JP2007091964A - Curable silicone resin sheet composited with glass cloth - Google Patents

Curable silicone resin sheet composited with glass cloth Download PDF

Info

Publication number
JP2007091964A
JP2007091964A JP2005285780A JP2005285780A JP2007091964A JP 2007091964 A JP2007091964 A JP 2007091964A JP 2005285780 A JP2005285780 A JP 2005285780A JP 2005285780 A JP2005285780 A JP 2005285780A JP 2007091964 A JP2007091964 A JP 2007091964A
Authority
JP
Japan
Prior art keywords
resin
glass cloth
silicone
curable resin
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285780A
Other languages
Japanese (ja)
Inventor
Yu Hinoto
祐 日戸
Hiroharu Oda
弘治 小田
Satoshi Aoki
聡 青木
Norio Tsujioka
則夫 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Corp
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Corp
Priority to JP2005285780A priority Critical patent/JP2007091964A/en
Publication of JP2007091964A publication Critical patent/JP2007091964A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sheet having excellent optical properties and small variation of expansion coefficient and elastic modulus with temperature change, suitable for forming an inorganic layer and usable as a substitute for a glass substrate. <P>SOLUTION: The transparent resin sheet (c) composited with a glass cloth is produced by compositing (a) a curable silicone resin composed of (a-1) a silicone resin and (a-2) a curable resin with (b) a glass cloth, wherein the storage elastic modulus of the curable silicone resin (a) determined by dynamic viscoelasticity measurement satisfies the formula E<SB>0</SB>'<SB>35</SB>/E<SB>0</SB>'<SB>290</SB>≤8 and the refractive index difference between the curable silicone resin (a) and the glass cloth (b) is ≤0.02. In the formula, E<SB>0</SB>'<SB>35</SB>is the storage elastic modulus of the curable silicone resin measured at 35°C by dynamic viscoelasticity measurement and E<SB>0</SB>'<SB>290</SB>is the storage elastic modulus of the curable silicone resin measured at 290°C by dynamic viscoelasticity measurement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、線膨張係数が小さく、光学特性に優れ、ガラス基板を代替することが可能な光学シートに関するものであり、またそれを用いた表示素子用基板に関するものである。本発明の光学シートは、例えば液晶表示素子用基板、有機EL表示素子用基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などに好適である。   The present invention relates to an optical sheet having a small linear expansion coefficient, excellent optical characteristics, and capable of replacing a glass substrate, and also relates to a display element substrate using the same. The optical sheet of the present invention is suitable for a liquid crystal display element substrate, an organic EL display element substrate, a color filter substrate, a touch panel substrate, a solar cell substrate, and the like.

一般に、液晶表示素子用や有機EL表示素子用の表示素子用基板、カラーフィルター基板、タッチパネル用基板、太陽電池基板には、ガラス基板が一般に用いられている。しかしながらガラス基板は、割れやすい、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年、その代替としてプラスチック基板が検討されている。例えば、特許文献1や特許文献2には、エポキシ樹脂、酸無水物硬化剤および硬化触媒を含むエポキシ樹脂組成物を硬化して得られる硬化体からなる液晶表示素子用透明樹脂基板が記載されている。しかしながら、これらの樹脂単独材料は、ガラス板に比べ線膨張係数が大きく、表示素子用基板の製造工程において反りやアルミ配線の断線などの問題が生じ、これらの用途への使用は困難である。したがって、表示素子用基板、特にアクティブマトリックス表示素子用基板に要求される、透明性、耐熱性等を満足しつつ線膨張係数の小さなプラスチック素材が求められている。   In general, glass substrates are generally used for display element substrates for liquid crystal display elements and organic EL display elements, color filter substrates, touch panel substrates, and solar cell substrates. However, in recent years, plastic substrates have been studied as an alternative to glass substrates because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction. For example, Patent Document 1 and Patent Document 2 describe a transparent resin substrate for a liquid crystal display element comprising a cured product obtained by curing an epoxy resin composition containing an epoxy resin, an acid anhydride curing agent, and a curing catalyst. Yes. However, these resin single materials have a larger coefficient of linear expansion than glass plates, causing problems such as warpage and disconnection of aluminum wiring in the manufacturing process of the display element substrate, and are difficult to use in these applications. Accordingly, there is a demand for a plastic material having a small linear expansion coefficient while satisfying the transparency, heat resistance, etc. required for a display element substrate, particularly an active matrix display element substrate.

線膨張係数を低減するために、樹脂にガラス繊維等の無機フィラーを複合化することがよく行われているが、これらの樹脂と無機フィラーの複合化では、通常透明な複合材料は得られない。これは樹脂の屈折率と無機フィラーの屈折率が異なるため、樹脂と無機フィラーの界面で樹脂を透過した光が散乱することが主な原因である。このような問題を解決するため、樹脂の屈折率と無機フィラーの屈折率を一致させることで透明化することが種々検討されている。例えば、特許文献3や特許文献4には、環状オレフィン樹脂とガラス繊維との屈折率差を小さくすることにより、透明な複合材料が得られることが示されている。しかしながら、ここで用いられる環状オレフィン樹脂は熱可塑性樹脂であり、ガラス転移温度以上では弾性率が低下することは避けられない。   In order to reduce the coefficient of linear expansion, it is often performed to combine an inorganic filler such as glass fiber with a resin. However, a composite material that is normally transparent cannot be obtained by combining these resin and inorganic filler. . This is mainly because light transmitted through the resin is scattered at the interface between the resin and the inorganic filler because the refractive index of the resin is different from that of the inorganic filler. In order to solve such problems, various studies have been made to make the resin transparent by matching the refractive index of the resin with that of the inorganic filler. For example, Patent Document 3 and Patent Document 4 show that a transparent composite material can be obtained by reducing the difference in refractive index between a cyclic olefin resin and glass fiber. However, the cyclic olefin resin used here is a thermoplastic resin, and it is inevitable that the elastic modulus is lowered above the glass transition temperature.

さらに、無機フィラーとしてガラスクロスを用いて、樹脂とガラスクロスを複合化し、樹脂とガラスクロスの屈折率を一致させて透明複合体組成物を得ることが行われている。
例えば、特許文献5や特許文献6には、ガラスクロスにエポキシ樹脂やアクリレート樹脂の硬化性樹脂を用い、屈折率とアッベ数を一致させることによって、線膨張係数が小さく透明性の高い複合材料が得られることが示されている。しかしながら、これらの樹脂と無機フィラー透明複合材料に用いられる樹脂は、汎用的な硬化性樹脂であるエポキシ樹脂やアクリレート樹脂であり、やはりガラス転移温度が存在するため、ガラス転移温度以上で弾性率が低下する。そのため加熱によるシートの膨張や変形が存在し、無機物層を積層する際に安定して均一な積層構造を形成することが困難である。
そこで、ガラス転移温度の前後で弾性率の変化が小さく、加熱によるシートの膨張や変形の度合いが小さい透明複合体シートが求められていた。
Furthermore, using a glass cloth as an inorganic filler, a resin and a glass cloth are combined, and the refractive index of the resin and the glass cloth is matched to obtain a transparent composite composition.
For example, in Patent Document 5 and Patent Document 6, a composite material having a low linear expansion coefficient and high transparency is obtained by using a curable resin such as an epoxy resin or an acrylate resin for a glass cloth and matching the refractive index with the Abbe number. It has been shown to be obtained. However, these resins and resins used for inorganic filler transparent composite materials are epoxy resins and acrylate resins, which are general-purpose curable resins, and also have a glass transition temperature, so that the elastic modulus is higher than the glass transition temperature. descend. Therefore, there is expansion and deformation of the sheet due to heating, and it is difficult to stably form a uniform laminated structure when the inorganic layers are laminated.
Therefore, there has been a demand for a transparent composite sheet in which the change in elastic modulus is small before and after the glass transition temperature, and the degree of expansion and deformation of the sheet due to heating is small.

特開平6−337408号JP-A-6-337408 特開平7−120740号JP-A-7-120740 特開平6−256604号JP-A-6-256604 特開平6−305077号JP-A-6-305077 特開2004−231934号JP-A-2004-231934 特開2004−51960号JP 2004-51960 A

本発明は、透明性が高く、線膨張係数が小さく、温度変化における弾性率の変化が小さい、耐熱性の高い透明樹脂シートを提供することを目的とする。   An object of the present invention is to provide a transparent resin sheet having high transparency, a low coefficient of linear expansion, a small change in elastic modulus with a change in temperature, and a high heat resistance.

本発明者は、前記課題を解決するため、樹脂とガラスクロスを複合化することによって線膨張係数が小さく、樹脂として屈折率をガラスクロスと一致させたシリコーン系硬化性樹脂を用いることによって、耐熱性の高い透明樹脂シートが得られることを見出し、本発明をなすに至った。
すなわち、本発明は以下に記載する通りのガラスクロス複合化透明樹脂シートである。
In order to solve the above-mentioned problems, the present inventor uses a silicone-based curable resin having a low linear expansion coefficient by combining a resin and a glass cloth and having a refractive index that matches that of the glass cloth as a resin. The present inventors have found that a transparent resin sheet having high properties can be obtained, and have made the present invention.
That is, this invention is a glass cloth composite transparent resin sheet as described below.

(1)シリコーン樹脂(a−1)と硬化性樹脂(a−2)とを構成要素とするシリコーン系硬化性樹脂(a)と、ガラスクロス(b)とを複合化してなるガラスクロス複合化透明樹脂シート(c)において、動的粘弾性測定におけるシリコーン系硬化性樹脂(a)の貯蔵弾性率の関係が以下の式を満たし、かつシリコーン系硬化性樹脂(a)とガラスクロス(b)の屈折率差が0.02以下であることを特徴とするガラスクロス複合化透明樹脂シート。
035/E0290 ≦ 8
但し、
035 :動的粘弾性測定における35℃でのシリコーン系硬化性樹脂の貯蔵弾性率
0290:動的粘弾性測定における290℃でのシリコーン系硬化性樹脂の貯蔵弾性率
(2)シリコーン樹脂(a−1)と硬化性樹脂(a−2)とを構成要素とするシリコーン系硬化性樹脂(a)と、ガラスクロス(b)とを複合化してなるガラスクロス複合化透明樹脂シート(c)において、動的粘弾性測定におけるガラスクロス複合化透明シリコーン系硬化性樹脂シート(c)の貯蔵弾性率の関係が以下の式を満たし、かつシリコーン系硬化性樹脂(a)とガラスクロス(b)の屈折率差が0.02以下であることを特徴とする、ガラスクロス複合化透明樹脂シート。
135/E1290 ≦ 1.5
但し、
135 :動的粘弾性測定における35℃でのガラスクロス複合化透明樹脂シートの貯蔵弾性率
1290:動的粘弾性測定における290℃でのガラスクロス複合化透明樹脂シートの貯蔵弾性率
(3)シリコーン樹脂(a−1)がエポキシ基を有するシリコーン樹脂であり、かつ硬化性樹脂(a−2)がエポキシ樹脂であることを特徴とする、上記(1)または(2)に記載のガラスクロス複合化透明樹脂シート。
(4)シリコーン樹脂(a−1)がエポキシ基を有するシリコーン樹脂であり、かつ硬化性樹脂(a−2)がエポキシ樹脂であり、さらにシートの製造に際し硬化剤として多官能アミン硬化剤を用いたことを特徴とする、上記(1)〜(3)に記載のガラスクロス複合化透明樹脂シート。
である。
(1) A glass cloth composite comprising a silicone curable resin (a) having a silicone resin (a-1) and a curable resin (a-2) as constituent elements and a glass cloth (b). In the transparent resin sheet (c), the relationship of the storage elastic modulus of the silicone curable resin (a) in the dynamic viscoelasticity measurement satisfies the following formula, and the silicone curable resin (a) and the glass cloth (b) The glass cloth composite transparent resin sheet characterized by the difference in refractive index of 0.02 or less.
E 0 '35 / E 0 ' 290 ≦ 8
However,
E 0 '35: the storage modulus of the silicone-based curable resin at 35 ° C. in a dynamic viscoelasticity measurement E 0' 290: the storage modulus of the silicone-based curable resin at 290 ° C. in the dynamic viscoelasticity measurement (2 ) A glass cloth composite transparent resin obtained by compounding a silicone curable resin (a) having a silicone resin (a-1) and a curable resin (a-2) as constituent elements and a glass cloth (b). In the sheet (c), the relationship of the storage elastic modulus of the glass cloth composite transparent silicone curable resin sheet (c) in the dynamic viscoelasticity measurement satisfies the following formula, and the silicone curable resin (a) and the glass A glass cloth composite transparent resin sheet, wherein the difference in refractive index of the cloth (b) is 0.02 or less.
E 1 '35 / E 1 ' 290 ≦ 1.5
However,
E 1 '35: dynamic viscoelasticity storage modulus E 1 of the glass cloth composite transparent resin sheet at 35 ° C. in the measurement' 290: storage of the glass cloth composite transparent resin sheet at 290 ° C. in a dynamic viscoelasticity measurement (1) or (2) above, wherein the elastic modulus (3) the silicone resin (a-1) is a silicone resin having an epoxy group and the curable resin (a-2) is an epoxy resin The glass cloth composite transparent resin sheet as described in 1.
(4) The silicone resin (a-1) is a silicone resin having an epoxy group, the curable resin (a-2) is an epoxy resin, and a polyfunctional amine curing agent is used as a curing agent in the production of the sheet. The glass cloth composite transparent resin sheet according to any one of (1) to (3) above, wherein
It is.

本発明のガラスクロス複合化透明樹脂シートは、透明性が高く、線膨張係数が小さく、温度変化における弾性率の変化が小さく、耐熱性が高いという効果を有する。その結果、加熱によるシートの膨張や変形が小さいため無機物層を積層する際に安定して均一な積層構造を形成することが期待できる。   The glass cloth composite transparent resin sheet of the present invention has the effects of high transparency, a small coefficient of linear expansion, a small change in elastic modulus due to a temperature change, and a high heat resistance. As a result, since expansion and deformation of the sheet due to heating are small, it can be expected that a stable and uniform laminated structure is formed when the inorganic layer is laminated.

本発明について、以下具体的に説明する。
本発明のガラスクロス複合化透明樹脂シートは、シリコーン樹脂(a−1)と硬化性樹脂(a−2)を原料として得られるシリコーン系硬化性樹脂(a)と、ガラスクロス(b)とを複合化することによって製造することができる。
本発明に使用するシリコーン系硬化性樹脂(a)は、シリコーン樹脂(a−1)と硬化性樹脂(a−2)とを混合した後、加熱あるいは光線を照射することによって硬化して得ることができる。また、シリコーン樹脂と硬化性樹脂を完全に硬化する前にガラスクロスに含浸させておくことによってガラスクロス複合化透明樹脂シートを得ることができる。
The present invention will be specifically described below.
The glass cloth composite transparent resin sheet of the present invention comprises a silicone-based curable resin (a) obtained by using a silicone resin (a-1) and a curable resin (a-2) as raw materials, and a glass cloth (b). It can be manufactured by compounding.
The silicone-based curable resin (a) used in the present invention is obtained by mixing the silicone resin (a-1) and the curable resin (a-2), and then curing by heating or irradiating light. Can do. Moreover, a glass cloth composite transparent resin sheet can be obtained by impregnating the glass cloth before completely curing the silicone resin and the curable resin.

本発明に使用するシリコーン系硬化性樹脂(a)を構成する、シリコーン樹脂(a−1)と硬化性樹脂(a−2)の混合比は、5〜90重量%:95〜10重量%であり、好ましくは5〜80重量%:95〜20重量%である。シリコーン樹脂(a−1)が5重量%未満である場合はエポキシ樹脂との分子結合の形成の効果が小さく、90重量%よりも大きい場合は可とう性に劣る。   The mixing ratio of the silicone resin (a-1) and the curable resin (a-2) constituting the silicone-based curable resin (a) used in the present invention is 5 to 90% by weight: 95 to 10% by weight. Yes, preferably 5 to 80% by weight: 95 to 20% by weight. When the silicone resin (a-1) is less than 5% by weight, the effect of forming a molecular bond with the epoxy resin is small, and when it is larger than 90% by weight, the flexibility is poor.

本発明に使用するシリコーン系硬化性樹脂(a)は、室温と高温時の弾性率の差が小さいことを特徴とする。すなわち、動的粘弾性測定における貯蔵弾性率の関係が以下の式を満たす。
035/E0290 ≦ 8
035 :動的粘弾性測定における35℃でのシリコーン系硬化性樹脂の貯蔵弾性率
0290:動的粘弾性測定における290℃でのシリコーン系硬化性樹脂の貯蔵弾性率
さらに好ましくは、E035/E0290 ≦ 5 である。
035/E0290 ≦ 8の場合、このシリコーン系硬化性樹脂(a)を用いてガラスクロス(b)と複合化してできるガラスクロス複合化透明樹脂シート(c)は加熱によるシートの膨張や変形の度合いが小さいため表示素子用基板のガラス代替用途において必要な導電性付与やガスバリア性付与という表面処理プロセスが容易となる。
The silicone-based curable resin (a) used in the present invention is characterized in that the difference in elastic modulus between room temperature and high temperature is small. That is, the relationship of the storage elastic modulus in the dynamic viscoelasticity measurement satisfies the following formula.
E 0 '35 / E 0 ' 290 ≦ 8
E 0 '35: the storage modulus of the silicone-based curable resin at 35 ° C. in a dynamic viscoelasticity measurement E 0' 290: more preferably the storage modulus of the silicone-based curable resin at 290 ° C. in a dynamic viscoelasticity measurement Is E 0 '35 / E 0 ' 290 ≦ 5 It is.
In the case of E 0 '35 / E 0 ' 290 ≦ 8, a glass cloth composite transparent resin sheet (c) formed by combining this silicone-based curable resin (a) with glass cloth (b) is a sheet by heating. Since the degree of expansion and deformation of the substrate is small, the surface treatment process of imparting conductivity and imparting gas barrier properties, which is necessary for glass substitute applications for display element substrates, becomes easy.

シリコーン樹脂(a−1)と硬化性樹脂(a−2)とを構成要素とするシリコーン系硬化性樹脂(a)の貯蔵弾性率が上記の範囲にある場合、シリコーン系硬化性樹脂(a)とガラスクロス(b)を複合化して得られるガラスクロス複合化透明樹脂シート(c)において、動的粘弾性測定におけるガラスクロス複合化透明樹脂シート(c)の貯蔵弾性率の関係が以下の式を満たす傾向にある。
135/E1290 ≦ 1.5
135 :動的粘弾性測定における35℃でのガラスクロス複合化透明樹脂シートの貯蔵弾性率
1290:動的粘弾性測定における290℃でのガラスクロス複合化透明樹脂シートの貯蔵弾性率
ガラスクロス複合化透明樹脂シートの動的粘弾性が上の関係式であることは温度変化によるシートの強度の低下が小さいことを示す。その結果、加熱によるシートの膨張や変形の度合いが小さくなる。
When the storage elastic modulus of the silicone-based curable resin (a) having the silicone resin (a-1) and the curable resin (a-2) as constituent elements is in the above range, the silicone-based curable resin (a) The glass cloth composite transparent resin sheet (c) obtained by combining the glass cloth (b) and the storage modulus of the glass cloth composite transparent resin sheet (c) in the dynamic viscoelasticity measurement is expressed by the following equation: It tends to satisfy.
E 1 '35 / E 1 ' 290 ≦ 1.5
E 1 '35: dynamic viscoelasticity storage modulus E 1 of the glass cloth composite transparent resin sheet at 35 ° C. in the measurement' 290: storage of the glass cloth composite transparent resin sheet at 290 ° C. in a dynamic viscoelasticity measurement Elastic modulus The fact that the dynamic viscoelasticity of the glass cloth composite transparent resin sheet is the above relational expression indicates that the decrease in the strength of the sheet due to temperature change is small. As a result, the degree of expansion and deformation of the sheet due to heating is reduced.

本発明のガラスクロス複合化透明樹脂シートは、透明である。透明であることによって、液晶表示素子用基板、有機EL表示素子用基板、カラーフィルター用基板、タッチパネル用基板、太陽電池用基板に使用することができる。本発明における透明とは、可視光線の波長領域での光線透過率が60%以上、好ましくは80%以上であることを言う。本発明における可視光線の波長領域とは400nm〜800nmとする。   The glass cloth composite transparent resin sheet of the present invention is transparent. By being transparent, it can be used for a liquid crystal display element substrate, an organic EL display element substrate, a color filter substrate, a touch panel substrate, and a solar cell substrate. The term “transparent” in the present invention means that the light transmittance in the wavelength region of visible light is 60% or more, preferably 80% or more. The wavelength region of visible light in the present invention is 400 nm to 800 nm.

本発明におけるシリコーン樹脂(a−1)は、ケイ素、酸素、炭素、水素を必ず含む樹脂である。さらに、チタニウム、ジルコニウム、ゲルマニウム、アルミニウム、インジウムなどの金属を含むことも可能である。
本発明におけるシリコーン樹脂(a−1)は例えば、アルコキシシランやクロロシランを主成分として水、触媒存在下で脱アルコール、脱水反応を行うゾルゲル反応によって合成することができる。
本発明におけるシリコーン樹脂(a−1)を合成する際に使用する、アルコキシシランやクロロシランはアルキル基やアリル基を有する有機シランの単量体である。アルキル基の例としては、メチル基、エチル基、イソプロピル基、グリシジロキシプロピル基、エポキシシクロヘキセニルエチル基、アクリレート基、メタアクリレート基などをあげることができる。
The silicone resin (a-1) in the present invention is a resin that necessarily contains silicon, oxygen, carbon, and hydrogen. Furthermore, it is possible to include metals such as titanium, zirconium, germanium, aluminum, and indium.
The silicone resin (a-1) in the present invention can be synthesized, for example, by a sol-gel reaction in which alkoxysilane or chlorosilane is a main component and water is removed and alcohol is removed and dehydrated in the presence of a catalyst.
The alkoxysilane and chlorosilane used when synthesizing the silicone resin (a-1) in the present invention are monomers of an organic silane having an alkyl group or an allyl group. Examples of the alkyl group include a methyl group, an ethyl group, an isopropyl group, a glycidyloxypropyl group, an epoxycyclohexenylethyl group, an acrylate group, and a methacrylate group.

本発明におけるシリコーン系硬化性樹脂(a)の特徴である、室温と高温時の弾性率の差が小さいことを達成するためには、シリコーン樹脂(a−1)は、硬化性樹脂が硬化する際に硬化性樹脂と化学結合を形成する官能基を有することが好ましい。例えば、エポキシ樹脂の場合は、グリシジロキシプロピル基、エポキシシクロヘキセニルエチル基、アミノ基を有することが好ましく、硬化性樹脂が(メタ)アクリレート樹脂の場合は、アクリレート基、メタアクリレート基、ビニル基を有することが好ましい。   In order to achieve the small difference in elastic modulus between room temperature and high temperature, which is a characteristic of the silicone-based curable resin (a) in the present invention, the curable resin is cured in the silicone resin (a-1). It preferably has a functional group that forms a chemical bond with the curable resin. For example, in the case of an epoxy resin, it preferably has a glycidyloxypropyl group, an epoxycyclohexenylethyl group, or an amino group, and when the curable resin is a (meth) acrylate resin, an acrylate group, a methacrylate group, or a vinyl group It is preferable to have.

ゾルゲル反応の触媒としては、塩酸、硝酸、ギ酸、酢酸などの酸類、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、トリエチルアミンなどの塩基類、ジブチルスズラウリレートなどの金属触媒を単独であるいは組み合わせて用いることができる。   As catalysts for the sol-gel reaction, acids such as hydrochloric acid, nitric acid, formic acid and acetic acid, bases such as sodium hydroxide, potassium hydroxide, cesium hydroxide and triethylamine, and metal catalysts such as dibutyltin laurate are used alone or in combination. be able to.

本発明における硬化性樹脂(a−2)とは、常温では液状、半固形状または固形状であって常温下あるいは加熱下で流動性を示す比較的低分子量の物質を意味する。これらは硬化剤、触媒、熱あるいは光の作用によって硬化反応や架橋反応を起こして分子量を増大させながら網目状の三次元構造を形成してなる不溶不融性の樹脂となりうる。
本発明における硬化性樹脂(a−2)としては、その硬化物が透明であり、かつシリコーン樹脂と混合しながら合成した硬化物が透明であればいずれも使用できる。例えば、透明性を有するエポキシ樹脂、(メタ)アクリレート樹脂、熱硬化型ポリイミド樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂などがあげられる。そのなかでも、エポキシ樹脂、(メタ)アクリレート樹脂が好ましく、エポキシ樹脂がさらに好ましい。
The curable resin (a-2) in the present invention means a relatively low molecular weight substance that is liquid, semi-solid or solid at room temperature and exhibits fluidity at room temperature or under heating. These can be insoluble and infusible resins formed by forming a network-like three-dimensional structure while increasing the molecular weight by causing a curing reaction or a crosslinking reaction by the action of a curing agent, a catalyst, heat or light.
As curable resin (a-2) in this invention, if the hardened | cured material is transparent and the hardened | cured material synthesize | combined while mixing with a silicone resin is transparent, all can be used. For example, transparent epoxy resin, (meth) acrylate resin, thermosetting polyimide resin, urea resin, melamine resin, unsaturated polyester resin, and the like can be given. Among these, an epoxy resin and a (meth) acrylate resin are preferable, and an epoxy resin is more preferable.

上記エポキシ樹脂とは、少なくとも2個以上のエポキシ基を有する有機化合物をいう。エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリスヒドロキシメタン型エポキシ樹脂、テトラフェノールエタン型エポキシ樹脂、フルオレン含有エポキシ樹脂、ヘキサヒドロ無水フタル酸型エポキシ樹脂、テトラヒドロ無水フタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂、テトラグリシジルジアミノ時フェニルメタン、トリグリシジルイソシアヌレート、アミノフェノール型エポキシ樹脂、アニリン型エポキシ樹脂、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロへキサンカルボキシレート、脂環式アセタール型エポキシ樹脂、脂環式アジペート型エポキシ樹脂、脂環式カルボキシレート型エポキシ樹脂、ビニルシクロヘキセン型エポキシ樹脂などがあげられる。エポキシ樹脂の分子量あるいはエポキシ当量は任意に選ぶことができる。これらのエポキシ樹脂は単独、あるいは2種類以上を混合して使用することができる。   The epoxy resin refers to an organic compound having at least two epoxy groups. Specific examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, biphenyl type epoxy resin, bisphenol S type epoxy resin, and bisphenol S type. Epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, bisphenol A novolac type epoxy resin, naphthalene type epoxy resin, trishydroxymethane type epoxy resin, tetraphenolethane type epoxy resin, fluorene-containing epoxy resin, hexahydro anhydride phthalate Acid type epoxy resin, tetrahydrophthalic anhydride type epoxy resin, dimer acid type epoxy resin, tetraglycidyl diamino phenylmethane, triglycy Ruisocyanurate, aminophenol type epoxy resin, aniline type epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, alicyclic acetal type epoxy resin, alicyclic adipate type epoxy resin, Examples thereof include alicyclic carboxylate type epoxy resins and vinylcyclohexene type epoxy resins. The molecular weight or epoxy equivalent of the epoxy resin can be arbitrarily selected. These epoxy resins can be used alone or in admixture of two or more.

本発明に使用するエポキシ樹脂は、硬化剤もしくは重合開始剤の存在下、加熱もしくは光線照射によって硬化して用いることが一般的である。用いる硬化剤、硬化触媒は、エポキシ樹脂の硬化に用いられるものであれば、特に限定されない。硬化剤は多官能アミン、ポリアミド、酸無水物、フェノール樹脂があげられ、硬化触媒はイミダゾール、オニウム塩があげられる。この中では多官能アミン硬化剤が好ましい。多官能アミン硬化剤としては、一分子中に2個以上の一級アミノ基を有する化合物を示す。硬化剤の具体例としては、トリエチレンテトラミン、ジエチルアミノプロピルアミン、ジアミノジフェニルメタン、ジアミノシクロヘキシルメタン、メタキシレンジアミン、ジシアンジアミド、アジピン酸ジヒドラジド、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルナジック酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸、フェノールノボラック、ポリサルファイド、トリオキサントリメチレンメルカプタン、2−ジメチルアミノフェノール、2,4,6−トリス(ジアミノメチル)フェノール、3フッ化ホウ素エチルアミン錯体などがあげられる。   The epoxy resin used in the present invention is generally used after being cured by heating or light irradiation in the presence of a curing agent or a polymerization initiator. The curing agent and the curing catalyst used are not particularly limited as long as they are used for curing the epoxy resin. Examples of the curing agent include polyfunctional amines, polyamides, acid anhydrides, and phenol resins, and examples of the curing catalyst include imidazole and onium salts. Of these, polyfunctional amine curing agents are preferred. As a polyfunctional amine curing agent, a compound having two or more primary amino groups in one molecule is shown. Specific examples of curing agents include triethylenetetramine, diethylaminopropylamine, diaminodiphenylmethane, diaminocyclohexylmethane, metaxylenediamine, dicyandiamide, adipic acid dihydrazide, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl nadic anhydride, anhydrous Phthalic acid, pyromellitic anhydride, trimellitic anhydride, phenol novolac, polysulfide, trioxane trimethylene mercaptan, 2-dimethylaminophenol, 2,4,6-tris (diaminomethyl) phenol, boron trifluoride ethylamine complex, etc. can give.

上記(メタ)アクリレート樹脂とは、少なくとも2個以上のアクリレート基および/またはメタアクリレート基を有する有機化合物をいう。これらの(メタ)アクリレート樹脂は単独、あるいは2種類以上を混合して使用することができる。本発明に使用する(メタ)アクリレート樹脂は、重合開始剤の存在下、加熱もしくは光線照射によって硬化して用いることが一般的である。アクリレート樹脂の具体例としては、ジシクロペンタジエニルジアクリレート、ノルボルナンジメチロールプロパンジアクリレート、ネオペンチル変性トリメチロールプロパンジアクリレートなどがあげられる。   The (meth) acrylate resin refers to an organic compound having at least two acrylate groups and / or methacrylate groups. These (meth) acrylate resins can be used alone or in admixture of two or more. The (meth) acrylate resin used in the present invention is generally used after being cured by heating or light irradiation in the presence of a polymerization initiator. Specific examples of the acrylate resin include dicyclopentadienyl diacrylate, norbornane dimethylolpropane diacrylate, neopentyl-modified trimethylolpropane diacrylate, and the like.

本発明で使用するガラスクロスは、可視光領域に吸収のないガラス繊維が用いられる。ガラスの種類は特に限定されないが、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、石英ガラスなどがあげられ、中でも入手が容易なSガラス、Tガラス、NEガラス、Eガラスが好ましい。また、好適なシランカップリング剤や各種界面活性剤、無機酸による洗浄等によって表面処理をガラスクロスに施すことで、ガラスクロスと樹脂の界面での濡れ性、親和性、密着性を高めることができる。
ガラスクロスの厚み、織り密度、織り組織は、目的とするシリコーン系硬化シートに応じて選択される。また樹脂含浸性や表面凹凸を改良するために、ガラスクロスの糸束を物理的に開繊することは有効な手法である。
As the glass cloth used in the present invention, glass fiber having no absorption in the visible light region is used. The type of glass is not particularly limited, and examples thereof include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, and quartz glass, among which S glass, T glass, and NE glass are easily available. E glass is preferred. Also, by applying surface treatment to the glass cloth by washing with a suitable silane coupling agent, various surfactants, inorganic acids, etc., the wettability, affinity and adhesion at the interface between the glass cloth and the resin can be improved. it can.
The thickness, woven density, and woven structure of the glass cloth are selected according to the intended silicone-based cured sheet. In order to improve the resin impregnation property and surface unevenness, it is an effective technique to physically open the glass cloth yarn bundle.

本発明のガラスクロス複合化透明樹脂シート(c)は、表示素子用基板に使用されるために透明である必要がある。そのためには、シリコーン系硬化性樹脂(a)とガラスクロス(b)の屈折率の差が小さい必要がある。ここでいう屈折率とは、ナトリウムD線(波長589nm)を用いて測定した値を言う。シリコーン系硬化性樹脂(a)とガラスクロス(b)の屈折率の差は、0.02以下であることが好ましく、さらに好ましくは0.01以下であることが好ましい。屈折率の差が0.02より大きい場合、シリコーン系硬化性樹脂(a)とガラスクロス(b)の界面において樹脂を透過した光の散乱により、ガラスクロス複合化透明樹脂シート(c)は不透明になり、平行光線透過率の値も低くなる。   The glass cloth composite transparent resin sheet (c) of the present invention needs to be transparent in order to be used for a display element substrate. For that purpose, the difference in refractive index between the silicone-based curable resin (a) and the glass cloth (b) needs to be small. The refractive index here refers to a value measured using sodium D line (wavelength 589 nm). The difference in refractive index between the silicone curable resin (a) and the glass cloth (b) is preferably 0.02 or less, more preferably 0.01 or less. When the difference in refractive index is larger than 0.02, the glass cloth composite transparent resin sheet (c) is opaque due to scattering of light transmitted through the resin at the interface between the silicone-based curable resin (a) and the glass cloth (b). Thus, the parallel light transmittance value is also lowered.

本発明のガラスクロス複合化透明樹脂シートの製造方法は特に限定されない。例えば、シリコーン樹脂と硬化性樹脂、硬化剤を室温で混合し、ガラスクロスに含浸させて必要な型枠に注型した後、加熱および/あるいは光線照射して硬化する方法、シリコーン樹脂と硬化性樹脂、硬化剤を溶剤で希釈して粘度調整したのちガラスクロスに含浸させ、溶剤を除去した後、加熱および/あるいは光線照射によって硬化させる方法などがあげられる。その際の加熱には、プレス成形機、真空プレス成形機などを用いることが硬化反応とシート成形反応を同時に行うことが可能であるので好ましい。   The manufacturing method of the glass cloth composite transparent resin sheet of this invention is not specifically limited. For example, a method in which a silicone resin, a curable resin, and a curing agent are mixed at room temperature, impregnated into a glass cloth, cast into a necessary mold, and then cured by heating and / or light irradiation. For example, a resin and a curing agent are diluted with a solvent to adjust the viscosity, impregnated into a glass cloth, and after removing the solvent, the resin is cured by heating and / or irradiation with light. For the heating at that time, it is preferable to use a press molding machine, a vacuum press molding machine or the like because the curing reaction and the sheet molding reaction can be performed simultaneously.

以下に、本発明を製造例、実施例、比較例を挙げてさらに具体的に説明するが、本発明は以下の実施例により限定されるものではない。なお、樹脂およびガラスクロス複合化透明樹脂シートの各種物性の測定方法は次のとおりである。   Hereinafter, the present invention will be described more specifically with reference to production examples, examples, and comparative examples, but the present invention is not limited to the following examples. In addition, the measuring method of various physical properties of resin and a glass cloth composite transparent resin sheet is as follows.

[重量平均分子量の測定]
東ソー製GPC(ゲルパーミエーションクロマトグラフィー)HLC−8220を用いて、ポリスチレン換算により測定した。
[屈折率の測定]
アタゴ社製アッベ屈折率計DR−M2を用いて、23℃で波長589nmの屈折率を測定した。
[動的粘弾性スペクトルの測定]
レオメトリック社製RSAIIを用いて、1分間に5℃の割合で30℃から300℃まで温度を上昇させ、サンプルの貯蔵弾性率E’を測定した。チャック間距離は20〜30mm、サンプル幅2〜4mm、測定周波数1Hz、歪量は0.05%にし、引張りモードで測定した。
[Measurement of weight average molecular weight]
It measured by polystyrene conversion using Tosoh GPC (gel permeation chromatography) HLC-8220.
[Measurement of refractive index]
A refractive index with a wavelength of 589 nm was measured at 23 ° C. using an Abbe refractometer DR-M2 manufactured by Atago.
[Measurement of dynamic viscoelasticity spectrum]
Using a rheometric RSAII, the temperature was raised from 30 ° C. to 300 ° C. at a rate of 5 ° C. per minute, and the storage elastic modulus E ′ of the sample was measured. The distance between chucks was 20 to 30 mm, the sample width was 2 to 4 mm, the measurement frequency was 1 Hz, the amount of strain was 0.05%, and the measurement was performed in the tensile mode.

[線膨張係数の測定]
セイコーインスツルメンツ社製TMA/SS120を用いて、1分間に5℃の割合で30℃から330℃まで温度を上昇させ、線膨張係数を測定した。チャック間の距離は1mm、サンプル幅2mm、荷重10gにし引張りモードで測定した。下記式に従い50℃と300℃との間での平均のサンプル長さの変化率ΔLを線膨張係数とした。
ΔL=(L300−L50)/L50/(300−50)
但し、50℃でのサンプル長をL50、300℃でのサンプル長をL300とする。
[Measurement of linear expansion coefficient]
Using TMA / SS120 manufactured by Seiko Instruments Inc., the temperature was increased from 30 ° C. to 330 ° C. at a rate of 5 ° C. per minute, and the linear expansion coefficient was measured. The distance between chucks was 1 mm, the sample width was 2 mm, and the load was 10 g. According to the following formula, the change rate ΔL of the average sample length between 50 ° C. and 300 ° C. was defined as the linear expansion coefficient.
ΔL = (L 300 −L 50 ) / L 50 / (300−50)
However, the sample length at 50 ° C. is L 50 , and the sample length at 300 ° C. is L 300 .

[製造例1](シリコーン樹脂の製造例1)
3−グリシドキシプロピルトリメトキシシラン50.0gと水11.44gとジブチル錫ジラウリレート0.535gとテトラヒドロフラン25.0gを200mlの2つ口フラスコに仕込み、80℃にて5時間反応させた。反応終了後、80℃1時間、減圧下で溶媒を除去することによりシリコーン樹脂(以下、SR−1とする)37.9gを得た。得られた化合物の重量平均分子量は1300で、エポキシ当量は188であった。
[Production Example 1] (Production Example 1 of Silicone Resin)
3-glycidoxypropyltrimethoxysilane (50.0 g), water (11.44 g), dibutyltin dilaurate (0.535 g) and tetrahydrofuran (25.0 g) were charged into a 200 ml two-necked flask and reacted at 80 ° C. for 5 hours. After completion of the reaction, 37.9 g of a silicone resin (hereinafter referred to as SR-1) was obtained by removing the solvent under reduced pressure at 80 ° C. for 1 hour. The weight average molecular weight of the obtained compound was 1300, and the epoxy equivalent was 188.

[製造例2](シリコーン樹脂の製造例2)
3−グリシドキシプロピルトリメトキシシラン30.0gとフェニルトリメトキシシラン25.2gと水13.7gとギ酸2.34gとトルエン27.6gを200mlの2つ口フラスコに仕込み、80℃にて3時間反応させた。反応終了後、80℃1時間、減圧下で溶媒を除去することによりシリコーン樹脂(以下、SR−2とする)41.5gを得た。得られた化合物の重量平均分子量は3000で、エポキシ当量は408であった。
[Production Example 2] (Production Example 2 of Silicone Resin)
30.0 g of 3-glycidoxypropyltrimethoxysilane, 25.2 g of phenyltrimethoxysilane, 13.7 g of water, 2.34 g of formic acid and 27.6 g of toluene were charged into a 200 ml two-necked flask, Reacted for hours. After completion of the reaction, 41.5 g of a silicone resin (hereinafter referred to as SR-2) was obtained by removing the solvent under reduced pressure at 80 ° C. for 1 hour. The weight average molecular weight of the obtained compound was 3000, and the epoxy equivalent was 408.

[製造例3](シリコーン樹脂の製造例3)
3−グリシドキシプロピルトリメトキシシラン30.0gとフェニルトリメトキシシラン32.7gと水13.7gとギ酸3.14gとテトラヒドロフラン30gを300mlの2つ口フラスコに仕込み、70℃のオイルバスにて還流し3時間反応させた。反応終了後、減圧下で濃縮してシリコーン樹脂(以下、SR−3とする)のテトラヒドロフラン溶液53.9gを得た。得られた化合物の重量平均分子量は1800で、エポキシ当量は401であった。
[Production Example 3] (Production Example 3 of Silicone Resin)
3-glycidoxypropyltrimethoxysilane (30.0 g), phenyltrimethoxysilane (32.7 g), water (13.7 g), formic acid (3.14 g) and tetrahydrofuran (30 g) were charged into a 300 ml two-necked flask and placed in a 70 ° C. oil bath. The mixture was refluxed and reacted for 3 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure to obtain 53.9 g of a tetrahydrofuran solution of a silicone resin (hereinafter referred to as SR-3). The weight average molecular weight of the obtained compound was 1800, and the epoxy equivalent was 401.

[製造例4](シリコーン系硬化性樹脂硬化物の製造例1)
製造例1で合成したシリコーン樹脂(SR−1)0.96gと水素化ビスフェノールA型エポキシ樹脂(大日本インキ化学工業株式会社製エピクロンEXA−7015)0.96gを室温で混合し、さらに4、4’―ジアミノジフェニルメタン(和光純薬工業株式会社製)0.48gを室温で素早く混合することによって得られた混合溶液(以下、RW−1)を、厚さ200μmのスペーサー内に挟み、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってシリコーン系硬化性樹脂硬化物を得た。得られたシリコーン系硬化性樹脂硬化物は、厚さ200μmで、屈折率は1.524であり、透明であった。また、このシリコーン系硬化性樹脂硬化物の動的粘弾性を測定したところ、35℃での貯蔵弾性率E035は1.36×109N/m2であり、290℃での貯蔵弾性率E0290は3.49×108N/m2であった。E035/E0290 =3.9である。動的粘弾性スペクトルのチャートを図1に示す。
[Production Example 4] (Production Example 1 of cured silicone-based curable resin)
0.96 g of the silicone resin (SR-1) synthesized in Production Example 1 and 0.96 g of a hydrogenated bisphenol A type epoxy resin (Epicron EXA-7015 manufactured by Dainippon Ink & Chemicals, Inc.) are mixed at room temperature, and A mixed solution (hereinafter referred to as RW-1) obtained by rapidly mixing 0.48 g of 4′-diaminodiphenylmethane (manufactured by Wako Pure Chemical Industries, Ltd.) at room temperature was sandwiched between spacers having a thickness of 200 μm, and the inside of the press machine Then, while maintaining the pressure at 5 MPa, a cured silicone-based curable resin was obtained by thermosetting at a temperature of 150 ° C. for 1 hour and further at a temperature of 200 ° C. for 1 hour. The obtained silicone-based curable resin cured product was 200 μm in thickness and 1.524 in refractive index, and was transparent. Further, when the dynamic viscoelasticity of the cured silicone-based curable resin was measured, the storage elastic modulus E 035 at 35 ° C. was 1.36 × 10 9 N / m 2 and stored at 290 ° C. The elastic modulus E 0 ' 290 was 3.49 × 10 8 N / m 2 . E 0 '35 / E 0 ' 290 = 3.9. A chart of the dynamic viscoelastic spectrum is shown in FIG.

[実施例1]
製造例4の方法で製造したシリコーン樹脂とエポキシ樹脂と硬化剤の混合溶液(RW−1)を、厚さ100μmのTガラス系ガラスクロス(日東紡製、屈折率1.520)に含浸し、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってガラスクロス複合化樹脂シートを得た。得られたガラスクロス複合化樹脂シートは、厚さ100μmで、屈折率は1.524であり、透明であった。また、このガラスクロス複合化樹脂シートの動的粘弾性を測定したところ、35℃での貯蔵弾性率E135は4.73×109N/m2であり、290℃での貯蔵弾性率E1290 は4.17×109N/m2であった。E135/E1290 =1.13である。動的粘弾性スペクトルのチャートを図2に示す。また、線膨張係数は18ppm/Kであった。
[Example 1]
Impregnated with a mixed solution (RW-1) of a silicone resin, an epoxy resin and a curing agent produced by the method of Production Example 4 into a 100 μm thick T glass-based glass cloth (Nittobo, refractive index 1.520), While maintaining the pressure at 5 MPa in the press, the glass cloth composite resin sheet was obtained by thermosetting at a temperature of 150 ° C. for 1 hour and further at a temperature of 200 ° C. for 1 hour. The obtained glass cloth composite resin sheet had a thickness of 100 μm, a refractive index of 1.524, and was transparent. Moreover, when the dynamic viscoelasticity of this glass cloth composite resin sheet was measured, the storage elastic modulus E 135 at 35 ° C. was 4.73 × 10 9 N / m 2 , and the storage elasticity at 290 ° C. The rate E 1290 was 4.17 × 10 9 N / m 2 . E 1 '35 / E 1 ' 290 = 1.13. A dynamic viscoelastic spectrum chart is shown in FIG. The linear expansion coefficient was 18 ppm / K.

[製造例5](シリコーン系硬化性樹脂硬化物の製造例2)
製造例2で合成したシリコーン樹脂(SR−2)0.58gとビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製エピコート828)1.36gを室温で混合し、さらに4、4’―ジアミノジシクロヘキシルメタン(和光純薬工業株式会社製)0.46gを室温で素早く混合することによって得られた混合溶液(以下、RW−2)を、厚さ200μmのスペーサー内に挟み、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってシリコーン系硬化性樹脂硬化物を得た。得られたシリコーン系硬化性樹脂硬化物は、厚さ200μmで、屈折率は1.563であり、透明であった。また、このシリコーン系硬化性樹脂硬化物の動的粘弾性を測定したところ、35℃での貯蔵弾性率E035は1.53×109N/m2であり、290℃での貯蔵弾性率E0290は3.27×108N/m2であった。E035/E0290 =4.66である。
[Production Example 5] (Production Example 2 of cured silicone-based curable resin)
0.58 g of the silicone resin (SR-2) synthesized in Production Example 2 and 1.36 g of bisphenol A type epoxy resin (Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.) are mixed at room temperature, and 4,4′-diaminodicyclohexylmethane is further mixed. (Made by Wako Pure Chemical Industries, Ltd.) A mixed solution (hereinafter referred to as RW-2) obtained by quickly mixing 0.46 g at room temperature is sandwiched in a spacer having a thickness of 200 μm and maintained at a pressure of 5 MPa in a press machine. While curing at a temperature of 150 ° C. for 1 hour and further at a temperature of 200 ° C. for 1 hour, a cured silicone-based curable resin was obtained. The obtained cured silicone-based curable resin had a thickness of 200 μm, a refractive index of 1.563, and was transparent. Further, this was measured dynamic viscoelasticity of the silicone-based curable resin cured product storage modulus E 0 '35 at 35 ° C. is 1.53 × 10 9 N / m 2 , storage at 290 ° C. The elastic modulus E 0290 was 3.27 × 10 8 N / m 2 . E 0 '35 / E 0' is a 290 = 4.66.

[実施例2]
製造例5の方法で製造したシリコーン樹脂とエポキシ樹脂と硬化剤の混合溶液RW−2を、厚さ100μmのEガラス系ガラスクロス(日東紡製、屈折率1.560)に含浸し、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってガラスクロス複合化樹脂シートを得た。得られたガラスクロス複合化樹脂シートは、厚さ100μmで、屈折率は1.563であり、透明であった。また、このガラスクロス複合化樹脂シートの動的粘弾性を測定したところ、35℃での貯蔵弾性率E135は5.37×109N/m2であり、290℃での貯蔵弾性率E1290 は4.17×109N/m2であった。E135/E1290 =1.29である。
また、線膨張係数は13ppm/Kであった。
[Example 2]
A mixed solution RW-2 of a silicone resin, an epoxy resin and a curing agent produced by the method of Production Example 5 was impregnated into an E glass-based glass cloth (manufactured by Nittobo, refractive index 1.560) having a thickness of 100 μm. Then, while maintaining the pressure at 5 MPa, a glass cloth composite resin sheet was obtained by thermosetting at a temperature of 150 ° C. for 1 hour and further at a temperature of 200 ° C. for 1 hour. The obtained glass cloth composite resin sheet had a thickness of 100 μm, a refractive index of 1.563, and was transparent. The measured dynamic viscoelasticity of the glass cloth composite resin sheet, the storage modulus E 1 '35 at 35 ° C. is 5.37 × 10 9 N / m 2 , the storage elasticity at 290 ° C. The rate E 1290 was 4.17 × 10 9 N / m 2 . E 1 '35 / E 1 ' 290 = 1.29.
The linear expansion coefficient was 13 ppm / K.

[製造例6](エポキシ樹脂硬化物の製造例1)
水素化ビスフェノールA型エポキシ樹脂(大日本インキ化学工業株式会社製エピクロンEXA−7015)1.92gを室温で混合し、さらに4、4’―ジアミノジシクロヘキシルメタン(和光純薬工業株式会社製)0.48gを室温で素早く混合することによって得られた混合溶液(以下、RW−3)を、厚さ200μmのスペーサー内に挟み、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってエポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物は、厚さ210μmで、屈折率は1.523であり、透明であった。また、このエポキシ樹脂硬化物の動的粘弾性を測定したところ、35℃での貯蔵弾性率E035は1.95×109N/m2であり、290℃での貯蔵弾性率E0290 は3.36×104N/m2であった。E035/E0290 =5.8×104である。動的粘弾性スペクトルのチャートを図3に示す。
[Production Example 6] (Production Example 1 of cured epoxy resin)
1.92 g of hydrogenated bisphenol A type epoxy resin (Dainippon Ink Chemical Co., Ltd. Epiklone EXA-7015) was mixed at room temperature, and 4,4′-diaminodicyclohexylmethane (Wako Pure Chemical Industries, Ltd.) A mixed solution (hereinafter referred to as RW-3) obtained by rapidly mixing 48 g at room temperature was sandwiched between spacers having a thickness of 200 μm and maintained at a pressure of 5 MPa in a press machine at a temperature of 150 ° C. for 1 hour, and further at a temperature of 200 A cured epoxy resin was obtained by thermosetting at 1 ° C. for 1 hour. The obtained cured epoxy resin had a thickness of 210 μm, a refractive index of 1.523, and was transparent. Further, when the dynamic viscoelasticity of the cured epoxy resin was measured, the storage elastic modulus E 035 at 35 ° C. was 1.95 × 10 9 N / m 2 , and the storage elastic modulus E at 290 ° C. 0290 was 3.36 × 10 4 N / m 2 . E 0 '35 / E 0 ' 290 = 5.8 × 10 4 . A chart of the dynamic viscoelastic spectrum is shown in FIG.

[比較例1]
製造例6の方法で製造したエポキシ樹脂と硬化剤の混合溶液(RW−3)を、厚さ100μmのTガラス系ガラスクロス(日東紡製、屈折率1.520)に含浸し、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってガラスクロス複合化エポキシ樹脂シートを得た。得られたガラスクロス複合化エポキシ樹脂シートは、厚さ100μmで、屈折率は1.523であり、透明であった。また、このガラスクロス複合化エポキシ樹脂シートの動的粘弾性を測定したところ、35℃での貯蔵弾性率E135は7.93×109N/m2であり、290℃での貯蔵弾性率E1290は9.65×108N/m2であった。E135/E1290 =8.2である。動的粘弾性スペクトルのチャートを図4に示す。この比較例で作成したガラスクロス複合化エポキシ樹脂シートは、実施例1、実施例2と比較して貯蔵弾性率の変化が大きいことは明らかである。また、線膨張係数は22ppm/Kであった。
[Comparative Example 1]
A mixed solution (RW-3) of an epoxy resin and a curing agent produced by the method of Production Example 6 was impregnated into a 100 μm-thick T glass-based glass cloth (manufactured by Nittobo Co., Ltd., refractive index 1.520). While maintaining the pressure at 5 MPa, a glass cloth composite epoxy resin sheet was obtained by thermosetting at a temperature of 150 ° C. for 1 hour and further at a temperature of 200 ° C. for 1 hour. The obtained glass cloth composite epoxy resin sheet had a thickness of 100 μm, a refractive index of 1.523, and was transparent. Further, when the dynamic viscoelasticity of this glass cloth composite epoxy resin sheet was measured, the storage elastic modulus E 135 at 35 ° C. was 7.93 × 10 9 N / m 2 and stored at 290 ° C. The elastic modulus E 1290 was 9.65 × 10 8 N / m 2 . E 1 '35 / E 1 ' 290 = 8.2. A chart of the dynamic viscoelastic spectrum is shown in FIG. It is clear that the glass cloth composite epoxy resin sheet prepared in this comparative example has a large change in storage elastic modulus as compared with Example 1 and Example 2. The linear expansion coefficient was 22 ppm / K.

[製造例7](シリコーン系硬化性樹脂硬化物の製造例3)
製造例3で合成したシリコーン樹脂(SR−3)のテトラヒドロフラン溶液1.50gと水素化ビスフェノールA型エポキシ樹脂(大日本インキ化学工業株式会社製エピクロンEXA−7015)1.20gを室温で混合し、さらにカチオン重合触媒2−ブテニル−1,4−ブテン−スルフォニウムヘキサフルオロアンチマト(商品名「アデカオプトンCP−66」旭電化工業株式会社製)1.32gを室温で素早く混合することによって得られた混合溶液(以下、RW−4)を、厚さ200μmのスペーサー内に挟み、100℃の乾燥機内で2時間乾燥した。その後、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってシリコーン系硬化性樹脂シートを得た。得られたシリコーン系硬化性樹脂硬化物は、厚さ200μmで、屈折率は1.522であり、透明であった。また、このシリコーン系硬化性樹脂硬化物の動的粘弾性を測定したところ、35℃での貯蔵弾性率E035は1.18×109N/m2であり、290℃での貯蔵弾性率E0290は1.26×108N/m2であった。E035/E0290 =8.9である。動的粘弾性スペクトルのチャートを図5に示す。また、線膨張係数は15ppm/Kであった。
[Production Example 7] (Production Example 3 of cured silicone-based curable resin)
1.50 g of a tetrahydrofuran solution of the silicone resin (SR-3) synthesized in Production Example 3 and 1.20 g of a hydrogenated bisphenol A type epoxy resin (Epicron EXA-7015 manufactured by Dainippon Ink Chemical Co., Ltd.) are mixed at room temperature. Furthermore, 1.32 g of cationic polymerization catalyst 2-butenyl-1,4-butene-sulfonium hexafluoroantimato (trade name “Adeka Opton CP-66” manufactured by Asahi Denka Kogyo Co., Ltd.) is obtained by quickly mixing at room temperature. The mixed solution (hereinafter referred to as RW-4) was sandwiched between 200 μm thick spacers and dried in a dryer at 100 ° C. for 2 hours. Then, a silicone-based curable resin sheet was obtained by thermosetting at a temperature of 150 ° C. for 1 hour and further at a temperature of 200 ° C. for 1 hour while maintaining the pressure at 5 MPa in the press. The obtained cured silicone-based curable resin was 200 μm in thickness and 1.522 in refractive index, and was transparent. Further, this was measured dynamic viscoelasticity of the silicone-based curable resin cured product storage modulus E 0 '35 at 35 ° C. is 1.18 × 10 9 N / m 2 , storage at 290 ° C. The elastic modulus E 0 ' 290 was 1.26 × 10 8 N / m 2 . E 0 '35 / E 0 ' 290 = 8.9. A dynamic viscoelastic spectrum chart is shown in FIG. The linear expansion coefficient was 15 ppm / K.

[比較例2]
製造例7の方法で製造したエポキシ樹脂と硬化剤の混合溶液(RW−4)を、厚さ100μmのTガラス系ガラスクロス(日東紡製、屈折率1.520)に含浸し、100℃の乾燥機内で2時間乾燥した。その後、プレス機内で圧力5MPaに維持しながら温度150℃1時間、さらに温度200℃1時間かけて熱硬化することによってガラスクロス複合化シリコーン系硬化性樹脂シートを得た。得られたガラスクロス複合化シリコーン系硬化性樹脂シートは、厚さ100μmで、屈折率は1.522であり、透明であった。また、このガラスクロス複合化シリコーン系硬化性樹脂シートの動的粘弾性を測定したところ、35℃での貯蔵弾性率E135は6.95×109N/m2であり、290℃での貯蔵弾性率E1290は3.71×108N/m2であった。E135/E1290 =1.9である。動的粘弾性スペクトルのチャートを図6に示す。
以上の評価結果を表1に示す。
[Comparative Example 2]
A mixed solution (RW-4) of an epoxy resin and a curing agent produced by the method of Production Example 7 was impregnated into a 100 μm-thick T glass-based glass cloth (manufactured by Nittobo Co., Ltd., refractive index 1.520). Dry in a dryer for 2 hours. Then, a glass cloth composite silicone-based curable resin sheet was obtained by thermosetting at a temperature of 150 ° C. for 1 hour and further at a temperature of 200 ° C. for 1 hour while maintaining the pressure at 5 MPa in a press. The obtained glass cloth composite silicone-based curable resin sheet had a thickness of 100 μm, a refractive index of 1.522, and was transparent. Also, the dynamic viscoelasticity of the glass cloth composite silicone based curable resin sheet was measured, the storage modulus E 1 '35 at 35 ° C. is 6.95 × 10 9 N / m 2 , 290 ℃ The storage elastic modulus E 1 ' 290 was 3.71 × 10 8 N / m 2 . E 1 '35 / E 1 ' 290 = 1.9. A chart of the dynamic viscoelastic spectrum is shown in FIG.
The above evaluation results are shown in Table 1.

Figure 2007091964
Figure 2007091964

本発明のガラスクロス複合化透明樹脂シートは、液晶表示素子用基板、有機EL表示素子用基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板の分野で好適に利用できる。   The glass cloth composite transparent resin sheet of the present invention can be suitably used in the fields of liquid crystal display element substrates, organic EL display element substrates, color filter substrates, touch panel substrates, and solar cell substrates.

製造例4に係わる動的粘弾性スペクトルのチャートである。10 is a dynamic viscoelasticity spectrum chart according to Production Example 4. 実施例1に係わる動的粘弾性スペクトルのチャートである。2 is a dynamic viscoelastic spectrum chart according to Example 1. FIG. 製造例6に係わる動的粘弾性スペクトルのチャートである。10 is a dynamic viscoelasticity spectrum chart according to Production Example 6. 比較例1に係わる動的粘弾性スペクトルのチャートである。4 is a chart of a dynamic viscoelastic spectrum according to Comparative Example 1. 製造例7に係わる動的粘弾性スペクトルのチャートである。10 is a dynamic viscoelastic spectrum chart according to Production Example 7. 比較例2に係わる動的粘弾性スペクトルのチャートである。10 is a chart of a dynamic viscoelastic spectrum according to Comparative Example 2.

Claims (4)

シリコーン樹脂(a−1)と硬化性樹脂(a−2)とを構成要素とするシリコーン系硬化性樹脂(a)と、ガラスクロス(b)とを複合化してなるガラスクロス複合化透明樹脂シート(c)において、動的粘弾性測定におけるシリコーン系硬化性樹脂(a)の貯蔵弾性率の関係が以下の式を満たし、かつシリコーン系硬化性樹脂(a)とガラスクロス(b)の屈折率差が0.02以下であることを特徴とするガラスクロス複合化透明樹脂シート。
035/E0290 ≦ 8
但し、
035 :動的粘弾性測定における35℃でのシリコーン系硬化性樹脂の貯蔵弾性率
0290:動的粘弾性測定における290℃でのシリコーン系硬化性樹脂の貯蔵弾性率
A glass cloth composite transparent resin sheet obtained by compounding a silicone curable resin (a) having a silicone resin (a-1) and a curable resin (a-2) as constituent elements and a glass cloth (b). In (c), the relationship of the storage elastic modulus of the silicone-based curable resin (a) in the dynamic viscoelasticity measurement satisfies the following formula, and the refractive index of the silicone-based curable resin (a) and the glass cloth (b) A glass cloth composite transparent resin sheet, wherein the difference is 0.02 or less.
E 0 '35 / E 0 ' 290 ≦ 8
However,
E 0 '35: dynamic storage modulus of the silicone-based curable resin at 35 ° C. in viscoelasticity measurement E 0' 290: the storage modulus of the silicone-based curable resin at 290 ° C. in a dynamic viscoelasticity measurement
シリコーン樹脂(a−1)と硬化性樹脂(a−2)とを構成要素とするシリコーン系硬化性樹脂(a)と、ガラスクロス(b)とを複合化してなるガラスクロス複合化透明樹脂シート(c)において、動的粘弾性測定におけるガラスクロス複合化透明樹脂シート(c)の貯蔵弾性率の関係が以下の式を満たし、かつシリコーン系硬化性樹脂(a)とガラスクロス(b)の屈折率差が0.02以下であることを特徴とする、ガラスクロス複合化透明樹脂シート。
135/E1290 ≦ 1.5
但し、
135 :動的粘弾性測定における35℃でのガラスクロス複合化透明樹脂シートの貯蔵弾性率
1290:動的粘弾性測定における290℃でのガラスクロス複合化透明樹脂シートの貯蔵弾性率
A glass cloth composite transparent resin sheet obtained by compounding a silicone curable resin (a) having a silicone resin (a-1) and a curable resin (a-2) as constituent elements and a glass cloth (b). In (c), the relationship of the storage elastic modulus of the glass cloth composite transparent resin sheet (c) in the dynamic viscoelasticity measurement satisfies the following formula, and the silicone curable resin (a) and the glass cloth (b) A glass cloth composite transparent resin sheet having a refractive index difference of 0.02 or less.
E 1 '35 / E 1 ' 290 ≦ 1.5
However,
E 1 '35: dynamic viscoelasticity storage modulus E 1 of the glass cloth composite transparent resin sheet at 35 ° C. in the measurement' 290: storage of the glass cloth composite transparent resin sheet at 290 ° C. in a dynamic viscoelasticity measurement Elastic modulus
シリコーン樹脂(a−1)がエポキシ基を有するシリコーン樹脂であり、かつ硬化性樹脂(a−2)がエポキシ樹脂であることを特徴とする、請求項1または2に記載のガラスクロス複合化透明樹脂シート。   The glass cloth composite transparent according to claim 1 or 2, wherein the silicone resin (a-1) is a silicone resin having an epoxy group, and the curable resin (a-2) is an epoxy resin. Resin sheet. シリコーン樹脂(a−1)がエポキシ基を有するシリコーン樹脂であり、かつ硬化性樹脂(a−2)がエポキシ樹脂であり、さらにシートの製造に際し硬化剤として多官能アミン硬化剤を用いたことを特徴とする、請求項1〜3のいずれかに記載のガラスクロス複合化透明樹脂シート。   The silicone resin (a-1) is a silicone resin having an epoxy group, the curable resin (a-2) is an epoxy resin, and a polyfunctional amine curing agent is used as a curing agent in the production of the sheet. The glass cloth composite transparent resin sheet according to any one of claims 1 to 3, wherein
JP2005285780A 2005-09-30 2005-09-30 Curable silicone resin sheet composited with glass cloth Pending JP2007091964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285780A JP2007091964A (en) 2005-09-30 2005-09-30 Curable silicone resin sheet composited with glass cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285780A JP2007091964A (en) 2005-09-30 2005-09-30 Curable silicone resin sheet composited with glass cloth

Publications (1)

Publication Number Publication Date
JP2007091964A true JP2007091964A (en) 2007-04-12

Family

ID=37978034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285780A Pending JP2007091964A (en) 2005-09-30 2005-09-30 Curable silicone resin sheet composited with glass cloth

Country Status (1)

Country Link
JP (1) JP2007091964A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500915A (en) * 2007-10-18 2011-01-06 エルジー・ケム・リミテッド Composite material, composite film produced thereby, and method for producing composite film
JP2011006610A (en) * 2009-06-26 2011-01-13 Nagase Chemtex Corp Transparent composite
US9842952B2 (en) 2008-10-31 2017-12-12 Dow Corning Corporation Photovoltaic cell module and method of forming
CN112759891A (en) * 2020-12-28 2021-05-07 广东盈骅新材料科技有限公司 Epoxy resin composition, and transparent composite material and laminate containing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003122268A (en) * 2001-10-11 2003-04-25 Hitachi Ltd Substrate for display element and method of manufacturing the same
JP2005206787A (en) * 2003-07-07 2005-08-04 Sumitomo Bakelite Co Ltd Transparent complex composition
WO2007013329A1 (en) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. Curable resin composition, cured product thereof, various articles derived from those

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003122268A (en) * 2001-10-11 2003-04-25 Hitachi Ltd Substrate for display element and method of manufacturing the same
JP2005206787A (en) * 2003-07-07 2005-08-04 Sumitomo Bakelite Co Ltd Transparent complex composition
WO2007013329A1 (en) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. Curable resin composition, cured product thereof, various articles derived from those

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500915A (en) * 2007-10-18 2011-01-06 エルジー・ケム・リミテッド Composite material, composite film produced thereby, and method for producing composite film
US8445108B2 (en) 2007-10-18 2013-05-21 Lg Chem, Ltd. Composite materials, composite film manufactured by using the same and method for manufacturing composite film
US8728583B2 (en) 2007-10-18 2014-05-20 Lg Chem, Ltd. Composite materials, composite film manufactured by using the same and method for manufacturing composite film
US9842952B2 (en) 2008-10-31 2017-12-12 Dow Corning Corporation Photovoltaic cell module and method of forming
JP2011006610A (en) * 2009-06-26 2011-01-13 Nagase Chemtex Corp Transparent composite
CN112759891A (en) * 2020-12-28 2021-05-07 广东盈骅新材料科技有限公司 Epoxy resin composition, and transparent composite material and laminate containing same

Similar Documents

Publication Publication Date Title
JP4650003B2 (en) Transparent composite sheet and display element substrate using the same
JP5395677B2 (en) Epoxy polymerizable composition and sealing material composition containing the same
TWI440555B (en) Transparent composite sheet
JP4622348B2 (en) Transparent composite composition
EP1471112A1 (en) Transparent composite composition
KR101127313B1 (en) Process for producing transparent composite sheet
EP2479209A1 (en) Process for production of cured molded article, and cured molded article
JP7263356B2 (en) HARD COAT FILM, ARTICLE INCLUDED WITH HARD COAT FILM, AND IMAGE DISPLAY DEVICE
JP5700283B2 (en) Nanofiber reinforced transparent composite
JP2009066931A (en) Transparent laminated plate
JP5595867B2 (en) Transparent film
JP5426330B2 (en) Transparent substrate / glass plate / transparent substrate composite film and its use
JP2007091964A (en) Curable silicone resin sheet composited with glass cloth
JP2004231934A (en) Transparent composite material composition
JP2007091962A (en) Silicone resin sheet composited with glass cloth
JP2004307845A (en) Transparent composite composition
JPWO2019235108A1 (en) Modifiers, compositions, hard coat films, articles with hard coat films, and image display devices
JP2007091963A (en) Curable silicone resin sheet composited with glass cloth and method for producing the same
JP2011105888A (en) Transparent film
JP2006176586A (en) Transparent composite composition and optical sheet and plastic substrate for display device
KR102109345B1 (en) Composition For Hard Coating and Hard Coating film Including Cured Product Of The Same As The Coating Layer
US11447610B2 (en) Transparent composite film and flexible display devices including the same
JP2005015624A (en) Transparent composite sheet
JP2012219155A (en) Transparent resin composite material
WO2011149018A1 (en) Transparent film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070328

A521 Written amendment

Effective date: 20070328

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Effective date: 20080919

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Effective date: 20110525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110927

Free format text: JAPANESE INTERMEDIATE CODE: A02