JP2007093235A - Stereoscopic pyranometer - Google Patents
Stereoscopic pyranometer Download PDFInfo
- Publication number
- JP2007093235A JP2007093235A JP2005279265A JP2005279265A JP2007093235A JP 2007093235 A JP2007093235 A JP 2007093235A JP 2005279265 A JP2005279265 A JP 2005279265A JP 2005279265 A JP2005279265 A JP 2005279265A JP 2007093235 A JP2007093235 A JP 2007093235A
- Authority
- JP
- Japan
- Prior art keywords
- output
- face
- plate
- east
- west
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
本発明は、都市部の建て込んだビルディングなどに立体(3次元)的に入射する日射量と、散乱放射量を測定する立体日射計に関するものである。 The present invention relates to a solid pyranometer for measuring the amount of solar radiation that is three-dimensionally (three-dimensionally) incident on a building or the like built in an urban area and the amount of scattered radiation.
従来から、水平面に入射する「全天日射量」の測定は行われているが、ヒートアイランド問題等の原因の一つとなる都市部の建て込んだビルディング等において、立体(3次元)的に入射する日射量と散乱放射量を測定する必要が生じてきた。 Conventionally, the “total solar radiation” incident on the horizontal plane has been measured, but it is incident three-dimensionally (three-dimensionally) in buildings built in urban areas that are one of the causes of the heat island problem, etc. It has become necessary to measure solar radiation and scattered radiation.
ところが、現在においては、立体的に入射する日射量と散乱放射量を測定する測定器は存在しない。
従来の水平面に入射する日射を測定する日射計では、立体的な測定はできず、従来の日射計を立体的に配置しようとすると、サイズ、重量の点で実用的でなく、また、高価であることから、一つの測定器として使用することは困難であった。 A conventional pyranometer that measures insolation incident on a horizontal plane cannot measure in three dimensions, and it is impractical in terms of size and weight, and expensive when trying to arrange a conventional pyranometer in three dimensions. For this reason, it was difficult to use it as a single measuring instrument.
本発明は、立体的に入射する日射量と散乱放射量を測定する測定器を提供すべく、板状太陽電池を立体的に配置した立体日射計とした。 In order to provide a measuring instrument for measuring the amount of solar radiation and the amount of scattered radiation incident in a three-dimensional manner, the present invention is a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged.
また、本発明は、立体的に入射する日射量と散乱放射量を測定する測定器を提供すべく、立方体の上面と4側面の5面に板状太陽電池を立体的に配置した立体日射計とした。 The present invention also provides a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged on the top surface and four side surfaces of a cube in order to provide a measuring device that measures the amount of solar radiation and scattered radiation incident in three dimensions. It was.
さらに、本発明は、立体的に入射する立体日射量を測定する測定器を提供すべく、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力をVとすると、立体日射量を、
((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 )1/2
で測定するようにした立体日射計とした。
Furthermore, in order to provide a measuring device for measuring the amount of three-dimensional solar radiation incident three-dimensionally, the present invention three-dimensionally arranges plate-like solar cells on the upper surface and four side surfaces of the cube, and the four side surfaces are north, east, To the south and west, the output from the top is H, the output from the north is N, the output from the east is E, the output from the south is S, the output from the west is W, the north, east, If the minimum output on the south and west sides is V, the amount of solid solar radiation is
((HV) 2 + (N−V) 2 + (EV) 2 + (SV) 2 + (W−V) 2 ) 1/2
It was set as the solid pyranometer which was made to measure by.
さらにその上に、本発明は、散乱放射量を測定する測定器を提供すべく、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力を散乱放射量とする立体日射計とした。 Furthermore, in order to provide a measuring device for measuring the amount of scattered radiation, the present invention provides a three-dimensional arrangement of plate-like solar cells on the top and four sides of the cube, and the four sides are north, east, south, To the west, the output from the top is H, the output from the north is N, the output from the east is E, the output from the south is S, the output from the west is W, the north, east, south, A solid pyranometer with the lowest output of the west surface was the amount of scattered radiation.
また、本発明は、測定精度を向上させるべく、板状太陽電池を立体的に配置し、板状太陽電池の表面温度が上昇すると温度を補償するようにした立体日射計とした。 In addition, the present invention provides a solid pyranometer in which plate solar cells are arranged in a three-dimensional manner to improve measurement accuracy, and the temperature is compensated for when the surface temperature of the plate solar cells rises.
本発明は、板状太陽電池を立体的に配置した立体日射計であるので、立体的に入射する日射量と散乱放射量を測定できる。 Since the present invention is a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged, it is possible to measure the amount of solar radiation and the amount of scattered radiation incident in three dimensions.
また、本発明は、立方体の上面と4側面の5面に板状太陽電池を立体的に配置した立体日射計であるので、立体的に入射する日射量と散乱放射量を測定することができる。 Further, the present invention is a three-dimensional solar radiation meter in which plate-like solar cells are three-dimensionally arranged on the top surface and five side surfaces of the cube, so that the amount of solar radiation and the amount of scattered radiation incident in three dimensions can be measured. .
さらに、本発明は、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力をVとすると、立体日射量を、
((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 )1/2
で測定するようにした立体日射計であるので、立体的に入射する立体日射量を測定することができる。
Further, the present invention provides a three-dimensional arrangement of plate-like solar cells on the top and four sides of the cube, with the four sides facing north, east, south, and west, respectively, and the output from the top is H and the output from the north Is N, E is the output from the east, S is the output from the south, W is the output from the west, and V is the lowest output of the north, east, south, and west. ,
((HV) 2 + (N−V) 2 + (EV) 2 + (SV) 2 + (W−V) 2 ) 1/2
Therefore, the amount of solid solar radiation incident in three dimensions can be measured.
さらにその上に、本発明は、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力を散乱放射量とする立体日射計であるので、散乱放射量を測定することができる。 Furthermore, the present invention provides a three-dimensional arrangement of plate-like solar cells on the top and four sides of the cube, with the four sides facing north, east, south, and west, respectively, and the output from the top is H and north. The output from N is N, the output from the east is E, the output from the south is S, the output from the west is W, and the minimum output among the north, east, south, and west is the amount of scattered radiation. Since it is a solid pyranometer, the amount of scattered radiation can be measured.
また、本発明は、板状太陽電池を立体的に配置し、板状太陽電池の表面温度が上昇すると温度を補償するようにした立体日射計であるので、測定精度を向上させることができる。 Moreover, since this invention is a solid pyranometer which arrange | positions a plate-shaped solar cell three-dimensionally and compensated for temperature when the surface temperature of a plate-shaped solar cell rises, it can improve a measurement precision.
本発明を添付する図面の図1に示す具体的な一実施例に基づいて、以下詳細に説明する。 The present invention will be described in detail below on the basis of a specific embodiment shown in FIG. 1 of the accompanying drawings.
図1は、本発明の具体的一実施例の縦半分を断面した立体日射計である。 FIG. 1 is a solid pyranometer in which a vertical half of a specific embodiment of the present invention is cut.
中空の透明アクリル直方体1の上面と4側面の5面に、シリコン単結晶タイプの板状太陽電池2を立体的に配置して埋設し、底面は透明アクリル板3のみで、この透明アクリル板3の中央に透明塩ビパイプ4を垂下させる。
A silicon single crystal type plate-like
この中空の透明アクリル直方体1の内部には、板状太陽電池2より導出される出力ケーブル(図示せず)を通し、透明塩ビパイプ4内を挿通させて透明塩ビパイプ4外まで導出させる。この透明塩ビパイプ4の基端側はアルミベース板5を挿通させ固着し、透明塩ビパイプ4は使用に適した長さに設定し、その下端は必要に応じて基板を固着する。
An output cable (not shown) derived from the plate-like
また、この中空の透明アクリル直方体1は透明アクリルドーム6で覆わせる。
The hollow transparent acrylic
動作の安定したシリコン単結晶タイプの簡易センサである板状太陽電池2を立体的に配置することで、立体的に入射する立体日射量を測定できるようになった。板状太陽電池2はコスト低減、サイズや重量の点で簡便かつ実用性を有し、高品質で特性の経年変化が少ない。
By arranging three-dimensionally the plate-like
ビルディング等の建物で使用される冷房電力の的確な評価を行うためには、建物の各面が受ける立体日射量に着目する必要があることから、立体日射量の定量的観測が可能となる。 In order to accurately evaluate the cooling power used in a building such as a building, it is necessary to pay attention to the amount of three-dimensional solar radiation received by each surface of the building, so that the three-dimensional solar radiation amount can be quantitatively observed.
透明アクリル直方体1は、測定に際しては、図2に示すように、4側をそれぞれ北、東、南、西に向けて北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をW、上面からの出力をHとし、北面、東面、南面、西面のうちの最低出力をVとすると、立体日射量を、 ((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 )1/2
で測定するようにした。
As shown in FIG. 2, the transparent acrylic
It was made to measure with.
熱発生には、直達日射だけでなく、散乱放射も寄与しており、従来の日射計で直達日射量と散乱放射量の各々を正確に測定した例はない。 Not only direct solar radiation but also scattered radiation contributes to heat generation, and there is no example in which each of the direct solar radiation amount and the scattered radiation amount is accurately measured with a conventional solar radiation meter.
本発明は、立方体の上面と4側面に板状太陽電池を立体的に配置し、4側面をそれぞれ北、東、南、西に向けて、上面からの出力をH、北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWとし、北面、東面、南面、西面のうちの最低出力を散乱放射量とする立体日射計とした。 In the present invention, plate-like solar cells are three-dimensionally arranged on the upper surface and four side surfaces of a cube, with the four side surfaces facing north, east, south, and west, respectively, the output from the upper surface is H, and the output from the north surface is N. The output from the east surface is E, the output from the south surface is S, the output from the west surface is W, and a solid pyranometer with the lowest output among the north, east, south, and west is the amount of scattered radiation. .
北面からの出力をN、東面からの出力をE、南面からの出力をS、西面からの出力をWの最低値Vを散乱放射量とすることで散乱放射量を測定できるようにした。 The amount of scattered radiation can be measured by setting the output from the north to N, the output from the east to E, the output from the south to S, and the output from the west to the minimum value V of W. .
また、本発明は、板状太陽電池を立体的に配置し、板状太陽電池の表面温度が上昇すると温度を補償するようにした立体日射計とした。 Moreover, this invention was set as the solid pyranometer which arrange | positioned a plate-shaped solar cell in three dimensions, and compensated for temperature, when the surface temperature of a plate-shaped solar cell rose.
従来の日射計では、センサ表面の温度変化に伴う出力の変化が生じることから、従来の日射計単独では正確な測定ができなかった。 In the conventional pyranometer, since the output changes with the temperature change of the sensor surface, the conventional pyranometer alone cannot perform an accurate measurement.
本発明のシリコン単結晶タイプの板状太陽電池では、温度特性は物性的に解明されており、理論的方法により温度による出力低下を補正する方法が確立している。 In the silicon single crystal type plate-like solar cell of the present invention, the temperature characteristics have been elucidated in terms of physical properties, and a method for correcting a decrease in output due to temperature by a theoretical method has been established.
「実施例1」
本発明は、中空の透明アクリル直方体の一辺の長さは36mm、透明アクリルドームの球径170mm、透明塩ビパイプの直径は18mm、アルミベース板の板厚は5mmで、実験を行った。
"Example 1"
In the present invention, the length of one side of a hollow transparent acrylic rectangular parallelepiped was 36 mm, the spherical diameter of the transparent acrylic dome was 170 mm, the diameter of the transparent PVC pipe was 18 mm, and the thickness of the aluminum base plate was 5 mm.
本発明は、板状太陽電池を立体的に配置して、日射量と散乱放射量を測定するようにしたが、ビルディングや家屋などの空調のコントロールなどへの応用ができ、省エネ対策機器として使用できる。 In the present invention, the plate-like solar cells are arranged in three dimensions to measure the amount of solar radiation and the amount of scattered radiation. However, the present invention can be applied to air conditioning control of buildings and houses and used as an energy saving measure device. it can.
2…板状太陽電池
2. Plate solar cell
Claims (5)
((H−V)2 +(N−V)2 +(E−V)2 +(S−V)2 +(W−V)2 )1/2
で測定するようにした立体日射計。 A plate-like solar cell is three-dimensionally arranged on the top and four sides of the cube, with the four sides facing north, east, south, and west, respectively, the output from the top is H, the output from the north is N, and the east is If E is the output, S is the output from the south, W is the output from the west, and V is the lowest output of the north, east, south, and west,
((HV) 2 + (N−V) 2 + (EV) 2 + (SV) 2 + (W−V) 2 ) 1/2
A solid pyranometer designed to measure with
A solid pyranometer that three-dimensionally arranges plate-like solar cells and compensates for the temperature when the surface temperature of the plate-like solar cells rises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005279265A JP2007093235A (en) | 2005-09-27 | 2005-09-27 | Stereoscopic pyranometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005279265A JP2007093235A (en) | 2005-09-27 | 2005-09-27 | Stereoscopic pyranometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007093235A true JP2007093235A (en) | 2007-04-12 |
Family
ID=37979152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005279265A Pending JP2007093235A (en) | 2005-09-27 | 2005-09-27 | Stereoscopic pyranometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007093235A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019043225A1 (en) * | 2017-09-04 | 2019-03-07 | Somfy Activites Sa | Meteorological station, control facility comprising such a station and method for configuring such a station |
JP2020126070A (en) * | 2016-04-27 | 2020-08-20 | 国立大学法人豊橋技術科学大学 | Insolation measurement device, and irradiation state analyzer and light distribution measurement apparatus using the same |
CN111712208A (en) * | 2018-02-07 | 2020-09-25 | 赛诺秀有限责任公司 | Method and apparatus for controlled RF processing and RF generator system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109083U (en) * | 1990-02-21 | 1991-11-08 | ||
JPH04506111A (en) * | 1988-12-22 | 1992-10-22 | サーブ オートモービル アクチボラグ | Vehicle air conditioning sensor |
JPH0864017A (en) * | 1994-08-23 | 1996-03-08 | Matsushita Electric Ind Co Ltd | Lighting control device |
JP2003232676A (en) * | 2002-02-06 | 2003-08-22 | Takeo Saito | Three-dimensional cpc type radiometer |
JP2008533708A (en) * | 2005-03-10 | 2008-08-21 | プレー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Solar sensor with MID technology |
-
2005
- 2005-09-27 JP JP2005279265A patent/JP2007093235A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04506111A (en) * | 1988-12-22 | 1992-10-22 | サーブ オートモービル アクチボラグ | Vehicle air conditioning sensor |
JPH03109083U (en) * | 1990-02-21 | 1991-11-08 | ||
JPH0864017A (en) * | 1994-08-23 | 1996-03-08 | Matsushita Electric Ind Co Ltd | Lighting control device |
JP2003232676A (en) * | 2002-02-06 | 2003-08-22 | Takeo Saito | Three-dimensional cpc type radiometer |
JP2008533708A (en) * | 2005-03-10 | 2008-08-21 | プレー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Solar sensor with MID technology |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020126070A (en) * | 2016-04-27 | 2020-08-20 | 国立大学法人豊橋技術科学大学 | Insolation measurement device, and irradiation state analyzer and light distribution measurement apparatus using the same |
WO2019043225A1 (en) * | 2017-09-04 | 2019-03-07 | Somfy Activites Sa | Meteorological station, control facility comprising such a station and method for configuring such a station |
FR3070770A1 (en) * | 2017-09-04 | 2019-03-08 | Somfy Activites Sa | METEOROLOGICAL STATION, CONTROL INSTALLATION COMPRISING SUCH A STATION AND METHOD FOR CONFIGURING SUCH A STATION |
CN111712208A (en) * | 2018-02-07 | 2020-09-25 | 赛诺秀有限责任公司 | Method and apparatus for controlled RF processing and RF generator system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meng et al. | Irradiance characteristics and optimization design of a large-scale solar simulator | |
CN102519848B (en) | System and method for measuring three-dimensional volume scattering function of microparticle in water | |
Šuklje et al. | An experimental study on a microclimatic layer of a bionic façade inspired by vertical greenery | |
Cha et al. | Power prediction of bifacial Si PV module with different reflection conditions on rooftop | |
Mirzaei et al. | Influence of the underneath cavity on buoyant‐forced cooling of the integrated photovoltaic panels in building roof: A thermography study | |
JP2007093235A (en) | Stereoscopic pyranometer | |
JP2021120676A (en) | Global solar spectrum devices and methods | |
Sánchez-González et al. | Determination of heliostat canting errors via deterministic optimization | |
JP3196260U (en) | Solar power plant | |
CN103064030B (en) | System and method for battery light converging testing and sample platform for battery light converging testing | |
US9052385B2 (en) | Sun tracking device and solar cell system | |
Freier et al. | Software simulation and experimental characterisation of a rotationally asymmetrical concentrator under direct and diffuse solar radiation | |
CN103868477B (en) | Wall plane degree measuring instrument and measuring method thereof | |
KR102037733B1 (en) | Apparatus for measuring amount of incident light and apparatus for measuring angle of incident light using photodiode | |
Yu et al. | A discussion of inner south projection angle for performance analysis of dielectric compound parabolic concentrator | |
Čekon et al. | Experimental Analysis of Transparent Insulation Based on Poly-carbonate Multi-Wall Systems: Thermal and Optical Performance | |
Obukhov et al. | Mathematical model of solar radiation incident on an arbitrarily oriented surface for any region in Russia | |
CN201081710Y (en) | Right angle type laser module structure | |
CN102384735A (en) | Solar elevation tester | |
TW200916711A (en) | Solar position sensor mechanism and controller for solar tracking device and tracking and controlling method thereof | |
CN106057038B (en) | Heat transfer process real-time optical apparatus for demonstrating synchronous with direction and experimental method | |
JPH0125349Y2 (en) | ||
EP2590231A2 (en) | Condensing lens and photovoltaic system using the same | |
JP3165348U (en) | Measuring device for solar panel installation | |
Luminosu et al. | Thermal Solar Experimental Model Equipped With Fresnel Lenses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20080512 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20100614 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100722 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110728 |