JP2007092237A - Method for producing fiber structure by electrospinning method - Google Patents

Method for producing fiber structure by electrospinning method Download PDF

Info

Publication number
JP2007092237A
JP2007092237A JP2005283968A JP2005283968A JP2007092237A JP 2007092237 A JP2007092237 A JP 2007092237A JP 2005283968 A JP2005283968 A JP 2005283968A JP 2005283968 A JP2005283968 A JP 2005283968A JP 2007092237 A JP2007092237 A JP 2007092237A
Authority
JP
Japan
Prior art keywords
fiber
pressure
fiber structure
solution
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005283968A
Other languages
Japanese (ja)
Other versions
JP4787585B2 (en
Inventor
Kenji Ohashi
賢司 大橋
Yoji Yanagi
陽二 柳
Takanori Miyoshi
孝則 三好
Nobuya Komura
伸弥 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2005283968A priority Critical patent/JP4787585B2/en
Publication of JP2007092237A publication Critical patent/JP2007092237A/en
Application granted granted Critical
Publication of JP4787585B2 publication Critical patent/JP4787585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for stably producing a uniform fiber structure in a method for producing the fiber structure by an electrospinning method, more precisely, the method for producing the fiber structure of a fiber-forming material by the electrospinning method. <P>SOLUTION: The method for producing the fiber structure from the fiber-forming material by the electrospinning method comprises continuously introducing a noncondensable gas to at least one storing vessel (B) of a solution, connected to at least one spinning part (A) for spinning out the fiber-forming material-containing solution through at least one pressure controller (C), and sending the solution to the spinning part (A) by the pressure of the gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は静電紡糸法による繊維構造体の製造方法に関する。さらに詳しくは、静電紡糸法による繊維形成性物質の繊維構造体の製造方法において、均一な繊維構造体を安定製造するための手法に関する。   The present invention relates to a method for producing a fiber structure by an electrospinning method. More specifically, the present invention relates to a method for stably producing a uniform fiber structure in a method for producing a fiber structure of a fiber-forming substance by electrostatic spinning.

種々の繊維形成性物質を紡糸する技術としては、溶融状態の繊維形成性物質をノズルより紡出させ、これを大気中もしくはある種の気体中で冷却・固化させて繊維を得る「溶融紡糸法」や、繊維形成性物質を含む溶液をノズルより紡出させ、これより溶媒成分を蒸発させて繊維を得る「乾式紡糸法」、同様にノズルより紡出された繊維形成性物質を凝固液中で固化させて繊維を得る「湿式紡糸法」などが一般的に知られている。   As a technique for spinning various fiber-forming substances, a melt-formed fiber-forming substance is spun from a nozzle, and this is cooled and solidified in the air or in a certain gas to obtain fibers. ”Or“ dry spinning method ”in which a solution containing a fiber-forming substance is spun from a nozzle and the solvent component is evaporated therefrom to obtain fibers. Similarly, the fiber-forming substance spun from the nozzle is added to the coagulation liquid. In general, a “wet spinning method” in which fibers are obtained by solidifying with a glass is known.

また、平面状の繊維構造体を製造する技術は、既述の紡糸技術を応用したものであり、「乾式法」や「湿式法」の他に、溶融紡糸後に延伸・開繊の工程を経て平面状の繊維構造体を得る「スパンボンド法」や、溶融紡糸ノズル口に高温高圧空気流を吹き当てた後、延伸・開繊の工程を経て平面状の繊維構造体を得る「メルトブローン法」などが一般的に知られている。   In addition, the technology for producing a planar fiber structure is an application of the above-described spinning technology. In addition to the “dry method” and “wet method”, a process of drawing and opening is performed after melt spinning. "Spunbond method" to obtain a planar fiber structure, and "Meltblown method" to obtain a planar fiber structure through a drawing and opening process after blowing a high-temperature and high-pressure air stream to the melt spinning nozzle port Etc. are generally known.

これらの紡糸技術および繊維構造体製造技術を利用し、既存の繊維や繊維構造体にない新たな特性を供すべく、様々な取り組みが為されている。中でも、繊維の直径を極小とし、単位重量当たりの表面積を向上させることで新たな機能を付与させる取り組みが盛んである。   Various efforts have been made to use these spinning technology and fiber structure manufacturing technology to provide new characteristics not found in existing fibers and fiber structures. In particular, efforts are being made to impart new functions by minimizing the fiber diameter and improving the surface area per unit weight.

しかしながら、既述の紡糸技術および繊維構造体製造技術を利用して得られた繊維の直径、および繊維構造体を構成する繊維の直径は、既存の繊維と同等の直径(数〜数十μm程度)であり、サブミクロンやナノスケールの直径を有する繊維を製造することは困難である。また、高圧下での繊維形成性物質の押し出しや繊維構造体の冷却・固化に供される設備は複雑かつ高価であり、製造コストの増大や安定した製品供給を阻害する。   However, the diameter of the fiber obtained by utilizing the above-described spinning technology and fiber structure manufacturing technology, and the diameter of the fiber constituting the fiber structure are the same diameter as existing fibers (several to several tens of μm). It is difficult to produce fibers with submicron or nanoscale diameters. In addition, the equipment used for extruding the fiber-forming substance under high pressure and cooling / solidifying the fiber structure is complicated and expensive, which hinders an increase in manufacturing cost and stable product supply.

そこで、新しい紡糸技術として、特許文献1および2で例示される「静電紡糸(electro spinning)法」が注目を集めている。本法は、繊維形成性物質含有溶液を正または負に帯電させ、これとは逆の極性に帯電させた、もしくは接地させた繊維構造体堆積部に対し、ノズルやニードルを介して紡出する方法である。当該ノズルやニードルより紡出した繊維状の繊維形成性物質は、ノズルやニードルと繊維構造体堆積部との間に形成される電位勾配の影響を受けて細化される。本法によると、数nmの直径を有する繊維の製造が可能となる。   Therefore, as a new spinning technique, the “electrospinning method” exemplified in Patent Documents 1 and 2 has attracted attention. In this method, a fiber-forming substance-containing solution is charged positively or negatively, and is spun through a nozzle or a needle to a fiber structure deposition portion charged in the opposite polarity or grounded. Is the method. The fibrous fiber-forming substance spun from the nozzle or needle is refined under the influence of a potential gradient formed between the nozzle or needle and the fiber structure deposition portion. According to this method, a fiber having a diameter of several nm can be produced.

一方、本法の課題とされている量産技術に関しても検討が盛んに行われている。特許文献3では、液状の高分子物質を貯蔵するバレル、当該バレルより液状の高分子物質を加圧供給するポンプ、当該ポンプより供給される液状の高分子物質を荷電されたノズルを通して噴射する紡糸部、液状の高分子物質を荷電させるための高電圧発生部、紡糸部とは異なる極性に帯電させたウェブ堆積部(コレクター)から成る高分子ウェブ製造装置が教示されている。本法によると、研究用途で供される1つのニードルを用いた実験室規模の製造とは異なり、高分子ウェブを高速かつ大量に製造することが可能である。   On the other hand, studies on mass production technology, which is the subject of this method, are also being actively conducted. In Patent Document 3, a barrel that stores a liquid polymer material, a pump that pressurizes the liquid polymer material from the barrel, and a spinning device that injects the liquid polymer material supplied from the pump through a charged nozzle. A high-voltage generating unit for charging a liquid polymer substance, and a web depositing unit (collector) charged to a polarity different from that of the spinning unit is taught. According to this method, it is possible to produce a polymer web at high speed and in large quantities, unlike laboratory-scale production using a single needle provided for research purposes.

