JP2007092086A - Rubber composition for tire tread and containing cyclic polysulfide as vulcanizing agent, and pneumatic tire using the composition - Google Patents

Rubber composition for tire tread and containing cyclic polysulfide as vulcanizing agent, and pneumatic tire using the composition Download PDF

Info

Publication number
JP2007092086A
JP2007092086A JP2006348667A JP2006348667A JP2007092086A JP 2007092086 A JP2007092086 A JP 2007092086A JP 2006348667 A JP2006348667 A JP 2006348667A JP 2006348667 A JP2006348667 A JP 2006348667A JP 2007092086 A JP2007092086 A JP 2007092086A
Authority
JP
Japan
Prior art keywords
rubber
weight
rubber composition
parts
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006348667A
Other languages
Japanese (ja)
Other versions
JP4290725B2 (en
Inventor
Motofumi Sai
源文 崔
Satoyuki Matsumura
智行 松村
Naoya Amino
直也 網野
Kazuhiro Takase
一浩 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006348667A priority Critical patent/JP4290725B2/en
Publication of JP2007092086A publication Critical patent/JP2007092086A/en
Application granted granted Critical
Publication of JP4290725B2 publication Critical patent/JP4290725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition for tire tread improved in grip performance, fracture strength, grip sustainability, durability and drivability. <P>SOLUTION: The rubber composition for tire tread comprises 100 pts.wt. sulfur-vulcanizable rubber (A), and 0.1-30 pts.wt. cyclic polysulfide (B) represented by formula (I) as a vulcanizing agent [wherein, R is a (substituted) 2-20C alkylene, a (substituted) 2-20C oxyalkylene or an aromatic ring-containing alkylene; n is an integer of 1-20; and x is a number of 2-6 on average]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は環状ポリスルフィドを加硫剤として含み、硫黄加硫可能なゴムの各種加硫物性(例えば場合によっては他の特定の成分と組合せて、耐熱老化性、発熱性、破断特性、耐疲労特性、ウェット性能、グリップ性能、氷雪路制動性、高速耐久性、転がり抵抗、横断安定性、高硬度、高強度、高伸びなど)を改良したタイヤトレッド用ゴム組成物及びそれを用いた空気入りタイヤに関する。   The present invention contains cyclic polysulfide as a vulcanizing agent, and various vulcanized physical properties of rubber that can be sulfur vulcanized (for example, in combination with other specific components in some cases, heat aging resistance, heat generation, fracture characteristics, fatigue resistance characteristics) Rubber composition for tire tread improved in wet performance, grip performance, snow and snow road braking performance, high-speed durability, rolling resistance, crossing stability, high hardness, high strength, high elongation, etc. and pneumatic tire using the same About.

硫黄加硫による架橋ゴムはポリスルフィド結合を含むため、耐熱性と加硫もどり性が劣る。これらの耐熱性と加硫もどり性の問題を改良するため、テトラスルフィドポリマーや環状ポリスルフィドなどの加硫剤が有効であることが知られている(非特許文献1及び特許文献1)。特に環状ポリスルフィドは架橋効率の面から好まれるが、いままで報告されている環状ポリスルフィドの製造法はその長い製造工程や高い原料が用いられるなどの問題により実用性に欠けている(特許文献2及び特許文献3)。   Crosslinked rubber by sulfur vulcanization contains a polysulfide bond, and therefore is inferior in heat resistance and vulcanization return. It is known that vulcanizing agents such as tetrasulfide polymers and cyclic polysulfides are effective in order to improve these heat resistance and vulcanization return problems (Non-patent Document 1 and Patent Document 1). In particular, cyclic polysulfides are preferred from the viewpoint of crosslinking efficiency, but the methods for producing cyclic polysulfides reported so far lack practicability due to problems such as long production steps and use of high raw materials (Patent Document 2 and Patent Document 3).

近年、空気入りタイヤについての種々の改良が行なわれている。そのような種々の改良の中で、耐熱老化性をあげようとして特許文献4にはEV架橋(即ち加硫促進剤を多量配合してポリスルフィド結合の比率を減らす)する方法が提案されているが、これには動的疲労性に劣るという問題があった。そこで耐熱老化性と動的疲労性のトレードオフを解決する方法が特許文献3に記載されているが、未だ十分とはいえないのが現状である。   In recent years, various improvements have been made on pneumatic tires. Among such various improvements, Patent Document 4 proposes a method of EV crosslinking (that is, reducing the ratio of polysulfide bonds by adding a large amount of a vulcanization accelerator) in order to increase heat aging resistance. This has the problem of poor dynamic fatigue. Thus, although a method for solving the trade-off between heat aging resistance and dynamic fatigue is described in Patent Document 3, it is not sufficient yet.

また、空気入りタイヤのタイヤトレッド用ゴムとしては、耐摩耗性やグリップ力の向上が必要であるため引張強さや破断伸びの大きいゴム組成物が求められていた。一方、タイヤトレッド用のゴムは劣化しやすく、経時変化によってトレッドが硬化し、グリップが低下するばかりでなく、場合によってはトレッドの剥離などを引き起こす危険もあった。高性能タイヤのグリップ持続性を改良するために、例えば加硫剤や加硫促進剤による検討がされているが、特にフィラー量が多いゴム組成物においては、グリップの高さと持続性を満足いくレベルで両立させることはできていない(特許文献5及び特許文献6参照)。
アンダートレッド用のゴムとしては、高速耐久性の向上のために、高い引張強さ及び破断伸びを示すゴム組成物が求められていた。一方で、操縦安定性改良のための高硬度なアンダートレッドや、低燃費性改善のための低tanδなアンダートレッドも要求されており、これらの物性はトレードオフの関係にあった。このような観点から、高硬度で、かつ、強度、伸びが高く、tanδの上昇のないゴム組成物が望まれている。
Further, as a rubber for tire treads of pneumatic tires, a rubber composition having high tensile strength and breaking elongation has been demanded because improvement in wear resistance and gripping power is required. On the other hand, rubber for tire treads is easily deteriorated, and not only does the tread harden due to changes over time and the grip decreases, but also there is a risk of causing tread peeling in some cases. In order to improve the grip durability of high-performance tires, for example, vulcanizing agents and vulcanization accelerators have been studied. Especially in rubber compositions with a large amount of filler, the grip height and durability are satisfied. It is not possible to achieve both levels (see Patent Document 5 and Patent Document 6).
As a rubber for an under tread, a rubber composition exhibiting high tensile strength and elongation at break has been demanded in order to improve high-speed durability. On the other hand, a high hardness undertread for improving steering stability and a low tan δ undertread for improving fuel efficiency are also required, and these physical properties are in a trade-off relationship. From such a viewpoint, a rubber composition having high hardness, high strength and elongation, and no increase in tan δ is desired.

更に近年の空気入りタイヤについての種々の改良の中でビードフィラー用のゴムとしては、耐疲労性の向上のために、高い引張強さ及び破断伸びを示すゴム組成物が求められている(例えば特許文献7参照)。一方で、操縦安定性改良のための高硬度なビードフィラーや、低燃費性改善のための低tanδなビードフィラーも要求されており(例えば特許文献8参照)、これらの物性はトレードオフの関係にあった。このような観点から、高硬度で、かつ、強度、伸びが高くtanδの上昇のないゴム組成物が望まれている。   Further, among various improvements in recent pneumatic tires, a rubber composition that exhibits high tensile strength and elongation at break is required as a rubber for bead filler in order to improve fatigue resistance (for example, (See Patent Document 7). On the other hand, high-hardness bead fillers for improving handling stability and low-tan δ bead fillers for improving fuel efficiency are also required (see, for example, Patent Document 8), and these physical properties have a trade-off relationship. It was in. From such a viewpoint, a rubber composition having high hardness, high strength and elongation, and no increase in tan δ is desired.

更に、従来の空気入りタイヤのインナーライナーにはブチルゴム又はハロゲンブチルゴムなどのブチルゴム類が一般に使用されているが(例えば特許文献9参照)、ブチルゴム類はカーボンブラックなどの補強性に乏しいため、ブチルゴム類の組成物は機械物性に劣り、その利用用途に限界があった。
更に、空気入りタイヤのベルトコートコンパウンドには高い剛性が求められるが、剛性を上げようとしてカーボンブラックを増量したり、加硫剤である硫黄や加硫促進剤を増量すると、伸びが低下して耐疲労性が悪化し、その結果、ベルトの端部でセパレーションが起こりタイヤに不具合が発生するので、高い剛性及び伸びを確保する必要性がある(特許文献10)。また、高い接着性を付与するために硫黄を大量に配合することが提案されているが(特許文献11)、それが原因で耐熱老化性の悪化を招いており、耐熱老化性を上げるには老化防止剤を増量すれば良いが、ワイヤ(金属)との接着を阻害するおそれがあるという問題がある。
Furthermore, butyl rubbers such as butyl rubber or halogen butyl rubber are generally used for inner liners of conventional pneumatic tires (see, for example, Patent Document 9), but butyl rubbers are poor in reinforcing properties such as carbon black. This composition was inferior in mechanical properties, and its use was limited.
Furthermore, high rigidity is required for the belt coat compound of pneumatic tires, but increasing the amount of carbon black or increasing the amount of sulfur or vulcanization accelerator to increase the rigidity decreases the elongation. The fatigue resistance is deteriorated, and as a result, separation occurs at the end of the belt and a tire is defective. Therefore, it is necessary to ensure high rigidity and elongation (Patent Document 10). Moreover, in order to give high adhesiveness, although it is proposed to mix | blend a large amount of sulfur (patent document 11), it causes the deterioration of heat aging property and it raises heat aging property. Although it is sufficient to increase the amount of the anti-aging agent, there is a problem that there is a possibility of inhibiting the adhesion with the wire (metal).

特開平10−120788号JP-A-10-120788 特開昭58−122944号公報JP 58-122944 A 特開2002−293783号公報JP 2002-293783 A 特開平6−57040号公報JP-A-6-57040 特開2001−348461号公報JP 2001-348461 A 特開平10−151906号公報JP-A-10-151906 特開2002−105249号公報JP 2002-105249 A 特開平5−51487号公報Japanese Patent Laid-Open No. 5-51487 特開平10−87884号公報JP-A-10-87884 特開2001−226528号公報JP 2001-226528 A 特開2000−233603号公報JP 2000-233603 A 山崎升ら:日本ゴム協会1981年研究発表会要旨集、P.532−17Satoshi Yamazaki et al .: Japan Rubber Association 1981 Abstract of Research Presentation, P.A. 532-17

従って、本発明は従来の硫黄加硫の少なくとも一部に代えて環状ポリスルフィドを用いることにより、前述のような従来の空気入りタイヤ業界における種々の問題点を解決して、加硫ゴムの各種物性を改善したタイヤトレッド用ゴム組成物及びそれを用いた空気入りタイヤを提供することを目的とする。   Therefore, the present invention solves various problems in the conventional pneumatic tire industry as described above by using cyclic polysulfide instead of at least a part of conventional sulfur vulcanization, and various physical properties of vulcanized rubber. An object of the present invention is to provide a rubber composition for a tire tread and a pneumatic tire using the same.

本発明に従えば、(A)硫黄加硫可能なゴム100重量部並びに、加硫剤として、式(I):   According to the present invention, (A) 100 parts by weight of a sulfur vulcanizable rubber and a vulcanizing agent are represented by the formula (I):

Figure 2007092086
Figure 2007092086

(式中、Rは置換もしくは非置換のC2〜C20アルキレン基、置換もしくは非置換のC2〜C20オキシアルキレン基又は芳香族環を含むアルキレン基を示し、nは1〜20の整数であり、xは平均2〜6の数である)
の環状ポリスルフィド(B)0.1〜30重量部を含んでなるタイヤトレッド用ゴム組成物が提供される。
(Wherein, R represents a substituted or unsubstituted C 2 -C 20 alkylene group, a substituted or unsubstituted C 2 -C 20 oxyalkylene group or alkylene group containing an aromatic ring, n represents an integer from 1 to 20 And x is an average number of 2 to 6)
A tire tread rubber composition comprising 0.1 to 30 parts by weight of the cyclic polysulfide (B) is provided.

本明細書中及び添付した請求の範囲中において使用する単数形(a,an,the)は、文脈からそうでないことが明白な場合を除いては複数の対象を含むものと理解されたい。   As used herein and in the appended claims, the singular forms (a, an, the) should be understood to include the plural unless the context clearly dictates otherwise.

本発明においては、ゴム組成物中の加硫剤として従来の硫黄の少なくとも一部(場合によっては全部)に代えて、前記式(I)の環状ポリスルフィド(B)を配合する。このような環状ポリスルフィドは例えば以下のようにして製造することができる。即ち、前記式(I)の環状ポリスルフィドは、式:X−R−X(式中、Xは、それぞれ独立に、フッ素、塩素、臭素、ヨウ素、好ましくは塩素、臭素のハロゲン原子を表し、Rは、置換もしくは非置換のC2〜C20のアルキレン基、置換もしくは非置換のC2〜C20のオキシアルキレン基又は芳香族環を含むアルキレン基、好ましくは前記置換もしくは非置換のC2〜C18、更に好ましくはC4〜C10のアルキレン基を示し、これらの置換基としてはフェニル、ベンジル、ビニル、シリル、エポキシ、イソシアネートなどがあげられる)のジハロゲン化合物とアルカリ金属の多硫化物M−Sx−M(式中、Mはアルカリ金属、例えばナトリウム、カリウム、リチウムなどであり、xは2〜6の整数、好ましくは3〜5である)とを、親水性溶媒又は親水性及び親油性溶媒性非相溶性混合溶媒中で2相系で反応させることによってか、又はM−Sx−Mの溶液(溶媒としては水及びC1 〜C4 脂肪族アルコールを用いることができ、水の使用が最も好ましい)中にX−R−XをM−Sx−MとX−R−Xとが界面で反応するような速度で添加して反応させることによって、製造される(特開2002−293783号公報参照)。なお、後者の方法でX−R−Xの添加速度が速すぎると、X−R−Xの濃度が高くなり、界面以外での反応も起こり、分子間の反応が優先され鎖状になるので好ましくない。従って、M−Sx−MとX−R−Xの反応をできるだけ不均一系で界面だけで反応させることが環状ポリスルフィドを得るのに好ましい。 In the present invention, the cyclic polysulfide (B) of the formula (I) is blended in place of at least a part (or all in some cases) of conventional sulfur as a vulcanizing agent in the rubber composition. Such a cyclic polysulfide can be produced, for example, as follows. That is, the cyclic polysulfide of the above formula (I) has the formula: X—R—X (wherein X independently represents fluorine, chlorine, bromine, iodine, preferably chlorine, bromine halogen atoms, R Is a substituted or unsubstituted C 2 to C 20 alkylene group, a substituted or unsubstituted C 2 to C 20 oxyalkylene group or an alkylene group containing an aromatic ring, preferably the substituted or unsubstituted C 2 to C 20 C 18 , more preferably a C 4 to C 10 alkylene group, and these substituents include phenyl, benzyl, vinyl, silyl, epoxy, isocyanate, etc.) dihalogen compounds and alkali metal polysulfides M -S x -M (wherein M is an alkali metal such as sodium, potassium, lithium, etc., x is an integer of 2-6, preferably 3-5) Or by reacting with medium or hydrophilic and the two-phase system with a lipophilic solvent soluble immiscible solvent mixture, or the M-S x -M solution (water and C 1 -C 4 aliphatic alcohol as solvent By adding X-R-X at a rate such that M-S x -M and X-R-X react at the interface during Manufactured (see Japanese Patent Application Laid-Open No. 2002-293783). If the addition rate of X-R-X is too fast in the latter method, the concentration of X-R-X will increase, and reactions other than at the interface will occur, giving priority to intermolecular reactions and becoming chained. It is not preferable. Therefore, it is preferable to obtain a cyclic polysulfide by reacting M—S x —M and X—R—X as heterogeneously as possible only at the interface.

前記一般式X−R−X及び式(I)の基Rとしては、例えばエチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、オクチレン、ノニレン、デシレン、1,2−プロピレンなどの直鎖又は分岐鎖のアルキレン基があげられ、これらのアルキレン基はフェニル基、ベンジル基などの置換基で置換されていてもよい。基Rとしては更にオキシアルキレン基を含むアルキレン基、例えば基(CH2CH2O)p及び基(CH2)q(式中、pは1〜5の整数であり、qは0〜2の整数である)が任意に結合したオキシアルキレン基を含むアルキレン基とすることができる。好ましい基Rは
−CH2CH2OCH2CH2−,−(CH2CH2O)2CH2CH2−,
−(CH2CH2O)3CH−CH2−,−(CH2CH2O)4CH2CH2−,
−(CH2CH2O)5CH2CH2−,−(CH2CH2O)2CH2−,
−CH2CH2OCH2OCH2CH2−であり、特にxは平均として3〜5が好ましく、3.5〜4.5が更に好ましい。nは好ましくは1〜15の整数であり、更に好ましくは1〜10、一層好ましくは1〜5の整数である。
Examples of the group R in the general formula X-R-X and the formula (I) include linear or branched alkylene such as ethylene, propylene, butylene, pentylene, hexylene, octylene, nonylene, decylene and 1,2-propylene. These alkylene groups may be substituted with a substituent such as a phenyl group or a benzyl group. The group R further includes an alkylene group containing an oxyalkylene group, for example, a group (CH 2 CH 2 O) p and a group (CH 2 ) q (wherein p is an integer of 1 to 5, and q is 0 to 2). (Which is an integer) can be an alkylene group including an oxyalkylene group optionally bonded thereto. Preferred groups R are —CH 2 CH 2 OCH 2 CH 2 —, — (CH 2 CH 2 O) 2 CH 2 CH 2 —,
- (CH 2 CH 2 O) 3 CH-CH 2 -, - (CH 2 CH 2 O) 4 CH 2 CH 2 -,
- (CH 2 CH 2 O) 5 CH 2 CH 2 -, - (CH 2 CH 2 O) 2 CH 2 -,
—CH 2 CH 2 OCH 2 OCH 2 CH 2 —, and in particular, x is preferably 3 to 5, and more preferably 3.5 to 4.5 on average. n is preferably an integer of 1 to 15, more preferably 1 to 10, and still more preferably an integer of 1 to 5.

前記ジハロゲン化合物と前記アルカリ金属多硫化物との反応は、当量反応であり、実用的には両化合物を0.95:1.0〜1.0:0.95(当量比)で反応させ、好ましくは50〜120℃、更に好ましくは70〜100℃の温度で実施する。   The reaction between the dihalogen compound and the alkali metal polysulfide is an equivalent reaction. Practically, both compounds are reacted at 0.95: 1.0 to 1.0: 0.95 (equivalent ratio), Preferably it implements at the temperature of 50-120 degreeC, More preferably, it is 70-100 degreeC.

本発明に用いる親水性溶媒又は親水性/親油性溶媒の非相溶性混合溶媒については特に限定はなく、実際の反応系においては、親水性溶媒単独又は非相溶で2相を形成する任意の混合溶媒系を用いることができる。具体的には、例えば親水性溶媒としては、水の他、メタノール、エタノール、エチレングリコール、ジエチレングリコール等のアルコール類をあげることができ、これらは任意の混合物として使用することもできる。またこれらの親水性溶媒と混合して使用される親油性溶媒としては、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、ペンタン、ヘキサン等の脂肪族炭化水素類、ジオキサン、ジブチルエーテル等のエーテル類、酢酸エチル等のエステル類などをあげることができ、これらは任意の混合物として使用することもできる。   There is no particular limitation on the hydrophilic solvent or the incompatible mixed solvent of hydrophilic / lipophilic solvent used in the present invention, and in an actual reaction system, the hydrophilic solvent alone or incompatible with any arbitrary solvent that forms two phases. Mixed solvent systems can be used. Specifically, examples of the hydrophilic solvent include water and alcohols such as methanol, ethanol, ethylene glycol, and diethylene glycol, and these can also be used as an arbitrary mixture. The lipophilic solvent used by mixing with these hydrophilic solvents includes aromatic hydrocarbons such as toluene, xylene and benzene, aliphatic hydrocarbons such as pentane and hexane, and ethers such as dioxane and dibutyl ether. And esters such as ethyl acetate can be used, and these can be used as an arbitrary mixture.

前記ジハロゲン化合物と前記アルカリ金属の多硫化物との親水性溶媒中で又は非相溶性混合溶媒系で反応させる界面での反応は、当量反応であり、実用的には両化合物を0.95:1〜1:0.95(当量比)で反応させ、反応温度は好ましくは50〜120℃、更に好ましくは70〜100℃である。反応させるジハロゲン化合物は、2種類以上のジハロゲン化合物であることが好ましい。よって、ジハロゲン化合物としては例えばジクロロエチルホルマール及びジクロロエタンの混合物と、金属多硫化物として、例えば多流化ソーダとを反応させるのが好ましい。   The reaction at the interface where the dihalogen compound and the alkali metal polysulfide are reacted in a hydrophilic solvent or in an incompatible mixed solvent system is an equivalent reaction, and practically both compounds are 0.95: It is made to react by 1-1: 0.95 (equivalent ratio), Reaction temperature becomes like this. Preferably it is 50-120 degreeC, More preferably, it is 70-100 degreeC. The dihalogen compound to be reacted is preferably two or more kinds of dihalogen compounds. Accordingly, it is preferable to react, for example, a mixture of dichloroethyl formal and dichloroethane as the dihalogen compound and, for example, a multi-flow soda as the metal polysulfide.

前記反応において触媒は必要ではないが、場合によって触媒として4級アンモニウム塩、ホスホニウム塩、クラウンエーテルなどを用いることができる。例えば、(CH34+Cl-,(CH34+Br-,(C494+Cl-,(C494+Br-,C1225+(CH33Br-,(C494+Br-,CH3+(C653-,C1633+(C493Br-,15−crown−5,18−crown−6,ベンゾ−18−crown−6等を用いることができる。特にアルキレン骨格の環状ポリスルフィド(B)を製造する場合には、触媒の使用が好ましい。 In the reaction, a catalyst is not necessary, but in some cases, a quaternary ammonium salt, a phosphonium salt, a crown ether, or the like can be used as a catalyst. For example, (CH 3 ) 4 N + Cl , (CH 3 ) 4 N + Br , (C 4 H 9 ) 4 N + Cl , (C 4 H 9 ) 4 N + Br , C 12 H 25 N + (CH 3) 3 Br -, (C 4 H 9) 4 P + Br -, CH 3 P + (C 6 H 5) 3 I -, C 16 H 33 P + (C 4 H 9) 3 Br - , 15-crown-5, 18-crown-6, benzo-18-crown-6, and the like can be used. In particular, when a cyclic polysulfide (B) having an alkylene skeleton is produced, a catalyst is preferably used.

本発明において使用する前記環状ポリスルフィド(B)はジエン系ゴム100重量部に対し0.1〜20重量部、好ましくは0.5〜20重量部配合する。この配合量が少な過ぎると加硫剤としての効果が現われず、加硫ゴムの強度低下などが発生するので好ましくなく、逆に多過ぎると加硫度が上がりすぎたり、粘度が下がりすぎるので好ましくない。   The cyclic polysulfide (B) used in the present invention is blended in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the diene rubber. If the amount is too small, the effect as a vulcanizing agent does not appear and the strength of the vulcanized rubber is reduced, which is not preferable. On the other hand, if the amount is too large, the degree of vulcanization is excessively increased or the viscosity is excessively decreased. Absent.

本発明において成分(A)として使用する硫黄加硫可能なゴムとしては、従来よりタイヤ、その他用として一般的に使用されている任意のゴム、例えば各種天然ゴム(NR)、各種ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、各種スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエン共重合体ゴム、クロロプレンゴム(CR)などのジエン系ゴム及びそれらの部分水添物や(ハロゲン化)ブチルゴム(IIR)、エチレン−プロピレンジエン共重合体ゴム(EPDM)、アクリルゴム(ACM)などをあげることができ、これらは単独又は任意のブレンドとして使用することができる。   As the sulfur vulcanizable rubber used as component (A) in the present invention, any rubber conventionally used for tires and others, such as various natural rubbers (NR), various polyisoprene rubbers ( IR), various polybutadiene rubbers (BR), various styrene-butadiene copolymer rubbers (SBR), acrylonitrile-butadiene copolymer rubbers, chloroprene rubber (CR) and other diene rubbers and their partially hydrogenated products (halogen) ) Butyl rubber (IIR), ethylene-propylene diene copolymer rubber (EPDM), acrylic rubber (ACM) and the like, and these can be used alone or as any blend.

本発明の第一の面においては、加硫ゴムの耐熱老化性及び発熱性にすぐれたゴム組成物を開発することを目的とし、前記硫黄加硫可能なゴムとして、天然ゴム及び/又はポリイソプレンゴム100重量部に、加硫剤として前記式(I)(式中、Rは−(CH2m −(式中、mは2〜20の整数である)であり、nは1〜15の整数、好ましくは1〜10、より好ましくは1〜5であり、xは平均4より大きく6以下の数である)の環状ポリスルフィド1〜30重量部を含むゴム組成物が提供される。 In the first aspect of the present invention, an object of the present invention is to develop a rubber composition having excellent heat aging resistance and exothermic property of vulcanized rubber. Natural rubber and / or polyisoprene is used as the sulfur vulcanizable rubber. 100 parts by weight of rubber has the above formula (I) as a vulcanizing agent (wherein R is — (CH 2 ) m — (wherein m is an integer of 2 to 20), and n is 1 to 15) The rubber composition comprises 1 to 30 parts by weight of a cyclic polysulfide, preferably an integer of 1 to 10, more preferably 1 to 5, and x is an average greater than 4 and 6 or less.

本発明の第一の面では、以下の実施例にも示すように、天然ゴム及び/又はポリイソプレンを用いて耐熱老化性及び発熱性にすぐれたゴム組成物が提供される。   In the first aspect of the present invention, a rubber composition having excellent heat aging resistance and exothermicity is provided using natural rubber and / or polyisoprene as shown in the following examples.

本発明の好ましい態様では前記式(I)の環状ポリスルフィドは、少なくとも2種のジハロゲン化合物(例えば、ジクロロエチルホルマール、ジクロロエタン)と、式(III):
M−Sx−M (III)
(式中、Mは周期律表IA族の金属であり、Xは平均3より大きく6以下の数である)
の金属多硫化物(例えば多硫化ソーダ)とを親水性溶媒又は親水性溶媒と親油性溶媒との非相溶性混合溶媒系中で相間移動触媒の存在下又は不在下に、50〜150℃、好ましくは50〜120℃の温度で反応させて得られる。この環状ポリスルフィドは1種のジハロゲン化合物を用いた場合に比べて、粘度が低く、加硫効率の高い加硫剤が得られる。
In a preferred embodiment of the present invention, the cyclic polysulfide of the formula (I) includes at least two dihalogen compounds (for example, dichloroethyl formal, dichloroethane) and the formula (III):
M-S x -M (III)
(In the formula, M is a metal of group IA of the periodic table, and X is an average greater than 3 and 6 or less)
A metal polysulfide (for example, sodium polysulfide) in a hydrophilic solvent or an incompatible mixed solvent system of a hydrophilic solvent and a lipophilic solvent in the presence or absence of a phase transfer catalyst, The reaction is preferably carried out at a temperature of 50 to 120 ° C. This cyclic polysulfide has a lower viscosity and a vulcanizing agent with higher vulcanization efficiency than when one kind of dihalogen compound is used.

本発明において、前記反応は、好ましくは、適当な相間触媒の存在下に50〜150℃の温度、好ましくは50〜120℃の温度で反応させる。相間触媒の例としては、4級アンモニウム塩、ホスホニウム塩、クラウンエーテル、脂肪酸金属塩などを用いることができる。例えば、(CH34+Cl-,(CH34+Br-,(C494+Cl-,(C494+Br-,C1225+(CH33Br-,(C494+Br-,CH3+(C653-,C1633+(C493Br-,15−crown−5,18−crown−6,Benzo−18−crown−6や、RCOO-Na+,RSO3 -Na+,(RO)2PO2 -Na+(式中、Rはアルキル基を示す)等が挙げられる。 In the present invention, the reaction is preferably performed at a temperature of 50 to 150 ° C., preferably 50 to 120 ° C. in the presence of a suitable interphase catalyst. Examples of the interphase catalyst include quaternary ammonium salts, phosphonium salts, crown ethers, fatty acid metal salts, and the like. For example, (CH 3 ) 4 N + Cl , (CH 3 ) 4 N + Br , (C 4 H 9 ) 4 N + Cl , (C 4 H 9 ) 4 N + Br , C 12 H 25 N + (CH 3) 3 Br -, (C 4 H 9) 4 P + Br -, CH 3 P + (C 6 H 5) 3 I -, C 16 H 33 P + (C 4 H 9) 3 Br -, and 15-crown-5,18-crown- 6, Benzo-18-crown-6, RCOO - Na +, RSO 3 - Na +, (RO) 2 PO 2 - Na + ( wherein, R is an alkyl Group).

本発明においては前記した従来技術の問題点を排除して、強度や伸びが大きく、その性能を長期間にわたって持続可能であり、空気入りタイヤのタイヤトレッド部用として有用なゴム組成物及びそれを用いる空気入りタイヤを提供することを目的として、第一の態様に従えば、芳香族ビニル−ジエン共重合体ゴムを主成分とした硫黄加硫可能なゴム100重量部並びに前記式(I)(式中、xは平均2〜6の数、nは1〜20の整数、Rは置換もしくは非置換のC2〜C20アルキレン基、置換もしくは非置換のC2〜C20オキシアルキレン基又は芳香族を含むアルキレン基を示す)で表される環状ポリスルフィド0.1〜10重量部を含むタイヤトレッド用ゴム組成物が提供される。 In the present invention, the above-mentioned problems of the prior art are eliminated, the strength and elongation are large, and the performance can be maintained for a long period of time, and a rubber composition useful for a tire tread portion of a pneumatic tire and a rubber composition thereof For the purpose of providing a pneumatic tire to be used, according to the first aspect, 100 parts by weight of a sulfur vulcanizable rubber mainly composed of an aromatic vinyl-diene copolymer rubber and the formula (I) ( In the formula, x is an average of 2 to 6, n is an integer of 1 to 20, R is a substituted or unsubstituted C 2 to C 20 alkylene group, a substituted or unsubstituted C 2 to C 20 oxyalkylene group or aromatic A rubber composition for tire treads comprising 0.1 to 10 parts by weight of a cyclic polysulfide represented by the following formula:

また第二の態様に従えば、ジエン系ゴム成分100重量部に、カーボンブラック及び/又はシリカを合計量で100〜200重量部、かつ前記式(I)(式中、xは平均2〜6の数、nは1〜20の整数、Rは置換もしくは非置換のC2〜C20アルキレン基、置換もしくは非置換のC2〜C20オキシアルキレン基又は芳香族を含むアルキレン基を示す)で表される環状ポリスルフィドと硫黄とを合計量が0.5〜5重量部でかつ環状ポリスルフィドと硫黄との合計量に対する環状ポリスルフィドの量の比が0.1〜2(重量比)となる量で含むタイヤトレッド用ゴム組成物が提供される。 According to the second embodiment, 100 parts by weight of the diene rubber component, 100 to 200 parts by weight of carbon black and / or silica in a total amount, and the formula (I) (wherein x is an average of 2 to 6 number, n represents an integer of 1 to 20, R represents a substituted or unsubstituted C 2 -C 20 alkylene group, in an alkylene group) containing C 2 -C 20 oxyalkylene group or an aromatic substituted or unsubstituted In such an amount that the total amount of cyclic polysulfide and sulfur represented is 0.5 to 5 parts by weight and the ratio of the amount of cyclic polysulfide to the total amount of cyclic polysulfide and sulfur is 0.1 to 2 (weight ratio). A rubber composition for a tire tread is provided.

更にまた別の態様に従えば、トレッド部が、路面と接するキャップ部とその内側のベース部とからなる2層以上の構造を有する空気入りタイヤにおいて、硫黄加硫可能なゴム100重量部、シリカ及び/又はカーボンブラックを合計量で30〜100重量部並びに式(I)(式中、xは平均2〜6の数、nは1〜20の整数、Rは置換もしくは非置換のC2〜C20アルキレン基、置換もしくは非置換のC2〜C20オキシアルキレン基又は芳香族を含むアルキレン基を示す)で表される環状ポリスルフィド0.1〜10重量部を含むゴム組成物をトレッドのベース部に用いた空気入りタイヤが提供される。 According to still another aspect, in a pneumatic tire having a tread portion having a structure of two or more layers consisting of a cap portion in contact with a road surface and a base portion inside the tread portion, 100 parts by weight of sulfur vulcanizable rubber, silica And / or carbon black in a total amount of 30 to 100 parts by weight and formula (I) (wherein x is an average number of 2 to 6, n is an integer of 1 to 20, R is a substituted or unsubstituted C 2 to C 20 alkylene group, a substituted or unsubstituted C 2 -C 20 oxyalkylene group or rubber-based composition of the tread containing a cyclic polysulfide 0.1-10 parts by weight represented by an alkylene group) containing an aromatic A pneumatic tire used for the part is provided.

前記本発明のゴム組成物は、前記環状ポリスルフィドを加硫剤として用いることにより、高いグリップ性能、破壊強度、グリップ持続性、耐久性、操縦安定性を改良することができる。   The rubber composition of the present invention can improve high grip performance, breaking strength, grip durability, durability, and steering stability by using the cyclic polysulfide as a vulcanizing agent.

前記本発明のゴム組成物に配合する前記式(I)の環状ポリスルフィドは、例えば前述の方法によって製造することができる。   The cyclic polysulfide of the formula (I) to be blended in the rubber composition of the present invention can be produced, for example, by the method described above.

本発明のゴム組成物には、前記環状ポリスルフィド(B)を、ゴム(A)100重量部に対し、0.1〜10重量部、好ましくは0.2〜8重量部配合する。この配合量が少な過ぎると所望の効果が得られず、逆に多過ぎるとスコーチしやすくなり、コスト高にもなるので好ましくない。但し、本発明の第二の態様では、環状ポリスルフィドと硫黄とを合計量が0.5〜5重量部、好ましくは0.6〜4.8重量部でかつ環状ポリスルフィドと硫黄との合計量に対する環状ポリスルフィドの量の比が0.1〜2(重量比)、好ましくは0.2〜1.9(重量比)となる量で配合する。   In the rubber composition of the present invention, the cyclic polysulfide (B) is blended in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 8 parts by weight, per 100 parts by weight of the rubber (A). If the amount is too small, the desired effect cannot be obtained. On the other hand, if the amount is too large, scorching is likely to occur and the cost is increased, which is not preferable. However, in the second aspect of the present invention, the total amount of the cyclic polysulfide and sulfur is 0.5 to 5 parts by weight, preferably 0.6 to 4.8 parts by weight, and the total amount of the cyclic polysulfide and sulfur. The amount of the cyclic polysulfide is 0.1 to 2 (weight ratio), preferably 0.2 to 1.9 (weight ratio).

本発明の第一の態様において使用される芳香族ビニル−ジエン系共重合体ゴムとしては、例えば各種スチレン−ブタジエン共重合体ゴム(SBR)、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴムなどとすることができ、ガラス転移温度(Tg)が−40℃〜0℃のものを使用するのが好ましい。前記芳香族ビニル−ジエン系共重合体は配合されるゴム組成物の40〜100重量%配合するのが好ましく、45〜100重量%であるのが更に好ましい。その他のゴム成分としては、例えば天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、アクリロニトリル−ブタジエン共重合体ゴム(NBR)、ブチルゴム、ハロゲン化ブチルゴムなどとすることができる。   Examples of the aromatic vinyl-diene copolymer rubber used in the first embodiment of the present invention include various styrene-butadiene copolymer rubbers (SBR), styrene-isoprene copolymer rubber, and styrene-isoprene-butadiene. It is preferable to use a rubber having a glass transition temperature (Tg) of -40 ° C to 0 ° C. The aromatic vinyl-diene copolymer is preferably blended in an amount of 40 to 100% by weight of the blended rubber composition, more preferably 45 to 100% by weight. Examples of other rubber components include natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber, and halogenated butyl rubber.

前記第一の態様に従ったゴム組成物には更に従来からゴム組成物に使用されているシリカ及び/又はカーボンブラック(合計量でゴム成分100重量部当り55重量部以上100重量部未満であるのが好ましく、60〜98重量部が更に好ましい)を配合することができる。カーボンブラックとしては窒素吸着比表面積(N2SA、ASTM D3037に従って測定)が80m2/g以上150m2/g未満であるのが好ましく、82〜148m2/gであるのが更に好ましい。 The rubber composition according to the first aspect further includes silica and / or carbon black conventionally used in the rubber composition (the total amount is 55 parts by weight or more and less than 100 parts by weight per 100 parts by weight of the rubber component). And 60 to 98 parts by weight are more preferable). Is preferably a nitrogen adsorption specific surface area (N 2 SA, measured according to ASTM D3037) is less than 80 m 2 / g or more 150 meters 2 / g as carbon black, and even more preferably 82~148m 2 / g.

前記第二の態様において、前記環状ポリスルフィドと共に配合されるジエン系ゴムとしては、従来からタイヤ用ゴム組成物に配合されている任意のジエン系ゴムとすることができ、具体的には天然ゴム(NR)、各種ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、各種スチレン−ブタジエン系共重合体ゴム(SBR)、スチレン−イソプレン共重合体ゴム、アクリロニトリル−ブタジエン共重合体ゴムとすることができ、これらは単独又は任意のブレンドとして使用することができる。これらの中でSBRをゴム成分中の70重量%以上使用するのが好ましい。   In the second aspect, the diene rubber blended with the cyclic polysulfide can be any diene rubber conventionally blended in a tire rubber composition, specifically, natural rubber ( NR), various polyisoprene rubbers (IR), various polybutadiene rubbers (BR), various styrene-butadiene copolymer rubbers (SBR), styrene-isoprene copolymer rubbers, acrylonitrile-butadiene copolymer rubbers. These can be used alone or as any blend. Among these, it is preferable to use 70% by weight or more of SBR in the rubber component.

前記第二の態様においては、更にタイヤとして使用することができる任意のカーボンブラック及び/又はシリカを、ジエン系ゴム成分100重量部に対し、合計量で好ましくは100〜200重量部、更に好ましくは102〜190重量部配合することができる。フィラー配合量が少ないとグリップ性能が十分でなく、逆に多過ぎると混合加工性が悪化するので好ましくない。なお、使用するカーボンブラックとしては、N2SAが150〜300m2/gであるのが高いグリップ性能の点から好ましい。 In the second aspect, any carbon black and / or silica that can be used as a tire is preferably 100 to 200 parts by weight, more preferably 100 parts by weight of the diene rubber component. 102 to 190 parts by weight can be blended. If the filler content is small, the grip performance is not sufficient. Conversely, if the filler content is too large, the mixing processability deteriorates. As the carbon black used, N 2 SA is preferable from the viewpoint of high grip performance of a 150 to 300 m 2 / g.

前記第二の態様では、前述の通り、前記式(I)の環状ポリスルフィドを、環状ポリスルフィドと硫黄とを合計量が0.5〜5重量部、好ましくは0.6〜4.8重量部でかつ環状ポリスルフィドと硫黄との合計量に対する環状ポリスルフィドの量の比が0.1〜2(重量比)、好ましくは0.2〜1.9(重量比)となる量で含むタイヤトレッド用ゴム組成物が提供される。環状ポリスルフィドと硫黄の配合量の総和が少ないとグリップ持続性が悪化し、逆に多いとグリップ性能が良くないので好ましくなく、また環状ポリスルフィドの配合量が少ないとグリップ持続性の改良幅が小さくなるので好ましくない。   In the second aspect, as described above, the cyclic polysulfide of the formula (I) is a total amount of 0.5 to 5 parts by weight, preferably 0.6 to 4.8 parts by weight of the cyclic polysulfide and sulfur. And a rubber composition for a tire tread, which is contained in an amount such that the ratio of the amount of cyclic polysulfide to the total amount of cyclic polysulfide and sulfur is 0.1 to 2 (weight ratio), preferably 0.2 to 1.9 (weight ratio). Things are provided. If the total amount of the cyclic polysulfide and sulfur is small, the grip durability deteriorates. On the other hand, if the amount is too large, the grip performance is not good. Therefore, it is not preferable.

前記第二の態様では、更に式(IV):   In the second embodiment, the formula (IV):

Figure 2007092086
Figure 2007092086

(式中、R1〜R4はそれぞれ独立にC1〜C10のアルキル基又はアルキル基の炭素数が1〜20の芳香族アルキル基を示し、yは1〜4の整数である)
のチウラム系促進剤をゴム成分100重量部に対し、好ましくは0.2〜5重量部、更に好ましくは0.3〜4.8重量部配合することによって耐疲労特性及び耐熱老化性が更に向上する。好ましいチウラム系促進剤としては、例えばテトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド、テトラキス(2−エチルヘキシル)チウラムジスルフィド、テトラベンジルチウラムジスルフィドなどをあげることができる。
(Wherein R 1 to R 4 each independently represents a C 1 to C 10 alkyl group or an alkyl group having 1 to 20 carbon atoms, and y is an integer of 1 to 4).
The fatigue resistance and heat aging resistance are further improved by adding 0.2 to 5 parts by weight, more preferably 0.3 to 4.8 parts by weight of the above thiuram accelerator with respect to 100 parts by weight of the rubber component. To do. Preferable thiuram accelerators include tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetrabenzylthiuram disulfide and the like.

本発明によれば、また、トレッド部が路面と接するキャップ部とその内側のベース部とからなる2層以上の構造を有する空気入りタイヤにおいて、硫黄加硫可能なゴム100重量部、シリカ及び/又はカーボンブラックを合計量で30〜100重量部、好ましくは35〜95重量部並びに前記式(I)で表される環状ポリスルフィド0.1〜10重量部、好ましくは0.2〜8重量部を含むゴム組成物をトレッドのベース部に用いた空気入りタイヤが提供される。このベース部用ゴム組成物は上述した各キャップ部用ゴム組成物と組み合わせたトレッドとして使用してもよい。ここで加硫可能なゴムとしては、従来よりタイヤ、その他用として一般的に使用されている任意のゴム、例えば各種天然ゴム(NR)、各種ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、各種スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエン共重合体ゴム、クロロプレンゴム(CR)などのジエン系ゴム及びそれらの部分水添物や(ハロゲン化)ブチルゴム(IIR)、エチレン−プロピレンジエン共重合体ゴム(EPDM)、アクリルゴム(ACM)などをあげることができ、これらは単独又は任意のブレンドとして使用することができる。   According to the present invention, in a pneumatic tire having a structure of two or more layers including a cap portion in which a tread portion is in contact with a road surface and a base portion inside the tread portion, 100 parts by weight of sulfur vulcanizable rubber, silica and / or Alternatively, the total amount of carbon black is 30 to 100 parts by weight, preferably 35 to 95 parts by weight and the cyclic polysulfide represented by the formula (I) is 0.1 to 10 parts by weight, preferably 0.2 to 8 parts by weight. A pneumatic tire using the rubber composition containing the rubber composition for the base portion of the tread is provided. You may use this rubber composition for base parts as a tread combined with the rubber composition for cap parts mentioned above. The rubber that can be vulcanized here is a tire, and any rubber generally used for other purposes, such as various natural rubbers (NR), various polyisoprene rubbers (IR), various polybutadiene rubbers (BR). Various styrene-butadiene copolymer rubbers (SBR), acrylonitrile-butadiene copolymer rubbers, diene rubbers such as chloroprene rubber (CR) and partially hydrogenated products thereof, (halogenated) butyl rubber (IIR), ethylene- Examples thereof include propylene diene copolymer rubber (EPDM), acrylic rubber (ACM) and the like, and these can be used alone or as any blend.

本発明に従ったゴム組成物は、常法に従って、空気入りタイヤのトレッド部、トレッドベース部などの各種用途製品などに用いることができる。   The rubber composition according to the present invention can be used in various products such as a tread portion and a tread base portion of a pneumatic tire according to a conventional method.

本発明のゴム組成物には、前記した必須成分に加えて、その他の補強剤(フィラー)、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑性剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる配合物は一般的な方法で混練、加硫して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は貯蔵弾性率を前記範囲内に満足させる等の本発明の目的に反しない限り、従来の一般的な配合量とすることができる。これらの添加剤の配合量は貯蔵弾性率を前記範囲内に満足させる等の本発明の目的に反しない限り、従来の一般的な配合量とすることができる。   In addition to the above-mentioned essential components, the rubber composition of the present invention includes other reinforcing agents (fillers), vulcanization or crosslinking accelerators, various oils, anti-aging agents, plasticizers, and other tires, and other general rubbers. Various additives that are generally blended in can be blended, and the blend can be kneaded and vulcanized by a general method to form a composition, which can be used for vulcanization or crosslinking. The blending amount of these additives can be a conventional general blending amount as long as the object of the present invention is satisfied, such as satisfying the storage elastic modulus within the above range. The blending amount of these additives can be a conventional general blending amount as long as the object of the present invention is satisfied, such as satisfying the storage elastic modulus within the above range.

本発明のゴム組成物には前記環状ポリスルフィド(C)をゴム100重量部に対し、0.1〜10重量部、好ましくは0.2〜8重量部配合する。この配合量が少な過ぎると所望の効果が得られず、逆に多過ぎると耐久性が悪化するので好ましくない。   In the rubber composition of the present invention, the cyclic polysulfide (C) is blended in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 8 parts by weight, based on 100 parts by weight of the rubber. If the amount is too small, the desired effect cannot be obtained. On the other hand, if the amount is too large, the durability deteriorates, which is not preferable.

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

実施例I−1〜I−4及び比較例I−1〜I−3サンプルの調製
表I−1に示す配合において、加硫系を除く各成分を16リットルのバンバリーミキサーで5分間混練し、160±2℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫系をオープンロールで混練し、ゴム組成物を得た。
次に得られたゴム組成物を15×15×0.2cmの金型中で160℃で30分間加硫して加硫ゴムシートを作製し、以下に示す試験法でゴム物性を測定した。結果は表I−1に示す。
Preparation of Examples I-1 to I-4 and Comparative Examples I-1 to I-3 Samples In the formulation shown in Table I-1, each component except the vulcanization system was kneaded with a 16 liter Banbury mixer for 5 minutes, When it reached 160 ± 2 ° C., it was discharged to obtain a master batch. The master batch was kneaded with a vulcanization system with an open roll to obtain a rubber composition.
Next, the obtained rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 160 ° C. for 30 minutes to prepare a vulcanized rubber sheet, and rubber physical properties were measured by the following test methods. The results are shown in Table I-1.

ゴム物性評価試験法
ウェット制動性能:各コンパウンドをトレッド部に使用したサイズ195/65R15のタイヤを作成し、排気量2000ccの車に装着して約6ヶ月間のうちに市街地を約20,000km走行した後に、水深1mmで散水したアスファルト路面のテストコートで、初速度100kmからの制動距離を測定し、比較例I−1の値を100とした指数で示した。数字が大きい方が制動距離が短く、優れることを示す。
Test Methods for Evaluation of Rubber Physical Properties Wet braking performance: Create a tire size 195 / 65R15 using each compound in the tread portion, urban approximately 20,000km running in about 6 months by mounting the car emissions 2000cc Then, the braking distance from an initial speed of 100 km was measured with a test coat on an asphalt road surface sprayed at a water depth of 1 mm, and the value was shown as an index with the value of Comparative Example I-1 being 100. The larger the number, the shorter the braking distance and the better.

Figure 2007092086
Figure 2007092086

表I−1脚注
NIPOL 9526:日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム(スチレン含量:35%、50phr 油展、Tg=−35℃)
NIPOL 1712:日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム(スチレン含量:23.5%、37.5phr 油展、Tg=−51℃)
NIPOL 1220:日本ゼオン(株)製ポリブタジエンゴム(非油展、Tg=−100℃)
DIA I:三菱化学(株)製カーボンブラック(N2 SA=114m2 /g)
Nipsil AQ:日本シリカ工業製湿式シリカ
Si−69:デグッサ製シランカップリング剤
SANTOFLEX 6PPD:FLEXSYS製老化防止剤
酸化亜鉛3種:正同化学工業(株)製
ビーズステアリン酸:日本油脂(株)製ステアリン酸
デゾレックス3号:昭和シェル石油(株)製プロセスオイル
SANTOCURE CBS:FLEXSYS製加硫促進剤
金華印油入微粉硫黄:鶴見化学工業(株)製硫黄
環状ポリスルフィドI−1:特開2002−293783号公報の実施例3の方法に従って合成した、式(I)において、R=(CH26、x(平均)=4及びn=1〜5の環状ポリスルフィド
環状ポリスルフィドI−2:特開2002−293783号公報の実施例2の方法に従って合成した、式(I)において、R=(CH22O(CH2)O(CH22、x(平均)=4及びn=1〜2の環状ポリスルフィド
Table I-1 Footnote NIPOL 9526: Styrene-butadiene copolymer rubber manufactured by Nippon Zeon Co., Ltd. (styrene content: 35%, 50 phr oil extended, Tg = −35 ° C.)
NIPOL 1712: Styrene-butadiene copolymer rubber manufactured by Nippon Zeon Co., Ltd. (styrene content: 23.5%, 37.5 phr oil-extended, Tg = −51 ° C.)
NIPOL 1220: Polybutadiene rubber manufactured by Nippon Zeon Co., Ltd. (non-oil-extended, Tg = −100 ° C.)
DIA I: Carbon black manufactured by Mitsubishi Chemical Corporation (N 2 SA = 114 m 2 / g)
Nippon Sil AQ: Nippon Silica Kogyo Wet Silica Si-69: Degussa Silane Coupling Agent SANTOFLEX 6PPD: FLEXSYS Anti-aging Agent Zinc Oxide 3 types: Shodo Chemical Industries Co., Ltd. Beads stearic acid: Nippon Oil & Fats Co., Ltd. Desolex stearate No. 3: Process oil SANTOCURE CBS manufactured by Showa Shell Sekiyu K.K .: Fine powder with vulcanization accelerator Jinhua seal oil manufactured by FLEXSYS Sulfur: Cyclic polysulfide I-1 manufactured by Tsurumi Chemical Industry Co., Ltd. JP-A No. 2002-293378 A cyclic polysulfide cyclic polysulfide I-2 in which R = (CH 2 ) 6 , x (average) = 4 and n = 1 to 5 in the formula (I) synthesized according to the method of Example 3 of the publication: In the formula (I) synthesized according to the method of Example 2 of Japanese Patent No. 293783, R = ( H 2) 2 O (CH 2 ) O (CH 2) 2, x ( average) = 4 and n = 1 to 2 cyclic polysulfide

実施例I−5〜I−9及び比較例I−4〜I−7
表I−2に示す配合において、加硫系を除く各成分(重量部)を16リットルのバンバリーミキサーで5分間混練し、150℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫系をオープンロールで混練し、ゴム組成物を得た。
次に得られたゴム組成物を15×15×0.2cmの金型中で150℃で40分間加硫して2mm厚の加硫ゴムシートを作製し、以下に示す試験法でゴム物性を測定した。結果は表I−2に示す。
Examples I-5 to I-9 and Comparative Examples I-4 to I-7
In the formulation shown in Table I-2, each component (parts by weight) excluding the vulcanization system was kneaded for 5 minutes with a 16 liter Banbury mixer and released when the temperature reached 150 ° C. to obtain a master batch. The master batch was kneaded with a vulcanization system with an open roll to obtain a rubber composition.
Next, the obtained rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 150 ° C. for 40 minutes to prepare a vulcanized rubber sheet having a thickness of 2 mm, and the rubber physical properties were measured by the following test methods. It was measured. The results are shown in Table I-2.

ゴム物性評価試験法
M300変化率:100℃で24時間熱老化させた前後の300%モジュラスの変化率を示す。この変化率が10%以下であると、グリップが安定して良好である。
グリップ性評価:上記ゴム組成物をトレッドにした195/55R15タイヤを試作し、一周4.41kmのコースを走行した際のグリップ性能を5段階にて官能評価したものである。数値が大きい程グリップ良好である。なお、表I−2において、各実施例が300%モジュラス変化率とグリップ性が良いことを表す。
Rubber physical property evaluation test method M300 change rate: shows the change rate of 300% modulus before and after heat aging at 100 ° C. for 24 hours. When the rate of change is 10% or less, the grip is stable and good.
Evaluation of grip performance: A 195 / 55R15 tire using the rubber composition as a tread was made on a trial basis, and the grip performance when traveling on a course of 4.41 km per round was subjected to sensory evaluation in five stages. The larger the value, the better the grip. In Table I-2, each example represents that the 300% modulus change rate and the grip performance are good.

Figure 2007092086
Figure 2007092086

表I−2脚注
SBR:日本ゼオン製NIPOL 9526(スチレン含量:35%)
カーボンSAF:三菱化学製ダイアブラックA
シリカ:デグッサ製ULTRASIL 7000GR
促進剤CBS:大内新興化学製ノクセラー CZ−G
促進剤TOT−N:大内新興化学製ノクセラー TOT−N
硫黄:鶴見化学製
環状ポリスルフィドI−3:前記環状ポリスルフィドI−1に同じ
Table I-2 Footnote SBR: NIPOL 9526 manufactured by Nippon Zeon (styrene content: 35%)
Carbon SAF: Mitsubishi Chemical Dia Black A
Silica: ULTRASIL 7000GR manufactured by Degussa
Accelerator CBS: Ouchi Shinsei Chemical Noxeller CZ-G
Accelerator TOT-N: Ouchi Shinsei Chemical Noxeller TOT-N
Sulfur: Tsurumi Chemical's cyclic polysulfide I-3: Same as the cyclic polysulfide I-1

実施例I−10〜I−14及び比較例I−8〜I−10
表I−3に示す配合において、加硫系を除く各成分(重量部)を16リットルのバンバリーミキサーで5分間混練し、160℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫系をオープンロールで混練し、ゴム組成物を得た。
次に得られたゴム組成物を15×15×0.2cmの金型中で160℃で30分間加硫して2mm厚の加硫ゴムシートを作製し、以下に示す試験法でゴム物性を測定した。結果は表I−3に示す。
Examples I-10 to I-14 and Comparative Examples I-8 to I-10
In the composition shown in Table I-3, each component (parts by weight) excluding the vulcanization system was kneaded for 5 minutes with a 16 liter Banbury mixer and released when the temperature reached 160 ° C. to obtain a master batch. The master batch was kneaded with a vulcanization system with an open roll to obtain a rubber composition.
Next, the obtained rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 160 ° C. for 30 minutes to prepare a vulcanized rubber sheet having a thickness of 2 mm, and the rubber physical properties were measured by the following test methods. It was measured. The results are shown in Table I-3.

ゴム物性評価試験法
氷上制動性能:各コンパウンドをトレッド部に使用したサイズ195/65R15のタイヤを作成し、排気量2000ccの車に装着して約6ヶ月間のうちに市街地を約20,000km走行した後に、氷温度−5℃の氷盤路テストコースで、初速度40kmからの制動距離を測定し、比較例I−8の値を100とした指数で示した。数字が大きい方が制動距離が短く、優れることを示す。
Rubber physical property evaluation test method Braking performance on ice: Tires of size 195 / 65R15 using each compound in the tread part were created and mounted on a car with a displacement of 2000 cc. After that, the braking distance from an initial speed of 40 km was measured on an ice board road test course at an ice temperature of −5 ° C., and the value was shown as an index with the value of Comparative Example I-8 as 100. The larger the number, the shorter the braking distance and the better.

Figure 2007092086
Figure 2007092086

表I−3脚注
天然ゴム TSR20:SIR20(Tg=−70℃)
NIPOL 1441:日本ゼオン(株)製ポリブタジエンゴム(37.5phr 油展、Tg=−101℃)
DIA I:三菱化学(株)製カーボンブラック(N2 SA=114m2 /g)
Nipsil AQ:日本シリカ工業製湿式シリカ
Si−69:デグッサ製シランカップリング剤
SANTOFLEX 6PPD:FLEXSYS製老化防止剤
酸化亜鉛3種:正同化学工業(株)製
ビーズステアリン酸:日本油脂(株)製ステアリン酸
デゾレックス3号:昭和シェル石油(株)製プロセスオイル
SANTOCURE CBS:FLEXSYS製加硫促進剤
金華印油入微粉硫黄:鶴見化学工業(株)製硫黄
環状ポリスルフィドI−4:前記環状ポリスルフィドI−1に同じ
環状ポリスルフィドI−5:前記環状ポリスルフィドI−2に同じ
Table I-3 Footnotes <br/> natural rubber TSR20: SIR20 (Tg = -70 ℃ )
NIPOL 1441: Polybutadiene rubber (37.5 phr oil exhibition, Tg = −101 ° C.) manufactured by Nippon Zeon Co., Ltd.
DIA I: Carbon black manufactured by Mitsubishi Chemical Corporation (N 2 SA = 114 m 2 / g)
Nippon Sil AQ: Nippon Silica Kogyo Wet Silica Si-69: Degussa Silane Coupling Agent SANTOFLEX 6PPD: FLEXSYS Anti-aging Agent Zinc Oxide 3 types: Shodo Chemical Industries Co., Ltd. Beads stearic acid: Nippon Oil & Fats Co., Ltd. Desolex stearate No.3: Process oil SANTOCURE CBS manufactured by Showa Shell Sekiyu K.K .: Fine powder containing vulcanization accelerator Jinhua India oil manufactured by FLEXSYS Sulfur: Cyclic polysulfide I-4 manufactured by Tsurumi Chemical Co., Ltd .: Cyclic polysulfide I-1 The same cyclic polysulfide I-5: same as the cyclic polysulfide I-2

実施例I−15〜I−18及び比較例I−11〜I−12
表I−4に示す配合において、加硫系を除く各成分(重量部)を16リットルのバンバリーミキサーで5分間混練し、160℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫系をオープンロールで混練し、ゴム組成物を得た。
Examples I-15 to I-18 and Comparative Examples I-11 to I-12
In the formulation shown in Table I-4, each component (parts by weight) excluding the vulcanization system was kneaded for 5 minutes with a 16 liter Banbury mixer and released when the temperature reached 160 ° C. to obtain a master batch. The master batch was kneaded with a vulcanization system with an open roll to obtain a rubber composition.

次に得られたゴム組成物を15×15×0.2cmの金型中で160℃で30分間加硫して2mm厚の加硫ゴムシートを作製し、以下に示す試験法でゴム物性を測定した。結果は表I−4に示す。   Next, the obtained rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 160 ° C. for 30 minutes to produce a vulcanized rubber sheet having a thickness of 2 mm. It was measured. The results are shown in Table I-4.

ゴム物性評価試験法
キャップ部の厚さが最大で7mm、ベース部の厚さが2mmの2層構造トレッドを有するタイヤに対して、各コンパウンドをベース部に使用したサイズ195/65R15のタイヤを作成し以下の試験に供した。
Rubber physical property evaluation test method A tire of size 195 / 65R15 using each compound for the base part was created for a tire with a two-layered tread with a cap part thickness of 7 mm at the maximum and a base part thickness of 2 mm. The following tests were conducted.

高速耐久試験:ドラム径1707mmでJIS D 4230、JIS高速耐久性試験終了後、30分毎に10km/hr加速してタイヤが破壊するまで試験を続行した。この結果を比較例I−11の値を100とした指数で示した。数字が大きい方が走行距離が長く、優れることを示す。   High-speed durability test: After completion of JIS D 4230, JIS high-speed durability test with drum diameter of 1707 mm, the test was continued every 30 minutes until the tire broke down at 10 km / hr. The results are shown as an index with the value of Comparative Example I-11 as 100. The larger the number, the longer the mileage and the better.

転がり抵抗:ドラム径1707mmの室内ドラム式タイヤ転動抵抗試験機によって測定した。測定条件は、JATMA Y/B2003年版を準用した。数字が大きい方が転がり抵抗が小さく、優れることを示す。   Rolling resistance: Measured with an indoor drum type tire rolling resistance tester having a drum diameter of 1707 mm. As the measurement conditions, JATMA Y / B 2003 edition was applied mutatis mutandis. Larger numbers indicate lower rolling resistance and better results.

操縦安定性:一定間隔でパイロンが立てられているスラローム試験路を実車走行し、その平均速度により操縦安定性を評価し、比較例I−11の値を100とする指数値で示した。この指数値が大きい程操縦安定性が優れている。   Steering stability: The vehicle was run on a slalom test road where pylons were set up at regular intervals, and the steering stability was evaluated based on the average speed. The stability value was shown as an index value with the value of Comparative Example I-11 being 100. The larger the index value, the better the steering stability.

Figure 2007092086
Figure 2007092086

表I−4脚注
天然ゴム TSR20:SIR20
NIPOL 1502:日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム(スチレン含量:23.5%)
DIA E:三菱化学(株)製カーボンブラック(N2 SA=41m2 /g)
SANTOFLEX 6PPD:FLEXSYS製老化防止剤
酸化亜鉛3種:正同化学工業(株)製
ビーズステアリン酸:日本油脂(株)製ステアリン酸
デゾレックス3号:昭和シェル石油(株)製プロセスオイル
SANTOCURE NS:FLEXSYS製加硫促進剤
金華印油入微粉硫黄:鶴見化学工業(株)製硫黄
環状ポリスルフィドI−6:前記環状ポリスルフィドI−1に同じ
環状ポリスルフィドI−7:前記環状ポリスルフィドI−2に同じ
Table I-4 Footnote Natural rubber TSR20: SIR20
NIPOL 1502: Styrene-butadiene copolymer rubber manufactured by Nippon Zeon Co., Ltd. (styrene content: 23.5%)
DIA E: Carbon black manufactured by Mitsubishi Chemical Corporation (N 2 SA = 41 m 2 / g)
SANTOFLEX 6PPD: Anti-aging agent manufactured by FLEXSYS Zinc oxide 3 types: Beads stearic acid manufactured by Shodo Chemical Industry Co., Ltd .: Desolex No. 3 manufactured by Nippon Oil & Fats Co., Ltd .: Process oil SANTOCURE NS: FLEXSYS manufactured by Showa Shell Sekiyu KK Vulcanization accelerator Jinhua oil-filled fine powder sulfur: Tsurumi Chemical Co., Ltd. sulfur cyclic polysulfide I-6: Same as the above cyclic polysulfide I-1 Cyclic polysulfide I-7: Same as the above cyclic polysulfide I-2

実施例II−1〜4及び比較例II−1
本発明のゴム加硫剤の配合物性を評価するため以下の試験を行なった。
ゴムへの配合(重量部)は表II−Iに示す通りである。
Examples II-1 to 4 and Comparative Example II-1
In order to evaluate the compounding properties of the rubber vulcanizing agent of the present invention, the following tests were conducted.
The compounding (parts by weight) into rubber is as shown in Table II-I.

Figure 2007092086
Figure 2007092086

表II−1脚注
*1:TSR20
*2:Bromobutyl 2255(エクソンモービルケミカル)
*3:ダイアブラックE(三菱化学)
*4:亜鉛華#3(正同化学)
*5:ビーズステアリン酸(花王)
*6:FR−120(富士興産)
*7:エキストラクト 4号S(昭和シェル石油)
*8:5%油処理硫黄(軽井沢精錬所)
Table II-1 Footnote * 1: TSR20
* 2: Bromobutyl 2255 (ExxonMobil Chemical)
* 3: Dia Black E (Mitsubishi Chemical)
* 4: Zinc flower # 3 (Jodo Chemical)
* 5: Bead stearic acid (Kao)
* 6: FR-120 (Fuji Kosan)
* 7: Extract No. 4 S (Showa Shell Sekiyu)
* 8: 5% oil-treated sulfur (Karuizawa Refinery)

*9:以下の方法で合成した環状ポリスルフィド
30%多硫化ソーダ(Na24)水溶液89.76g(0.15mol)に水80g、硫黄4.8g(0.15mol)及び触媒としてテトラブルチアンモニウムブロミド1.16g(0.0045mol)を入れて80℃で2時間反応させた後、トルエン100gを加え、90℃で1,6−ジクロロヘキサン23.3g(0.15mol)を1時間滴下し、さらに4時間反応させた。反応終了後、有機相を分離し減圧下90℃で濃縮した後、xが平均5の式で示される環状ポリスルフィドを35.2g(収率95%)で得た。
1HNMR(270MHz,CDCI3)δ(ppm):1.4-1.9(8H,-CH2-),2.9-3.3(4H,-S-CH2-).
* 9: Tetoraburuchi the synthesized cyclic polysulfide 30% sodium polysulfide in the following manner (N a2 S 4) solution 89.76g (0.15mol) water 80 g, as a sulfur 4.8 g (0.15 mol) and catalytic After adding 1.16 g (0.0045 mol) of ammonium bromide and reacting at 80 ° C. for 2 hours, 100 g of toluene was added, and 23.3 g (0.15 mol) of 1,6-dichlorohexane was added dropwise at 90 ° C. for 1 hour. The mixture was further reacted for 4 hours. After completion of the reaction, the organic phase was separated and concentrated under reduced pressure at 90 ° C., and 35.2 g (yield 95%) of a cyclic polysulfide represented by the formula where x was an average of 5 was obtained.
1 HNMR (270 MHz, CDCI 3 ) δ (ppm): 1.4-1.9 (8H, —CH 2 —), 2.9-3.3 (4H, —S—CH 2 —).

Figure 2007092086
Figure 2007092086

(xは平均5であり、nは1〜4の数である。)   (X is an average of 5 and n is a number from 1 to 4.)

*10:前記調製例I−2で合成した環状ポリスルフィド
*11:ノクセラーDM(大内新興化学)
*12:ノクセラーTOT−N(大内新興化学)
*13:ノクセラーNS−F(大内新興化学)
* 10: Cyclic polysulfide synthesized in Preparation Example I-2 * 11: Noxeller DM (Ouchi Shinsei Chemical)
* 12: Noxeller TOT-N (Ouchi Emerging Chemicals)
* 13: Noxeller NS-F (Ouchi Emerging Chemicals)

上記表II−1に示す配合(重量部)のゴム組成物を8インチのオープンロールで混合した後、160℃及び20分の加硫条件でゴムを加硫した。その結果を表VII−1に示す。試験方法は以下の通りである。   After mixing the rubber composition shown in Table II-1 (parts by weight) with an 8-inch open roll, the rubber was vulcanized under vulcanization conditions of 160 ° C. and 20 minutes. The results are shown in Table VII-1. The test method is as follows.

300%モジュラス:JIS K6251(3号ダンベル)に準拠
破断強度TB:JIS K6251(3号ダンベル)に準拠
破断伸びEB:JIS K6251(3号ダンベル)に準拠
衝撃ぜい化温度:JIS K6261に準拠して、ゴムのぜい化温度を測定した。
300% modulus: Conforms to JIS K6251 (No. 3 dumbbell) Breaking strength TB: Conforms to JIS K6251 (No. 3 dumbbell) Break elongation EB: Conforms to JIS K6251 (No. 3 dumbbell) Impact embrittlement temperature: Conforms to JIS K6261 Then, the embrittlement temperature of the rubber was measured.

なお、比較例II−1は従来の硫黄配合のインナーライナー配合ゴムであり、実施例II−1は環状ポリスルフィドII−1を約半量置換した例で伸びと熱老化後の保持率が向上した。実施例II−2は硫黄を環状ポリスルフィドII−1で置換した例で、さらに伸びが向上し、熱老化後の保持率も向上した。実施例II−3は骨格の異なる環状ポリスルフィドII−2を用いた例で、さらに破断物性が向上している。実施例II−4は加硫促進剤にチウラム系を使用した場合で、モジュラス、破談特性ともに向上している。実施例II−5は加硫促進剤にスルフェンアミド系を使用した場合で、モジュラス、破断特性ともに向上している。   In addition, Comparative Example II-1 is a conventional sulfur-blended innerliner-blended rubber, and Example II-1 is an example in which about half of the cyclic polysulfide II-1 was substituted, and the elongation and retention after heat aging were improved. Example II-2 was an example in which sulfur was substituted with cyclic polysulfide II-1, and the elongation was further improved and the retention after heat aging was also improved. Example II-3 is an example using cyclic polysulfide II-2 having a different skeleton, and the fracture property is further improved. Example II-4 is a case where a thiuram system is used as the vulcanization accelerator, and both the modulus and the breaking property are improved. Example II-5 is a case where a sulfenamide system is used as the vulcanization accelerator, and both the modulus and the breaking property are improved.

調製例III−1(加硫剤III−3の製造)
30重量%四硫化ソーダ水溶液89.8g(0.15モル)に水100gを加え希釈した後、これに1,2−ビス(2−クロロエトキシ)メタン25.9g(0.15モル)を90℃で2時間かけて滴下し、同温度で更に3時間反応させた。反応終了後、水不溶部を水洗後、減圧下、100℃で2時間乾燥させ、前記式(I)において、R=−CH2CH2OCH2OCH2CH2−、x(平均)=4及びn=1〜5の環状ポリスルフィド(加硫剤3)33.2g(収率96%)を得た。得られた環状ポリスルフィドの数平均分子量は600であり、そのNMRデータは以下の通りであった。
Preparation Example III-1 (Production of Vulcanizing Agent III-3)
After diluting by adding 100 g of water to 89.8 g (0.15 mol) of 30 wt% sodium tetrasulfide aqueous solution, 25.9 g (0.15 mol) of 1,2-bis (2-chloroethoxy) methane was added thereto. The solution was added dropwise at 2 ° C. over 2 hours and reacted at the same temperature for 3 hours. After completion of the reaction, the water-insoluble part was washed with water and dried at 100 ° C. under reduced pressure for 2 hours. In the formula (I), R = —CH 2 CH 2 OCH 2 OCH 2 CH 2 —, x (average) = 4 And 33.2 g (yield 96%) of cyclic polysulfide (vulcanizing agent 3) of n = 1-5. The number average molecular weight of the obtained cyclic polysulfide was 600, and the NMR data were as follows.

1H−NMR(重クロロホルム)δ:2.9〜3.3(4H,CH2S)、3.7〜4.0(4H,CH2O)、4.8(2H,OCH2O)。 1 H-NMR (deuterated chloroform) δ: 2.9 to 3.3 (4H, CH 2 S), 3.7 to 4.0 (4H, CH 2 O), 4.8 (2H, OCH 2 O) .

実施例III−1〜III−3及び比較例III−1
下記表III−1に示す配合(重量部)のゴム組成物を8インチのオープンロールで混合した後、170℃及び10分の加硫条件でゴムを加硫した。その結果を表III−1に示す。試験方法は以下の通りである。
Examples III-1 to III-3 and Comparative Example III-1
A rubber composition having the composition (parts by weight) shown in Table III-1 below was mixed with an 8-inch open roll, and then the rubber was vulcanized at 170 ° C. for 10 minutes. The results are shown in Table III-1. The test method is as follows.

100%モジュラス:JIS K6251に準拠して測定(JIS 3号ダンベル、試験速度500mm/min)。
破断強度(TB):JIS K6251に準拠して測定(JIS 3号ダンベル、試験速度500mm/min)。
破断伸び(EB):JIS K6251に準拠して測定(JIS 3号ダンベル、試験速度500mm/min)。
100% modulus: Measured according to JIS K6251 (JIS No. 3 dumbbell, test speed 500 mm / min).
Breaking strength (TB): Measured according to JIS K6251 (JIS No. 3 dumbbell, test speed 500 mm / min).
Elongation at break (EB): Measured according to JIS K6251 (JIS No. 3 dumbbell, test speed 500 mm / min).

Figure 2007092086
Figure 2007092086

表III−1脚注
*1:RSS #3
*2:三菱化学(株)製 ダイアブラックE
*3:正同化学工業(株)製 酸化亜鉛3種
*4:日本油脂(株)製 ビーズステアリン酸
*5:フレキシス(株)製 サントフレックスPPD
*7:ローディア製 マノボンド C22.5
*8:アクゾノーベル(株)製 クリステックスHS
*9:前記環状ポリスルフィドI−1
*10:前記環状ポリスルフィドII−1
*11:前記環状ポリスルフィドIII−3
*12:大内新興化学工業(株)製 ノクセラー DZ−G
Table III-1 Footnote * 1: RSS # 3
* 2: Dia Black E manufactured by Mitsubishi Chemical Corporation
* 3: Three types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd. * 4: Bead stearic acid manufactured by Nippon Oil & Fats Co., Ltd. * 5: Santoflex PPD manufactured by Flexis Co., Ltd.
* 7: Rhodia Manobond C22.5
* 8: Cristex HS manufactured by Akzo Nobel Co., Ltd.
* 9: Cyclic polysulfide I-1
* 10: Cyclic polysulfide II-1
* 11: Cyclic polysulfide III-3
* 12: Nouchira DZ-G manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

比較例III−1は従来のベルトコートコンパウンドの例でこの例を基準として本発明のゴム組成物を評価した。実施例III−1〜III−3はいずれも硫黄を環状ポリスルフィド(加硫剤III−1〜III−3)で置換したもので、初期の100%モジュラス及び老化後の物性保持率が向上した。   Comparative Example III-1 is an example of a conventional belt coat compound, and the rubber composition of the present invention was evaluated based on this example. In Examples III-1 to III-3, sulfur was substituted with a cyclic polysulfide (vulcanizing agents III-1 to III-3), and the initial 100% modulus and the physical property retention after aging were improved.

標準例IV−1
30%多硫化ソーダ(Na24)水溶液119.7g(0.2mol)をトルエン50gの混合溶媒中、テトラブチルアンモニウムプロマイド0.64g(1mol%)を入れ、ジクロロエチルホルマール34.6g(0.2mol)をトルエン30gに溶解し、90℃で30分滴下し、さらに5時間反応させた。反応後、有機相を分離し減圧下90℃で濃縮した後、環状ポリスルフィドIV−1を45.0g(収率97.8%)を得た。得られた環状ポリスルフィドはGPCで確認したところ数平均分子量570であった。
Standard Example IV-1
30% sodium polysulfide (Na 2 S 4 ) aqueous solution 119.7 g (0.2 mol) in a mixed solvent of toluene 50 g was added tetrabutylammonium promide 0.64 g (1 mol%), and dichloroethyl formal 34.6 g (0 .2 mol) was dissolved in 30 g of toluene, dropped at 90 ° C. for 30 minutes, and further reacted for 5 hours. After the reaction, the organic phase was separated and concentrated at 90 ° C. under reduced pressure to obtain 45.0 g (yield 97.8%) of cyclic polysulfide IV-1. The obtained cyclic polysulfide had a number average molecular weight of 570 as confirmed by GPC.

実施例IV−1
1,2−ジクロロエタン1.98g(0.02mol)と30%多硫化ソーダ(Na24)水溶液1197g(2mol)とをトルエン500gの混合溶媒中、テトラブチルアンモニウムプロマイド0.64g(0.1mol%)を入れ、50℃で2時間反応させた。続いて、ジクロロエチルホルマール311.0g(1.8mol)をトルエン300gに溶解し、反応温度を90℃に上げ、1時間滴下し、さらに5時間反応させた。反応後、有機相を分離し減圧下90℃で濃縮した後、環状ポリスルフィドIV−2を405g(収率96.9%)で得た。得られた環状ポリスルフィドはGPCで確認したところ数平均分子量530であった。
Example IV-1
1.98 g (0.02 mol) of 1,2-dichloroethane and 1197 g (2 mol) of 30% sodium polysulfide (Na 2 S 4 ) aqueous solution in a mixed solvent of 500 g of toluene, 0.64 g (0.1 mol) of tetrabutylammonium promide. %) And allowed to react at 50 ° C. for 2 hours. Subsequently, 311.0 g (1.8 mol) of dichloroethyl formal was dissolved in 300 g of toluene, the reaction temperature was raised to 90 ° C., dropped for 1 hour, and further reacted for 5 hours. After the reaction, the organic phase was separated and concentrated at 90 ° C. under reduced pressure, and 405 g (yield 96.9%) of cyclic polysulfide IV-2 was obtained. When the obtained cyclic polysulfide was confirmed by GPC, it had a number average molecular weight of 530.

実施例IV−2
1,2−ジクロロエタン1.98g(0.02mol)と30%多硫化ソーダ(Na24)水溶液119.7g(0.2mol)をトルエン50gの混合溶媒中、テトラブチルアンモニウムプロマイド0.64g(1mol%)を入れ、50℃で2時間反応させた。続いて、ジクロロエチルホルマール31.1g(0.18mol)をトルエン30gに溶解し、反応温度を90℃に上げ、30分滴下し、さらに5時間反応させた。反応後、有機相を分離し減圧下90℃で濃縮した後、環状ポリスルフィドIV−3を43.8g(収率98%)で得た。得られた環状ポリスルフィドはGPCで確認したところ数平均分子量630であった。
Example IV-2
1.98 g (0.02 mol) of 1,2-dichloroethane and 119.7 g (0.2 mol) of 30% sodium polysulfide (Na 2 S 4 ) aqueous solution in a mixed solvent of 50 g of toluene, 0.64 g of tetrabutylammonium promide ( 1 mol%) was added and reacted at 50 ° C. for 2 hours. Subsequently, 31.1 g (0.18 mol) of dichloroethyl formal was dissolved in 30 g of toluene, the reaction temperature was raised to 90 ° C., dropped for 30 minutes, and further reacted for 5 hours. After the reaction, the organic phase was separated and concentrated under reduced pressure at 90 ° C., and 43.8 g (yield 98%) of cyclic polysulfide IV-3 was obtained. When the obtained cyclic polysulfide was confirmed by GPC, it had a number average molecular weight of 630.

Figure 2007092086
Figure 2007092086

標準例IV−2、実施例IV−3〜IV−4及び比較例IV−1
サンプルの調製
表IV−2に示す配合において、加硫促進剤と硫黄を除く成分を密閉型ミキサーで混練し、マスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。
Standard Example IV-2, Examples IV-3 to IV-4 and Comparative Example IV-1
Sample preparation In the formulation shown in Table IV-2, vulcanization accelerators and components other than sulfur were kneaded with a closed mixer to obtain a master batch. A vulcanization accelerator and sulfur were kneaded with this masterbatch with an open roll to obtain a rubber composition.

次に得られたゴム組成物を15×15×0.2cmの金型中で150℃で30分間加硫して加硫ゴムシートを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表IV−2に示す。   Next, the resulting rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 150 ° C. for 30 minutes to prepare a vulcanized rubber sheet, and the physical properties of the vulcanized rubber were measured by the following test methods. It was measured. The results are shown in Table IV-2.

ゴム物性評価試験法
100%及び300%モジュラス(MPa):JIS K6251に準拠して測定
破断強度TB(MPa):JIS K6251に準拠して測定
破断伸びEB(%):JIS K6251に準拠して測定
Rubber property evaluation test method 100% and 300% modulus (MPa): measured according to JIS K6251 breaking strength TB (MPa): measured according to JIS K6251 breaking elongation EB (%): measured according to JIS K6251

Figure 2007092086
Figure 2007092086

表IV−2脚注
*1:RSS #3
*2:東海カーボン(株)製シーストN
*3:正同化学(株)製亜鉛華3
*4:花王(株)製ビーズステアリン酸
*5:大内新興化学(株)製ノクラック6C
*6:大内新興化学(株)製ノクセラーNS−F
*7:軽井沢精錬所(株)製油処理硫黄
*8:標準例IV−1参照
*9:実施例IV−1参照
*10:実施例IV−2参照
Table IV-2 Footnote * 1: RSS # 3
* 2: Seest N made by Tokai Carbon Co., Ltd.
* 3: Zinchua 3 manufactured by Shodo Chemical Co., Ltd.
* 4: Bead stearic acid manufactured by Kao Corporation * 5: Nocrack 6C manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 6: Ouchi Shinsei Chemical Co., Ltd. Noxeller NS-F
* 7: Refined sulfur from Karuizawa Refinery Co., Ltd. * 8: See Standard Example IV-1 * 9: See Example IV-1 * 10: See Example IV-2

本発明によれば、以上の通り、2種類以上のジハロゲン化合物を用いて金属の多硫化物と縮合反応させることにより、ゴム組成物中に加硫剤として配合した場合に、ゴム組成物の粘度上昇を超えず、また加硫効率の低下も生ずることなく耐熱老化性が優れるゴム組成物を得ることができるので空気入りタイヤのキャップ、ベルト、ホース、コンベアベルトなどとして有用である。   According to the present invention, as described above, when two or more kinds of dihalogen compounds are used for condensation reaction with a metal polysulfide, the viscosity of the rubber composition when blended as a vulcanizing agent in the rubber composition. Since a rubber composition excellent in heat aging resistance can be obtained without exceeding the increase and without causing a decrease in vulcanization efficiency, it is useful as a cap, belt, hose, conveyor belt, etc. for pneumatic tires.

本発明に従ったゴム組成物は、高いグリップ性能、破壊強度、グリップ持続性、耐久性、操縦安定性を改良することができるので、例えば空気入りタイヤのトレッドのキャップ部やベース部として有用である。   The rubber composition according to the present invention can improve high grip performance, breaking strength, grip durability, durability, and handling stability, and is useful, for example, as a cap portion or a base portion of a tread of a pneumatic tire. is there.

Claims (11)

硫黄加硫可能なゴム(A)100重量部並びに加硫剤として式(I):
Figure 2007092086
(式中、Rは置換もしくは非置換のC2〜C20アルキレン基、置換もしくは非置換のC2〜C20オキシアルキレン基又は芳香族環を含むアルキレン基を示し、nは1〜20の整数であり、xは平均2〜6の数である)
の環状ポリスルフィド(B)0.1〜30重量部を含んでなるタイヤトレッド用ゴム組成物。
100 parts by weight of sulfur vulcanizable rubber (A) and formula (I) as vulcanizing agent:
Figure 2007092086
(Wherein, R represents a substituted or unsubstituted C 2 -C 20 alkylene group, a substituted or unsubstituted C 2 -C 20 oxyalkylene group or alkylene group containing an aromatic ring, n represents an integer from 1 to 20 And x is an average number of 2 to 6)
A tire tread rubber composition comprising 0.1 to 30 parts by weight of the cyclic polysulfide (B).
硫黄加硫可能なゴム(A)が芳香族ビニル−ジエン共重合体ゴムを主成分とした硫黄加硫可能なゴムであり、式(I)で表される環状ポリスルフィド(B)の含有量が0.1〜10重量部であるタイヤトレッド用の請求項1に記載のタイヤトレッド用ゴム組成物。   The sulfur vulcanizable rubber (A) is a sulfur vulcanizable rubber mainly composed of an aromatic vinyl-diene copolymer rubber, and the content of the cyclic polysulfide (B) represented by the formula (I) is The rubber composition for tire treads according to claim 1 for tire treads in an amount of 0.1 to 10 parts by weight. 硫黄加硫可能なゴム(A)がガラス転移温度(Tg)が−40℃〜0℃である芳香族ビニル−ジエン共重合体ゴム40〜100重量%を含む請求項2に記載のタイヤトレッド用ゴム組成物。   The tire tread according to claim 2, wherein the sulfur vulcanizable rubber (A) contains 40 to 100% by weight of an aromatic vinyl-diene copolymer rubber having a glass transition temperature (Tg) of -40 ° C to 0 ° C. Rubber composition. 硫黄加硫可能なゴム(A)100重量部に対して、シリカ及び/又は窒素吸着比表面積(N2SA)が80m2/g以上150m2/g未満のカーボンブラックを合計量で55重量部以上100重量部未満更に含む請求項2又は3に記載のタイヤトレッド用ゴム組成物。 Relative to 100 parts by weight of sulfur vulcanizable rubber (A), silica and / or nitrogen adsorption specific surface area (N 2 SA) of 55 parts by weight in a total amount of carbon black is less than 80 m 2 / g or more 150 meters 2 / g The rubber composition for a tire tread according to claim 2 or 3, further comprising less than 100 parts by weight. 環状ポリスルフィド(B)が、式:X−R−X(式中、Xはそれぞれ独立にハロゲン原子を表し、Rは置換もしくは非置換のC2〜C20のアルキレン基もしくはオキシアルキレン基又は芳香族を含むアルキレン基を示す)のジハロゲン化合物と、式M2x(式中、Mはアルカリ金属であり、xは2〜6の整数である)のアルカリ金属の多硫化物とを、親水性溶媒又は親水性/親油性溶媒の非相溶性混合溶媒中で2相系で反応させたものである請求項1〜4のいずれか1項に記載のゴム組成物。 The cyclic polysulfide (B) has the formula: X—R—X (wherein each X independently represents a halogen atom, R is a substituted or unsubstituted C 2 -C 20 alkylene group, oxyalkylene group or aromatic group) A dihalogen compound of the formula (2), and an alkali metal polysulfide of the formula M 2 S x (wherein M is an alkali metal and x is an integer of 2 to 6), The rubber composition according to any one of claims 1 to 4, wherein the rubber composition is reacted in a two-phase system in a solvent or an incompatible mixed solvent of a hydrophilic / lipophilic solvent. 硫黄加硫可能なゴム(A)がジエン系ゴムであり、そのジエン系ゴム成分100重量部当り、カーボンブラック及び/又はシリカを合計量で100〜200重量部更に含み、そして前記式(I)で表される環状ポリスルフィド(B)と硫黄(D)とを合計量が、ゴム(A)100重量部当り、0.5〜5重量部でかつ環状ポリスルフィド(B)と硫黄(D)との合計量に対する環状ポリスルフィド(B)の量の比が0.1〜2(重量比)となる量で更に含む請求項1に記載のタイヤトレッド用ゴム組成物。   The sulfur vulcanizable rubber (A) is a diene rubber, and further contains 100 to 200 parts by weight of carbon black and / or silica in a total amount per 100 parts by weight of the diene rubber component, and the formula (I) The total amount of the cyclic polysulfide (B) and sulfur (D) represented by the formula (1) is 0.5 to 5 parts by weight per 100 parts by weight of the rubber (A), and the cyclic polysulfide (B) and sulfur (D). The rubber composition for a tire tread according to claim 1, further comprising an amount in which the ratio of the amount of the cyclic polysulfide (B) to the total amount is 0.1 to 2 (weight ratio). ジエン系ゴム成分がスチレン−ブタジエン共重合体ゴム(SBR)を70重量%以上含む請求項6に記載のゴム組成物。   The rubber composition according to claim 6, wherein the diene rubber component contains 70% by weight or more of styrene-butadiene copolymer rubber (SBR). 使用するカーボンの窒素吸着比表面積(N2SA)が150〜350m2/gである請求項6又は7に記載のタイヤトレッド用ゴム組成物。 The rubber composition for a tire tread according to claim 6 or 7, wherein the carbon used has a nitrogen adsorption specific surface area (N 2 SA) of 150 to 350 m 2 / g. 式(IV):
Figure 2007092086
(式中、R1〜R4は、それぞれ独立に、C1〜C10のアルキル基又はアルキル基の炭素数が1〜20の芳香族アルキル基を示し、yは1〜4の整数である)
で表されるチウラム系促進剤0.2〜5重量部を更に含む請求項6〜8のいずれか1項に記載のタイヤトレッド用ゴム組成物。
Formula (IV):
Figure 2007092086
(Wherein R 1 to R 4 each independently represents a C 1 to C 10 alkyl group or an alkyl group having 1 to 20 carbon atoms, and y is an integer of 1 to 4). )
The rubber composition for a tire tread according to any one of claims 6 to 8, further comprising 0.2 to 5 parts by weight of a thiuram accelerator represented by:
前記式(I)の環状ポリスルフィド(B)がジクロロエチルホルマール及びジクロロエタンの2種のジハロゲン化合物と式(III):
M−Sx−M (III)
(式中、Mは周期律表IA族の金属であり、Xは平均3より大きく6以下の数である)
の金属多硫化物とを親水性溶媒又は親水性溶媒と親油性溶媒との非相溶性混合溶媒系中で相間移動触媒の存在下又は不存在下に、50〜150℃の温度で反応させて得られるものである請求項1〜9のいずれか1項に記載のタイヤトレッド用ゴム組成物。
The cyclic polysulfide (B) of the formula (I) is composed of two dihalogen compounds of dichloroethyl formal and dichloroethane and the formula (III):
M-S x -M (III)
(In the formula, M is a metal of group IA of the periodic table, and X is an average greater than 3 and 6 or less)
In the presence or absence of a phase transfer catalyst in an incompatible mixed solvent system of a hydrophilic solvent or a hydrophilic solvent and a lipophilic solvent at a temperature of 50 to 150 ° C. The rubber composition for a tire tread according to any one of claims 1 to 9, which is obtained.
請求項1〜10のいずれか1項に記載のゴム組成物をタイヤトレッド部に用いた空気入りタイヤ。   A pneumatic tire using the rubber composition according to any one of claims 1 to 10 in a tire tread portion.
JP2006348667A 2003-10-14 2006-12-25 Rubber composition for tire tread containing cyclic polysulfide as vulcanizing agent and pneumatic tire using the same Active JP4290725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348667A JP4290725B2 (en) 2003-10-14 2006-12-25 Rubber composition for tire tread containing cyclic polysulfide as vulcanizing agent and pneumatic tire using the same

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2003353974 2003-10-14
JP2003364613 2003-10-24
JP2003383849 2003-11-13
JP2003383943 2003-11-13
JP2003383808 2003-11-13
JP2003385220 2003-11-14
JP2003386800 2003-11-17
JP2003388197 2003-11-18
JP2003390979 2003-11-20
JP2003397146 2003-11-27
JP2006348667A JP4290725B2 (en) 2003-10-14 2006-12-25 Rubber composition for tire tread containing cyclic polysulfide as vulcanizing agent and pneumatic tire using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005514684A Division JPWO2005035647A1 (en) 2003-10-14 2004-10-13 Rubber composition containing cyclic polysulfide as vulcanizing agent and pneumatic tire using the same

Publications (2)

Publication Number Publication Date
JP2007092086A true JP2007092086A (en) 2007-04-12
JP4290725B2 JP4290725B2 (en) 2009-07-08

Family

ID=37978138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348667A Active JP4290725B2 (en) 2003-10-14 2006-12-25 Rubber composition for tire tread containing cyclic polysulfide as vulcanizing agent and pneumatic tire using the same

Country Status (1)

Country Link
JP (1) JP4290725B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031347A1 (en) * 2007-09-05 2009-03-12 Sumitomo Rubber Industries, Ltd. Rubber composition for studless tire and studless tire utilizing the same
JP2010235661A (en) * 2009-03-30 2010-10-21 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2010235663A (en) * 2009-03-30 2010-10-21 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
DE102011076916A1 (en) 2010-06-04 2011-12-08 The Yokohama Rubber Co., Ltd. Rubber composition for tires
DE102013102256A1 (en) 2012-03-08 2013-09-12 The Yokohama Rubber Co., Ltd Rubber composition for a tire tread
JP2015124241A (en) * 2013-12-25 2015-07-06 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
DE112018003958T5 (en) 2017-08-01 2020-05-07 The Yokohama Rubber Co., Ltd. tire
WO2023106081A1 (en) 2021-12-07 2023-06-15 横浜ゴム株式会社 Rubber composition for tire

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8592510B2 (en) 2007-09-05 2013-11-26 Sumitomo Rubber Industries, Ltd. Rubber composition for studless tire and studless tire using thereof
WO2009031347A1 (en) * 2007-09-05 2009-03-12 Sumitomo Rubber Industries, Ltd. Rubber composition for studless tire and studless tire utilizing the same
JP2010235661A (en) * 2009-03-30 2010-10-21 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2010235663A (en) * 2009-03-30 2010-10-21 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
DE102011076916A1 (en) 2010-06-04 2011-12-08 The Yokohama Rubber Co., Ltd. Rubber composition for tires
JP2011252124A (en) * 2010-06-04 2011-12-15 Yokohama Rubber Co Ltd:The Rubber composition for tire
US8476349B2 (en) 2010-06-04 2013-07-02 The Yokohama Rubber Company, Limited Rubber composition for tire
DE102013102256A1 (en) 2012-03-08 2013-09-12 The Yokohama Rubber Co., Ltd Rubber composition for a tire tread
JP2013213183A (en) * 2012-03-08 2013-10-17 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
US9150712B2 (en) 2012-03-08 2015-10-06 The Yokohama Rubber Company, Limited Rubber composition for tire tread
JP2015124241A (en) * 2013-12-25 2015-07-06 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
DE112018003958T5 (en) 2017-08-01 2020-05-07 The Yokohama Rubber Co., Ltd. tire
US11472947B2 (en) 2017-08-01 2022-10-18 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2023106081A1 (en) 2021-12-07 2023-06-15 横浜ゴム株式会社 Rubber composition for tire

Also Published As

Publication number Publication date
JP4290725B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
KR101006016B1 (en) Rubber composition containing cyclic polysulfide as vulcanizer and pneumatic tire made therefrom
JP4290725B2 (en) Rubber composition for tire tread containing cyclic polysulfide as vulcanizing agent and pneumatic tire using the same
JP5739535B2 (en) Rubber composition for tread and pneumatic tire
JP2001164051A (en) Rubber composition for tire and pneumatic tire using the composition in tire tread
JP4290724B2 (en) Rubber composition for side reinforcement of run flat tire containing cyclic polysulfide as vulcanizing agent and pneumatic tire having run flat performance using the same
CN111801378B (en) Rubber composition and tire
JP4290723B2 (en) Rubber composition for ice and snow road containing cyclic polysulfide as vulcanizing agent and pneumatic tire for ice and snow road using the same
JP2012111799A (en) Rubber composition, vulcanized rubber and tire
JP2014024913A (en) Rubber composition for high-performance tire, and high-performance tire
US10696825B2 (en) Rubber composition and pneumatic tire
JP2014024912A (en) Tread rubber composition for high-performance tire, and high-performance tire
CN101423628A (en) Rubber composition containing cyclic polysulfide as vulcanizer and pneumatic tire made therefrom
JP5507825B2 (en) Rubber composition and tire
JP2019019310A (en) Rubber composition and pneumatic tire
JP2010159392A (en) Rubber composition for side walls and pneumatic tire using the same
JP4215799B2 (en) Runflat tire core body using rubber composition containing cyclic polysulfide as vulcanizing agent, and pneumatic tire having runflat performance using the same
JP2013119615A (en) Rubber composition for tire and pneumatic tire
JP2005146076A (en) Rubber composition for tire side and pneumatic tire using the same
JP2016166290A (en) Rubber composition and pneumatic tire using the same
JP2006111767A (en) Rubber composition and pneumatic tire using the same
JP2005146078A (en) Rubber composition and pneumatic tire using the same
JP2011052095A (en) Rubber composition and pneumatic tire using the same
JP2011190329A (en) Additive for rubber and rubber composition
JP2010159391A (en) Rubber composition and pneumatic tire using the same
JP5524652B2 (en) Rubber composition for tire and pneumatic tire

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080222

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Ref document number: 4290725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350