JP2007092176A - Copper alloy - Google Patents

Copper alloy Download PDF

Info

Publication number
JP2007092176A
JP2007092176A JP2006260357A JP2006260357A JP2007092176A JP 2007092176 A JP2007092176 A JP 2007092176A JP 2006260357 A JP2006260357 A JP 2006260357A JP 2006260357 A JP2006260357 A JP 2006260357A JP 2007092176 A JP2007092176 A JP 2007092176A
Authority
JP
Japan
Prior art keywords
copper alloy
chromium
metal wire
copper
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006260357A
Other languages
Japanese (ja)
Other versions
JP4947634B2 (en
Inventor
Joseph Saleh
サレハ ジョセフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisk Alloy Wire Inc
Original Assignee
Fisk Alloy Wire Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisk Alloy Wire Inc filed Critical Fisk Alloy Wire Inc
Publication of JP2007092176A publication Critical patent/JP2007092176A/en
Application granted granted Critical
Publication of JP4947634B2 publication Critical patent/JP4947634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy which can be drawn into a fine or ultra fine metallic wire. <P>SOLUTION: The two copper alloys are provided. The first copper alloy has a composition in the range of from 0.2 to 0.6 wt.% chromium, from 0.005 to 0.25 wt.% silver, and the balance copper. The second copper alloy has a composition in the range of from 0.2 to 0.6 wt.% chromium, from 0.01 to 0.12 wt.% magnesium, and the balance copper. The copper alloys of the present invention can also include zirconium to provide additional softening resistance. These copper alloys can easily be drawn or rolled to fine or ultra fine sizes (0.010 inch (0.254 mm) or smaller) to be used as a single end wire and constructions made therefrom. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、クロムと銀またはクロムとマグネシウムを含む2つの銅合金、および直径が0.010インチ(0.254mm)より少ない細い金属線(ワイヤ)を製造するための方法に関するものである。   The present invention relates to two copper alloys comprising chromium and silver or chromium and magnesium, and a method for producing thin metal wires (wires) having a diameter of less than 0.010 inch (0.254 mm).

銅およびその合金は、導体ないし導線として使用される主要な材料である。銅合金は、非合金では各特性が不十分(不適当)ないし不足する場合に使用される。ASTM B624には、そのような用途における1つの特性セットが記載されている。ASTM B624では、有用な導体用合金の特性を次のように定めている。少なくとも60ksiの引張り強さが、最小で85%IACSの導電率(電気導電性)、および直径に依存して最小で7%から9%(例えば直径0.010インチ(0.254mm)では8%)の伸び。これらの特性は、既存の合金であるC18135の性能に基づいて定められている。上記の特性に加えて、軟化抵抗(softening resistance)や曲げ寿命(flex life)のような他の特性は重要なファクターつまり要因であり考慮すべきものである。   Copper and its alloys are the main materials used as conductors or conductors. A copper alloy is used when a non-alloy has insufficient (unsuitable) or insufficient properties. ASTM B624 describes one set of properties for such an application. ASTM B624 defines the properties of useful conductor alloys as follows. Tensile strength of at least 60 ksi has a minimum conductivity of 85% IACS (electrical conductivity) and a minimum of 7% to 9% depending on diameter (eg 8% for 0.010 inch (0.254 mm) diameter) ) Growth. These characteristics are determined based on the performance of the existing alloy C18135. In addition to the above properties, other properties such as softening resistance and flex life are important factors and should be considered.

ASTM B624の要件に合致した最初の合金は、カドミウム0.4重量%、クロム0.4重量%、および残部の銅の公称組成を有する銅合金18135である。カドミウムの危険性のために、この合金の代替えのための研究がなされてきた。PERCON 24の商品名(商標名)で販売されている銅−クロム−ジルコニウム合金が売り出され、この合金はASTM B624の要件を超えることができた。このCu−Cr−Zr合金は市販のものであるが、ジルコニウムを含む合金の鋳造および製造は非常に複雑である。このため、危険なカドミウムがなく且つジルコニウムを加える困難性がなくて、ASTM B624の要件に合致する新規な合金を考え出すことは有用である。   The first alloy that meets the requirements of ASTM B624 is copper alloy 18135 with a nominal composition of 0.4% by weight cadmium, 0.4% by weight chromium, and the balance copper. Due to the dangers of cadmium, research has been done to replace this alloy. A copper-chromium-zirconium alloy sold under the trade name PERCON 24 was marketed and could exceed the requirements of ASTM B624. Although this Cu-Cr-Zr alloy is commercially available, the casting and manufacturing of zirconium-containing alloys is very complex. For this reason, it is useful to come up with new alloys that are free of hazardous cadmium and without the difficulty of adding zirconium and meet the requirements of ASTM B624.