しかし本法によると、高分子物質を介してポンプ内部が高電圧に帯電することになり、電気的な誤作動を起こし、送液量や紡出量が不安定になる可能性が高く、安定した繊維構造体の製造に悪影響を及ぼす。また、均一な目開きを有する繊維構造体を得る目的で複数のノズルを使用する場合、各ノズルでの吐出圧や紡出量を安定化させる目的で複数のポンプを配設する必要があるが、極微量の範囲まで送液量の制御が求められる本法に必要なポンプは一般に高価であり、これに要する設備コストの増大は避けることができない。   However, according to this method, the inside of the pump is charged to a high voltage via the polymer substance, causing an electrical malfunction, and there is a high possibility that the liquid feed amount and the spinning amount will become unstable and stable. Adversely affects the production of the finished fiber structure. In addition, when using a plurality of nozzles for the purpose of obtaining a fiber structure having a uniform opening, it is necessary to provide a plurality of pumps for the purpose of stabilizing the discharge pressure and spinning amount at each nozzle. In general, pumps required for this method that require control of the amount of liquid to be supplied to a very small range are expensive, and an increase in equipment cost required for this is inevitable.

また特許文献4では、ポリマードープメインタンク、定量ポンプ、ノズルブロック、コレクター、電源を含むエレクトロスピニング装置において、定量ポンプとノズルブロックの間にドープ滴下装置を有し、この装置がシールされた円筒とドープ導入用チューブ、ガス導入管、ドープ電荷除去チューブ、ドープを滴下する空孔部を有している装置が教示されている。本法によると、電気的駆動部を何ら有さないドープ滴下装置内に帯電したドープが一時貯蔵されるため、当該装置より上段に配設された定量ポンプが既述の理由で誤操作を起こす危険性がない。またドープに断続的に高電圧をかけることができるため、エネルギーロスの少ない静電紡糸が可能となる。   In Patent Document 4, in an electrospinning apparatus including a polymer dope main tank, a metering pump, a nozzle block, a collector, and a power source, a dope dripping device is provided between the metering pump and the nozzle block, and the device is a sealed cylinder. An apparatus having a dope introduction tube, a gas introduction tube, a dope charge removal tube, and a hole for dropping the dope is taught. According to this method, since the charged dope is temporarily stored in a dope dropping apparatus that does not have any electrical drive unit, there is a risk that the metering pump disposed in the upper stage of the apparatus may cause an erroneous operation for the reason already described. There is no sex. Further, since a high voltage can be intermittently applied to the dope, electrostatic spinning with less energy loss is possible.

しかし本法では、ドープ滴下装置内よりノズルブロックへドープを押し出すべく、当該装置内にガスを導入しているが、これにより当該装置内に圧力がかかるため、ドープ導入用チューブ先端からのドープの滴下が阻害される。これを回避すべく、定量ポンプの吐出圧力を上昇させる必要があるが、これにより当該装置内にかかる圧力がさらに上昇し、送液量が増大するため、極微量の送液を必要とする静電紡糸には不向きな送液量となる。適切な送液量に設定すべく、ドープの吐出圧力およびガスの圧力を適切な量に制御する必要があるが、密閉容器である当該装置内に何ら圧力計測装置を有しない状態で、かつ極微量の送液となるようにこれら圧力を制御することは極めて困難である。   However, in this method, gas is introduced into the apparatus in order to push out the dope into the nozzle block from within the dope dropping apparatus. Dripping is inhibited. In order to avoid this, it is necessary to increase the discharge pressure of the metering pump, but this further increases the pressure applied to the device and increases the amount of liquid to be fed. The liquid feeding amount is unsuitable for electrospinning. It is necessary to control the discharge pressure of the dope and the pressure of the gas to appropriate amounts in order to set the appropriate liquid feeding amount, but in a state where there is no pressure measuring device in the device, which is a sealed container, and extremely It is extremely difficult to control these pressures so that a very small amount of liquid is delivered.

このように繊維形成性物質含有溶液の送液が不安定であると、ノズルでの当該溶液の紡出が不安定となるため、得られる繊維構造体の厚みや目開きが不均一になる。例えば当該繊維構造体をフィルター基材に用いた場合、圧力損失量が不均一になることから濾過不良を起こす原因となる。   As described above, when the feeding of the fiber-forming substance-containing solution is unstable, the spinning of the solution at the nozzle becomes unstable, so that the thickness and openings of the resulting fiber structure are not uniform. For example, when the fiber structure is used as a filter base, the pressure loss amount becomes non-uniform, which causes a filtration failure.

米国特許第6106913号明細書US Pat. No. 6,106,913 米国特許第6110590号明細書US Pat. No. 6,110,590 特開2002−201559号公報JP 2002-201559 A 国際公開第03/004735号パンフレットInternational Publication No. 03/004735 Pamphlet

本発明は静電紡糸法による繊維構造体の製造方法、さらに詳しくは、静電紡糸法による繊維形成性物質の繊維構造体の製造方法において、均一な繊維構造体を安定製造するための手法を提供することにある。   The present invention relates to a method for stably producing a uniform fiber structure in a method for producing a fiber structure by an electrospinning method, and more specifically, in a method for producing a fiber structure of a fiber-forming substance by an electrospinning method. It is to provide.

発明者らは既述の問題を解消するために鋭意検討し、以下の発明に至った。
1.静電紡糸法により繊維形成性物質の繊維構造体を製造する方法において、当該繊維形成性物質含有溶液を紡出する、少なくとも一つの紡糸部(A)に連結させた、少なくとも一つの当該溶液の貯槽(B)に、少なくとも一つの圧力制御装置(C)を介して非凝縮性ガスを連続的に導入し、当該ガスの圧力で以って当該溶液を当該紡糸部(A)へ送液することを特徴とする静電紡糸法による繊維構造体の製造方法。
2.当該圧力制御装置(C)と、当該貯槽(B)内に配設された液面高さ計測装置(D)が連動しており、当該貯槽(B)の液面高さにより導入する当該ガスの圧力を制御する1.に記載の方法。
3.当該圧力制御装置(C)と、当該繊維構造体の厚みを測定する厚み測定部(E)が連動しており、当該繊維構造体の厚みにより導入する当該ガスの圧力を制御する1.または2.に記載の方法。
4.当該ガスが空気または窒素である、1.〜3.のいずれかに記載の方法。
5.当該ガスの圧力が大気圧以上、1MPa未満である、請求項1.〜4.のいずれかに記載の方法。
6.当該ガスの温度が、当該繊維形成性物質含有溶液中に含まれる溶媒の凝固点以上、沸点以下の範囲である、1.〜5.のいずれかに記載の方法。
The inventors diligently studied to solve the above-described problems, and led to the following invention.
1. In the method for producing a fiber structure of a fiber-forming substance by an electrostatic spinning method, the fiber-forming substance-containing solution is spun and at least one of the solutions connected to at least one spinning part (A) is spun. A non-condensable gas is continuously introduced into the storage tank (B) via at least one pressure control device (C), and the solution is fed to the spinning section (A) with the pressure of the gas. A method for producing a fiber structure by an electrospinning method.
2. The pressure control device (C) and the liquid level measuring device (D) disposed in the storage tank (B) are interlocked, and the gas introduced by the liquid level height of the storage tank (B). 1. Control the pressure of The method described in 1.
3. The pressure control device (C) and the thickness measuring unit (E) for measuring the thickness of the fiber structure are interlocked to control the pressure of the gas introduced by the thickness of the fiber structure. Or 2. The method described in 1.
4). The gas is air or nitrogen; ~ 3. The method in any one of.
5. The pressure of the gas is not less than atmospheric pressure and less than 1 MPa. ~ 4. The method in any one of.
6). The temperature of the gas is in the range from the freezing point to the boiling point of the solvent contained in the fiber-forming substance-containing solution. ~ 5. The method in any one of.

静電紡糸法を利用する既述の繊維構造体の製造方法により、均一な厚みや目開きを有する繊維形成性物質の繊維構造体を安定して得ることが可能となる。こうして得られた繊維構造体は、例えばフィルター基材に用いることができ、濾過不良を起こすことなく、超微粒子を捕捉することが可能な基材となりうる。   By the above-described method for producing a fiber structure using an electrospinning method, it is possible to stably obtain a fiber structure of a fiber-forming substance having a uniform thickness and openings. The fiber structure thus obtained can be used, for example, as a filter base material, and can be a base material capable of capturing ultrafine particles without causing poor filtration.

以下に本発明の製造方法について詳述する。
図1〜3は、この発明の一実施形態による繊維構造体製造工程の概略図である。以下これらの図を用いて本発明を詳しく具体的に説明するが、これにより本発明の範囲は限定されるものではない。
The production method of the present invention will be described in detail below.
1 to 3 are schematic views of a fiber structure manufacturing process according to an embodiment of the present invention. Hereinafter, the present invention will be described in detail with reference to these drawings, but the scope of the present invention is not limited thereby.

本発明の製造方法では、静電紡糸法により繊維形成性物質の繊維構造体を製造する方法において、当該繊維形成性物質含有溶液を紡出する、少なくとも一つの紡糸部(A)に連結させた、少なくとも一つの当該溶液の貯槽(B)に、少なくとも一つの圧力制御装置(C)を介して非凝縮性ガスを連続的に導入し、当該ガスの圧力で以って当該溶液を当該紡糸部(A)へ送液する。
まず繊維形成性物質含有溶液の貯槽(B)、すなわち溶液貯槽1に繊維形成性物質含有溶液を投入する。
In the production method of the present invention, in a method for producing a fiber structure of a fiber-forming substance by an electrostatic spinning method, the fiber-forming substance-containing solution is spun and connected to at least one spinning part (A). The non-condensable gas is continuously introduced into at least one storage tank (B) of the solution via at least one pressure control device (C), and the solution is spun by the pressure of the gas. Liquid is fed to (A).
First, the fiber-forming substance-containing solution is introduced into the fiber-forming substance-containing solution storage tank (B), that is, the solution storage tank 1.

尚、本発明で用いられる繊維形成性物質としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ナイロン、アラミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等を例示でき、これらより選ばれる少なくとも一種が用いられるが、特にこれらに限定されるものではない。   Examples of the fiber-forming substance used in the present invention include polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polyfluoride. Vinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyacrylonitrile, polyacrylonitrile-methacrylate copolymer, polycarbonate, polyarylate, polyester carbonate, nylon, aramid, Examples include polycaprolactone, polylactic acid, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, and polypeptide Can, at least one selected from these are used, but the invention is not particularly limited thereto.

また本発明で用いられる溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、ピリジン、水等を例示でき、これらより選ばれる少なくとも一種が用いられるが、特にこれらに限定されるものではない。   Examples of the solvent used in the present invention include methanol, ethanol, 1-propanol, 2-propanol, hexafluoroisopropanol, tetraethylene glycol, triethylene glycol, dibenzyl alcohol, 1,3-dioxolane, 1,4-dioxane, Methyl ethyl ketone, methyl isobutyl ketone, methyl-n-hexyl ketone, methyl-n-propyl ketone, diisopropyl ketone, diisobutyl ketone, acetone, hexafluoroacetone, phenol, formic acid, methyl formate, ethyl formate, propyl formate, methyl benzoate, benzoic acid Ethyl acetate, propyl benzoate, methyl acetate, ethyl acetate, propyl acetate, dimethyl phthalate, diethyl phthalate, dipropyl phthalate, methyl chloride, ethyl chloride, methylene chloride, chloroform , O-chlorotoluene, p-chlorotoluene, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethane, dichloropropane, dibromoethane, dibromopropane, methyl bromide, ethyl bromide, bromide Examples include propyl, acetic acid, benzene, toluene, hexane, cyclohexane, cyclohexanone, cyclopentane, o-xylene, p-xylene, m-xylene, acetonitrile, tetrahydrofuran, N, N-dimethylformamide, pyridine, water and the like. At least one selected from these is used, but is not particularly limited thereto.

また、既述の繊維形成性物質と溶媒に無機質固体材料を混入することも可能である。当該無機質固体材料としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を挙げることができるが、耐熱性、加工性などの観点から酸化物を用いることが好ましい。
当該酸化物としては、Al、SiO、TiO、LiO、NaO、MgO、CaO、SrO、BaO、B、P、SnO、ZrO、KO、CsO、ZnO、Sb、As、CeO、V、Cr、MnO、Fe、CoO、NiO、Y、Lu、Yb、HfO、Nb等を例示でき、これらより選ばれる少なくとも一種が用いられるが、特にこれらに限定されるものではない。
It is also possible to mix an inorganic solid material in the fiber-forming substance and the solvent described above. Examples of the inorganic solid material include oxides, carbides, nitrides, borides, silicides, fluorides, sulfides, etc., but oxides are preferably used from the viewpoint of heat resistance and workability. .
Examples of the oxide include Al 2 O 3 , SiO 2 , TiO 2 , Li 2 O, Na 2 O, MgO, CaO, SrO, BaO, B 2 O 3 , P 2 O 5 , SnO 2 , ZrO 2 , K. 2 O, Cs 2 O, ZnO , Sb 2 O 3, As 2 O 3, CeO 2, V 2 O 5, Cr 2 O 3, MnO, Fe 2 O 3, CoO, NiO, Y 2 O 3, Lu 2 O 3 , Yb 2 O 3 , HfO 2 , Nb 2 O 5 and the like can be exemplified, and at least one selected from these can be used, but is not particularly limited thereto.

当該貯槽1は、紡糸部(A)、すなわち紡糸ノズル2と送液配管を介して接続されている。また当該ノズル2は高電圧発生装置3と電気配線で接続されており、当該ノズル2に送液された繊維形成性物質含有溶液に高電圧が印加される構造となっている。巻き出しロール4より巻き出され、フリーロール5を介して巻き取りロール6で巻き取られる基材7の搬送途中の、当該基材7の裏面に設置された対向電極8に向かって当該溶液が紡出する。尚、当該電極8には、当該ノズル2に印加した電圧とは極性の異なる電圧を印加させるか、もしくは接地させる。上記した手法により、当該基材7上で当該繊維形成性物質の繊維構造体が得られる。   The storage tank 1 is connected to the spinning section (A), that is, the spinning nozzle 2 via a liquid feeding pipe. The nozzle 2 is connected to the high voltage generator 3 by electrical wiring, and has a structure in which a high voltage is applied to the fiber-forming substance-containing solution fed to the nozzle 2. The solution is directed toward the counter electrode 8 installed on the back surface of the base material 7 during the transport of the base material 7 unwound from the unwinding roll 4 and taken up by the take-up roll 6 via the free roll 5. Spin out. The electrode 8 is applied with a voltage having a polarity different from the voltage applied to the nozzle 2 or grounded. By the above-described method, a fiber structure of the fiber-forming substance is obtained on the base material 7.

当該ノズル2にて消費された当該溶液は、当該貯槽1より連続的に補填されるが、その補填方法として、極微量の送液が可能なポンプが採用される場合が多い。ポンプを用いる送液方法では、当該溶液の送液を強制的に行うことから、当該ノズル2の先端にて保持可能な液滴を形成させることが極めて困難である。送液不足が原因で、当該ノズル2の先端で当該溶液の液滴形成が確認できない場合、静電場に生じる電気的引力に対し、当該溶液の表面張力が過剰となるため、当該ノズル2より当該溶液は紡出されない。また送液が過剰となった場合は、当該ノズル2の先端で液滴が保持されず、液垂れを起こし、場合によっては液滴の状態で基材7上に到達する。これは得られる繊維構造体の厚みの均一性表面性状にも悪影響を及ぼす。   The solution consumed by the nozzle 2 is continuously supplemented from the storage tank 1, and a pump capable of supplying a very small amount of liquid is often employed as the compensation method. In the liquid feeding method using a pump, since the solution is forcibly fed, it is extremely difficult to form a droplet that can be held at the tip of the nozzle 2. When the droplet formation of the solution cannot be confirmed at the tip of the nozzle 2 due to insufficient liquid feeding, the surface tension of the solution becomes excessive with respect to the electric attractive force generated in the electrostatic field. The solution is not spun. Further, when the liquid feeding becomes excessive, the liquid droplets are not held at the tip of the nozzle 2 and the liquid dripping occurs. In some cases, the liquid reaches the substrate 7 in a liquid droplet state. This also adversely affects the uniform surface properties of the thickness of the resulting fiber structure.

また既述のポンプは、送液動作の機構上、独特の脈動を生じる場合が多い。脈動により、極微量ではあるが、単位時間当りの送液量が変化するため、極微量の紡出量を取り扱う場合、紡出量に及ぼす影響は甚大である。
そこで本発明では、少なくとも一つの圧力制御装置(C)、すなわち図中10を介し、当該貯槽1に非凝縮性ガスを連続的に導入し、当該ガスの圧力で以って当該溶液を当該ノズル2へ送液する。当該圧力制御装置10としては、当該圧力制御装置10の前段の配管内圧、および/またはその後段の配管内圧を検知して圧力制御を行う機構を採用することが好ましく、入力信号により出口圧力の制御が可能なレギュレーターバルブやリリーフバルブ等のバルブ類、およびこれらを含む装置を採用することができるが、これらに限定されるものではない。
In addition, the above-described pump often generates unique pulsation due to the mechanism of the liquid feeding operation. Although the amount of liquid fed per unit time changes due to pulsation, the effect on the amount of spinning is enormous when handling a very small amount of spinning.
Therefore, in the present invention, a non-condensable gas is continuously introduced into the storage tank 1 through at least one pressure control device (C), that is, 10 in the figure, and the solution is supplied to the nozzle by the pressure of the gas. 2 to liquid. As the pressure control device 10, it is preferable to employ a mechanism that controls the pressure by detecting the internal pressure of the upstream of the pressure control device 10 and / or the internal pressure of the downstream of the pressure control device 10, and controls the outlet pressure by an input signal. Valves such as regulator valves and relief valves that can be used, and devices including them can be used, but are not limited thereto.

本法によると、送液量の調整は当該圧力制御装置10による圧力制御により簡単に行うことが可能となり、また当該ガスの圧力により送液を行うことから、既述のポンプの脈動による不安定な送液を解消することが可能となる。特に極微量の送液を行う場合は、制御範囲の異なる当該圧力制御装置10を、複数直列に配設することも好適な手法である。   According to the present method, the adjustment of the liquid feeding amount can be easily performed by the pressure control by the pressure control device 10, and since the liquid feeding is performed by the pressure of the gas, instability due to the pulsation of the pump described above. It is possible to eliminate unnecessary liquid feeding. In particular, when a very small amount of liquid is supplied, it is also a suitable technique to arrange a plurality of the pressure control devices 10 having different control ranges in series.

尚、一般的には、当該溶液の消費により当該貯槽1内の当該溶液が減少するため、当該貯槽1に当該溶液を追添する必要があるが、静電紡糸法では当該溶液の消費量は極微量となることから、本法においては、目的とする製造を完遂できるだけの量の当該溶液を当該貯槽1に予め貯留することができる。また目的とする繊維構造体の製造量が多くなる場合は、当該貯槽1を中間貯槽とみなし、当該貯槽1の上段にさらに当該溶液の貯槽を配設することも可能であるが、これら手法に限定されるものではない。   In general, since the solution in the storage tank 1 decreases due to consumption of the solution, it is necessary to add the solution to the storage tank 1, but in the electrospinning method, the consumption amount of the solution is In this method, the amount of the solution can be stored in advance in the storage tank 1 so that the target production can be completed. When the production amount of the target fiber structure increases, the storage tank 1 can be regarded as an intermediate storage tank, and the storage tank of the solution can be further disposed on the upper stage of the storage tank 1, It is not limited.

また本発明においては、当該圧力制御装置(C)と、当該貯槽(B)内に配設した液面高さ計測装置(D)を連動させ、当該貯槽(B)の液面高さにより導入する当該ガスの圧力を制御することが好ましい。   Moreover, in this invention, the said pressure control apparatus (C) and the liquid level height measuring apparatus (D) arrange | positioned in the said storage tank (B) are made to interlock | cooperate, and it introduce | transduces by the liquid level height of the said storage tank (B). It is preferable to control the pressure of the gas.

既述の手法により、安定した送液が可能ではあるが、当該溶液の濃度や粘度等の諸物性や当該貯槽1の気密性によっては、当該貯槽1内に保持された当該溶液の液頭にかかる圧力が送液量に影響を及ぼす場合がある。当該貯槽1内の当該溶液の液面が高い位置にあるときには当該溶液の液頭にかかる圧力も大きく、逆に液面が低い位置にあるときには液頭にかかる圧力も小さい。当該溶液の消費や追添により、当該液面の位置は微小であっても容易に変動するため、極微量の送液を取り扱う本法においては深刻な問題となりうる。
そこで本発明では、当該貯槽1内に液面高さ計測装置(D)、すなわち図2中の11を配設し、これと既述圧力制御装置10を連動させ、当該貯槽1の液面高さにより導入する当該ガスの圧力を制御する。
Although stable liquid feeding is possible by the method described above, depending on various physical properties such as the concentration and viscosity of the solution and the airtightness of the storage tank 1, the liquid head of the solution held in the storage tank 1 Such pressure may affect the amount of liquid delivered. When the liquid level of the solution in the storage tank 1 is at a high position, the pressure applied to the liquid head of the solution is large. Conversely, when the liquid level is at a low position, the pressure applied to the liquid head is small. Since the position of the liquid surface easily fluctuates due to the consumption or addition of the solution, it can be a serious problem in the present method that handles a very small amount of liquid feeding.
Therefore, in the present invention, the liquid level height measuring device (D), that is, 11 in FIG. 2 is arranged in the storage tank 1, and this is linked with the pressure control apparatus 10 described above, so that the liquid level height of the storage tank 1 is set. Thus, the pressure of the gas to be introduced is controlled.

尚、当該液面高さ計測装置11としては、静電容量式、フロート式、ディスプレーサ式等の接触式レベルメーターや、超音波式、歪式、マイクロ波式、レーザー式、放射線式等の非接触式レベルメーター、およびこれらを含む装置を採用することができるが、これらに限定されるものではない。   The liquid level height measuring device 11 may be a contact type level meter such as a capacitance type, a float type or a displacer type, or a non-ultrasonic type, a distortion type, a microwave type, a laser type, a radiation type or the like. A contact-type level meter and a device including them can be used, but are not limited thereto.

本法によると、当該貯槽1内に保持された当該溶液の液頭にかかる圧力の影響も、全て既述圧力制御装置10にフィードバックされるため、当該溶液の諸物性等の影響を受けず、安定した送液が可能となる。
また本発明においては、当該圧力制御装置(C)と、当該繊維構造体の厚みを計測する厚み測定部(E)を連動させ、当該繊維構造体の厚みにより導入する当該ガスの圧力を制御することが好ましい。
According to this method, since the influence of the pressure applied to the liquid head of the solution held in the storage tank 1 is also fed back to the pressure control device 10 described above, it is not affected by the physical properties of the solution, Stable liquid feeding becomes possible.
Moreover, in this invention, the said pressure control apparatus (C) and the thickness measurement part (E) which measures the thickness of the said fiber structure are made to interlock | cooperate, and the pressure of the said gas introduced with the thickness of the said fiber structure is controlled. It is preferable.

既述の方法は送液の安定化、すなわち得られる繊維構造体のさらなる均一化に関するものであり、所望の厚みを有する繊維構造体を得るためには、安定送液および紡糸が可能な範囲内で既述の非凝縮性ガスの圧力を調整しなければならない。しかし、得られる繊維構造体の厚みをオフラインで測定し、この測定結果を元に当該ガスの圧力の調整を行う場合、調整後の圧力が送液や紡糸に反映される間に、所望の厚みを有さない繊維構造体を大量に製造することになり、工程の歩留が悪化し、これにより製造コストが増大する。所望の厚みを有する繊維構造体を安定して得るには、工程の歩留を悪化させず、かつ当該ガスの圧力の微調整が可能となるオンラインシステムが必須となる。   The above-described method relates to stabilization of liquid feeding, that is, further homogenization of the obtained fiber structure, and in order to obtain a fiber structure having a desired thickness, within a range where stable liquid feeding and spinning are possible. The pressure of the non-condensable gas described above must be adjusted. However, when the thickness of the obtained fiber structure is measured off-line and the pressure of the gas is adjusted based on the measurement result, the desired thickness is reflected while the adjusted pressure is reflected in liquid feeding and spinning. The fiber structure which does not have this will be manufactured in large quantities, and the yield of a process will deteriorate, and, thereby, manufacturing cost will increase. In order to stably obtain a fiber structure having a desired thickness, an on-line system that does not deteriorate the process yield and enables fine adjustment of the pressure of the gas is essential.

そこで本発明では、当該繊維構造体の厚みを測定する厚み計測装置12を、紡糸ノズル2より後段、巻き取りロール6より前段に配設し、さらに圧力制御装置10と連動させ、当該繊維構造体の厚みにより導入する当該ガスの圧力を制御する。当該繊維構造体の厚みを当該厚み計測装置12にてオンラインで測定し、ここで得られた当該繊維構造体の厚みに関する情報を既述の圧力制御装置10へフィードバックさせる。一般に所望する当該繊維構造体の厚みが小さい場合は当該ガスの圧力は小さく、逆に厚みが大きい場合は当該ガスの圧力は大きくなるように制御される。
尚、当該厚み計測装置12としては、リニアゲージのような接触式厚み計や、エアー式、レーザー式、赤外線式、静電容量式、X線式等の非接触厚み計およびこれらを含む装置を採用することができるが、これらに限定されるものではない。
Therefore, in the present invention, the thickness measuring device 12 for measuring the thickness of the fiber structure is disposed downstream from the spinning nozzle 2 and upstream from the take-up roll 6, and further interlocked with the pressure control device 10, thereby the fiber structure. The pressure of the gas introduced is controlled by the thickness of the gas. The thickness of the fiber structure is measured online by the thickness measuring device 12, and information regarding the thickness of the fiber structure obtained here is fed back to the pressure control device 10 described above. Generally, when the desired thickness of the fibrous structure is small, the pressure of the gas is small, and conversely, when the thickness is large, the pressure of the gas is controlled to be large.
The thickness measuring device 12 includes a contact type thickness meter such as a linear gauge, a non-contact thickness meter such as an air type, a laser type, an infrared type, a capacitance type, and an X-ray type and a device including these. Although it can employ | adopt, it is not limited to these.

本法によると、オンラインで当該繊維構造体の厚みを測定し、かつこの測定結果により送液量が自在に変化するため、所望する厚みを有する当該繊維構造体が安定して得られるだけでなく、圧力調整に伴う不良品の発生や工程の歩留悪化が最小限に抑えられる。
また本発明においては、当該貯槽1へ導入する非凝縮性ガスが空気または窒素であることが好ましい。これら以外のガスの使用は、加圧による部分凝縮や当該溶液への溶解、当該溶液との部分反応といった諸問題を引き起こすことがあり、当該貯槽1内の圧力制御を著しく困難にする。また、これら以外のガスには高価なものや危険性を伴うものが多く、製造コストの低減化を狙った本発明の主旨に反するだけでなく、環境へ悪影響を与える可能性が高い。
According to this method, the thickness of the fiber structure is measured online, and the amount of liquid to be fed is freely changed according to the measurement result, so that the fiber structure having a desired thickness can be stably obtained. In addition, the generation of defective products and the deterioration of process yield due to pressure adjustment can be minimized.
Moreover, in this invention, it is preferable that the noncondensable gas introduce | transduced into the said storage tank 1 is air or nitrogen. Use of gases other than these may cause various problems such as partial condensation due to pressurization, dissolution in the solution, and partial reaction with the solution, making pressure control in the storage tank 1 extremely difficult. In addition, many gases other than these are expensive and risky, which is not only contrary to the gist of the present invention aimed at reducing the manufacturing cost but also has a high possibility of adversely affecting the environment.

そこで本発明では、当該ガスとして空気または窒素を使用する。これらのガスは一般に不活性ガスとして各種プロセスや計器類の加圧源として使用されるため、本法においても好適なガスであると言及できる。本法によれば、当該溶液に何ら悪影響を及ぼすことなく、当該溶液を加圧送液することが可能である。   Therefore, in the present invention, air or nitrogen is used as the gas. Since these gases are generally used as an inert gas as a pressurizing source for various processes and instruments, it can be said that they are also suitable in this method. According to this method, the solution can be fed under pressure without adversely affecting the solution.

また本発明においては、当該ガスの圧力が大気圧以上、1MPa未満であることが好ましい。当該貯槽1内を大気圧未満とすると、当該貯槽1から当該ノズル2へ当該溶液は送液されなくなり、また1MPa以上とすると、当該溶液の表面張力や静電場にかかる引力を遥かに凌駕した圧力が当該溶液に与えられるため、当該ノズル2より当該溶液が噴出し、繊維構造体を得ることができない。また高圧となることから、これに供される送液配管や当該貯槽1、当該ノズル2の構造が肥大化するだけでなく、設備コストが大幅に増加する。   In the present invention, the pressure of the gas is preferably at least atmospheric pressure and less than 1 MPa. When the inside of the storage tank 1 is less than the atmospheric pressure, the solution is no longer sent from the storage tank 1 to the nozzle 2, and when the pressure is 1 MPa or more, the pressure far exceeds the surface tension of the solution and the attractive force applied to the electrostatic field. Is applied to the solution, the solution is ejected from the nozzle 2 and a fiber structure cannot be obtained. Moreover, since it becomes high voltage | pressure, not only the structure of the liquid feeding piping provided to this, the said storage tank 1, and the said nozzle 2 will enlarge, but installation cost will increase significantly.

そこで本発明では、当該ガスの圧力を大気圧以上、1MPa未満、このましくは大気圧以上、0.5MPa未満、さらに好ましくは大気圧以上、0.2MPa未満とする。本法によれば、当該ノズル2から当該溶液が噴出することなく、安全で、かつ安定した当該溶液の紡出が可能となる。また、加圧に必要となるエネルギーコストや構成部品の加工に必要となる設備コストを削減することが可能となる。   Therefore, in the present invention, the pressure of the gas is set to atmospheric pressure or more and less than 1 MPa, preferably atmospheric pressure or more and less than 0.5 MPa, more preferably atmospheric pressure or more and less than 0.2 MPa. According to this method, the solution can be spun safely and stably without the solution being ejected from the nozzle 2. Moreover, it is possible to reduce the energy cost required for pressurization and the equipment cost required for processing the component parts.

さらに本発明においては、当該ガスの温度を、当該繊維形成性物質含有溶液中に含まれる溶媒の凝固点以上、沸点以下の範囲とすることが好ましい。
当該ガスの温度を当該繊維形成性物質含有溶液中に含まれる溶媒の凝固点より低い温度とした場合、当該溶液が冷却され、当該溶液表面で当該繊維形成性物質や当該溶媒の凝固物や結晶等の固形物が発生するため、送液配管や当該ノズル2にてこれら固形物による閉塞が発生する。このことは、当該ノズル2より紡出される当該溶液量の変動による不均一な紡糸を誘発するだけでなく、過昇圧による当該貯槽1の破損をも招く。また、当該ガスの温度を当該溶媒の沸点以上とした場合も、当該ガスの導入により当該溶液からの当該溶媒の揮発が促進されるため、当該溶液中の当該溶媒濃度が減少し、固形物が発生しやすい状態となり、既述と同様の問題を引き起こす。
Furthermore, in this invention, it is preferable to make the temperature of the said gas into the range more than the freezing point of the solvent contained in the said fiber-forming substance containing solution and below a boiling point.
When the temperature of the gas is lower than the freezing point of the solvent contained in the fiber-forming substance-containing solution, the solution is cooled and the fiber-forming substance, the coagulated solids or crystals of the solvent, etc. on the surface of the solution Therefore, clogging with these solid substances occurs in the liquid supply pipe and the nozzle 2. This not only induces uneven spinning due to fluctuations in the amount of the solution spun from the nozzle 2, but also causes damage to the storage tank 1 due to excessive pressure. In addition, even when the temperature of the gas is equal to or higher than the boiling point of the solvent, volatilization of the solvent from the solution is promoted by the introduction of the gas, so that the concentration of the solvent in the solution is reduced and the solid matter is reduced. It is likely to occur and causes the same problems as described above.

そこで本発明では、当該ガスの温度を当該溶媒の凝固点以上、沸点以下の範囲で当該貯槽1へ導入する。本法によれば、当該貯槽1内で固形物が生じないため、繊維構造体の安定製造を阻害するような配管閉塞は発生しない。また配管閉塞による過昇圧の危険性もなくなり、安全な繊維構造体の製造が可能となる。   Therefore, in the present invention, the temperature of the gas is introduced into the storage tank 1 in the range from the freezing point of the solvent to the boiling point. According to this method, no solid matter is generated in the storage tank 1, so that the pipe clogging that prevents stable production of the fiber structure does not occur. Further, there is no danger of over-pressurization due to piping blockage, and a safe fiber structure can be manufactured.

以下に実施例を挙げて本発明を詳述するが、本発明はこれらに限定されるものではない。
[実施例1]
SUS304製アンカー翼付攪拌装置を装備したガラス製容器(内容積:1000mL)内にポリアクリロニトリル88gを投入し、さらにN,N−ジメチルホルムアミド(凝固点:−61℃、沸点:153℃)712gを投入した。当該容器の開放箇所を密栓した後、70℃の温水浴内で攪拌し、ポリアクリロ二トリルが既述溶媒に均一溶解したことを確認した。当該容器を開放し、既述手法で調製した溶液を吸引ゴム栓付きガラスピペットで合計400mL吸い上げ、これを図1に例示した工程の2基の溶液貯槽1(材質:テフロン(登録商標)、内容積:各300mL)内に各200mL投入し、さらに開放箇所を密栓した。その後、入力信号により出口圧力の制御が可能なレギュレーターバルブである圧力制御装置10を介し、ガス導入口9より当該貯槽1内へ窒素ガスを導入した。尚、当該窒素ガスの、当該圧力調整装置10への導入時の温度は25℃、圧力は0.2MPaとした。基材7にはポリエステル不織布を用い、ロール状の当該基材7を巻き出しロール4に取り付け、手動でフリーロール5、次いで巻き取りロール6へ導いた後、当該基材7の搬送速度が1.2m/分となるように当該巻き取りロール6の回転速度を設定し、駆動電源を投入した。貯槽1から紡糸ノズル2(材質:テフロン(登録商標)、紡出口径:0.3mm、紡出口数:6)への送液が始まり、当該ノズル2先端にて当該溶液の液滴落下が確認できた時点で高電圧発生装置3の電源を投入し、当該溶液の静電紡糸を開始した。10分間放置した後、当該ガスの供給、当該高電圧発生装置3の電源、および当該巻き取りロール6の駆動電源を停止し、当該巻き取りロール6よりロール状の基材7および繊維構造体を回収した。当該基材7より繊維構造体を剥離し、さらに任意の20箇所より1cm各の繊維構造体を切り取り、これら全ての厚みをオフラインの膜厚計で測定した。さらにこれら全ての表面状態を走査電子顕微鏡で観察した。結果、測定箇所各々での厚みは、当該繊維構造体の厚みの平均値:17μmに対し、全て±1.5μm以内であった。また測定箇所各々での繊維径の平均値は、全測定箇所の繊維径の平均値:331nmに対し、全て±100nm以内であった。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
[Example 1]
Into a glass container (internal volume: 1000 mL) equipped with a stirrer with SUS304 anchor blade, 88 g of polyacrylonitrile is added, and 712 g of N, N-dimethylformamide (freezing point: -61 ° C., boiling point: 153 ° C.) is added. did. After sealing the open part of the container, it was stirred in a hot water bath at 70 ° C., and it was confirmed that polyacrylonitrile was uniformly dissolved in the solvent described above. The container is opened, and a total of 400 mL of the solution prepared by the above-described method is sucked up with a glass pipette with a suction rubber stopper, and this is the two solution storage tanks 1 (material: Teflon (registered trademark), contents shown in FIG. 200 ml each was put into each (300 ml), and the open portion was further sealed. Thereafter, nitrogen gas was introduced into the storage tank 1 from the gas inlet 9 via the pressure control device 10 which is a regulator valve capable of controlling the outlet pressure by an input signal. In addition, the temperature at the time of the introduction of the nitrogen gas into the pressure adjusting device 10 was 25 ° C., and the pressure was 0.2 MPa. A polyester nonwoven fabric is used as the base material 7, the roll-like base material 7 is attached to the unwinding roll 4, and is manually guided to the free roll 5 and then to the take-up roll 6. The rotational speed of the winding roll 6 was set to 2 m / min, and the drive power was turned on. Liquid feeding from the storage tank 1 to the spinning nozzle 2 (material: Teflon (registered trademark), spinning nozzle diameter: 0.3 mm, number of spinning nozzles: 6) started, and droplet dropping of the solution was confirmed at the nozzle 2 tip. At the point in time, the high-voltage generator 3 was turned on and electrostatic spinning of the solution was started. After leaving for 10 minutes, the supply of the gas, the power supply of the high voltage generator 3 and the drive power supply of the take-up roll 6 are stopped, and the roll-shaped substrate 7 and the fiber structure are removed from the take-up roll 6. It was collected. The fiber structure was peeled off from the base material 7, and 1 cm of each fiber structure was cut from 20 arbitrary locations, and the thickness of all of these was measured with an offline film thickness meter. Furthermore, all these surface states were observed with a scanning electron microscope. As a result, the thickness at each measurement location was all within ± 1.5 μm with respect to the average thickness of the fiber structure: 17 μm. Moreover, the average value of the fiber diameter in each measurement location was all within ± 100 nm with respect to the average value of the fiber diameter of all measurement locations: 331 nm.

[実施例2]
液面高さ計測装置11として静電容量式非接触レベルメーターを用いた、図2に例示した工程を採用し、当該ガスを空気に変更する以外は、実施例1と同様に実施した。結果、測定箇所各々での厚みは、当該繊維構造体の厚みの平均値:23μmに対し、全て±2.0μm以内であった。また測定箇所各々での繊維径の平均値は、全測定箇所の繊維径の平均値:288nmに対し、全て±100nm以内であった。
[Example 2]
The same procedure as in Example 1 was performed except that the process illustrated in FIG. 2 using a capacitance-type non-contact level meter as the liquid level height measuring device 11 was adopted and the gas was changed to air. As a result, the thickness at each measurement location was within ± 2.0 μm for the average value of the thickness of the fiber structure: 23 μm. Moreover, the average value of the fiber diameter in each measurement location was all within ± 100 nm with respect to the average value of the fiber diameter of all measurement locations: 288 nm.

[実施例3]
厚み計測装置12としてレーザー式非接触厚み計を用いた、図3に例示した工程を採用する以外は実施例2と同様に実施した。結果、測定箇所各々での厚みは、当該繊維構造体の厚みの平均値:21μmに対し、全て±0.5μm以内であった。また測定箇所各々での繊維径の平均値は、全測定箇所の繊維径の平均値:309nmに対し、全て±100nm以内であった。
[Example 3]
It implemented similarly to Example 2 except having employ | adopted the process illustrated in FIG. 3 using the laser type non-contact thickness meter as the thickness measuring apparatus 12. FIG. As a result, the thickness at each measurement location was within ± 0.5 μm with respect to the average thickness of the fiber structure: 21 μm. Moreover, the average value of the fiber diameter in each measurement location was all within ± 100 nm with respect to the average value of the fiber diameter of all measurement locations: 309 nm.

[実施例4]
当該ガスを、65℃、0.5MPaの窒素ガスとする以外は実施例3と同様に実施した。結果、測定箇所各々での厚みは、当該繊維構造体の厚みの平均値:25μmに対し、全て±0.5μm以内であった。また測定箇所各々での繊維径の平均値は、全測定箇所の繊維径の平均値:296nmに対し、全て±100nm以内であった。
[Example 4]
The same operation as in Example 3 was performed except that the gas was nitrogen gas at 65 ° C. and 0.5 MPa. As a result, the thickness at each measurement location was all within ± 0.5 μm with respect to the average thickness of the fiber structure: 25 μm. Moreover, the average value of the fiber diameter in each measurement location was all within ± 100 nm with respect to the average value of the fiber diameter of all measurement locations: 296 nm.

[比較例1]
図1に示す製造工程よりガス導入口9および圧力制御装置10を撤去した。また溶液貯槽1と紡糸ノズル2の間にチューブポンプを設置し、当該ポンプにより既述手法で調製した溶液を当該ノズル2へ送液する以外は実施例1と同様に実施した。尚、この時の当該溶液の送液量は7.8mL/分であった。結果、測定箇所各々での厚みは、当該繊維構造体の厚みの平均値:59μmに対し、全て±40μm以内であった。また測定箇所各々での繊維径の平均値は、全測定箇所の繊維径の平均値:505nmに対し、全て±1μm以内であった。また、走査電子顕微鏡の表面観察の結果、当該溶液の液滴が繊維を形成せずに基材7上に到達した場合に確認される紡錘状の繊維構造体が散見された。
[Comparative Example 1]
The gas inlet 9 and the pressure control device 10 were removed from the manufacturing process shown in FIG. Moreover, it implemented similarly to Example 1 except having installed the tube pump between the solution storage tank 1 and the spinning nozzle 2, and sending the solution prepared by the method mentioned above with the said pump to the said nozzle 2. FIG. At this time, the amount of the solution fed was 7.8 mL / min. As a result, the thickness at each measurement location was within ± 40 μm with respect to the average thickness of the fiber structure: 59 μm. Moreover, the average value of the fiber diameter in each measurement location was all within ± 1 μm with respect to the average value of the fiber diameter in all measurement locations: 505 nm. Further, as a result of surface observation with a scanning electron microscope, spindle-shaped fiber structures confirmed when the droplets of the solution reached the substrate 7 without forming fibers were found.

[比較例2]
送液量を0.007mL/分とする以外は比較例1と同様に実施した。結果、製造開始数分後には繊維構造体の形成が確認できなくなった。当該紡糸ノズル2の先端では当該溶液の固化による閉塞が確認できた。
[Comparative Example 2]
The same operation as in Comparative Example 1 was carried out except that the liquid feeding amount was 0.007 mL / min. As a result, the formation of the fiber structure could not be confirmed several minutes after the start of production. Clogging due to solidification of the solution could be confirmed at the tip of the spinning nozzle 2.

本発明における製造工程の一例であり、溶液貯槽1とガス導入口9間に圧力制御装置10を配設した例である。It is an example of the manufacturing process in the present invention, and is an example in which a pressure control device 10 is disposed between the solution storage tank 1 and the gas inlet 9. 本発明における製造工程のその他の例であり、溶液貯槽1とガス導入口9間に圧力制御装置10を、当該貯槽1内に液面高さ計測装置11を配設した例である。This is another example of the manufacturing process in the present invention, in which a pressure control device 10 is disposed between the solution storage tank 1 and the gas inlet 9, and a liquid level measuring device 11 is disposed in the storage tank 1. 本発明における製造工程のその他の例であり、当該貯槽1とガス導入口9間に圧力制御装置10を、当該貯槽1内に液面高さ計測装置11を、繊維構造体の厚みを計測する厚み計測装置12を配設した例である。It is the other example of the manufacturing process in this invention, The pressure control apparatus 10 is measured between the said storage tank 1 and the gas inlet 9, The liquid level height measuring apparatus 11 is measured in the said storage tank 1, The thickness of a fiber structure is measured. This is an example in which a thickness measuring device 12 is provided.

符号の説明Explanation of symbols

1. 溶液貯槽
2. 紡糸ノズル
3. 高電圧発生装置
4. 巻き出しロール
5. フリーロール
6. 巻き取りロール
7. 基材
8. 対向電極
9. ガス導入口
10. 圧力制御装置
11. 液面高さ計測装置
12. 厚み計測装置
1. 1. Solution storage tank 2. Spinning nozzle 3. High voltage generator 4. Unwinding roll Freeroll 6. 6. Winding roll Base material 8. Counter electrode 9. Gas inlet 10. Pressure control device 11. Liquid level height measuring device 12. Thickness measuring device

Claims (6)

静電紡糸法により繊維形成性物質よりなる繊維構造体を製造する方法において、当該繊維形成性物質含有溶液を紡出する、少なくとも一つの紡糸部(A)に連結させた、少なくとも一つの当該溶液の貯槽(B)に、少なくとも一つの圧力制御装置(C)を介して非凝縮性ガスを連続的に導入し、当該ガスの圧力で以って当該溶液を当該紡糸部(A)へ送液することを特徴とする静電紡糸法による繊維構造体の製造方法。   In a method for producing a fiber structure made of a fiber-forming substance by an electrostatic spinning method, at least one solution connected to at least one spinning section (A) for spinning the fiber-forming substance-containing solution. Non-condensable gas is continuously introduced into the storage tank (B) via at least one pressure control device (C), and the solution is fed to the spinning section (A) with the pressure of the gas. A method for producing a fiber structure by an electrospinning method. 当該圧力制御装置(C)と、当該貯槽(B)内に配設された液面高さ計測装置(D)が連動しており、当該貯槽(B)の液面高さにより導入する当該ガスの圧力を制御する、請求項1に記載の方法。   The pressure control device (C) and the liquid level measuring device (D) disposed in the storage tank (B) are interlocked, and the gas introduced by the liquid level height of the storage tank (B). The method of claim 1, wherein the pressure is controlled. 当該圧力制御装置(C)と、当該繊維構造体の厚みを測定する厚み測定部(E)が連動しており、当該繊維構造体の厚みにより導入する当該ガスの圧力を制御する、請求項1または2に記載の方法。   The pressure control device (C) and a thickness measuring unit (E) for measuring the thickness of the fiber structure are interlocked to control the pressure of the gas introduced by the thickness of the fiber structure. Or the method of 2. 当該ガスが空気または窒素である、請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the gas is air or nitrogen. 当該ガスの圧力が大気圧以上、1MPa未満である、請求項1〜4のいずれかに記載の方法。   The method in any one of Claims 1-4 whose pressure of the said gas is more than atmospheric pressure and less than 1 MPa. 当該ガスの温度が、当該繊維形成性物質含有溶液中に含まれる溶媒の凝固点以上、沸点以下の範囲である、請求項1〜5のいずれかに記載の方法。   The method according to any one of claims 1 to 5, wherein the temperature of the gas is in the range from the freezing point to the boiling point of the solvent contained in the fiber-forming substance-containing solution.
JP2005283968A 2005-09-29 2005-09-29 Manufacturing method of fiber structure by electrostatic spinning method Expired - Fee Related JP4787585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283968A JP4787585B2 (en) 2005-09-29 2005-09-29 Manufacturing method of fiber structure by electrostatic spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283968A JP4787585B2 (en) 2005-09-29 2005-09-29 Manufacturing method of fiber structure by electrostatic spinning method

Publications (2)

Publication Number Publication Date
JP2007092237A true JP2007092237A (en) 2007-04-12
JP4787585B2 JP4787585B2 (en) 2011-10-05

Family

ID=37978271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283968A Expired - Fee Related JP4787585B2 (en) 2005-09-29 2005-09-29 Manufacturing method of fiber structure by electrostatic spinning method

Country Status (1)

Country Link
JP (1) JP4787585B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035839A (en) * 2007-08-02 2009-02-19 Japan Vilene Co Ltd Liquid-feeding device and electrostatic spinning apparatus
JP2009061401A (en) * 2007-09-06 2009-03-26 Gunze Ltd Fiber structure for filtration filter and method for manufacturing the same
WO2009119638A1 (en) 2008-03-27 2009-10-01 栗田工業株式会社 Polymer fiber material, method of producing the same and filter for filtering fluid
JP2010144266A (en) * 2008-12-17 2010-07-01 Panasonic Corp Method and apparatus for producing polymer web
JP2010158606A (en) * 2009-01-06 2010-07-22 Kurita Water Ind Ltd Filter, method of manufacturing the same, and method of treating fluid
JP2011503384A (en) * 2007-11-20 2011-01-27 クラーコア インコーポレーテッド Fine fiber electrospinning apparatus, filtration media system and method
JP2011504138A (en) * 2007-11-20 2011-02-03 クラーコア インコーポレーテッド Filtration media, fine fibers less than 100 nanometers and methods
JP2011084841A (en) * 2009-10-16 2011-04-28 Panasonic Corp Nanofiber film production apparatus and nanofiber film production method
US8778253B2 (en) 2009-11-30 2014-07-15 Toyota Jidosha Kabushiki Kaisha Process for producing fiber composite material
JP2019023361A (en) * 2017-07-21 2019-02-14 花王株式会社 Production device for fiber sheet and fiber sheet production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143385A (en) * 1992-11-13 1994-05-24 Fuji Photo Film Co Ltd Extrusion sheet molding device and method for molding sheet at excellent yield
JP2003521493A (en) * 2000-01-28 2003-07-15 スミスクライン・ビーチャム・コーポレイション Electrospun pharmaceutical composition
WO2004080681A1 (en) * 2003-03-07 2004-09-23 Philip Morris Products S.A. Apparatuses and methods for electrostatically processing polymer formulations
JP2004322440A (en) * 2003-04-24 2004-11-18 Oji Paper Co Ltd Laminate and its production method
WO2005073442A1 (en) * 2004-02-02 2005-08-11 Raisio Chemicals Korea Inc. A process of preparing continuous filament composed of nanofibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143385A (en) * 1992-11-13 1994-05-24 Fuji Photo Film Co Ltd Extrusion sheet molding device and method for molding sheet at excellent yield
JP2003521493A (en) * 2000-01-28 2003-07-15 スミスクライン・ビーチャム・コーポレイション Electrospun pharmaceutical composition
WO2004080681A1 (en) * 2003-03-07 2004-09-23 Philip Morris Products S.A. Apparatuses and methods for electrostatically processing polymer formulations
JP2004322440A (en) * 2003-04-24 2004-11-18 Oji Paper Co Ltd Laminate and its production method
WO2005073442A1 (en) * 2004-02-02 2005-08-11 Raisio Chemicals Korea Inc. A process of preparing continuous filament composed of nanofibers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035839A (en) * 2007-08-02 2009-02-19 Japan Vilene Co Ltd Liquid-feeding device and electrostatic spinning apparatus
JP2009061401A (en) * 2007-09-06 2009-03-26 Gunze Ltd Fiber structure for filtration filter and method for manufacturing the same
JP2011503384A (en) * 2007-11-20 2011-01-27 クラーコア インコーポレーテッド Fine fiber electrospinning apparatus, filtration media system and method
JP2011504138A (en) * 2007-11-20 2011-02-03 クラーコア インコーポレーテッド Filtration media, fine fibers less than 100 nanometers and methods
US9101860B2 (en) 2007-11-20 2015-08-11 Clarcor Inc. Filtration medias, fine fibers under 100 nanometers, and methods
WO2009119638A1 (en) 2008-03-27 2009-10-01 栗田工業株式会社 Polymer fiber material, method of producing the same and filter for filtering fluid
JP2010144266A (en) * 2008-12-17 2010-07-01 Panasonic Corp Method and apparatus for producing polymer web
JP2010158606A (en) * 2009-01-06 2010-07-22 Kurita Water Ind Ltd Filter, method of manufacturing the same, and method of treating fluid
JP2011084841A (en) * 2009-10-16 2011-04-28 Panasonic Corp Nanofiber film production apparatus and nanofiber film production method
US8778253B2 (en) 2009-11-30 2014-07-15 Toyota Jidosha Kabushiki Kaisha Process for producing fiber composite material
JP2019023361A (en) * 2017-07-21 2019-02-14 花王株式会社 Production device for fiber sheet and fiber sheet production method
JP7074433B2 (en) 2017-07-21 2022-05-24 花王株式会社 Fiber sheet manufacturing equipment and fiber sheet manufacturing method

Also Published As

Publication number Publication date
JP4787585B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4787585B2 (en) Manufacturing method of fiber structure by electrostatic spinning method
JPWO2010038362A1 (en) Nanofiber manufacturing method and manufacturing apparatus
JP2007092213A (en) Apparatus and method for producing fiber structure by electrospinning method
JP2009127150A (en) Electrospinning apparatus
CN111621858B (en) Spinning method for preparing micro-nanofiber by using negative pressure and micro-nanofiber
WO2010018861A1 (en) Fibre production device and fibre production method
JPWO2016013051A1 (en) Nanofiber forming spray nozzle head and nanofiber manufacturing apparatus comprising nanofiber forming spray nozzle head
JP2016023399A (en) Ejection nozzle head for forming nanofibers and manufacturing apparatus of nanofibers provided with ejection nozzle head for forming nanofibers
KR101617848B1 (en) Electrospinning device containing temperature control system for manufacturing nano fiber
JP2009215683A (en) Method for producing nanofiber and apparatus for producing nanofiber
KR101753052B1 (en) Electrospinning device for nano membrane containing temperature control system
JP2012154009A (en) Apparatus and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method
JP2007092212A (en) Apparatus and method for producing fiber structure by electrospinning method
KR20160020312A (en) Nano fiber and nano fiber manufacture method of low solvent remaing amount
KR20110077891A (en) Nozzle block for electrospining and electrospinning device comprising the same
JP2011168928A (en) Spinning device, apparatus for producing nonwoven fabric, method for producing nonwoven fabric, and nonwoven fabric
KR101712956B1 (en) Triple nano membrane including hydro phobic polyurethane nanofiber nanofiber
KR20160020309A (en) Nanofiber manufacture method containing temperature control system
KR101712955B1 (en) Triple nano membrane including polyvinylidene fluroride nanofiber
KR101715910B1 (en) Nano membrane including polyvinylalcohol nano fiber and polyvivylidene fluroride nano fiber
JP2010144266A (en) Method and apparatus for producing polymer web
KR101715907B1 (en) Nano membrane including polyacrylonitrile nano fiber and polyvivylidene fluroride nano fiber
JP4866868B2 (en) Nanofiber manufacturing equipment, non-woven fabric manufacturing equipment
KR101715908B1 (en) Nano membrane including polyacrylonitrile nano fiber and low melting point polyester nano fiber
KR101715909B1 (en) Nano membrane including polyacrylonitrile nano fiber and hydro phobic polyurethane nano fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees