JP2007093235A - Stereoscopic pyranometer - Google Patents

Stereoscopic pyranometer Download PDF

Info

Publication number
JP2007093235A
JP2007093235A JP2005279265A JP2005279265A JP2007093235A JP 2007093235 A JP2007093235 A JP 2007093235A JP 2005279265 A JP2005279265 A JP 2005279265A JP 2005279265 A JP2005279265 A JP 2005279265A JP 2007093235 A JP2007093235 A JP 2007093235A
Authority
JP
Japan
Prior art keywords
output
face
plate
east
west
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005279265A
Other languages
Japanese (ja)
Inventor
Akihiro Yukino
昭寛 雪野
Tetsuya Kokubo
鉄也 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METEOROLOGICAL ENGINEERING CENTER
Kansai Electric Power Co Inc
Original Assignee
METEOROLOGICAL ENGINEERING CENTER
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METEOROLOGICAL ENGINEERING CENTER, Kansai Electric Power Co Inc filed Critical METEOROLOGICAL ENGINEERING CENTER
Priority to JP2005279265A priority Critical patent/JP2007093235A/en
Publication of JP2007093235A publication Critical patent/JP2007093235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument for measuring stereoscopically incoming solar radiation and diffuse radiation. <P>SOLUTION: By arranging a stereoscopically plate-like solar cell on a top face and four lateral faces of a cube, the stereoscopic pyranometer is constituted as a measuring instrument for measuring the stereoscopically incoming solar radiation and the diffuse radiation. Here, while pointing the four lateral faces toward north, east, south, and west, the output from the top face is referred as H, the output from the northward face is referred as N, the output from eastward face is referred as E, the output from the southward face is referred as S, and the output from the westward face is referred as W and the minimum output among the northward face, the eastward face, southward face, and the westward face is defined as the diffuse radiation. Entering into the details, the silicon single-crystal type plate-like solar cell 2 is arranged three-dimensionally to bury into the five faces of the top face and the four lateral faces of a hollow cube of transparent acrylic rectangular solid 1, while the bottom face is constituted of only transparent acrylic plate 3 the center of which transparent vinyl chloride pipe 4 is drooped through. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、都市部の建て込んだビルディングなどに立体(3次元)的に入射する日射量と、散乱放射量を測定する立体日射計に関するものである。   The present invention relates to a solid pyranometer for measuring the amount of solar radiation that is three-dimensionally (three-dimensionally) incident on a building or the like built in an urban area and the amount of scattered radiation.

従来から、水平面に入射する「全天日射量」の測定は行われているが、ヒートアイランド問題等の原因の一つとなる都市部の建て込んだビルディング等において、立体(3次元)的に入射する日射量と散乱放射量を測定する必要が生じてきた。   Conventionally, the “total solar radiation” incident on the horizontal plane has been measured, but it is incident three-dimensionally (three-dimensionally) in buildings built in urban areas that are one of the causes of the heat island problem, etc. It has become necessary to measure solar radiation and scattered radiation.

ところが、現在においては、立体的に入射する日射量と散乱放射量を測定する測定器は存在しない。
特開2000−045259
However, at present, there are no measuring instruments for measuring the amount of solar radiation and scattered radiation incident in three dimensions.
JP 2000-045259 A

従来の水平面に入射する日射を測定する日射計では、立体的な測定はできず、従来の日射計を立体的に配置しようとすると、サイズ、重量の点で実用的でなく、また、高価であることから、一つの測定器として使用することは困難であった。   A conventional pyranometer that measures insolation incident on a horizontal plane cannot measure in three dimensions, and it is impractical in terms of size and weight, and expensive when trying to arrange a conventional pyranometer in three dimensions. For this reason, it was difficult to use it as a single measuring instrument.

本発明は、立体的に入射する日射量と散乱放射量を測定する測定器を提供すべく、板状太陽電池を立体的に配置した立体日射計とした。   In order to provide a measuring instrument for measuring the amount of solar radiation and the amount of scattered radiation incident in a three-dimensional manner, the present invention is a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged.

また、本発明は、立体的に入射する日射量と散乱放射量を測定する測定器を提供すべく、立方体の上面と4側面の5面に板状太陽電池を立体的に配置した立体日射計とした。   The present invention also provides a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged on the top surface and four side surfaces of a cube in order to provide a measuring device that measures the amount of solar radiation and scattered radiation incident in three dimensions. It was.

さらに、本発明は、立体的に入射する立体日射量を測定する測定器を提供すべく、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力をVとすると、立体日射量を、
((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 1/2
で測定するようにした立体日射計とした。
Furthermore, in order to provide a measuring device for measuring the amount of three-dimensional solar radiation incident three-dimensionally, the present invention three-dimensionally arranges plate-like solar cells on the upper surface and four side surfaces of the cube, and the four side surfaces are north, east, To the south and west, the output from the top is H, the output from the north is N, the output from the east is E, the output from the south is S, the output from the west is W, the north, east, If the minimum output on the south and west sides is V, the amount of solid solar radiation is
((HV) 2 + (N−V) 2 + (EV) 2 + (SV) 2 + (W−V) 2 ) 1/2
It was set as the solid pyranometer which was made to measure by.

さらにその上に、本発明は、散乱放射量を測定する測定器を提供すべく、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力を散乱放射量とする立体日射計とした。   Furthermore, in order to provide a measuring device for measuring the amount of scattered radiation, the present invention provides a three-dimensional arrangement of plate-like solar cells on the top and four sides of the cube, and the four sides are north, east, south, To the west, the output from the top is H, the output from the north is N, the output from the east is E, the output from the south is S, the output from the west is W, the north, east, south, A solid pyranometer with the lowest output of the west surface was the amount of scattered radiation.

また、本発明は、測定精度を向上させるべく、板状太陽電池を立体的に配置し、板状太陽電池の表面温度が上昇すると温度を補償するようにした立体日射計とした。   In addition, the present invention provides a solid pyranometer in which plate solar cells are arranged in a three-dimensional manner to improve measurement accuracy, and the temperature is compensated for when the surface temperature of the plate solar cells rises.

本発明は、板状太陽電池を立体的に配置した立体日射計であるので、立体的に入射する日射量と散乱放射量を測定できる。   Since the present invention is a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged, it is possible to measure the amount of solar radiation and the amount of scattered radiation incident in three dimensions.

また、本発明は、立方体の上面と4側面の5面に板状太陽電池を立体的に配置した立体日射計であるので、立体的に入射する日射量と散乱放射量を測定することができる。   Further, the present invention is a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged on the top surface and five side surfaces of the cube, so that the amount of solar radiation and the amount of scattered radiation incident in three dimensions can be measured. .

さらに、本発明は、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力をVとすると、立体日射量を、
((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 1/2
で測定するようにした立体日射計であるので、立体的に入射する立体日射量を測定することができる。
Further, the present invention provides a three-dimensional arrangement of plate-like solar cells on the top and four sides of the cube, with the four sides facing north, east, south, and west, respectively, and the output from the top is H and the output from the north Is N, E is the output from the east, S is the output from the south, W is the output from the west, and V is the lowest output of the north, east, south, and west. ,
((HV) 2 + (N−V) 2 + (EV) 2 + (SV) 2 + (W−V) 2 ) 1/2
Therefore, the amount of solid solar radiation incident in three dimensions can be measured.

さらにその上に、本発明は、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力を散乱放射量とする立体日射計であるので、散乱放射量を測定することができる。   Furthermore, the present invention provides a three-dimensional arrangement of plate-like solar cells on the top and four sides of the cube, with the four sides facing north, east, south, and west, respectively, and the output from the top is H and north. The output from N is N, the output from the east is E, the output from the south is S, the output from the west is W, and the minimum output among the north, east, south, and west is the amount of scattered radiation. Since it is a solid pyranometer, the amount of scattered radiation can be measured.

また、本発明は、板状太陽電池を立体的に配置し、板状太陽電池の表面温度が上昇すると温度を補償するようにした立体日射計であるので、測定精度を向上させることができる。   Moreover, since this invention is a solid pyranometer which arrange | positions a plate-shaped solar cell three-dimensionally and compensated for temperature when the surface temperature of a plate-shaped solar cell rises, it can improve a measurement precision.

本発明を添付する図面の図1に示す具体的な一実施例に基づいて、以下詳細に説明する。   The present invention will be described in detail below on the basis of a specific embodiment shown in FIG. 1 of the accompanying drawings.

図1は、本発明の具体的一実施例の縦半分を断面した立体日射計である。   FIG. 1 is a solid pyranometer in which a vertical half of a specific embodiment of the present invention is cut.

中空の透明アクリル直方体1の上面と4側面の5面に、シリコン単結晶タイプの板状太陽電池2を立体的に配置して埋設し、底面は透明アクリル板3のみで、この透明アクリル板3の中央に透明塩ビパイプ4を垂下させる。   A silicon single crystal type plate-like solar cell 2 is three-dimensionally arranged and embedded on the top surface and four sides of the hollow transparent acrylic rectangular parallelepiped 1 and the bottom surface is only the transparent acrylic plate 3. A transparent PVC pipe 4 is suspended in the center of the.

この中空の透明アクリル直方体1の内部には、板状太陽電池2より導出される出力ケーブル(図示せず)を通し、透明塩ビパイプ4内を挿通させて透明塩ビパイプ4外まで導出させる。この透明塩ビパイプ4の基端側はアルミベース板5を挿通させ固着し、透明塩ビパイプ4は使用に適した長さに設定し、その下端は必要に応じて基板を固着する。   An output cable (not shown) derived from the plate-like solar cell 2 is passed through the inside of the hollow transparent acrylic rectangular parallelepiped 1, and the inside of the transparent PVC pipe 4 is inserted and led out to the outside of the transparent PVC pipe 4. The base end side of the transparent PVC pipe 4 is fixed by inserting an aluminum base plate 5, the transparent PVC pipe 4 is set to a length suitable for use, and the lower end is fixed to the substrate as required.

また、この中空の透明アクリル直方体1は透明アクリルドーム6で覆わせる。   The hollow transparent acrylic rectangular parallelepiped 1 is covered with a transparent acrylic dome 6.

動作の安定したシリコン単結晶タイプの簡易センサである板状太陽電池2を立体的に配置することで、立体的に入射する立体日射量を測定できるようになった。板状太陽電池2はコスト低減、サイズや重量の点で簡便かつ実用性を有し、高品質で特性の経年変化が少ない。   By arranging three-dimensionally the plate-like solar cell 2 which is a simple sensor of silicon single crystal type with stable operation, the amount of three-dimensional solar radiation incident in three dimensions can be measured. The plate-like solar cell 2 is simple and practical in terms of cost reduction, size and weight, is high quality, and has little change over time in characteristics.

ビルディング等の建物で使用される冷房電力の的確な評価を行うためには、建物の各面が受ける立体日射量に着目する必要があることから、立体日射量の定量的観測が可能となる。   In order to accurately evaluate the cooling power used in a building such as a building, it is necessary to pay attention to the amount of three-dimensional solar radiation received by each surface of the building, so that the three-dimensional solar radiation amount can be quantitatively observed.

透明アクリル直方体1は、測定に際しては、図2に示すように、4側をそれぞれ北、東、南、西に向けて北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をW、上面からの出力をHとし、北面、東面、南面、西面のうちの最低出力をVとすると、立体日射量を、 ((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 1/2
で測定するようにした。
As shown in FIG. 2, the transparent acrylic rectangular parallelepiped 1 has N output from the north surface, E output from the east surface, and output from the south surface with the four sides facing north, east, south, and west, respectively. , Where S is the output from the west, W is the output from the top, and H is the minimum output from the north, east, south, and west, and the amount of solid solar radiation is ((HV) 2 + (N−V) 2 + (EV) 2 + (S−V) 2 + (W−V) 2 ) 1/2
It was made to measure with.

熱発生には、直達日射だけでなく、散乱放射も寄与しており、従来の日射計で直達日射量と散乱放射量の各々を正確に測定した例はない。   Not only direct solar radiation but also scattered radiation contributes to heat generation, and there is no example in which each of the direct solar radiation amount and the scattered radiation amount is accurately measured with a conventional solar radiation meter.

本発明は、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力を散乱放射量とする立体日射計とした。   In the present invention, plate-like solar cells are three-dimensionally arranged on the upper surface and four side surfaces of a cube, with the four side surfaces facing north, east, south, and west, respectively, the output from the upper surface is H, and the output from the north surface is N. The output from the east surface is E, the output from the south surface is S, the output from the west surface is W, and a solid pyranometer with the lowest output among the north, east, south, and west is the amount of scattered radiation. .

北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWの最低値Vを散乱放射量とすることで散乱放射量を測定できるようにした。   The amount of scattered radiation can be measured by setting the output from the north to N, the output from the east to E, the output from the south to S, and the output from the west to the minimum value V of W. .

また、本発明は、板状太陽電池を立体的に配置し、板状太陽電池の表面温度が上昇すると温度を補償するようにした立体日射計とした。   Moreover, this invention was set as the solid pyranometer which arrange | positioned a plate-shaped solar cell in three dimensions, and compensated for temperature, when the surface temperature of a plate-shaped solar cell rose.

従来の日射計では、センサ表面の温度変化に伴う出力の変化が生じることから、従来の日射計単独では正確な測定ができなかった。   In the conventional pyranometer, since the output changes with the temperature change of the sensor surface, the conventional pyranometer alone cannot perform an accurate measurement.

本発明のシリコン単結晶タイプの板状太陽電池では、温度特性は物性的に解明されており、理論的方法により温度による出力低下を補正する方法が確立している。   In the silicon single crystal type plate-like solar cell of the present invention, the temperature characteristics have been elucidated in terms of physical properties, and a method for correcting a decrease in output due to temperature by a theoretical method has been established.

「実施例1」
本発明は、中空の透明アクリル直方体の一辺の長さは36mm、透明アクリルドームの球径170mm、透明塩ビパイプの直径は18mm、アルミベース板の板厚は5mmで、実験を行った。
"Example 1"
In the present invention, the length of one side of a hollow transparent acrylic rectangular parallelepiped was 36 mm, the spherical diameter of the transparent acrylic dome was 170 mm, the diameter of the transparent PVC pipe was 18 mm, and the thickness of the aluminum base plate was 5 mm.

本発明は、板状太陽電池を立体的に配置して、日射量と散乱放射量を測定するようにしたが、ビルディングや家屋などの空調のコントロールなどへの応用ができ、省エネ対策機器として使用できる。   In the present invention, the plate-like solar cells are arranged in three dimensions to measure the amount of solar radiation and the amount of scattered radiation. However, the present invention can be applied to air conditioning control of buildings and houses and used as an energy saving measure device. it can.

本発明の具体的一実施例の立体日射計の縦半分を断面した正面図である。It is the front view which carried out the cross section of the vertical half of the solid pyranometer of one specific Example of this invention. 本発明の要部斜視図である。It is a principal part perspective view of this invention.

符号の説明Explanation of symbols

2…板状太陽電池
2. Plate solar cell

Claims (5)

板状太陽電池を立体的に配置した立体日射計。   A solid pyranometer with three-dimensionally arranged plate solar cells. 立方体の上面と4側面の5面に板状太陽電池を立体的に配置した立体日射計。   A solid pyranometer in which plate-like solar cells are arranged three-dimensionally on the upper surface of the cube and the five sides of the four side surfaces. 立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力をVとすると、立体日射量を、
((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 1/2
で測定するようにした立体日射計。
A plate-like solar cell is three-dimensionally arranged on the top and four sides of the cube, with the four sides facing north, east, south, and west, respectively, the output from the top is H, the output from the north is N, and the east is If E is the output, S is the output from the south, W is the output from the west, and V is the lowest output of the north, east, south, and west,
((HV) 2 + (N−V) 2 + (EV) 2 + (SV) 2 + (W−V) 2 ) 1/2
A solid pyranometer designed to measure with
立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力を散乱放射量とする立体日射計。   A plate-like solar cell is three-dimensionally arranged on the top and four sides of the cube, with the four sides facing north, east, south, and west, respectively, the output from the top is H, the output from the north is N, and the east is A solid pyranometer with E as the output, S as the output from the south, W as the output from the west, and the lowest output of the north, east, south, and west as scattered radiation. 板状太陽電池を立体的に配置し、板状太陽電池の表面温度が上昇すると温度を補償するようにした立体日射計。
A solid pyranometer that three-dimensionally arranges plate-like solar cells and compensates for the temperature when the surface temperature of the plate-like solar cells rises.
JP2005279265A 2005-09-27 2005-09-27 Stereoscopic pyranometer Pending JP2007093235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279265A JP2007093235A (en) 2005-09-27 2005-09-27 Stereoscopic pyranometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279265A JP2007093235A (en) 2005-09-27 2005-09-27 Stereoscopic pyranometer

Publications (1)

Publication Number Publication Date
JP2007093235A true JP2007093235A (en) 2007-04-12

Family

ID=37979152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279265A Pending JP2007093235A (en) 2005-09-27 2005-09-27 Stereoscopic pyranometer

Country Status (1)

Country Link
JP (1) JP2007093235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043225A1 (en) * 2017-09-04 2019-03-07 Somfy Activites Sa Meteorological station, control facility comprising such a station and method for configuring such a station
JP2020126070A (en) * 2016-04-27 2020-08-20 国立大学法人豊橋技術科学大学 Insolation measurement device, and irradiation state analyzer and light distribution measurement apparatus using the same
CN111712208A (en) * 2018-02-07 2020-09-25 赛诺秀有限责任公司 Method and apparatus for controlled RF processing and RF generator system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109083U (en) * 1990-02-21 1991-11-08
JPH04506111A (en) * 1988-12-22 1992-10-22 サーブ オートモービル アクチボラグ Vehicle air conditioning sensor
JPH0864017A (en) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd Lighting control device
JP2003232676A (en) * 2002-02-06 2003-08-22 Takeo Saito Three-dimensional cpc type radiometer
JP2008533708A (en) * 2005-03-10 2008-08-21 プレー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Solar sensor with MID technology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506111A (en) * 1988-12-22 1992-10-22 サーブ オートモービル アクチボラグ Vehicle air conditioning sensor
JPH03109083U (en) * 1990-02-21 1991-11-08
JPH0864017A (en) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd Lighting control device
JP2003232676A (en) * 2002-02-06 2003-08-22 Takeo Saito Three-dimensional cpc type radiometer
JP2008533708A (en) * 2005-03-10 2008-08-21 プレー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Solar sensor with MID technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126070A (en) * 2016-04-27 2020-08-20 国立大学法人豊橋技術科学大学 Insolation measurement device, and irradiation state analyzer and light distribution measurement apparatus using the same
WO2019043225A1 (en) * 2017-09-04 2019-03-07 Somfy Activites Sa Meteorological station, control facility comprising such a station and method for configuring such a station
FR3070770A1 (en) * 2017-09-04 2019-03-08 Somfy Activites Sa METEOROLOGICAL STATION, CONTROL INSTALLATION COMPRISING SUCH A STATION AND METHOD FOR CONFIGURING SUCH A STATION
CN111712208A (en) * 2018-02-07 2020-09-25 赛诺秀有限责任公司 Method and apparatus for controlled RF processing and RF generator system

Similar Documents

Publication Publication Date Title
Meng et al. Irradiance characteristics and optimization design of a large-scale solar simulator
CN102519848B (en) System and method for measuring three-dimensional volume scattering function of microparticle in water
Šuklje et al. An experimental study on a microclimatic layer of a bionic façade inspired by vertical greenery
Cha et al. Power prediction of bifacial Si PV module with different reflection conditions on rooftop
Mirzaei et al. Influence of the underneath cavity on buoyant‐forced cooling of the integrated photovoltaic panels in building roof: A thermography study
JP2007093235A (en) Stereoscopic pyranometer
JP2021120676A (en) Global solar spectrum devices and methods
Sánchez-González et al. Determination of heliostat canting errors via deterministic optimization
JP3196260U (en) Solar power plant
CN103064030B (en) System and method for battery light converging testing and sample platform for battery light converging testing
US9052385B2 (en) Sun tracking device and solar cell system
Freier et al. Software simulation and experimental characterisation of a rotationally asymmetrical concentrator under direct and diffuse solar radiation
CN103868477B (en) Wall plane degree measuring instrument and measuring method thereof
KR102037733B1 (en) Apparatus for measuring amount of incident light and apparatus for measuring angle of incident light using photodiode
Yu et al. A discussion of inner south projection angle for performance analysis of dielectric compound parabolic concentrator
Čekon et al. Experimental Analysis of Transparent Insulation Based on Poly-carbonate Multi-Wall Systems: Thermal and Optical Performance
Obukhov et al. Mathematical model of solar radiation incident on an arbitrarily oriented surface for any region in Russia
CN201081710Y (en) Right angle type laser module structure
CN102384735A (en) Solar elevation tester
TW200916711A (en) Solar position sensor mechanism and controller for solar tracking device and tracking and controlling method thereof
CN106057038B (en) Heat transfer process real-time optical apparatus for demonstrating synchronous with direction and experimental method
JPH0125349Y2 (en)
EP2590231A2 (en) Condensing lens and photovoltaic system using the same
JP3165348U (en) Measuring device for solar panel installation
Luminosu et al. Thermal Solar Experimental Model Equipped With Fresnel Lenses

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080512

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100614

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100722

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110728