Copper Development Association(CDA)は、クロムを含むいくつかの銅合金をリストアップしている。銅クロム合金であるC182および184は1.2%までのクロムを含有している。これら銅クロム合金は、析出硬化合金(時効硬化合金)である。クロムの強化効果(補強効果)を利用するためには、まずクロムを銅マトリックス(固溶体)中に溶解されなければならない。固溶体処理に続いて、微細な粒子を形成して合金を補強するために析出硬化合金は熱処理される。銅中に溶解できるクロムの最大量は0.65%であり、また銅が溶解し始める温度は1076℃である。実際には、銅に溶解するクロムの最大量は0.65%より少ない。銅マトリックス中に溶解したもの以外の過剰の量のクロムは、大きな粒子(5から10ミクロンないしそれ以上)として残留し、合金の補強には貢献しない。この大きな粒子は、比較的大きな(0.020インチ(0.508mm)より大きい)直径の金属線には悪影響を与えない。しかしながら、導体中の大きな粒子は、典型的には0.003インチ(0.0762mm)から0.005インチ(0.127mm)、および0.001インチ(0.0254mm)あるいはさらに小さい単線の金属線(single end wire)の場合には、金属線の切断を引き起こし、大きな障害となる。このため、直径が0.001インチ(0.0254mm)から0.010インチ(0.254mm)である典型的な単線の金属線を導体に応用した場合には、銅クロム合金におけるクロムの量は、好適には、0.65%より小さく制限する必要がある。実際には、銅中に実用的に溶解できるクロムの最大量は約0.5%である。   The Copper Development Association (CDA) lists several copper alloys that contain chromium. Copper chrome alloys C182 and 184 contain up to 1.2% chromium. These copper chromium alloys are precipitation hardening alloys (age hardening alloys). In order to utilize the strengthening effect (reinforcing effect) of chromium, chromium must first be dissolved in a copper matrix (solid solution). Following solid solution processing, the precipitation hardened alloy is heat treated to form fine particles and reinforce the alloy. The maximum amount of chromium that can be dissolved in copper is 0.65%, and the temperature at which copper begins to dissolve is 1076 ° C. In practice, the maximum amount of chromium dissolved in copper is less than 0.65%. Excess amounts of chromium other than those dissolved in the copper matrix remain as large particles (5 to 10 microns or more) and do not contribute to reinforcement of the alloy. The large particles do not adversely affect relatively large (greater than 0.020 inch) diameter metal wires. However, large particles in the conductor are typically 0.003 inch (0.0762 mm) to 0.005 inch (0.127 mm), and 0.001 inch (0.0254 mm) or smaller single wire metal wires. In the case of (single end wire), cutting of the metal wire is caused, which is a major obstacle. Therefore, when a typical single wire having a diameter of 0.001 inch (0.0254 mm) to 0.010 inch (0.254 mm) is applied to a conductor, the amount of chromium in the copper-chromium alloy is Preferably, it should be limited to less than 0.65%. In practice, the maximum amount of chromium that can be practically dissolved in copper is about 0.5%.

銅−クロム合金は高強度を提供できるが、その軟化抵抗は許容できるものではなく、軟化抵抗を改善するための対策が必要である。銀、マグネシウム、およびジルコニウムは、銅合金の軟化抵抗を改善するものとして知られている。ジルコニウムは、銅の軟化抵抗を増大するための最も有効な元素の1つである。しかしながら、ジルコニウムは、反応性の高い元素であり、またこれを銅に加えるためには特別な装置および技術が必要となる。一方、銀は、銅の軟化抵抗を増大するためには効果的な元素であり、また銅に非常に容易に加えることができる。銀の追加的な特長は、導電率に悪影響を及ぼさないことである。合金C107は、銀を含有する銅の一例であり、合金C102と比較して改良された軟化抵抗を有している。軟化抵抗を増大するには銀を少量だけ添加するだけで良い。銀を0.2%より多く添加することは、有害ではないが、比較的高価な元素の浪費となる。   Copper-chromium alloys can provide high strength, but their softening resistance is not acceptable and measures are needed to improve the softening resistance. Silver, magnesium, and zirconium are known to improve the softening resistance of copper alloys. Zirconium is one of the most effective elements for increasing the softening resistance of copper. However, zirconium is a highly reactive element and requires special equipment and techniques to add it to copper. On the other hand, silver is an effective element for increasing the softening resistance of copper and can be added to copper very easily. An additional feature of silver is that it does not adversely affect conductivity. Alloy C107 is an example of copper containing silver, and has improved softening resistance compared to alloy C102. Only a small amount of silver needs to be added to increase the softening resistance. Adding more than 0.2% silver is not harmful but wastes relatively expensive elements.

CDAの合金C18500には、銅−クロム−銀が記載されている。関心がないことから、この合金は1992年から放棄されており、また現在の銅合金のリストから除かれている。C18500には、0.4%から1.0%のクロムおよび0.08%から0.12%の銀が含まれている。この合金中の高いクロムは大きな直径の金属線およびロッド(棒)においては有害ではないが、興味対象である細いおよび極細の金属線(典型的には0.010インチ(0.254mm)より小さい)を延伸する場合には妨げとなる。実際、C18500のためにリストされたクロムの最小量は、本発明の合金のために必要なクロムの最適量である。銀は比較的高価な元素であり、軟化抵抗を改善するために必要な量まで制限する必要がある。C18500において特定された公称量は0.1%である。   CDA alloy C18500 describes copper-chromium-silver. Due to lack of interest, this alloy has been abandoned since 1992 and has been removed from the current list of copper alloys. C18500 contains 0.4% to 1.0% chromium and 0.08% to 0.12% silver. High chromium in this alloy is not detrimental in large diameter metal wires and rods, but is less than the thin and extra fine metal wires of interest (typically 0.010 inches (0.254 mm)) ) Is a hindrance. In fact, the minimum amount of chromium listed for C18500 is the optimum amount of chromium required for the alloy of the present invention. Silver is a relatively expensive element and must be limited to the amount necessary to improve softening resistance. The nominal amount specified in C18500 is 0.1%.

別の方法として、合金の軟化抵抗を改善するためにマグネシウムを銅クロムに加えるようにしても良い。マグネシウムの添加により導電率が低減することから、添加されるマグネシウムの量は、軟化抵抗を改善するために必要な最小量に制限する必要がある。この理由から、マグネシウムの量は0.1%までに制限する必要がある。   Alternatively, magnesium may be added to the copper chrome to improve the softening resistance of the alloy. Since the conductivity is reduced by the addition of magnesium, the amount of magnesium added should be limited to the minimum amount necessary to improve the softening resistance. For this reason, the amount of magnesium should be limited to 0.1%.

本発明によれば、細い、および極細の金属線(典型的には0.010インチ(0.254mm)よりも小さい金属線)に延伸(伸線)ないし絞り加工することができる、2つの銅合金が提供される。   In accordance with the present invention, two coppers that can be drawn (drawn) or drawn into thin and very fine metal wires (typically metal wires smaller than 0.010 inches). An alloy is provided.

第1の銅合金は、0.2重量%から0.6重量%のクロム、0.005重量%から0.25重量%の銀、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる組成を有している。   The first copper alloy includes 0.2 wt% to 0.6 wt% chromium, 0.005 wt% to 0.25 wt% silver, 0.015 wt% zirconium as essential components, and It has a composition consisting of the remaining copper.

第2の銅合金は、0.2重量%から0.6重量%のクロム、0.01重量%から0.12重量%のマグネシウム、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる組成を有する。   The second copper alloy comprises 0.2 wt.% To 0.6 wt.% Chromium, 0.01 wt.% To 0.12 wt.% Magnesium, 0.015 wt.% Zirconium as essential components, and It has the composition which consists of remainder copper.

本発明はまた、上記組成を有する第1の銅合金、または第2の銅合金から作られる、0.254mm(0.010インチ)より小さい直径を有する金属線が提供される。   The present invention also provides a metal wire having a diameter of less than 0.010 inches made from a first copper alloy or a second copper alloy having the above composition.

本発明はさらに、銅合金の金属線を製造する方法に関する。この方法は、概して、クロムを含む銅合金材料を準備するステップ、前記銅合金材料を溶体化処理(solutionizing treatment)して前記クロムの過半数を溶体化するステップ、前記溶体化処理の後に前記銅合金材料を急冷(急速焼き入れ)して前記クロムを溶体に維持するステップ、前記銅合金材料を中間ゲージつまり中間の寸法ないし太さの金属線に形成するステップ、前記銅合金材料の金属線をエージングつまり時効してサブミクロン(1ミクロン未満)の大きさの析出したクロム粒子を得るステップを有してなり、および前記銅合金材料の金属線を最終ゲージを有する金属線に形成するステップを有してなり、付加的に、所望の引張り強さおよび伸びを得るために続いて焼きなまし(応力除去の焼きなまし)つまりアニーリングを行う。   The invention further relates to a method for producing a copper alloy metal wire. The method generally includes the steps of providing a copper alloy material comprising chromium, solution treating the copper alloy material to solution a majority of the chromium, and after the solution treatment, the copper alloy. Rapidly quenching (quick quenching) the material to maintain the chromium in solution, forming the copper alloy material into an intermediate gauge, ie, an intermediate dimension or thickness metal wire, aging the copper alloy material metal wire In other words, the method includes the steps of obtaining aged chromium particles having a size of submicron (less than 1 micron) by aging, and forming a metal wire of the copper alloy material into a metal wire having a final gauge. In addition, annealing (stress relief annealing) or annealing is subsequently performed to obtain the desired tensile strength and elongation.

本発明の銅合金のその他の詳細、およびこれに付随した他の目的や特長は、以下の詳細な説明において説明されている。   Other details of the copper alloy of the present invention, as well as other objects and features associated therewith, are described in the detailed description below.

本発明によれば、細いおよび極細の金属線、具体的には0.010インチ(0.254mm)よりも小さい直径を有する金属線に延伸することができる、2つの銅合金が提供される。   In accordance with the present invention, two copper alloys are provided that can be drawn into thin and extra fine metal wires, specifically metal wires having a diameter of less than 0.010 inches (0.254 mm).

本発明の第1の実施例においては、銅合金は、約0.2から0.6重量%のクロム、好ましくは0.3から0.5重量%のクロムと、0.005から0.25重量%の銀、好ましくは0.05から0.20重量%の銀と、残部の銅とを含有してなる。この合金にはさらに、軟化抵抗を改善するために、0.015重量%までのジルコニウムを含ませても良い。含有させる場合、ジルコニウムは好ましくは0.005から0.015重量%の量だけ加えられる。   In a first embodiment of the present invention, the copper alloy comprises about 0.2 to 0.6 weight percent chromium, preferably 0.3 to 0.5 weight percent chromium, and 0.005 to 0.25. It contains a weight percent silver, preferably 0.05 to 0.20 weight percent silver and the balance copper. This alloy may further contain up to 0.015% by weight of zirconium to improve softening resistance. When included, zirconium is preferably added in an amount of 0.005 to 0.015% by weight.

本発明の第2の実施例においては、銅合金は、約0.2から0.6重量%のクロム、好ましくは0.3から0.5重量%のクロムと、0.01重量%から0.12重量%のマグネシウム、好ましくは0.05から0.1重量%のマグネシウムと、残部の銅とを含有してなる。この合金にはさらに、軟化抵抗を改善するために、0.015重量%までのジルコニウムを含ませても良い。含有させる場合、ジルコニウムは好ましくは0.005から0.015重量%の量だけ加えられる。   In a second embodiment of the invention, the copper alloy comprises about 0.2 to 0.6 wt% chromium, preferably 0.3 to 0.5 wt% chromium and 0.01 wt% to 0 wt%. .12% by weight magnesium, preferably 0.05 to 0.1% by weight magnesium and the balance copper. This alloy may further contain up to 0.015% by weight of zirconium to improve softening resistance. When included, zirconium is preferably added in an amount of 0.005 to 0.015% by weight.

本発明の各合金は、従来公知のいずれかの適切な連続的または非連続的な鋳造技術を使用して鋳造できる。鋳造に続いて、合金は便宜的な直径(径)を有する金属線(ワイヤ)に加工される。この加工には、クロムの全てまたは過半数を溶体化するための高温での溶体化処理、およびクロムを溶体に維持ないし保持するための続く急冷(例えば水中において)を含ませることができる。この加工は、クロムを正しく利用するために重要なものである。溶体化処理の後に残存する大きな粒子(5から10ミクロンないしそれ以上)は、細いあるいは極細の直径に延伸(伸線)ないし絞り加工する際に金属線が破断する原因となる、有害なものである。使用される溶体化処理は、925から1000℃(1700から1830°F)で、5分から5時間である、好ましい溶体化処理により、大多数ないし全てのクロム粒子が溶解ないし分散する。溶体化処理および急冷の後、銅合金は次いで、公知の適切な延伸(絞り加工)技術を使用して、中間ゲージつまり中間の寸法ないし太さの金属線、典型的には直径0.036インチ(0.91mm)から0.064インチ(1.63mm)の金属線に延伸ないし絞り加工される。中間ゲージまで延伸された銅合金の金属線は、サブミクロン(1ミクロン未満)の大きさの析出したクロム粒子を得るためにエージングつまり時効処理される。この段階においてエージングの際に使用される熱処理温度は、典型的には450から565℃(850から1050°F)で、1から5時間である。この銅合金の金属線は、次いで、従来公知の適切な延伸(絞り加工)技術を使用して、最終的な単線の寸法ないし太さである最終ゲージまで延伸(絞り加工)され、続いて必要な引張り強さおよび伸びを得るために熱処理される。望ましい引張り強さは60ksiより大きく、また望ましい伸びは6から8%より大きい。この熱処理は、350から510℃(650から950°F)の範囲の温度において、約1から5時間である。   Each alloy of the present invention can be cast using any suitable continuous or non-continuous casting technique known in the art. Following casting, the alloy is processed into a metal wire (wire) having a convenient diameter. This processing can include a high temperature solution treatment to solubilize all or a majority of the chromium, and subsequent rapid cooling (eg, in water) to maintain or retain the chromium in solution. This processing is important for the correct use of chromium. The large particles (5 to 10 microns or more) remaining after solution treatment are harmful and cause the metal wire to break when drawing (drawing) or drawing to a thin or ultrafine diameter. is there. The solution treatment used is from 925 to 1000 ° C. (1700 to 1830 ° F.) and from 5 minutes to 5 hours, with the preferred solution treatment treating the majority or all of the chromium particles being dissolved or dispersed. After solution treatment and quenching, the copper alloy is then used to form an intermediate gauge or medium size or thickness metal wire, typically 0.036 inches in diameter, using a known suitable drawing (drawing) technique. (0.91 mm) to 0.064 inch (1.63 mm) metal wire is drawn or drawn. Copper alloy metal wires drawn to an intermediate gauge are aged or aged to obtain precipitated chromium particles of submicron size (less than 1 micron). The heat treatment temperature used during aging at this stage is typically 450 to 565 ° C. (850 to 1050 ° F.) and 1 to 5 hours. The copper alloy metal wire is then drawn (drawn) to a final gauge that is the size or thickness of the final single wire using a suitable drawing (drawing) technique known in the art, and subsequently required. Heat treated to obtain good tensile strength and elongation. Desirable tensile strength is greater than 60 ksi and desirable elongation is greater than 6-8%. This heat treatment is about 1 to 5 hours at a temperature in the range of 350 to 510 ° C. (650 to 950 ° F.).

本発明の銅合金から形成された金属線は、円形状(絞り加工)あるいは平らな形状(圧延加工)で使用される。この金属線は、単線の金属線、あるいはこれから作られた構成物、例えば複線の金属線、ロープ、ボビンなどに撚られたものとして、使用される。   The metal wire formed from the copper alloy of the present invention is used in a circular shape (drawing) or a flat shape (rolling). This metal wire is used as a single-wire metal wire or a structure made from the single-wire metal wire, such as a double-wire metal wire, a rope, or a bobbin.

以上の通り、本発明によれば、上記した目的、手段、および特長を満たす2つの銅合金が得られる。当業者には、上記説明を参照することで、他の代替え、変更および変形は自明である。本発明は、添付した特許請求の範囲内のこれらの代替え、変更および変形をも含むことを意図している。   As described above, according to the present invention, two copper alloys satisfying the above-described objects, means, and features can be obtained. Other alternatives, modifications and variations will be apparent to those skilled in the art upon reference to the above description. The present invention is intended to include these alternatives, modifications, and variations within the scope of the appended claims.

Claims (24)

0.2重量%から0.6重量%のクロム、0.005重量%から0.25重量%の銀、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる銅合金。   Copper alloy comprising 0.2% to 0.6% chromium, 0.005% to 0.25% silver, 0.015% zirconium as essential components and the balance copper . 前記クロムが0.3重量%から0.5重量%の量だけ存在する、請求項1記載の銅合金。   The copper alloy of claim 1, wherein the chromium is present in an amount of 0.3 wt% to 0.5 wt%. 前記銀が0.05重量%から0.20重量%の量だけ存在する、請求項1記載の銅合金。   The copper alloy of claim 1, wherein the silver is present in an amount from 0.05 wt% to 0.20 wt%. 前記ジルコニウムが0.005重量%から0.015重量%の量だけ存在する、請求項1記載の銅合金。   The copper alloy of claim 1, wherein the zirconium is present in an amount of 0.005 wt% to 0.015 wt%. 0.2重量%から0.6重量%のクロム、0.01重量%から0.12重量%のマグネシウム、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる銅合金。   Copper alloy comprising 0.2% to 0.6% chromium, 0.01% to 0.12% magnesium, 0.015% zirconium as essential components, and the balance copper . 前記クロムが0.3重量%から0.5重量%の量だけ存在する、請求項5記載の銅合金。   The copper alloy of claim 5, wherein the chromium is present in an amount of 0.3 wt% to 0.5 wt%. 前記マグネシウムが0.05重量%から0.1重量%の量だけ存在する、請求項5記載の銅合金。   The copper alloy of claim 5, wherein the magnesium is present in an amount from 0.05 wt% to 0.1 wt%. 前記ジルコニウムが0.005重量%から0.015重量%の量だけ存在する、請求項5記載の銅合金。   The copper alloy of claim 5, wherein the zirconium is present in an amount of 0.005 wt% to 0.015 wt%. 0.2重量%から0.6重量%のクロム、0.005重量%から0.25重量%の銀、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる銅合金から形成される金属線であって、前記金属線が0.254mm(0.010インチ)より小さい直径を有する、金属線。   Copper alloy comprising 0.2% to 0.6% chromium, 0.005% to 0.25% silver, 0.015% zirconium as essential components and the balance copper A metal wire, wherein the metal wire has a diameter less than 0.254 mm (0.010 inches). 前記クロムが0.3重量%から0.5重量%の量だけ存在する、請求項9記載の金属線。   The metal wire of claim 9, wherein the chromium is present in an amount of 0.3 wt% to 0.5 wt%. 前記銀が0.05重量%から0.20重量%の量だけ存在する、請求項9記載の金属線。   The metal wire of claim 9, wherein the silver is present in an amount of 0.05 wt% to 0.20 wt%. 前記ジルコニウムが0.005重量%から0.015重量%の量だけ存在する、請求項9記載の金属線。   The metal wire of claim 9, wherein the zirconium is present in an amount of 0.005 wt% to 0.015 wt%. 0.2重量%から0.6重量%のクロム、0.01重量%から0.12重量%のマグネシウム、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる銅合金から形成される金属線であって、0.254mm(0.010インチ)より小さい直径を有する、金属線。   Copper alloy comprising 0.2% to 0.6% chromium, 0.01% to 0.12% magnesium, 0.015% zirconium as essential components, and the balance copper A metal wire having a diameter less than 0.010 inches. 前記クロムが0.3重量%から0.5重量%の量だけ存在する、請求項13記載の金属線。   The metal wire of claim 13, wherein the chromium is present in an amount of 0.3 wt% to 0.5 wt%. 前記マグネシウムが0.05重量%から0.10重量%の量だけ存在する、請求項13記載の金属線。   14. The metal wire of claim 13, wherein the magnesium is present in an amount from 0.05% to 0.10% by weight. 前記ジルコニウムが0.005重量%から0.015重量%の量だけ存在する、請求項13記載の金属線。   14. The metal wire of claim 13, wherein the zirconium is present in an amount from 0.005% to 0.015% by weight. クロムを含む銅合金材料を準備するステップ、
前記銅合金材料を溶体化処理して前記クロムの過半数を溶体化するステップ、
前記溶体化処理の後に前記銅合金材料を急冷して前記クロムを溶体に維持するステップ、
前記銅合金材料を中間ゲージの金属線に形成するステップ、
前記銅合金材料の金属線をエージングしてサブミクロンの大きさの析出したクロム粒子を得るステップ、および
前記銅合金材料の金属線を最終ゲージの金属線に形成するステップを有してなる、銅合金の金属線の製造方法。
Preparing a copper alloy material containing chromium;
Solution treatment of the copper alloy material to solution the majority of the chromium,
Quenching the copper alloy material after the solution treatment to maintain the chromium in solution;
Forming the copper alloy material into an intermediate gauge metal wire;
A copper wire comprising: aging a metal wire of the copper alloy material to obtain deposited chromium particles of submicron size; and forming the metal wire of the copper alloy material into a metal wire of a final gauge. A method for producing metal wires of alloys.
前記銅合金材料を準備するステップが、0.2重量%から0.6重量%のクロム、0.005重量%から0.25重量%の銀、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる銅合金材料を準備するステップからなる、請求項17記載の製造方法。   The step of preparing the copper alloy material includes 0.2 wt% to 0.6 wt% chromium, 0.005 wt% to 0.25 wt% silver, and 0.015 wt% zirconium. The manufacturing method of Claim 17 which consists of the step which prepares the copper alloy material which consists of the remainder and copper. 前記銅合金材料を準備するステップが、0.2重量%から0.6重量%のクロム、0.01重量%から0.12重量%のマグネシウム、0.015重量%までのジルコニウムを必須成分として含み、および残部の銅からなる銅合金材料を準備するステップからなる、請求項17記載の製造方法。   The step of preparing the copper alloy material includes 0.2 wt% to 0.6 wt% chromium, 0.01 wt% to 0.12 wt% magnesium, and 0.015 wt% zirconium. The manufacturing method of Claim 17 which consists of the step which prepares the copper alloy material which consists of the remainder and copper. 前記溶体化ステップが、前記銅合金材料を925℃から1000℃の範囲の温度にすることからなる、請求項17記載の製造方法。   The manufacturing method according to claim 17, wherein the solution forming step comprises bringing the copper alloy material to a temperature in the range of 925 ° C. to 1000 ° C. 前記銅合金材料を中間ゲージの金属線に形成するステップが、前記銅合金材料を0.91mm(0.036インチ)から1.63mm(0.064インチ)の範囲の直径を有する金属線に延伸することからなる、請求項17記載の方法。   The step of forming the copper alloy material into an intermediate gauge metal wire extends the copper alloy material into a metal wire having a diameter in the range of 0.91 mm (0.036 inch) to 1.63 mm (0.064 inch). The method of claim 17, comprising: 前記エージングステップが、前記金属線を450℃から565℃の範囲の温度にすることからなる、請求項17記載の方法。   The method of claim 17, wherein the aging step comprises bringing the metal wire to a temperature in the range of 450 ° C. to 565 ° C. 前記最終ゲージの金属線に形成するステップが、前記銅合金材料の金属線を0.254mm(0.010インチ)より小さい直径を有する金属線に延伸することからなる、請求項17記載の方法。   The method of claim 17, wherein forming the final gauge metal wire comprises drawing the copper alloy material metal wire into a metal wire having a diameter less than 0.010 inches. 前記金属線を最終ゲージにおいて、350℃から510℃の範囲の温度で追加の熱処理をするステップをさらに含む、請求項17記載の方法。   The method of claim 17, further comprising subjecting the metal wire to an additional heat treatment at a temperature ranging from 350 ° C. to 510 ° C. in a final gauge.
JP2006260357A 2005-09-27 2006-09-26 Copper alloy Expired - Fee Related JP4947634B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72099005P 2005-09-27 2005-09-27
US60/720,990 2005-09-27

Publications (2)

Publication Number Publication Date
JP2007092176A true JP2007092176A (en) 2007-04-12
JP4947634B2 JP4947634B2 (en) 2012-06-06

Family

ID=37978213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260357A Expired - Fee Related JP4947634B2 (en) 2005-09-27 2006-09-26 Copper alloy

Country Status (2)

Country Link
US (1) US20070068609A1 (en)
JP (1) JP4947634B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027858A1 (en) 2009-09-07 2011-03-10 株式会社 白金 Copper alloy and method for producing same
JP2015107878A (en) * 2013-12-03 2015-06-11 ヴェーヤンス テクノロジーズ、 インコーポレイテッドVeyance Technologies, Inc. Conveyor belt rip detection system with microwire sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821655B1 (en) 2010-12-02 2014-09-02 Fisk Alloy Inc. High strength, high conductivity copper alloys and electrical conductors made therefrom
CN106217537B (en) * 2016-09-07 2017-10-03 福建农林大学 The simple and easy method that a kind of China fir surface hydrophobicity is modified
US11344145B2 (en) * 2017-07-31 2022-05-31 All-Clad Metalcrafters, L.L.C. Cookware with copper bonded layer
WO2022138233A1 (en) * 2020-12-25 2022-06-30 福田金属箔粉工業株式会社 Copper alloy powder for additive manufacturing and method for evaluating said copper alloy powder, method for producing copper alloy additively-manufactured article, and copper alloy additively-manufactured article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871323A (en) * 1971-12-28 1973-09-27
JPS5242141B2 (en) * 1973-07-02 1977-10-22
JPS60194030A (en) * 1984-03-15 1985-10-02 Mitsubishi Metal Corp Copper alloy for lead material for semiconductor device
JPS63143230A (en) * 1986-12-08 1988-06-15 Nippon Mining Co Ltd Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH01275722A (en) * 1988-04-28 1989-11-06 Fujikura Ltd Manufacture of cu-mg-zr-cr copper alloy
JPH11181560A (en) * 1997-09-12 1999-07-06 Fisk Alloy Wire Inc Copper alloy electric wire, its production and copper alloy cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871323A (en) * 1971-12-28 1973-09-27
JPS5242141B2 (en) * 1973-07-02 1977-10-22
JPS60194030A (en) * 1984-03-15 1985-10-02 Mitsubishi Metal Corp Copper alloy for lead material for semiconductor device
JPS63143230A (en) * 1986-12-08 1988-06-15 Nippon Mining Co Ltd Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH01275722A (en) * 1988-04-28 1989-11-06 Fujikura Ltd Manufacture of cu-mg-zr-cr copper alloy
JPH11181560A (en) * 1997-09-12 1999-07-06 Fisk Alloy Wire Inc Copper alloy electric wire, its production and copper alloy cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027858A1 (en) 2009-09-07 2011-03-10 株式会社 白金 Copper alloy and method for producing same
JP2015107878A (en) * 2013-12-03 2015-06-11 ヴェーヤンス テクノロジーズ、 インコーポレイテッドVeyance Technologies, Inc. Conveyor belt rip detection system with microwire sensor

Also Published As

Publication number Publication date
US20070068609A1 (en) 2007-03-29
JP4947634B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5426936B2 (en) Copper alloy manufacturing method and copper alloy
JP4947634B2 (en) Copper alloy
KR101443481B1 (en) Cu-si-co alloy for electronic materials, and method for producing same
JP2009263784A (en) Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL
JP2011026635A (en) Copper alloy sheet and method for manufacturing the same, and electric and electronic component
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP2010236071A (en) Cu-Co-Si COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
WO2012124732A1 (en) Cu-Ni-Si ALLOY WIRE HAVING EXCELLENT BENDABILITY
JP2010059543A (en) Copper alloy material
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
JP2008041447A (en) Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same
JP2018159104A (en) Copper alloy sheet having excellent strength and conductivity
JP2018154910A (en) Copper alloy sheet having excellent strength and electric conductivity
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP2016176105A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
EP1911856A1 (en) Copper alloys
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100308

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100311

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100408

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100510

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110404

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees