JP2007093103A - Core portion structure for heat exchanger - Google Patents

Core portion structure for heat exchanger Download PDF

Info

Publication number
JP2007093103A
JP2007093103A JP2005282704A JP2005282704A JP2007093103A JP 2007093103 A JP2007093103 A JP 2007093103A JP 2005282704 A JP2005282704 A JP 2005282704A JP 2005282704 A JP2005282704 A JP 2005282704A JP 2007093103 A JP2007093103 A JP 2007093103A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
tank
core portion
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005282704A
Other languages
Japanese (ja)
Inventor
Ryoichi Hori
亮一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005282704A priority Critical patent/JP2007093103A/en
Publication of JP2007093103A publication Critical patent/JP2007093103A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the cracks or breakage of a tube at its root by relaxing thermal stress concentrating on the root of the tube. <P>SOLUTION: This core portion structure for a heat exchanger comprises a core portion 2 arranged between a pair of tanks, which consists of a plurality of tubes 7 and a plurality of fins 8. Each tube 7 is inserted and fixed at its either end through and into the corresponding tank 3(4). At the root X of the tube 7 to the tank 3 (4) outside the tank 3(4), a diameter enlarged portion 13 is provided for absorbing thermal expansion and contraction of the tube 7 in the axial direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車の熱交換器のコア部構造に関する。   The present invention relates to a core structure of a heat exchanger for an automobile.

従来、一対のタンクの間に、複数のチューブと複数のフィンとから構成されるコア部が配置され、前記各チューブの両端部がそれぞれ対応するタンクに挿通し固定される熱交換器のコア部構造の技術が公知になっている(特許文献1〜3参照)。
特開2005−3226号公報 特開2005−37061号公報 特開2004−278867号公報
Conventionally, a core part of a heat exchanger in which a core part composed of a plurality of tubes and a plurality of fins is arranged between a pair of tanks, and both end parts of the respective tubes are inserted and fixed in corresponding tanks, respectively. The structure technology is known (see Patent Documents 1 to 3).
JP 2005-3226 A JP 2005-37061 A JP 2004-278867 A

しかしながら、従来の熱交換器のコア部構造にあっては、チューブが長手方向に熱膨張・収縮した際における熱応力がチューブにおけるタンクとの付け根(以下、チューブの付け根と略す)に集中して亀裂・破損が生じる虞があった。   However, in the core structure of a conventional heat exchanger, the thermal stress when the tube is thermally expanded and contracted in the longitudinal direction is concentrated at the base of the tube with the tank (hereinafter abbreviated as the tube base). There was a risk of cracking or breakage.

本発明は上記課題を解決するためになされたものであって、その目的とするところは、チューブの付け根に集中する熱応力を緩和することにより、チューブの付け根の亀裂・破損を防止できる熱交換器のコア部構造を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and the purpose of the present invention is to reduce heat stress concentrated on the base of the tube, thereby preventing heat exchange that can prevent cracking and breakage of the base of the tube. The core part structure of the vessel is provided.

本発明の請求項1記載の発明では、一対のタンクの間に、複数のチューブと複数のフィンとから構成されるコア部が配置され、前記各チューブの両端部がそれぞれ対応するタンクに挿通し固定される熱交換器のコア部構造において、前記チューブおけるタンクとの付け根のタンク外側に、チューブの軸方向への熱膨張及び収縮を吸収可能な拡径部を設けたことを特徴とする。   According to the first aspect of the present invention, a core portion composed of a plurality of tubes and a plurality of fins is disposed between a pair of tanks, and both end portions of the respective tubes are inserted into the corresponding tanks. In the core part structure of the heat exchanger to be fixed, a diameter-enlarged part capable of absorbing thermal expansion and contraction in the axial direction of the tube is provided outside the tank at the base of the tube in the tube.

本発明の請求項1記載の発明にあっては、一対のタンクの間に、複数のチューブと複数のフィンとから構成されるコア部が配置され、前記各チューブの両端部がそれぞれ対応するタンクに挿通し固定される熱交換器のコア部構造において、前記チューブおけるタンクとの付け根のタンク外側に、チューブの軸方向への熱膨張及び収縮を吸収可能な拡径部を設けたため、チューブが長手方向に熱膨張・収縮した際における熱応力を拡径部によって緩和でき、これにより、チューブの付け根の亀裂・破損を防止できる。   According to the first aspect of the present invention, a core portion composed of a plurality of tubes and a plurality of fins is disposed between a pair of tanks, and both end portions of each tube correspond to each other. In the core part structure of the heat exchanger that is inserted and fixed in the tube, the diameter of the tube is increased on the outer side of the tank at the base of the tube, so that it can absorb thermal expansion and contraction in the axial direction of the tube. Thermal stress at the time of thermal expansion / contraction in the longitudinal direction can be relieved by the enlarged diameter portion, thereby preventing cracks / breakage at the base of the tube.

以下、この発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、実施例1を説明する。
なお、本実施例1では熱交換器をラジエータに適用した場合について説明する。
図1は本発明の実施例1の熱交換器の斜視図、図2は本実施例1のコア部の正面図、図3は本実施例1のコア部とタンクの分解斜視図(一部のみ)、図4は図1のS4−S4線における端面図、図5は本実施例1のチューブの端部を説明する端面図、図6は拡径部の拡径幅W1を変えた場合の応力値を示す図、図7は拡径部の幅W1をより大きくしたチューブを説明する図である。
Example 1 will be described below.
In the first embodiment, a case where the heat exchanger is applied to a radiator will be described.
1 is a perspective view of a heat exchanger according to a first embodiment of the present invention, FIG. 2 is a front view of a core portion according to the first embodiment, and FIG. 3 is an exploded perspective view of a core portion and a tank according to the first embodiment (partial). 4 is an end view taken along line S4-S4 in FIG. 1, FIG. 5 is an end view for explaining the end of the tube of the first embodiment, and FIG. 6 is a case where the expanded width W1 of the expanded portion is changed. FIG. 7 is a diagram illustrating a tube in which the width W1 of the enlarged diameter portion is further increased.

先ず、全体構成を説明する。
図1に示すように、本実施例1の熱交換器のコア部構造が採用されたラジエータ1は、コア部2とタンク3,4が備えられている。
First, the overall configuration will be described.
As shown in FIG. 1, the radiator 1 in which the core structure of the heat exchanger according to the first embodiment is employed includes a core 2 and tanks 3 and 4.

図2に示すように、コア部2は、後述するタンク3,4の構成部材である一対のチューブプレート5,6と、該チューブプレート5,6の間に交互に配置された複数のチューブ7及び波状のフィン8と、チューブプレート5,6の両端部同士を連結する一対のレインフォース9,10が備えられている。   As shown in FIG. 2, the core portion 2 includes a pair of tube plates 5 and 6 that are constituent members of tanks 3 and 4 described later, and a plurality of tubes 7 that are alternately arranged between the tube plates 5 and 6. In addition, a wave-like fin 8 and a pair of reinforcements 9 and 10 that connect both ends of the tube plates 5 and 6 are provided.

図3に示すように、チューブプレート5,6は、後述するチューブ7の端部7aが嵌挿固定される他、その皿状の周縁には、対応するタンク3,4の底部周縁を加締めて固定可能な複数の爪部11が突設されている。   As shown in FIG. 3, the tube plates 5 and 6 are fitted with an end 7a of a tube 7 to be described later, and the bottom periphery of the corresponding tanks 3 and 4 is crimped to the dish-shaped periphery. A plurality of claw portions 11 that can be fixed are projected.

チューブ7は、その中央部に柱部12を有する所謂B型の偏平チューブが採用され、その端部7aはそれぞれ対応するチューブプレート5,6の貫通穴に挿通し固定された状態でろう付け固定されている。
なお、チューブプレート5,6の貫通穴をタンク3(4)内側に筒状に突出させても良い。また、柱部12は必ずしも設ける必要はない。
The tube 7 employs a so-called B-type flat tube having a column 12 at the center thereof, and its end 7a is brazed and fixed in a state where the end 7a is inserted through and fixed to the corresponding through holes of the tube plates 5 and 6, respectively. Has been.
Note that the through holes of the tube plates 5 and 6 may be formed in a cylindrical shape inside the tank 3 (4). Moreover, the column part 12 does not necessarily need to be provided.

そして、図4に示すように、チューブ7の両端部において、チューブの付け根Xのタンク3(4)外側には拡径した拡径部13が設けられている。
また、図5に示すように、拡径部13は略半円形状に外側へ拡径した断面形状に形成されるが、この断面形状に限定されるものではない。
And as shown in FIG. 4, the diameter-expanded part 13 expanded in diameter is provided in the both ends of the tube 7 at the tank 3 (4) outer side of the base X of the tube.
Moreover, as shown in FIG. 5, the enlarged diameter part 13 is formed in the cross-sectional shape expanded outside in the substantially semicircle shape, However, It is not limited to this cross-sectional shape.

フィン8は、流通媒体を車両走行風または図示を省略するファンの強制風と熱交換させるためのものであって、波状に形成された所謂コルゲートフィンが採用され、波の頂部が隣接するチューブ7に当接した状態で共にろう付け固定されている。   The fins 8 are for exchanging heat with the vehicle running wind or the forced wind of a fan (not shown), and the fins 8 employ so-called corrugated fins that are formed in a wave shape. Are both brazed and fixed in contact with each other.

レインフォース9,10は、チューブプレート5,6の両端部を連結補強するためのものであって、その端部14が対応するチューブプレート5,6の貫通穴に嵌挿固定された状態で共にろう付け固定されている。   The reinforcements 9 and 10 are for connecting and reinforcing both end portions of the tube plates 5 and 6, and both end portions 14 are fitted and fixed in the corresponding through holes of the tube plates 5 and 6. It is fixed by brazing.

タンク3は、その底部がシール部材Sを介してチューブプレート5によって塞がれた状態となっており、その内部空間と連通した状態でポートP1が車両後方側へ突設されている。
一方、タンク4も同様に、シール部材Sを介してチューブプレート6によって塞がれた状態となっており、その内部空間と連通した状態でポートP2が車両後方側へ突設されている。
The bottom of the tank 3 is closed by the tube plate 5 via the seal member S, and the port P1 projects from the vehicle rear side in communication with the internal space.
On the other hand, the tank 4 is similarly closed by the tube plate 6 via the seal member S, and the port P2 projects from the vehicle rear side in communication with the internal space.

その他、ラジエータは、タンク3,4(チューブプレート5,6を除く)が樹脂製で、コア部2の各構成部材がアルミ製であり、コア部2の各構成部材の接合部のうちの少なくとも一方にはクラッド層(ブレージングシート)が設けられている。   In addition, in the radiator, the tanks 3 and 4 (excluding the tube plates 5 and 6) are made of resin, the constituent members of the core portion 2 are made of aluminum, and at least of the joint portions of the constituent members of the core portion 2 On one side, a clad layer (brazing sheet) is provided.

次に、作用を説明する。
このように構成されたラジエータ1を製造する際は、先ず、コア部2の各構成部材を仮組した後、図示を省略する加熱炉で熱処理することにより、各構成部材を一体的にろう付け固定する。
Next, the operation will be described.
When manufacturing the radiator 1 configured as described above, first, the constituent members of the core portion 2 are temporarily assembled, and then heat-treated in a heating furnace (not shown) to braze the constituent members integrally. Fix it.

この際、拡径部13はチューブ7の製造時において、B型の偏平状に折り曲げる工程前の金属製板材に予め拡径部13となる溝を形成しておくことで容易に形成できる。
また、チューブ7をチューブプレート5,6に挿通し固定する際に、チューブ7の両端部において、拡径部13をそれぞれ対応するチューブプレート5,6に当接させるという簡単な作業でもってチューブ7の端部7aの挿入代を容易に位置決めでき、コア部2を精度良く仮組みできる。
At this time, the diameter-expanded portion 13 can be easily formed by forming a groove to be the diameter-expanded portion 13 in advance in the metal plate material before the step of bending into a B-shaped flat shape when the tube 7 is manufactured.
Further, when the tube 7 is inserted and fixed to the tube plates 5 and 6, the tube 7 is simply operated by bringing the enlarged diameter portions 13 into contact with the corresponding tube plates 5 and 6 at both ends of the tube 7. The insertion margin of the end portion 7a can be easily positioned, and the core portion 2 can be temporarily assembled with high accuracy.

次に、チューブプレート5,6の爪部11をそれぞれ対応するタンク3,4の底部周縁に図示を省略するシール部材S(図4参照)を介して加締め固定してタンク3,4内部を気密状態としてラジエータ1の製造を製造する。   Next, the claw portions 11 of the tube plates 5 and 6 are fixed by caulking to the corresponding peripheral edges of the bottoms of the tanks 3 and 4 via seal members S (not shown) (see FIG. 4). The manufacture of the radiator 1 is manufactured in an airtight state.

このように構成されたラジエータ1では、ポートP1,P2がエンジン側の接続パイプに接続された後、エンジン側からポートP1を介してタンク3に流入した110℃前後の流通媒体が、各チューブ7を介してタンク4に流入する間にコア部2を通過する車両走行風または図示を省略するファンの強制風と熱交換して80℃前後まで冷却された後、ポートP2を介してエンジン側へ再び排出され、ラジエータして機能する。   In the radiator 1 configured as described above, after the ports P1 and P2 are connected to the connection pipe on the engine side, the circulation medium at around 110 ° C. flowing into the tank 3 from the engine side via the port P1 is transferred to each tube 7. After being cooled to about 80 ° C. by exchanging heat with the vehicle traveling wind passing through the core portion 2 while flowing into the tank 4 via the air or the forced air of the fan (not shown) and then cooling to the engine side via the port P 2 It is discharged again and functions as a radiator.

ここで、各チューブ7は、主に長手方向に熱膨張・収縮し、その際に発生する熱応力がチューブ7の付け根に集中して亀裂・破損が生じる虞があった   Here, each tube 7 is thermally expanded / contracted mainly in the longitudinal direction, and the thermal stress generated at that time may concentrate on the root of the tube 7 and may be cracked / damaged.

これに対し、本実施例1の熱交換器のコア部構造にあっては、チューブ7が長手方向に熱膨張・収縮した際に、拡径部13がチューブ7の長手方向に熱膨張・収縮してダンパのように機能し、これにより、チューブ7の付け根に掛かる熱応力を吸収して緩和でき、亀裂・破損を防止できる。   On the other hand, in the core part structure of the heat exchanger according to the first embodiment, when the tube 7 is thermally expanded / contracted in the longitudinal direction, the enlarged diameter portion 13 is thermally expanded / contracted in the longitudinal direction of the tube 7. Thus, it functions like a damper, thereby absorbing and relaxing the thermal stress applied to the base of the tube 7 and preventing cracks and breakage.

ここで、図5に示す拡径部における拡径幅W1を様々な値に変えた場合のチューブの付け根Xに掛かる応力値を計算し、拡径部を設けない場合と比べた応力低減率効果を算定した結果を図6に示す。なお、チューブは一般的な幅及び厚みのチューブを想定しており、拡径部の長さW2は5mmとした。   Here, the stress value applied to the root X of the tube when the expanded width W1 in the expanded diameter portion shown in FIG. 5 is changed to various values is calculated, and the stress reduction rate effect compared with the case where the expanded diameter portion is not provided. The result of calculating is shown in FIG. In addition, the tube assumed the tube of general width and thickness, and the length W2 of the diameter expansion part was 5 mm.

図6に示すように、拡径幅W1が0.2mm〜1.5mmの場合に拡径部を設けない場合に比べて約20%〜80%の応力低減効果を得ることができ、好適であると分かった。
なお、拡径幅W1の増大に伴って流通媒体の抵抗が増えることを考慮して、拡径幅W1を0.2mm〜0.5mm(応力低減効果は約20%〜50%)としても十分な効果が得られる。
また、図7に示すように、拡径部の長さW2を大きくすると、直線部分が形成されることにより、この部位が熱膨張・収縮してチューブ7の付け根に熱応力が集中するため、拡径部の長さW2は5mm以下が好適である。
As shown in FIG. 6, a stress reduction effect of about 20% to 80% can be obtained when the expanded diameter width W1 is 0.2 mm to 1.5 mm, compared with the case where the expanded diameter portion is not provided, which is preferable. I found it.
In consideration of the increase in the resistance of the flow medium with the increase in the expanded width W1, the expanded width W1 is sufficiently set to 0.2 mm to 0.5 mm (stress reduction effect is about 20% to 50%). Effects can be obtained.
Further, as shown in FIG. 7, when the length W2 of the enlarged diameter portion is increased, a linear portion is formed, and this portion is thermally expanded / contracted, and thermal stress concentrates on the root of the tube 7, The length W2 of the enlarged diameter portion is preferably 5 mm or less.

次に、効果を説明する。
以上、説明したように、本実施例1の熱交換器のコア部構造にあっては、一対のタンクの間に、複数のチューブ7と複数のフィン8とから構成されるコア部2が配置され、各チューブ7の両端部がそれぞれ対応するタンク3(4)に挿通し固定される熱交換器のコア部構造において、チューブ7おけるタンク3(4)との付け根Xのタンク3(4)外側に、チューブ7の軸方向への熱膨張及び収縮を吸収可能な拡径部13を設けたため、チューブ7が長手方向に熱膨張・収縮した際における熱応力を拡径部13によって緩和でき、これにより、チューブ7の付け根の亀裂・破損を防止できる。
Next, the effect will be described.
As described above, in the core part structure of the heat exchanger according to the first embodiment, the core part 2 including the plurality of tubes 7 and the plurality of fins 8 is disposed between the pair of tanks. In the core part structure of the heat exchanger in which both ends of each tube 7 are inserted and fixed to the corresponding tank 3 (4), the tank 3 (4) at the base X with the tank 3 (4) in the tube 7 Since the enlarged diameter portion 13 capable of absorbing thermal expansion and contraction in the axial direction of the tube 7 is provided on the outside, the thermal stress when the tube 7 is thermally expanded and contracted in the longitudinal direction can be relaxed by the enlarged diameter portion 13. Thereby, the crack and damage of the base of the tube 7 can be prevented.

以上、本実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、本実施例1では熱交換器をラジエータ1に適用した場合について説明したがコンデンサに適用しても良い。また、タンク3,4を全てアルミ製としても良い。
また、本実施例1では全てのチューブ7の両端部に拡径部13を形成したが、特定のチューブ7のみ、あるいはチューブ7の一方側端部にのみ設けても良い。
Although the present embodiment has been described above, the present invention is not limited to the above-described embodiment, and design changes and the like within the scope not departing from the gist of the present invention are included in the present invention.
For example, although the case where the heat exchanger is applied to the radiator 1 has been described in the first embodiment, the heat exchanger may be applied to a capacitor. The tanks 3 and 4 may all be made of aluminum.
Further, in the first embodiment, the enlarged diameter portions 13 are formed at both end portions of all the tubes 7.

また、図8に示すように、拡径部13を複数(図中では2つ)連結したような拡径部20を形成しても良い。ただし、拡径部同士が離れると所望の効果は得られない。   Moreover, as shown in FIG. 8, you may form the enlarged diameter part 20 which connected multiple enlarged diameter parts 13 (two in the figure). However, the desired effect cannot be obtained if the enlarged diameter portions are separated from each other.

本発明の実施例1の熱交換器の斜視図である。It is a perspective view of the heat exchanger of Example 1 of this invention. 本実施例1のコア部の正面図である。It is a front view of the core part of the present Example 1. FIG. 本実施例1のコア部とタンクの分解斜視図(一部のみ)である。It is a disassembled perspective view (only a part) of the core part of this Example 1, and a tank. 図1のS4−S4線における端面図である。It is an end elevation in S4-S4 line of FIG. 本実施例1のチューブの端部を説明する端面図である。It is an end view explaining the edge part of the tube of the present Example 1. FIG. 拡径部の拡径幅W1を変えた場合の応力値を示す図である。It is a figure which shows the stress value at the time of changing diameter expansion width W1 of an enlarged diameter part. 拡径部の幅W1をより大きくしたチューブを説明する図である。It is a figure explaining the tube which made width W1 of an enlarged diameter part larger. その他の実施例のチューブの端部を説明する端面図である。It is an end elevation explaining the edge part of the tube of another Example.

符号の説明Explanation of symbols

X チューブの付け根
P1、P2 ポート
S シール部材
1 ラジエータ
2 コア部
3、4 タンク
5、6 チューブプレート
7 チューブ
7a (チューブの)端部
8 フィン
9、10 レインフォース
11 爪部
12 柱部
13 拡径部
14 端部
X Tube base P1, P2 Port S Seal member 1 Radiator 2 Core portion 3, 4 Tank 5, 6 Tube plate 7 Tube 7a (tube) end portion 8 Fin 9, 10 Reinforce 11 Claw portion 12 Column portion 13 Diameter expansion Part 14 End

Claims (1)

一対のタンクの間に、複数のチューブと複数のフィンとから構成されるコア部が配置され、
前記各チューブの両端部がそれぞれ対応するタンクに挿通し固定される熱交換器のコア部構造において、
前記チューブおけるタンクとの付け根のタンク外側に、チューブの軸方向への熱膨張及び収縮を吸収可能な拡径部を設けたことを特徴とする熱交換器のコア部構造。
Between the pair of tanks, a core portion composed of a plurality of tubes and a plurality of fins is disposed,
In the core portion structure of the heat exchanger in which both end portions of each tube are inserted and fixed in corresponding tanks,
A core part structure of a heat exchanger, characterized in that an enlarged diameter part capable of absorbing thermal expansion and contraction in the axial direction of the tube is provided outside the base of the tank in the tube.
JP2005282704A 2005-09-28 2005-09-28 Core portion structure for heat exchanger Withdrawn JP2007093103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282704A JP2007093103A (en) 2005-09-28 2005-09-28 Core portion structure for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282704A JP2007093103A (en) 2005-09-28 2005-09-28 Core portion structure for heat exchanger

Publications (1)

Publication Number Publication Date
JP2007093103A true JP2007093103A (en) 2007-04-12

Family

ID=37979035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282704A Withdrawn JP2007093103A (en) 2005-09-28 2005-09-28 Core portion structure for heat exchanger

Country Status (1)

Country Link
JP (1) JP2007093103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532708A (en) * 2012-09-06 2015-11-12 シニア アイピー ジーエムビーエイチ Improved exhaust gas recirculation device and method for forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532708A (en) * 2012-09-06 2015-11-12 シニア アイピー ジーエムビーエイチ Improved exhaust gas recirculation device and method for forming the same

Similar Documents

Publication Publication Date Title
JP2000346578A5 (en)
JP2007178015A (en) Heat exchanger
JP2008032384A (en) Heat exchanger
JP2007093023A (en) Heat exchanger
JP2012097915A (en) Reinforcing structure of heat exchanger
JP2014169851A (en) Heat exchanger
JP2007093024A (en) Heat exchanger
JP2007127347A (en) Tank structure for heat exchanger
JPH0510694A (en) Heat transfer tube for heat exchanger
JP2007093103A (en) Core portion structure for heat exchanger
JP5706666B2 (en) Reinforcement structure of heat exchanger
JP5030677B2 (en) Heat exchanger tank structure
JP4759367B2 (en) Laminate heat exchanger
JP7244439B2 (en) Header plateless heat exchanger
JP2007078214A (en) Heat exchanger for automobile
JP2006214656A (en) Connecting structure of heat exchanger
JP2009150572A (en) Heat exchanger
JP2010106723A (en) Hybrid type heat exchanger
JP6106546B2 (en) Heat exchanger
KR100668445B1 (en) Heat exchanger of header type
JP2007216919A (en) Vehicular heat exchanger
JP2008089270A (en) Intercooler
JP6919472B2 (en) Heat exchanger
JP4284598B2 (en) Corrugated fin heat exchanger
JP6071711B2 (en) Cylindrical fin unit manufacturing method for heat exchanger and heat exchanger using the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091202