置についてX線測定がおこなわれる。以後、順次、設定された測定点に設定された順で移動し、すべての測定点の測定が終わるまで、測定が繰り返される(S109)。   When the input operation is completed by the above operation, measurement is started (S108), and X-ray measurement is performed for the initial measurement point position. Thereafter, the measurement point is sequentially moved to the set measurement point in the set order, and the measurement is repeated until the measurement of all the measurement points is completed (S109).

このように、ステージを移動してティーチングを行うことなく、入力画面で初回測定点位置、測定点間距離、繰返し測定回数、必要に応じて移動方向順を入力するだけで、全測定点の位置を設定することができるので、手間がかからず、また、位置誤認による人的ミスを防ぐことができる。   In this way, the position of all measurement points can be obtained by simply inputting the initial measurement point position, the distance between measurement points, the number of repeated measurements, and the order of movement direction as needed, without moving the stage and teaching. Can be set, so that it is not time-consuming and human errors due to misidentification can be prevented.

上記実施形態では、透視X線画像によるパレット15の全体像を用いて初回測定位置入力画面を作成したが、可視光による光学カメラをX線検出器12の隣に取り付け、パレット15の全体像を撮影し、可視光画像による初回測定入力画面を表示するようにしてもよい。   In the above embodiment, the initial measurement position input screen is created using the entire image of the pallet 15 based on the fluoroscopic X-ray image. However, an optical camera using visible light is attached next to the X-ray detector 12 and the entire image of the pallet 15 is displayed. You may make it image | photograph and display the initial measurement input screen by a visible light image.

また、上記実施形態では、1つの被測定物について1箇所の測定点位置を設定したが、被測定物が大きい場合等は、1つの被測定物ごとに複数の測定点位置を設定するようにしてもよい。この場合は、初回測定位置の入力画面33aにおいて、複数の測定点を設定することができるようにしておけばよい。   In the above embodiment, one measurement point position is set for one measurement object. However, when the measurement object is large, a plurality of measurement point positions are set for each measurement object. May be. In this case, a plurality of measurement points may be set on the initial measurement position input screen 33a.

また、上記実施形態では、初回測定点位置の入力画面33aにおいてマーカ41で測定範囲を指定しているが、その測定範囲のX方向の大きさc、Y方向の大きさdを抽出して、測定点間距離の初期設定値として予め入力するようにしてもよい。この場合は、初期設定値で測定を開始すれば、図8に示すようにパレット上を隙間なくX線測定するようにステージが移動することとなる。   Moreover, in the said embodiment, although the measurement range is designated with the marker 41 in the input screen 33a of the first measurement point position, the size c in the X direction and the size d in the Y direction of the measurement range are extracted, You may make it input previously as an initial setting value of the distance between measurement points. In this case, if the measurement is started with the initial setting value, the stage moves so as to perform X-ray measurement on the pallet without a gap as shown in FIG.

本発明は、同一品種の被測定物のX線検査を次々と行うようにしたX線検査装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for an X-ray inspection apparatus that sequentially performs X-ray inspections of the same type of object to be measured.

本発明の一実施形態であるX線検査装置の構成を示すブロック図。The block diagram which shows the structure of the X-ray inspection apparatus which is one Embodiment of this invention. 図1のX線検査装置による測定操作を説明するフローチャート。The flowchart explaining measurement operation by the X-ray inspection apparatus of FIG. 測定位置情報の入力画面を説明する図。The figure explaining the input screen of measurement position information. 移動方向順の簡易表示を行う画面を説明する図。The figure explaining the screen which performs the simple display of a moving direction order. 各測定点位置を一覧表示するとともに、測定点位置を編集するための表示画面を説明する図。The figure explaining the display screen for editing each measurement point position while displaying each measurement point position as a list. パレットの構成を示す図。The figure which shows the structure of a pallet. いくつかの移動方向順の例を示す図。The figure which shows the example of some moving direction order. パレット上を隙間なくX線測定するときのステージ移動状態を説明する図。The figure explaining the stage movement state at the time of measuring an X-ray on a pallet without gap.

符号の説明Explanation of symbols

1: X線検査装置
11: X線発生装置(X線源)
12: X線検出器
13: X線測定光学系
14: ステージ
15: パレット
16: ステージ駆動機構
20: 制御系
21: CPU
22: キーボード
23: マウス
24: 表示装置
24: 画像メモリ
31: X線画像作成部
32: X線画像表示部
33: 測定位置情報入力部
34: 測定点位置算出部
35: ステージ駆動機構制御部
36: 測定点位置情報表示編集部
38: 測定点位置情報記憶領域
1: X-ray inspection device 11: X-ray generator (X-ray source)
12: X-ray detector 13: X-ray measurement optical system 14: Stage 15: Pallet 16: Stage drive mechanism 20: Control system 21: CPU
22: Keyboard 23: Mouse 24: Display device 24: Image memory 31: X-ray image creation unit 32: X-ray image display unit 33: Measurement position information input unit 34: Measurement point position calculation unit 35: Stage drive mechanism control unit 36 : Measurement point position information display editor 38: Measurement point position information storage area

Claims (4)

同一形状の被測定物群を一定間隔ごとに規則的に配列する搭載治具を用いてステージ上に複数の被測定物群を載置し、ステージを挟んで対向配置されたX線源とX線検出器とからなるX線測定光学系の測定視野内に各被測定物が順次移動するようにステージ駆動機構を制御しつつステージ上の各被測定物の透視X線像を撮影するX線検査装置において、
初回測定点位置、測定点間距離、測定繰り返し回数を含む測定位置情報の入力を促す測定位置情報入力制御部と、
入力された測定位置情報に基づいて各測定点位置を算出する測定点位置算出部と、
算出された各測定点位置を順次X線測定光学系の測定視野内に移動するステージ駆動機構制御部とを備えたことを特徴とするX線検査装置。
A plurality of measurement object groups are placed on a stage using a mounting jig that regularly arranges measurement object groups of the same shape at regular intervals, and an X-ray source and an X arranged opposite to each other across the stage X-rays for capturing a fluoroscopic X-ray image of each object to be measured on the stage while controlling the stage drive mechanism so that each object to be measured sequentially moves within the measurement field of the X-ray measurement optical system comprising a line detector In inspection equipment,
A measurement position information input control unit that prompts input of measurement position information including the first measurement point position, the distance between measurement points, and the number of measurement repetitions;
A measurement point position calculation unit that calculates each measurement point position based on the input measurement position information;
An X-ray inspection apparatus comprising: a stage drive mechanism control unit that sequentially moves the calculated measurement point positions into a measurement field of view of an X-ray measurement optical system.
測定位置情報としてステージの移動方向順に関する情報を含むことを特徴とする請求項1に記載のX線検査装置。 The X-ray inspection apparatus according to claim 1, wherein the measurement position information includes information related to the order of movement of the stage. 測定位置情報入力制御部は、初回測定点位置の入力を促す際に搭載治具上の被測定物群の全体像を表示装置の画面に表示するとともに、画面上に位置指定のマーカを表示することを特徴とする請求項1に記載のX線検査装置。 The measurement position information input control unit displays a whole image of the group of objects to be measured on the mounting jig on the screen of the display device when prompting the input of the first measurement point position, and displays a position designation marker on the screen. The X-ray inspection apparatus according to claim 1. 算出された各測定点位置を表示装置の画面に一覧表示するとともに、画面上で各測定点位置の編集を行う測定点位置情報表示編集部を備えたことを特徴とする請求項1に記載のX線検査装置。 The measurement point position information display editing unit that displays the calculated measurement point positions in a list on the screen of the display device and edits the measurement point positions on the screen. X-ray inspection equipment.
JP2005281990A 2005-09-28 2005-09-28 X-ray inspection equipment Expired - Fee Related JP4742782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281990A JP4742782B2 (en) 2005-09-28 2005-09-28 X-ray inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281990A JP4742782B2 (en) 2005-09-28 2005-09-28 X-ray inspection equipment

Publications (3)

Publication Number Publication Date
JP2007093343A true JP2007093343A (en) 2007-04-12
JP2007093343A5 JP2007093343A5 (en) 2008-01-10
JP4742782B2 JP4742782B2 (en) 2011-08-10

Family

ID=37979245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281990A Expired - Fee Related JP4742782B2 (en) 2005-09-28 2005-09-28 X-ray inspection equipment

Country Status (1)

Country Link
JP (1) JP4742782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190380A (en) * 2012-03-15 2013-09-26 Omron Corp X-ray inspection device and imaging method for x-ray inspection

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275302A (en) * 1985-09-30 1987-04-07 Hitachi Electronics Eng Co Ltd Wafer-measuring apparatus
JPS6314441A (en) * 1986-07-07 1988-01-21 Hitachi Ltd Scanning electron microscope apparatus for semiconductor surface observation
JPH0252246A (en) * 1988-08-15 1990-02-21 Tokyo Electron Ltd X-ray inspection device
JPH0252245A (en) * 1988-08-15 1990-02-21 Tokyo Electron Ltd X-ray inspection device
JPH0674918A (en) * 1992-08-25 1994-03-18 Kobe Steel Ltd Article structure inspecting device by electronic scanning type x-ray source
JPH08339776A (en) * 1995-06-09 1996-12-24 Shimadzu Corp Electron beam microanalyzer
JPH09304241A (en) * 1996-05-09 1997-11-28 Shimadzu Corp Auto sampler
JPH11271225A (en) * 1998-03-23 1999-10-05 Hitachi Ltd Fluorometric device
JP2001153818A (en) * 1999-11-29 2001-06-08 Toshiba Fa Syst Eng Corp Device and method for computed tomography
JP2001208703A (en) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd X-ray inspection apparatus
JP2001255286A (en) * 2000-03-13 2001-09-21 Hitachi Kenki Fine Tech Co Ltd Apparatus and method for x-ray inspection
JP2002026085A (en) * 2000-07-11 2002-01-25 Mitsubishi Electric Corp Inspecting equipment for assembling process of semiconductor device, and its inspecting method
JP2002198097A (en) * 2000-12-25 2002-07-12 Sony Corp Method for inspecting cell
JP2002228761A (en) * 2001-02-02 2002-08-14 Anritsu Corp X-ray foreign mater detector and method of detecting defective in the detector
JP2004163279A (en) * 2002-11-13 2004-06-10 Toshiba It & Control Systems Corp X-ray fluoroscopy system, and calibration method therefor
JP2005127962A (en) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X-ray inspection system
JP2005140560A (en) * 2003-11-05 2005-06-02 Aloka System Engineering Co Ltd X-ray ct apparatus and vessel therefor
JP2005158780A (en) * 2003-11-20 2005-06-16 Hitachi Ltd Method and device for inspecting defect of pattern
JP2005249745A (en) * 2004-03-08 2005-09-15 Ebara Corp Sample surface inspecting method and inspecting apparatus

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275302A (en) * 1985-09-30 1987-04-07 Hitachi Electronics Eng Co Ltd Wafer-measuring apparatus
JPS6314441A (en) * 1986-07-07 1988-01-21 Hitachi Ltd Scanning electron microscope apparatus for semiconductor surface observation
JPH0252246A (en) * 1988-08-15 1990-02-21 Tokyo Electron Ltd X-ray inspection device
JPH0252245A (en) * 1988-08-15 1990-02-21 Tokyo Electron Ltd X-ray inspection device
JPH0674918A (en) * 1992-08-25 1994-03-18 Kobe Steel Ltd Article structure inspecting device by electronic scanning type x-ray source
JPH08339776A (en) * 1995-06-09 1996-12-24 Shimadzu Corp Electron beam microanalyzer
JPH09304241A (en) * 1996-05-09 1997-11-28 Shimadzu Corp Auto sampler
JPH11271225A (en) * 1998-03-23 1999-10-05 Hitachi Ltd Fluorometric device
JP2001153818A (en) * 1999-11-29 2001-06-08 Toshiba Fa Syst Eng Corp Device and method for computed tomography
JP2001208703A (en) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd X-ray inspection apparatus
JP2001255286A (en) * 2000-03-13 2001-09-21 Hitachi Kenki Fine Tech Co Ltd Apparatus and method for x-ray inspection
JP2002026085A (en) * 2000-07-11 2002-01-25 Mitsubishi Electric Corp Inspecting equipment for assembling process of semiconductor device, and its inspecting method
JP2002198097A (en) * 2000-12-25 2002-07-12 Sony Corp Method for inspecting cell
JP2002228761A (en) * 2001-02-02 2002-08-14 Anritsu Corp X-ray foreign mater detector and method of detecting defective in the detector
JP2004163279A (en) * 2002-11-13 2004-06-10 Toshiba It & Control Systems Corp X-ray fluoroscopy system, and calibration method therefor
JP2005127962A (en) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X-ray inspection system
JP2005140560A (en) * 2003-11-05 2005-06-02 Aloka System Engineering Co Ltd X-ray ct apparatus and vessel therefor
JP2005158780A (en) * 2003-11-20 2005-06-16 Hitachi Ltd Method and device for inspecting defect of pattern
JP2005249745A (en) * 2004-03-08 2005-09-15 Ebara Corp Sample surface inspecting method and inspecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190380A (en) * 2012-03-15 2013-09-26 Omron Corp X-ray inspection device and imaging method for x-ray inspection

Also Published As

Publication number Publication date
JP4742782B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US10859513B2 (en) Oblique CT apparatus
JP6322456B2 (en) System and method for acquiring an image having an offset used to enhance edge resolution
US20030184855A1 (en) Microscope apparatus
JP6141084B2 (en) Imaging device
JP2005265424A (en) Scanning electron microscope and reproducibility evaluation method as device in the same
JP4561990B2 (en) X-ray equipment
JP5668227B2 (en) Image measuring device
JP5045134B2 (en) X-ray CT system
JP4742782B2 (en) X-ray inspection equipment
JP2008032754A (en) X-ray fluoroscopic inspection apparatus
JP4636258B2 (en) X-ray equipment
US20090086886A1 (en) Radiation image capturing apparatus
JP2014108111A (en) Radiation tomograph and program
JPH05333271A (en) Method and device for recognizing three-dimensional substance
JP4072420B2 (en) Calibration method for fluoroscopic inspection apparatus
JP2009291472A (en) Radiation image capturing apparatus and adjustment method thereof
JP2000097881A (en) X-ray inspection device, image processor for x-ray inspection, and storage medium with image processing program for x-ray inspection stored
US20100303208A1 (en) Method for recording an x-ray image, x-ray detector and x-ray system
JP2004012192A (en) Measuring microscope device, its display method, and its display program
JP2007101391A (en) X-ray inspection device
JP2006243608A (en) Microscope system
JP2003156454A (en) X-ray inspection device and controlling method and adjusting method of the same
JP2007114058A (en) X-ray inspection system
JP2010139454A (en) X-ray ct apparatus
JP2005024506A (en) X-ray fluoroscope for precise measurement

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4742782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees