JP2007091954A - Foam and methods for manufacturing and regenerating the same - Google Patents

Foam and methods for manufacturing and regenerating the same Download PDF

Info

Publication number
JP2007091954A
JP2007091954A JP2005285507A JP2005285507A JP2007091954A JP 2007091954 A JP2007091954 A JP 2007091954A JP 2005285507 A JP2005285507 A JP 2005285507A JP 2005285507 A JP2005285507 A JP 2005285507A JP 2007091954 A JP2007091954 A JP 2007091954A
Authority
JP
Japan
Prior art keywords
foam
water
soluble
foaming
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285507A
Other languages
Japanese (ja)
Inventor
Kentaro Yoshida
健太郎 吉田
Yumiko Oyasato
由美子 親里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005285507A priority Critical patent/JP2007091954A/en
Publication of JP2007091954A publication Critical patent/JP2007091954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foam which minimizes environmental load at manufacturing, reuse and disposal of a molded product, is excellent in flexibility and restoring force and has water-dissolvability. <P>SOLUTION: The foam is obtained by foaming and lyophilizing an aqueous solution of a water-soluble polymer so that septa of bubbles burst to form communicating pores. Here, water-soluble polysaccharides such as alginic acids or water-soluble proteins such as gelatin can be used as the water-soluble polymer. The foam can be easily regenerated and reused by dissolving it in water, foaming it and re-lyophilizing it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水溶性高分子物質を用いた発泡材料およびその製造方法、並びにその再生方法に関する。
The present invention relates to a foam material using a water-soluble polymer substance, a production method thereof, and a regeneration method thereof.

近年、自然環境保護の見地から、自然環境中で分解する生分解性樹脂及びその成形品が求められ、例えば脂肪族ポリエステルやでんぷんまたはそれらを化学的に改質した物質等による生分解性樹脂の研究が活発に行なわれている。これらは、緩衝材・構造材として用いるには、柔軟力が弱く、復元力がないため繰り返して使用することができない。また、水崩壊性はあるものの完全に水溶しないため、処理しにくく、容易に再生できない。しかも、石油系の改質剤を使用することで性能を高めていることから、完全に環境によい材料とは言えない(特許文献1参照)。   In recent years, from the standpoint of protecting the natural environment, biodegradable resins that decompose in the natural environment and molded articles thereof have been demanded. For example, biodegradable resins such as aliphatic polyester, starch, or chemically modified substances thereof There is active research. These can not be used repeatedly because they are weak in flexibility and have no restoring force when used as cushioning materials / structural materials. In addition, although it is water-disintegrating, it is not completely water-soluble, so it is difficult to process and cannot be easily regenerated. Moreover, since the performance is improved by using a petroleum-based modifier, it cannot be said that the material is completely good for the environment (see Patent Document 1).

他方、天然の水溶性多糖類または水溶性蛋白質は安全性が高く、且つ自然環境中に放出された場合、速やかに微生物によって分解され、消滅する。こうした材料のうち、特にゲル形成能を有するものは、増粘剤・ゲル化剤として、食品・化粧品・トイレタリー等の分野で広く使用される。また、成形性を有するため、例えばオブラート等可食性フィルムとして使用されている。しかしながら従来この可食性フィルムは薄く、強度が小さく、構造材・緩衝材等には使用不可能であった。   On the other hand, natural water-soluble polysaccharides or water-soluble proteins are highly safe, and when they are released into the natural environment, they are rapidly degraded by microorganisms and disappear. Among these materials, those having gel-forming ability are widely used in the fields of foods, cosmetics, toiletries and the like as thickeners and gelling agents. Further, since it has moldability, it is used as an edible film such as wafer. However, this edible film has been thin and low in strength, and cannot be used as a structural material or a buffer material.

天然水溶性多糖類または水溶性蛋白質の中でも、例えば海草中の成分であるアルギン酸は、船舶の航行に障害となる海草から採取することができる。また、食糧問題に影響しない不要な物質を原料として用い得るため、コストを最小限に抑制できる可能性がある。この物質は、水溶性であるという特性を有しており、環境負荷の低減された将来の樹脂材料として有望であり、アルギン酸を用いて生分解性ポリマーを作製することも試みられている(特許文献2参照)。こうした生分解性ポリマーは、アルギン酸またはその金属塩に発泡剤、可塑剤、および架橋剤等を混合し、保水性を有する材料である。しかしながらこの材料は表面が堅く、圧縮性能がなく、緩衝材・構造材として使用するには適さない。そこで我々は、このような用途に用いるために鋭意研究を重ねた結果、緩衝材・構造材として使用可能な発泡材料を得ることに成功している(特許文献3参照)。しかしながらこれらは耐熱性に問題があり、高温処理後には柔軟性を発現できなくなるという問題があった。
特開2001−279018号公報 特開平8−337674号公報 特開2005−166971号公報
Among natural water-soluble polysaccharides or water-soluble proteins, for example, alginic acid, which is a component in seaweed, can be collected from seaweed that hinders navigation of ships. In addition, since unnecessary substances that do not affect food problems can be used as raw materials, there is a possibility that costs can be minimized. This substance has the property of being water-soluble, and is promising as a future resin material with reduced environmental load. Attempts have also been made to produce biodegradable polymers using alginic acid (patented) Reference 2). Such a biodegradable polymer is a material having water retention by mixing a foaming agent, a plasticizer, a cross-linking agent and the like with alginic acid or a metal salt thereof. However, this material has a hard surface, no compression performance, and is not suitable for use as a cushioning material or a structural material. Therefore, as a result of intensive studies for use in such applications, we have succeeded in obtaining a foam material that can be used as a cushioning material and a structural material (see Patent Document 3). However, these have a problem in heat resistance, and there is a problem that flexibility cannot be exhibited after high temperature treatment.
JP 2001-279018 A JP-A-8-337664 JP 2005-166971 A

本発明は、その使用、再利用、および廃棄処分において環境負荷を最小限に抑制し、
60℃程度までの温度領域において、優れた柔軟性および復元力を有するとともに、水溶解性を備えた発泡体に関する技術を開発することを目的とするものである。
The present invention minimizes the environmental burden in its use, reuse and disposal,
The object of the present invention is to develop a technology relating to a foam having excellent flexibility and resilience in a temperature range up to about 60 ° C. and water solubility.

第1の本発明は、水溶性高分子で形成された多孔質体であって、該多孔質体を構成する気孔が、気泡の破壊により連通している気孔であることを特徴とする発泡体である。   A first aspect of the present invention is a porous body formed of a water-soluble polymer, wherein the pores constituting the porous body are pores communicating with each other by destruction of bubbles. It is.

前記気孔の最小径(a)と最大径(b)の比(b/a)が3以上である気孔が、前記発泡体の全気孔体積の80%以上を占めることを特徴とする請求項1に記載の発泡体。   The pores having a ratio (b / a) of 3 or more of the minimum diameter (a) and the maximum diameter (b) of the pores occupy 80% or more of the total pore volume of the foam. The foam described in 1.

前記気孔の最小径(a)が、0.10mm以上0.35mm以下の範囲にあることを特徴とする請求項1に記載の発泡体。   2. The foam according to claim 1, wherein the pore has a minimum diameter (a) in a range of 0.10 mm to 0.35 mm.

前記水溶性高分子が、アルギン酸エステル類であることを特徴とする請求項1に記載の発泡体。   The foam according to claim 1, wherein the water-soluble polymer is an alginate.

第2の本発明は、水溶性高分子からなる樹脂の水溶液を発泡して発泡組成物を得る工程と、
前記発泡組成物を凍結させ発泡凍結物を得る工程と、
前記発泡凍結物を乾燥する工程とを具備することを特徴とする発泡体の製造方法である。
The second aspect of the present invention includes a step of foaming an aqueous solution of a resin comprising a water-soluble polymer to obtain a foamed composition;
Freezing the foam composition to obtain a frozen foam;
And a step of drying the frozen foamed product.

第3の本発明は、水溶性高分子で形成された発泡体を水に溶解して水溶性高分子の水溶物を得る工程と、
前記水溶物を発泡して発泡組成物を得る工程と、
前記発泡組成物を凍結させ発泡凍結物を得る工程と、
前記発泡凍結物を乾燥させ発泡体を形成する工程とを具備することを特徴とする発泡体の再生方法。
The third aspect of the present invention includes a step of dissolving a foam formed of a water-soluble polymer in water to obtain a water-soluble polymer water-soluble substance,
Foaming the aqueous solution to obtain a foamed composition;
Freezing the foam composition to obtain a frozen foam;
And a step of drying the frozen foam to form a foam.

本発明によれば、環境負荷を最小限に抑制され、室温以上かつ過酷な輸送を考慮した耐熱温度である
60℃程度までの温度領域において、優れた柔軟性および復元力を有するとともに、水溶解性を備えた発泡体を得ることができる。
さらに、この発泡体を簡便な方法により再生することができる。
According to the present invention, the environmental load is suppressed to a minimum, and it has excellent flexibility and resilience in a temperature range up to about 60 ° C., which is a heat resistant temperature considering room temperature and severe transportation, and is soluble in water. A foam having properties can be obtained.
Furthermore, this foam can be regenerated by a simple method.

以下、本発明の実施形態を説明する。
本発明者らは、水溶性多糖類または水溶性蛋白質などを含む水溶性高分子由来の発泡体について鋭意研究を重ねた結果、マトリクス樹脂が気泡破壊により連なった層状の気孔をある一定の特徴で有すれば、従来の温度領域よりも広い領域で柔軟性を維持することができることを見いだした。
Embodiments of the present invention will be described below.
As a result of intensive studies on a foam derived from a water-soluble polymer containing a water-soluble polysaccharide or a water-soluble protein, the present inventors have found that the matrix resin has layered pores connected by bubble destruction with certain characteristics. It has been found that flexibility can be maintained over a wider range than the conventional temperature range.

また、水溶性高分子を発泡材料にする場合において、材料の構造を工夫することによって次のような効果を得られることを見出した。すなわち、加熱処理を施しても材料特有の凝固性が発現することなく柔軟な機械的特性を維持することができ、従来にはない柔軟性と復元力が維持できることを見出した。しかも、凝固剤を含有しないため、処理が容易になり、水溶性能が改善される。本発明は、こうした知見に基づいて完成されたものである。   Moreover, when making a water-soluble polymer into a foam material, it discovered that the following effects could be acquired by devising the structure of material. That is, the present inventors have found that even when heat treatment is performed, flexible mechanical properties can be maintained without exhibiting solidification characteristics peculiar to the material, and unprecedented flexibility and restoring force can be maintained. Moreover, since it does not contain a coagulant, the treatment becomes easy and the water performance is improved. The present invention has been completed based on these findings.

本発明の実施形態にかかる発泡材料組成物は、水溶性高分子を含有するものであり、かかる水溶性高分子を後述の任意の方法にて発泡させることによって、本発明の実施形態にかかる発泡体が得られる。
以下、発泡体の構造、水溶性高分子材料、発泡材料組成物、発泡体の製造方法、発泡体の再生方法について順次説明する。
The foaming material composition according to the embodiment of the present invention contains a water-soluble polymer, and foaming according to the embodiment of the present invention by foaming the water-soluble polymer by any method described below. The body is obtained.
Hereinafter, the structure of the foam, the water-soluble polymer material, the foam material composition, the foam production method, and the foam regeneration method will be sequentially described.

(発泡体の構造)
本実施の形態の発泡体は、発泡体の断面写真である図1に見られるように、発泡体マトリックス樹脂に独立気泡状に形成されている気泡の隔壁が破壊され、連通気孔となっているものである。
本実施の形態の気孔の最小径は、0.10mm以上0.35mm以下であり、各気孔は最小径(a)と最大径(b)の比(b/a)が、3以上であり、扁平状となっている。また、この扁平状の気孔の容積が、気孔全体の容積の80%以上を占めていることが好ましい。
気孔の最小径が上記範囲を下回った場合、剛性が高くなり、柔軟性が低下し、好ましくない。一方、気孔の最小径が上記範囲を上回った場合、粗大気孔が増加するため、剛性が低下して柔軟性が低下する。
また、気孔の最小径と最大径の比が、上記範囲を下回った場合、剛性が高くなり、柔軟性が低下する現象が発現して好ましくない。
扁平状気孔の容積が気孔全体の80%を下回った場合、剛性が高くなり、柔軟性が低下する現象が発現して好ましくない。
(Structure of foam)
As shown in FIG. 1, which is a cross-sectional photograph of the foam, the foam according to the present embodiment breaks the bubble partition formed in the foam matrix resin in the form of closed cells, thereby forming continuous air holes. Is.
The minimum diameter of the pores of the present embodiment is 0.10 mm or more and 0.35 mm or less, and each pore has a ratio (b / a) of the minimum diameter (a) to the maximum diameter (b) of 3 or more. It is flat. Moreover, it is preferable that the volume of this flat pore occupies 80% or more of the volume of the whole pore.
When the minimum diameter of the pores is less than the above range, the rigidity becomes high and the flexibility is lowered, which is not preferable. On the other hand, when the minimum diameter of the pores exceeds the above range, the coarse atmospheric pores increase, so that the rigidity is lowered and the flexibility is lowered.
In addition, when the ratio of the minimum diameter to the maximum diameter of the pores is below the above range, the phenomenon that the rigidity becomes high and the flexibility is lowered is not preferable.
When the volume of the flat pores is less than 80% of the whole pores, the rigidity becomes high and the phenomenon that the flexibility is lowered is not preferable.

本発明の発泡体の気孔率は、90〜98%の範囲が好ましい。気孔率がこの範囲を下回った場合、発泡体の剛性が高くなり、柔軟性が低下する。一方、気孔率が上記範囲を上回った場合、発泡体の機械的強度が低下し実用的な発泡体成形物を得ることができない。また、発泡体の気孔を形成する隔壁の厚さは、10〜300μmの範囲が好ましい。隔壁厚さがこの範囲を下回った場合、発泡体の機械的強度が低下して実用的な発泡体成形物を得ることができない。一方、隔壁厚さがこの範囲を上回った場合、発泡させた独立気泡を連通気泡に形成することが困難で、柔軟性を有する発泡体を得ることができない。   The porosity of the foam of the present invention is preferably in the range of 90 to 98%. When the porosity falls below this range, the foam has a high rigidity and a low flexibility. On the other hand, when the porosity exceeds the above range, the mechanical strength of the foam is lowered, and a practical foam molded product cannot be obtained. Moreover, the thickness of the partition walls forming the pores of the foam is preferably in the range of 10 to 300 μm. When the partition wall thickness is less than this range, the mechanical strength of the foam is lowered and a practical foam molded product cannot be obtained. On the other hand, when the partition wall thickness exceeds this range, it is difficult to form the foamed closed cells into open cells, and a foam having flexibility cannot be obtained.

本実施の形態において、発泡体の気孔は、気孔を形成する隔壁が破壊されているため、厳密には、その気孔の最大径および最小径を測定することは極めて困難である。従って、本実施の形態においては、気泡体の断面を撮影した画像を元に、隔壁が破壊され形成されている気孔の元となっている気泡を想定し、その気泡の径を測定ないし算定することによって得ることができる。   In the present embodiment, since the pores of the foam are broken in the present embodiment, strictly speaking, it is extremely difficult to measure the maximum diameter and the minimum diameter of the pores. Therefore, in the present embodiment, based on an image obtained by photographing a cross section of a bubble body, assuming a bubble that is a source of a pore formed by breaking a partition wall, the diameter of the bubble is measured or calculated. Can be obtained.

(水溶性高分子材料)
本発泡材料組成物において、水溶性高分子としては、以下のものが挙げられる。すなわち、アルギン酸、ヒアルロン酸、カラゲナン、寒天、キサンタンガム、ジェランガム、ローカストビーンガム、グアーガム、アラビアガム、ガッティガム、ペクチン、キトサン、マンナン、セルロース、デキストリン、グリコーゲン、澱粉、アミロース、アミロペクチン、にかわ、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルデキストラン、カルボキシメチルプルラン;およびこれらの金属塩、またはこれらの生理学的に許容される人工的な誘導体;およびカルボキシルメチルキチンなどのキチン誘導体;ゼラチン、アルブミン、プロタミン、レシチン、カゼイン、卵白蛋白質、卵黄蛋白質、米蛋白質、小麦蛋白質、大豆蛋白質;およびこれらの金属塩、またはこれらの生理学的に許容される人工的な誘導体;ポリビニルアルコール、ポリエチレングリコール、カルボキシメチルセルロース、メチルセルロース等の合成水溶性高分子物質;およびこれらの金属塩、またはこれらの生理学的に許容される人工的な誘導体などである。
(Water-soluble polymer material)
In the foamed material composition, examples of the water-soluble polymer include the following. That is, alginic acid, hyaluronic acid, carrageenan, agar, xanthan gum, gellan gum, locust bean gum, guar gum, gum arabic, gati gum, pectin, chitosan, mannan, cellulose, dextrin, glycogen, starch, amylose, amylopectin, glue, carboxymethylcellulose, hydroxy Ethyl cellulose, hydroxypropyl cellulose, carboxymethyl dextran, carboxymethyl pullulan; and metal salts thereof, or physiologically acceptable artificial derivatives thereof; and chitin derivatives such as carboxymethyl chitin; gelatin, albumin, protamine, lecithin , Casein, egg white protein, egg yolk protein, rice protein, wheat protein, soybean protein; and metal salts thereof, or this Physiologically acceptable artificial derivatives of: synthetic water-soluble polymeric substances such as polyvinyl alcohol, polyethylene glycol, carboxymethylcellulose, methylcellulose; and metal salts thereof, or physiologically acceptable artificial derivatives thereof Etc.

水溶性高分子の重合平均分子量は、その種類に応じて適宜決定することができる。例えば、アルギン酸類であれば、重量平均分子量は70,000〜100,000程度が好ましい。この場合の重合度は、299〜427程度に相当する。また、ヒアルロン酸類であれば、重量平均分子量は100,000〜150,000程度が好ましく、この場合の重合度は、220〜331程度に相当する。さらに澱粉類であれば100,000〜1,000,000程度が好ましく、この場合の重合度は、617〜6,173程度に相当する。一般的に、水溶性多糖類または水溶性蛋白質の重量平均分子量が増加すると、粘性が増加し溶解が困難となると同時に、発泡体の柔軟性が失われる傾向にある。このため、重量平均分子量の上限は、1,000,000程度に留めることが好ましい。   The polymerization average molecular weight of the water-soluble polymer can be appropriately determined according to the type. For example, in the case of alginic acids, the weight average molecular weight is preferably about 70,000 to 100,000. The degree of polymerization in this case corresponds to about 299 to 427. For hyaluronic acids, the weight average molecular weight is preferably about 100,000 to 150,000, and the degree of polymerization in this case corresponds to about 220 to 331. Furthermore, if it is starch, about 100,000-1,000,000 are preferable, and the polymerization degree in this case is equivalent to about 617-6,173. In general, when the weight average molecular weight of the water-soluble polysaccharide or water-soluble protein increases, the viscosity increases and dissolution becomes difficult, and at the same time, the flexibility of the foam tends to be lost. For this reason, the upper limit of the weight average molecular weight is preferably limited to about 1,000,000.

本発明においては、これらの水溶性高分子は、単独で、もしくは二種以上の材料を混合して用いることができる。これによって、発泡体の機械的特性、発泡倍率等の特性を改善することができる。
二種以上の高分子材料を混合して用いる場合には、見かけ密度すなわちフィルム状に成形した場合の密度が異なるものを混合することが好ましい。その理由は、高分子材料の水溶性、線形性、ゲル化性能等により発泡材料にした場合の発現する性質が異なるため、各高分子材料の短所を補完するような形で、二種以上の高分子材料を混合することにより、機械的特性、発泡倍率、水溶性能等の特性を改善することができるからである。
In the present invention, these water-soluble polymers can be used alone or in admixture of two or more materials. Thereby, characteristics such as mechanical characteristics and foaming ratio of the foam can be improved.
When two or more polymer materials are mixed and used, it is preferable to mix materials having different apparent densities, that is, densities when formed into a film. The reason for this is that the properties expressed when foamed materials differ depending on the water solubility, linearity, gelling performance, etc. of the polymer material. This is because by mixing the polymer material, properties such as mechanical properties, expansion ratio, and water performance can be improved.

(発泡材料組成物)
上述したような水溶性高分子は、発泡剤、可塑剤とともに水に溶解して、本発明の実施形態にかかる発泡材料組成物が得られる。
(Foaming material composition)
A water-soluble polymer as described above is dissolved in water together with a foaming agent and a plasticizer to obtain a foamed material composition according to an embodiment of the present invention.

なお本発明の実施形態にかかる発泡材料組成物には、生成した気泡を安定化するために、発泡剤を添加することができる。発泡剤としては界面活性剤等を用いることができ、特にイオン系界面活性剤あるいは非イオン系界面活性剤が挙げられる。イオン系界面活性剤は、例えば、ステアリン酸ナトリウム、ドデシル硫酸ナトリウム、αオレフィンスルホン酸塩、スルホアルキルアミド、モノカルボキシ−ココ−イミダゾリン化合物、ジカルボキシ−ココ−イミダゾリン化合物、および硫酸化脂肪族ポリオキシエチレン第4窒素化合物から選ぶことができる。一方、非イオン系界面活性剤は、例えば、オクチルフェノールエトキシレート、修飾直鎖脂肪族ポリエーテル類、およびソルビタンエステル類から選ぶことができる。発泡剤は、水溶性・安全性・生分解性等を勘案して適宜選択すればよいが、これらに限定されるものではない。   In addition, in order to stabilize the produced | generated bubble, the foaming agent can be added to the foaming material composition concerning embodiment of this invention. As the foaming agent, a surfactant or the like can be used, and in particular, an ionic surfactant or a nonionic surfactant can be mentioned. Examples of the ionic surfactant include sodium stearate, sodium dodecyl sulfate, α-olefin sulfonate, sulfoalkylamide, monocarboxy-coco-imidazoline compound, dicarboxy-coco-imidazoline compound, and sulfated aliphatic polyoxy It can be selected from ethylene quaternary nitrogen compounds. On the other hand, the nonionic surfactant can be selected from, for example, octylphenol ethoxylate, modified linear aliphatic polyethers, and sorbitan esters. The foaming agent may be appropriately selected in consideration of water solubility, safety, biodegradability and the like, but is not limited thereto.

発泡剤の添加量は、通常、発泡材料組成物100重量%に対して1〜10重量%程度である。添加量が1重量%未満の場合には、発泡剤の効果を十分に得ることが困難となる。一方、10重量%を越えると、発泡体の機械特性や環境調和性が損なわれるおそれがある。   The addition amount of the foaming agent is usually about 1 to 10% by weight with respect to 100% by weight of the foam material composition. When the addition amount is less than 1% by weight, it is difficult to sufficiently obtain the effect of the foaming agent. On the other hand, if it exceeds 10% by weight, the mechanical properties and environmental harmony of the foam may be impaired.

また本発明の実施形態にかかる発泡材料組成物には、成形した発泡体の機械的特性を最適なものに調整するために、可塑剤を添加することができる。可塑剤としては、例えば、グリセロール、グルコース、多価アルコール、トリエタノールアミン、ステアリン酸塩、ジグリセリン、トリグリセリン、ぺンタグリセリン、デカグリセリンから選ぶことができる。可塑剤は、水溶性・安全性・生分解性等を勘案して適宜選択すればよいが、これらに限定されるものではない。可塑剤は、発泡後の発泡体に柔軟性を与え、かつ発泡体製造時の送風乾燥の際に収縮を低減する作用を有する。   In addition, a plasticizer can be added to the foamed material composition according to the embodiment of the present invention in order to adjust the mechanical properties of the molded foam to an optimum one. The plasticizer can be selected from, for example, glycerol, glucose, polyhydric alcohol, triethanolamine, stearate, diglycerin, triglycerin, pentaglyserin, and decaglycerin. The plasticizer may be appropriately selected in consideration of water solubility, safety, biodegradability, etc., but is not limited thereto. The plasticizer has an effect of imparting flexibility to the foam after foaming and reducing shrinkage during blow drying at the time of foam production.

可塑剤の含有量は、通常、発泡材料組成物100重量%に対して20〜40重量%程度である。20重量%未満の場合には、可塑剤の効果を十分に得ることが困難となる。一方、40重量%を越えると、発泡体のもつ機械特性や環境調和性が損なわれるおそれがある。   The content of the plasticizer is usually about 20 to 40% by weight with respect to 100% by weight of the foam material composition. When the amount is less than 20% by weight, it is difficult to sufficiently obtain the effect of the plasticizer. On the other hand, if it exceeds 40% by weight, the mechanical properties and environmental harmony of the foam may be impaired.

本発明の発泡材料組成物には、必要に応じて、オリゴマーあるいはポリマーのフォーム改質剤を含有させてもよい。フォーム改質剤を含有することによって、発泡材料の柔軟性や靱性を改善するため用いることができる。フォーム改質剤としては、例えば、ポリエチレングリコール、ポリアクリルアミド、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリオキサゾリン、およびポリエチレンイミンなどが挙げられる。こうしたフォーム改質剤を用いる場合には、発泡材料組成物100重量%に対して1重量%程度の割合で配合すれば、その効果を得ることができる。ただし、フォーム改質剤が過剰に含有された場合には、発泡体のもつ機械特性や環境調和性が損なわれるといった不都合が生じるおそれがあるので、その配合量は、発泡材料組成物100重量%に対して3重量%程度に留めることが望まれる。   The foam material composition of the present invention may contain an oligomer or polymer foam modifier as required. By containing a foam modifier, it can be used to improve the flexibility and toughness of the foamed material. Examples of the foam modifier include polyethylene glycol, polyacrylamide, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, polyoxazoline, and polyethyleneimine. When such a foam modifier is used, the effect can be obtained by blending it at a ratio of about 1% by weight with respect to 100% by weight of the foam material composition. However, if the foam modifier is contained excessively, there is a risk that the mechanical properties and environmental harmony of the foam may be impaired, so the blending amount is 100% by weight of the foam material composition. It is desirable to keep it at about 3% by weight.

本発明の実施形態にかかる発泡材料組成物には、必要に応じて熱に対する安定性を高める意味合いでフォーム安定剤を配合してもよい。フォーム安定剤は、例えば、ステアリン酸アンモニウム、ドデシルアルコール、テトラデカノール、ヘキサデカノール、トリデシルオキシポリエタノール、およびポリオキシエチル化オレイルアミンから選ぶことができる。その配合量は、特に限定されないが、通常発泡材料組成物100重量%に対して1重量%程度であれば、十分な効果を発揮することができる。ただし、過剰に配合された場合には、発泡体のもつ機械特性や環境調和性が損なわれるおそれがあるので、配合量の上限は3重量%程度に留めることが望まれる。   In the foam material composition according to the embodiment of the present invention, a foam stabilizer may be blended in the sense of enhancing the stability to heat, if necessary. The foam stabilizer can be selected from, for example, ammonium stearate, dodecyl alcohol, tetradecanol, hexadecanol, tridecyloxypolyethanol, and polyoxyethylated oleylamine. Although the compounding quantity is not specifically limited, if it is about 1 weight% with respect to 100 weight% of a foaming material composition normally, sufficient effect can be exhibited. However, since the mechanical properties and environmental harmony of the foam may be impaired when excessively blended, it is desirable that the upper limit of the blending amount be limited to about 3% by weight.

(発泡材料組成物の粘度)
発泡材料組成物の粘度は、1.0×101(Pa・s)以上1.5×107(Pa・s)以下であることが好ましい。本発明の実施形態にかかる発泡材料組成物は水に溶解して調製されるが、粘性が低いと発泡状態の膜が破泡してしまうため、発泡材料組成物の粘度は1.0×101(Pa・s)以上とすることが好ましい。一方、発泡材料の発泡倍率と良好な柔軟性を維持するために、本発明の実施形態にかかる発泡材料組成物の粘度の上限は1.5×107(Pa・s)が好ましい。
本実施の形態において、発泡材料組成物の粘度は、水溶性高分子の種類、重合度、重量平均分子量、および含有量によって決定される。したがって、この粘度範囲が得られるように、水溶性高分子の種類等に応じて含有量を調整すればよい。発泡材料の発泡の状態を良好に保つためには、水溶液粘度を制御することが好ましい。特に材料的な脆さが少なく、加工しやすく、ポリマーの耐久性が大きいことなどを考慮すると、粘度はこの範囲にあることが望まれる。本実施の形態の発泡体を緩衝材として使用する場合には、良好な機械的特性を発現することが求められ、発泡材料組成物の粘度は、1.8×102(Pa・s)以上6.0×104(Pa・s)以下であることが好ましい。
(Viscosity of foam material composition)
The viscosity of the foam material composition is preferably 1.0 × 101 (Pa · s) or more and 1.5 × 107 (Pa · s) or less. The foam material composition according to the embodiment of the present invention is prepared by dissolving in water. However, if the viscosity is low, the foamed film breaks, so the viscosity of the foam material composition is 1.0 × 101. (Pa · s) or more is preferable. On the other hand, in order to maintain the foaming ratio and good flexibility of the foam material, the upper limit of the viscosity of the foam material composition according to the embodiment of the present invention is preferably 1.5 × 10 7 (Pa · s).
In the present embodiment, the viscosity of the foam material composition is determined by the type of water-soluble polymer, the degree of polymerization, the weight average molecular weight, and the content. Therefore, what is necessary is just to adjust content according to the kind etc. of water-soluble polymer so that this viscosity range may be obtained. In order to keep the foaming state of the foamed material good, it is preferable to control the viscosity of the aqueous solution. In particular, it is desirable that the viscosity be in this range, considering that the material is less brittle, easy to process, and has a high durability of the polymer. When the foam of the present embodiment is used as a cushioning material, it is required to exhibit good mechanical properties, and the viscosity of the foam material composition is 1.8 × 102 (Pa · s) or more 6 It is preferably 0.0 × 10 4 (Pa · s) or less.

(発泡体の製造)
上述したような水溶性高分子、発泡剤、および可塑剤を水に溶解して所定粘度の水溶液として、本実施の形態にかかる発泡材料組成物を得る。この発泡材料組成物を用いて、以下の方法により本実施の形態にかかる発泡体を作製することができる。
(Manufacture of foam)
The foaming material composition according to the present embodiment is obtained as an aqueous solution having a predetermined viscosity by dissolving the water-soluble polymer, the foaming agent, and the plasticizer as described above in water. Using this foam material composition, the foam according to the present embodiment can be produced by the following method.

発泡体の作製に当たっては、まず、発泡材料組成物を機械的に攪拌することによって発泡材料を泡立てする。機械的攪拌は、例えばプレッシャーミキサー、連続高圧発泡ミキサー、台所用ミキサー、ビーター、ホモジナイザーによって行なうことができる。この泡立ての時間によって、得られる発泡材料の気泡径を制御することができる。発泡体の気孔径は、通常5〜2000μmの範囲内であり、50〜500μmの範囲内に制御されることが好ましい。径が5μm未満の小さな気泡は、作製することが極めて困難である。一方、2000μmを越えて大きな径を有する気泡が存在すると、発泡状態の維持が困難となる、または発泡体の柔軟性が失われるといった不都合が生じるおそれがある。なお、発泡材料組成物を泡立てする際、水溶液の粘度が材料の発泡の状態、性質等に大きく影響を及ぼすため、これを制御する必要がある。こうした理由から、発泡材料組成物の粘度は、上述したように1.0×101(Pa・s)以上1.5×107(Pa・s)以下であることが好ましい。   In producing the foam, first, the foamed material is foamed by mechanically stirring the foamed material composition. Mechanical stirring can be performed by, for example, a pressure mixer, a continuous high pressure foaming mixer, a kitchen mixer, a beater, or a homogenizer. The bubble diameter of the obtained foamed material can be controlled by the foaming time. The pore diameter of the foam is usually in the range of 5 to 2000 μm and preferably controlled in the range of 50 to 500 μm. Small bubbles with a diameter of less than 5 μm are extremely difficult to produce. On the other hand, if there are bubbles having a large diameter exceeding 2000 μm, it may be difficult to maintain the foamed state, or the foam may lose its flexibility. In addition, when foaming a foam material composition, since the viscosity of aqueous solution has a big influence on the foaming state of a material, a property, etc., it is necessary to control this. For these reasons, the viscosity of the foamed material composition is preferably 1.0 × 101 (Pa · s) or more and 1.5 × 107 (Pa · s) or less as described above.

発泡材料組成物を泡立てすることによって、湿潤状態の発泡材料が形成される。例えば、これを所望の型内に注型し、流延して発泡材料のフィルム状ないし板状体を成形する。この厚さは、約1mm以下から約50mm以上の厚さに、用途に応じて任意に選択することができる。厚い板状体の場合は、内部に“気泡破壊”の層を有することもできる。“気泡破壊”とは、せん断力や切断などの外的要因により破泡し、気泡が肥大化または一部欠落する現象をさす。発泡体の表面に存在する気泡は、著しく気泡破壊されずに、新たに製造された気泡と同様な外観であり、またほぼ等しい気泡径および気泡径分布を有する。図1に見られるように好ましくは、発泡体は連通気泡を介して、マトリクスとなる水溶性樹脂が層構造になっているものがよい。発泡体の気孔として、独立気泡が大部分を占めると、気孔の隔壁が厚くなったり、組成むらがでたりするため加熱時の柔軟性が低下して好ましくない。   By foaming the foam material composition, a wet foam material is formed. For example, it is cast in a desired mold and cast to form a film or plate-like body of foamed material. This thickness can be arbitrarily selected from about 1 mm or less to about 50 mm or more depending on the application. In the case of a thick plate-like body, it is possible to have a “bubble destruction” layer inside. “Bubble breakage” refers to a phenomenon in which bubbles are broken by external factors such as shearing force or cutting, and bubbles are enlarged or partially lost. The bubbles present on the surface of the foam do not significantly break down the bubbles, have the same appearance as newly produced bubbles, and have approximately the same bubble size and bubble size distribution. As seen in FIG. 1, the foam preferably has a layered structure of a water-soluble resin serving as a matrix via open cells. When the closed cells occupy most of the pores of the foam, the partition walls of the pores become thick and the composition is uneven, which is not preferable because flexibility during heating is lowered.

注型後には、送風乾燥・凍結乾燥等の乾燥処理を施して水分を含有率10%以下まで除去することによって、目的の微細気泡構造を有する発泡体が作製される。乾燥処理は、室温(25℃)にて2日間程度、または水の融点以下の温度かつ真空に近い圧力で1日程度行なうことが望まれる。十分に乾燥処理が行なわれなかった場合には、使用中の水分蒸発または流出により、水分に弱い物質に影響を及ぼすといった不都合が生じるおそれがある。また、発泡材料の特性を損なわず、良好な成形性を保つ観点から、10℃付近にて10Pa以下で乾燥を行うことが特に好ましいがこの方法に限定されない。常温対流乾燥などは、例えば、密閉空間内に送風を行うことが可能な装置(卓上換気装置、局所排気装置)によって達成することができる。   After casting, a foam having a desired fine cell structure is produced by performing drying treatment such as blow drying and freeze drying to remove moisture to a content of 10% or less. Desirably, the drying process is performed at room temperature (25 ° C.) for about 2 days, or at a temperature below the melting point of water and at a pressure close to vacuum for about 1 day. If the drying process is not performed sufficiently, there is a possibility that inconveniences such as influencing substances that are sensitive to moisture may occur due to evaporation or outflow of moisture during use. In addition, from the viewpoint of maintaining good moldability without impairing the properties of the foam material, it is particularly preferable to perform drying at 10 Pa or less at around 10 ° C., but the method is not limited thereto. Room temperature convection drying and the like can be achieved, for example, by a device (desktop ventilation device, local exhaust device) that can blow air into the sealed space.

所定の条件下で乾燥処理を施すことによって、本発明の実施形態にかかる発泡体が作製される。すなわち、水溶性高分子と、発泡剤と、可塑剤とによってマトリックスが構成され、このマトリックス中には、発泡剤の作用により所定のサイズで形成された気泡が分散される。得られた発泡体がシート状の場合には、そのまま用いることによって、電子機器等、予め水や湿度に触れる可能性の少ない部分に適用することができる。あるいは、本発明の実施形態にかかるシート状の発泡材料は、複数枚を重ねて使用してもよい。この場合には、少なくとも2層のシートは、互いに積層し機械的あるいは化学的に接着する。具体的には2液混合エポキシ系、ゴム系、シアノアクリレート系、酢酸ビニール樹脂エマルジョン、澱粉糊などの接着剤を使用したり、ホットメルト接着剤を塗工した樹脂フィルム、ポリイミド系接着フィルム、エチレン・アクリル酸系共重合体接着フィルムなどのフィルムを間に挟むことによって重ね合わせて複合構造を形成する。こうした材料は、例えば、シートを単独でまたは積層して耐水性のポリ袋などに収容し、電子機器等の予め水や湿度に触れる可能性の少ない部分に適用することが可能である。   A foam according to an embodiment of the present invention is produced by performing a drying process under predetermined conditions. That is, a matrix is composed of a water-soluble polymer, a foaming agent, and a plasticizer, and bubbles formed in a predetermined size are dispersed in the matrix by the action of the foaming agent. When the obtained foam is in the form of a sheet, it can be used as it is in an electronic device or the like where there is little possibility of being exposed to water or humidity in advance. Alternatively, a plurality of sheet-like foam materials according to the embodiment of the present invention may be used. In this case, the at least two sheets are laminated and bonded mechanically or chemically. Specifically, two-component mixed epoxy, rubber, cyanoacrylate, vinyl acetate resin emulsion, resin film coated with hot melt adhesive, polyimide adhesive film, ethylene, etc. -A composite structure is formed by stacking films such as an acrylic acid copolymer adhesive film in between. Such a material can be applied, for example, to a part that is less likely to come into contact with water or humidity in advance, such as a sheet of water alone or laminated and housed in a water-resistant plastic bag.

(成形体、用途)
本発明の実施形態にかかる発泡体は、緩衝材として優れた性質を持っており、医療系材料、細胞培養用固定化培地、工業用・農業用・食品用の包装用資材(例えば食品トレーなど)の原料として用いることができる。さらには、その他シートなど任意の形状で、包装用容器(ワンウェイ容器)、玩具、シート、家具部品、建材や自動車、家電製品、OA機器の部材、内装材、およびハウジングなどに有効利用ができるものと期待される。
(Molded body, application)
The foam according to the embodiment of the present invention has excellent properties as a buffer material, and is a medical material, a cell culture immobilization medium, an industrial, agricultural, or food packaging material (such as a food tray). ). In addition, other forms such as other sheets can be effectively used for packaging containers (one-way containers), toys, sheets, furniture parts, building materials, automobiles, home appliances, OA equipment members, interior materials, housings, etc. It is expected.

本発明の実施形態にかかる発泡体は、板状体のみならず、造形品として注型することもできる。なお、造形品とは、人が創造した、デザイン、工芸などの作品、商品などをさす。この場合には、例えば、プレス型、プラスチック用射出成形の型、プラスチック用ブロー成形の型のような型が用いられる。こうした型を用いて発泡材料組成物を注型することによって、造形品を成形することができる。   The foam according to the embodiment of the present invention can be cast not only as a plate-like body but also as a shaped article. A modeled product refers to a work, product, etc. created by a person, such as design and craft. In this case, for example, a mold such as a press mold, a plastic injection mold, or a plastic blow mold is used. A shaped article can be molded by casting the foam material composition using such a mold.

(発泡体の評価)
作製された発泡体について60℃で6時間まで加熱し、直径2cm、長さ10cmのフッ素樹脂(テフロン(商標登録))棒を用いて材料に荷重をかけ柔軟性を評価した。
また、発泡体の評価として、水溶性の評価を行っているが、本実施の形態においては、一定量の発泡体をその20倍量の室温の水に浸漬し、完全に溶解するまでの時間が60分以内であれば、十分な水溶性を有していると判断することができる。
(Evaluation of foam)
The prepared foam was heated at 60 ° C. for up to 6 hours, and the flexibility was evaluated by applying a load to the material using a fluororesin (Teflon (registered trademark)) rod having a diameter of 2 cm and a length of 10 cm.
In addition, as an evaluation of the foam, water solubility is evaluated. In this embodiment, a certain amount of foam is immersed in 20 times the amount of room temperature water and completely dissolved. Is within 60 minutes, it can be judged that it has sufficient water solubility.

(発泡体の再生)
本発明の発泡体を、緩衝材または構造材として使用されることによって、発泡体は圧縮されて、緩衝材としての機能が低下することがある。こうした場合には、本発明の実施形態にかかる方法によって発泡体を再生することができる。本発明の実施形態にかかる発泡体は、水溶性多糖類または水溶性蛋白質を含有しているので、使用後に容易に処理することができる。すなわち、発泡体を水に溶解して水溶物を得る工程と、前記水溶物を発泡させる工程と、前記水溶物から前記水を除去して再生発泡材料を成形する工程とを具備する方法によって、本発明の実施形態にかかる発泡材料を再生することが可能である。
(Regeneration of foam)
When the foam of the present invention is used as a cushioning material or a structural material, the foam may be compressed and the function as the cushioning material may be reduced. In such a case, the foam can be regenerated by the method according to the embodiment of the present invention. Since the foam according to the embodiment of the present invention contains a water-soluble polysaccharide or a water-soluble protein, it can be easily treated after use. That is, by a method comprising: dissolving a foam in water to obtain a water-soluble substance; foaming the water-soluble substance; and removing the water from the water-soluble substance to form a regenerated foam material. It is possible to regenerate the foam material according to the embodiment of the present invention.

基本的には、水に発泡材料を加え、フッ素樹脂(テフロン(商標登録))製などの撹拌翼が付随した撹拌装置等を用いて攪拌することによって溶解して水溶物を得ることができる。発泡体を水に溶解するに当たっては、得られる水溶物の粘度が所定の範囲内となるように、水量を調整することが望まれる。具体的には、発泡体を溶解してなる水溶物の粘度は、1.0×101(Pa・s)以上1.5×107(Pa・s)以下であることが好ましい。すでに説明したように、発泡体の水溶物を泡立てする際には、この水溶物の粘度が得られる発泡体の発泡の状態、性質等に大きく影響を及ぼすため、これを事前に制御する必要がある。発泡体の濃度によらず、数分から1時間で容易に溶解することができ、再生する場合に溶解に手間がかかることもない。発泡体の溶解に当たっては、例えば加熱機能つき撹拌装置(ホットスターラー)等を用いて60℃程度まで昇温させてもよい。これによって、発泡体の溶解を促進することが可能となる。ただし、過剰に高温に加熱した場合には、発泡体に含まれる水溶性多糖類または水溶性蛋白質の分子量低下が起こり、発泡体の機械的特性全般が低下するおそれがある。これを避けるため、加熱温度の上限は80℃程度とすることが望まれる。   Basically, it can be dissolved by adding a foaming material to water and stirring using a stirrer or the like accompanied by a stirring blade made of fluororesin (Teflon (registered trademark)) or the like to obtain an aqueous solution. In dissolving the foam in water, it is desirable to adjust the amount of water so that the viscosity of the obtained water-soluble matter is within a predetermined range. Specifically, the viscosity of the water-soluble material obtained by dissolving the foam is preferably 1.0 × 101 (Pa · s) or more and 1.5 × 107 (Pa · s) or less. As already explained, when foaming a foam water solution, the viscosity of this water solution greatly affects the foaming state and properties of the foam, so it is necessary to control this beforehand. is there. Regardless of the concentration of the foam, it can be easily dissolved in a few minutes to 1 hour, and it does not take time to dissolve when it is regenerated. In dissolving the foam, the temperature may be raised to about 60 ° C. using, for example, a stirrer with a heating function (hot stirrer). This makes it possible to promote dissolution of the foam. However, when heated to an excessively high temperature, the molecular weight of the water-soluble polysaccharide or water-soluble protein contained in the foam may decrease, and the mechanical properties of the foam may be deteriorated in general. In order to avoid this, it is desirable that the upper limit of the heating temperature be about 80 ° C.

発泡体を水に溶解させることによって、運搬の際に従来の発泡体よりも大量に運ぶことが可能となり、発泡体の再生や処理に有利となる。従来の発泡体は、運搬の際、車両の最大積載量に対して15重量%程度しか運ぶことができない。これに対して、本発明の実施形態にかかる発泡体では、ほとんどの水溶性多糖類または水溶性蛋白質において、15重量%以上で溶解することができる。また、水溶物の粘度を1.0×101(Pa・s)以上1.5×107(Pa・s)以下に制御することによって、発泡して再生することが可能である。運搬の際に粘度を所定の範囲に制御できなかった場合は、発泡直前にバージン材を混合すればよい。あるいは、水を混合して粘度を調整することによって、良好な発泡材料を再生することができる。   By dissolving the foam in water, the foam can be transported in a larger amount than the conventional foam during transportation, which is advantageous for the regeneration and processing of the foam. The conventional foam can only carry about 15% by weight with respect to the maximum load capacity of the vehicle during transportation. On the other hand, the foam according to the embodiment of the present invention can be dissolved at 15% by weight or more in most water-soluble polysaccharides or water-soluble proteins. Further, by controlling the viscosity of the water-soluble substance to 1.0 × 101 (Pa · s) or more and 1.5 × 107 (Pa · s) or less, it is possible to foam and regenerate. If the viscosity cannot be controlled within a predetermined range during transportation, a virgin material may be mixed immediately before foaming. Alternatively, a good foam material can be regenerated by adjusting the viscosity by mixing water.

発泡材料を溶解して所定粘度の水溶物を得、これを用いて上述したような手法にしたがって再生発泡体を作製することができる。すなわち、まず、水溶物を泡立てすることによって発泡体の湿潤状態を形成する。この際の気泡径は、上述の同様の理由から、5〜2000μmの範囲内に制御することが望まれる。   A foamed material is dissolved to obtain a water-soluble material having a predetermined viscosity, and a recycled foam can be produced by using the water-soluble material according to the method described above. That is, first, a wet state of the foam is formed by foaming a water solution. It is desirable to control the bubble diameter at this time within the range of 5 to 2000 μm for the same reason as described above.

これを所望の型内に流延して、所定の厚さの板状体あるいは造形品を成形する。注型後には、室温または融点以下の温度で送風乾燥・凍結乾燥等の乾燥処理を施して、水分を除去することによって、目的の微細気泡構造を有する再生発泡体が得られる。   This is cast into a desired mold to form a plate-like body or shaped article having a predetermined thickness. After casting, a regenerated foam having a desired fine cell structure is obtained by performing drying treatment such as blow drying and freeze drying at room temperature or a temperature below the melting point to remove moisture.

所定の条件下で乾燥処理を施すことによって、水溶性高分子と、発泡剤と、可塑剤とを含むマトリックス、および、前記マトリックス中に分散され、前記発泡剤により形成された気泡を含有する再生発泡体が作製される。本発明の実施形態にかかる方法により再生された発泡体は、使用前の発泡体(バージン材)と比較して、その特性は何等遜色ない。このため、バージン材と同様の種々の用途に用いることができる。すなわち、再生された発泡体がシート状の場合には、そのまま用いることによって、電子機器等、予め水や湿度に触れる可能性の少ない部分に適用することができる。あるいは、再生されたシート状の発泡材料は、複数枚を重ねて使用してもよい。この場合には、少なくとも2層のシートは、互いに積層し機械的あるいは化学的に接着する。具体的には接着剤を使用したり、フィルムを間に挟むことにより重ね合わせて複合構造を形成する。こうした材料は、例えば、シートを単独でまたは積層して耐水性のポリ袋などに収容し、電子機器等の予め水や湿度に触れる可能性の少ない部分に適用することができる。   Regeneration containing a water-soluble polymer, a foaming agent, a matrix containing a plasticizer, and bubbles dispersed in the matrix and formed by the foaming agent by performing a drying treatment under predetermined conditions A foam is made. The foam regenerated by the method according to the embodiment of the present invention is in no way inferior to the foam (virgin material) before use. For this reason, it can be used for various uses similar to the virgin material. In other words, when the regenerated foam is in the form of a sheet, it can be used as it is and applied to a part that is unlikely to come into contact with water or humidity in advance, such as an electronic device. Alternatively, a plurality of regenerated sheet-like foam materials may be used. In this case, the at least two sheets are laminated and bonded mechanically or chemically. Specifically, the composite structure is formed by using an adhesive or overlapping the film by sandwiching it. Such a material can be applied, for example, to a part that is less likely to come into contact with water or humidity in advance, for example, in a sheet of water alone or laminated and housed in a water-resistant plastic bag.

上述したように、本発明の実施形態にかかる発泡材料は、特定の水溶性多糖類または水溶性蛋白質と発泡剤と可塑剤とを含有する組成物から作製されるので、環境負荷は最小限に低減される。しかも、優れた柔軟力および復元力を備えている。さらに、本発明の実施形態にかかる発泡材料は水溶性であることから、本発明の実施形態にかかる方法によって容易に再生することが可能である。再生後の発泡材料も、バージン材と同様に優れた柔軟力および復元力を備え、緩衝材として再利用が可能となる。
As described above, the foaming material according to the embodiment of the present invention is made from a composition containing a specific water-soluble polysaccharide or water-soluble protein, a foaming agent, and a plasticizer, so that the environmental burden is minimized. Reduced. Moreover, it has excellent flexibility and resilience. Furthermore, since the foamed material according to the embodiment of the present invention is water-soluble, it can be easily regenerated by the method according to the embodiment of the present invention. The foamed material after regeneration also has excellent flexibility and restoring force similar to the virgin material, and can be reused as a cushioning material.

以下、本発明の実施例および比較例を示す。   Examples of the present invention and comparative examples are shown below.

(実施例1)
まず、水溶性多糖類としてアルギン酸プロピレングリコールエステル(キミカ製キミロイドHV、重量平均分子量Mw:約100,000)を用意し、6重量%の濃度で水に溶解して水溶液を調製した。得られた水溶液200gに、発泡剤としてドデシル硫酸ナトリウム(和光純薬工業製)1.2g、および可塑剤としてグリセリン(ナカライテスク製)5.7gを添加して、実施例1の発泡材料組成物を調製した。この発泡材料組成物を台所用ミキサーで撹拌して、発泡材料の湿潤状態を形成した。この発泡材料組成物を直径10cm程度のディスポカップに入れ−43℃で14時間予備凍結を行った。その後カッター等で厚み1cm程度の円柱状にカットし、乾燥温度10℃、圧力10Pa以下にて30時間乾燥を行って発泡体を作製した。乾燥後の発泡体の見かけ密度は0.086g/cm3、発泡倍率は約10.6倍であった。作製された発泡体について断面写真を撮影した。この写真を図1に示す。
Example 1
First, alginic acid propylene glycol ester (Kimiloid HV produced by Kimika, weight average molecular weight Mw: about 100,000) was prepared as a water-soluble polysaccharide, and dissolved in water at a concentration of 6% by weight to prepare an aqueous solution. To 200 g of the obtained aqueous solution, 1.2 g of sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries) as a foaming agent and 5.7 g of glycerin (manufactured by Nacalai Tesque) as a plasticizer are added. Was prepared. This foam material composition was stirred with a kitchen mixer to form a wet state of the foam material. This foamed material composition was put into a disposable cup having a diameter of about 10 cm and pre-frozen at -43 ° C. for 14 hours. Thereafter, it was cut into a cylindrical shape having a thickness of about 1 cm with a cutter or the like, and dried for 30 hours at a drying temperature of 10 ° C. and a pressure of 10 Pa or less to produce a foam. The apparent density of the foam after drying was 0.086 g / cm 3 and the expansion ratio was about 10.6 times. A cross-sectional photograph was taken of the produced foam. This photograph is shown in FIG.

また、発泡体を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡体は10分で完全に溶解した。水溶時間が60分以内であれば、発泡体は十分な水溶性を有しているといえる。
さらに、作製された発泡体について、3cm四方のサンプルを高さ3cmに積層し、60℃、湿度10%以下、で6時間加熱し、直径2cm、長さ10cmのフッ素樹脂(テフロン(商標登録))棒を用いて、試験荷重0.112kgf/cm2となるように材料に荷重をかけ柔軟性を評価した。評価指標は、◎:圧縮歪み10〜30%、完全回復まで0〜10秒、○:圧縮歪み10〜30%、完全回復まで10〜30秒、△:圧縮歪み5〜10%、×:圧縮歪み0〜5%とした。その結果を、表1に示す。
表の結果から明らかなように、本実施例の発泡体は、加熱後も十分な柔軟性を維持しており、柔軟性が良好と判断した。
Further, an aqueous solution containing the foam at a concentration of 5% by weight was prepared, and the time until the foam was completely dissolved (water solution time) was measured. In this example, the foam was completely dissolved in 10 minutes. If the water-soluble time is within 60 minutes, it can be said that the foam has sufficient water-solubility.
Furthermore, about the produced foam, a 3 cm square sample was laminated | stacked on 3 cm in height, it heated at 60 degreeC and humidity 10% or less for 6 hours, and the fluororesin (Teflon (trademark registration)) of diameter 2cm and length 10cm. ) Using a bar, the material was loaded so that the test load was 0.112 kgf / cm 2, and the flexibility was evaluated. Evaluation indexes are: ◎: compression strain 10-30%, complete recovery 0-10 seconds, ○: compression strain 10-30%, complete recovery 10-30 seconds, Δ: compression strain 5-10%, ×: compression The strain was set to 0 to 5%. The results are shown in Table 1.
As is clear from the results in the table, the foam of this example maintained sufficient flexibility even after heating, and was judged to have good flexibility.

(実施例2)
グリセリンを1.5g入れた以外は、実施例1と同様の手法で実施例2の発泡体を作製した。乾燥後の発泡体の見かけ密度は0.059g/cm3、発泡倍率は約15.6倍であった。
また、発泡体を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡体は10分で完全に溶解しており、十分な水溶性を有していることがわかった。
(Example 2)
A foam of Example 2 was produced in the same manner as in Example 1 except that 1.5 g of glycerin was added. The apparent density of the foam after drying was 0.059 g / cm 3 and the expansion ratio was about 15.6 times.
Further, an aqueous solution containing the foam at a concentration of 5% by weight was prepared, and the time until the foam was completely dissolved (water solution time) was measured. In this example, it was found that the foam was completely dissolved in 10 minutes and had sufficient water solubility.

さらに、作製された発泡体について実施例1と同様にして柔軟性を評価した。その結果を、表1に示す。本実施例の発泡体は、加熱後も十分な柔軟性を維持しており、柔軟性が良好と判断した。   Further, the flexibility of the produced foam was evaluated in the same manner as in Example 1. The results are shown in Table 1. The foam of this example maintained sufficient flexibility even after heating and was judged to have good flexibility.

(実施例3)
まず、水溶性多糖類としてアルギン酸プロピレングリコールエステル(キミカ製キミロイドHV、重量平均分子量Mw:約100,000)を用意し、6重量%の濃度で水に溶解して水溶性多糖類の水溶液を調製した。また第二の水溶性多糖類としてアルファ化澱粉(日本食品化工製ワキシーアルファーD−6)を用意し、30重量%の濃度で水に溶解して水溶液を調製した。各水溶液をアルギン酸プロピレングリコールエステルとアルファ化澱粉の重量比が3:1となるように混合して得られた混合溶液160gに、発泡剤としてドデシル硫酸ナトリウム(和光純薬工業製)1.2g、および可塑剤としてグリセリン(ナカライテスク製)5.7gを添加して、本実施例の発泡材料組成物を調製した。この発泡材料組成物を台所用ミキサーで撹拌して、発泡材料の湿潤状態を形成した。この発泡材料組成物を直径10cm程度のディスポカップに入れ−43℃で14時間予備凍結を行った。その後カッター等で厚み1cm程度の円柱状にカットし、乾燥温度10℃、圧力10Pa以下にて30時間乾燥を行って発泡体を作製した。乾燥後の発泡体の見かけ密度は0.079g/cm3、発泡倍率は約11.6倍であった。
(Example 3)
First, a propylene glycol alginate (Kimiloid HV manufactured by Kimika, weight average molecular weight Mw: about 100,000) is prepared as a water-soluble polysaccharide and dissolved in water at a concentration of 6% by weight to prepare an aqueous solution of the water-soluble polysaccharide. did. Also, pregelatinized starch (Nippon Food Chemicals Waxy Alpha D-6) was prepared as the second water-soluble polysaccharide and dissolved in water at a concentration of 30% by weight to prepare an aqueous solution. Into 160 g of a mixed solution obtained by mixing each aqueous solution so that the weight ratio of propylene glycol alginate and pregelatinized starch was 3: 1, 1.2 g of sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) as a foaming agent, Then, 5.7 g of glycerin (manufactured by Nacalai Tesque) was added as a plasticizer to prepare a foam material composition of this example. This foam material composition was stirred with a kitchen mixer to form a wet state of the foam material. This foamed material composition was put into a disposable cup having a diameter of about 10 cm and pre-frozen at -43 ° C. for 14 hours. Thereafter, it was cut into a cylindrical shape having a thickness of about 1 cm with a cutter or the like, and dried for 30 hours at a drying temperature of 10 ° C. and a pressure of 10 Pa or less to produce a foam. The apparent density of the foam after drying was 0.079 g / cm 3 and the expansion ratio was about 11.6 times.

また、この発泡体を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡体は10分で完全に溶解し、十分な水溶性を有していることがわかった。   Also, an aqueous solution containing this foam at a concentration of 5% by weight was prepared, and the time until the foam was completely dissolved (water-soluble time) was measured. In this example, it was found that the foam completely dissolved in 10 minutes and had sufficient water solubility.

さらに、作製された発泡体について実施例1と同様にして柔軟性を評価した。その結果を、表1に示す。本実施例の発泡体は、加熱後も十分な柔軟性を維持しており、柔軟性が良好と判断した。   Further, the flexibility of the produced foam was evaluated in the same manner as in Example 1. The results are shown in Table 1. The foam of this example maintained sufficient flexibility even after heating and was judged to have good flexibility.

(実施例4)
まず、水溶性多糖類としてアルギン酸プロピレングリコールエステル(キミカ製キミロイドHV、重量平均分子量Mw:約100,000)を用意し、6重量%の濃度で水に溶解して水溶性多糖類の水溶液を調製した。また第二の水溶性多糖類としてカルボキシメチルセルロースナトリウム(ナカライテスク製)を用意し、5重量%の濃度で水に溶解して水溶液を調製した。各水溶液をアルギン酸プロピレングリコールエステルとカルボキシメチルセルロースナトリウムの重量比が3:1となるように混合して得られた混合溶液210gに、発泡剤としてドデシル硫酸ナトリウム(和光純薬工業製)1.2g、および可塑剤としてグリセリン(ナカライテスク製)5.7gを添加した以外は、実施例1と同様の処方で発泡体を作製した。乾燥後の発泡体の見かけ密度は0.063g/cm3、発泡倍率は約14.6倍であった。
Example 4
First, a propylene glycol alginate (Kimiloid HV manufactured by Kimika, weight average molecular weight Mw: about 100,000) is prepared as a water-soluble polysaccharide and dissolved in water at a concentration of 6% by weight to prepare an aqueous solution of the water-soluble polysaccharide. did. Further, sodium carboxymethylcellulose (manufactured by Nacalai Tesque) was prepared as the second water-soluble polysaccharide, and dissolved in water at a concentration of 5% by weight to prepare an aqueous solution. To 210 g of a mixed solution obtained by mixing each aqueous solution so that the weight ratio of propylene glycol alginate and sodium carboxymethylcellulose is 3: 1, 1.2 g of sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) as a foaming agent, A foam was prepared in the same manner as in Example 1, except that 5.7 g of glycerin (manufactured by Nacalai Tesque) was added as a plasticizer. The apparent density of the foam after drying was 0.063 g / cm 3 and the expansion ratio was about 14.6 times.

また、この発泡体を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡体は10分で完全に溶解し、十分な水溶性を有していることがわかった。   Also, an aqueous solution containing this foam at a concentration of 5% by weight was prepared, and the time until the foam was completely dissolved (water-soluble time) was measured. In this example, it was found that the foam completely dissolved in 10 minutes and had sufficient water solubility.

さらに、作製された発泡体について実施例1と同様にして柔軟性を評価した。その結果を、表1に示す。本実施例の発泡体は、加熱後も十分な柔軟性を維持しており、柔軟性が良好と判断した。   Further, the flexibility of the produced foam was evaluated in the same manner as in Example 1. The results are shown in Table 1. The foam of this example maintained sufficient flexibility even after heating and was judged to have good flexibility.

(実施例5)
まず、水溶性多糖類としてアルギン酸プロピレングリコールエステル(キミカ製キミロイドHV、重量平均分子量Mw:約100,000、フィルムの見かけ密度0.92g/cm3)を用意し、6重量%の濃度で水に溶解して水溶性多糖類の水溶液を調製した。また第二の水溶性多糖類としてゼラチン(ナカライテスク製)を用意し、10重量%の濃度で水に溶解して水溶液を調製した。各水溶液をアルギン酸プロピレングリコールエステルとゼラチンの重量比が11:1となるように混合して得られた混合溶液193.3gに、発泡剤としてドデシル硫酸ナトリウム(和光純薬工業製)1.2g、および可塑剤としてグリセリン(ナカライテスク製)5.7gを添加した以外は、実施例1と同様の処方で発泡体を作製した。乾燥後の発泡体の見かけ密度は0.055g/cm3、発泡倍率は約16.7倍であった。
(Example 5)
First, a propylene glycol alginate ester (Kimiloid HV, manufactured by Kimika, weight average molecular weight Mw: about 100,000, apparent density of film 0.92 g / cm3) is prepared as a water-soluble polysaccharide, and dissolved in water at a concentration of 6% by weight. Thus, an aqueous solution of the water-soluble polysaccharide was prepared. Moreover, gelatin (manufactured by Nacalai Tesque) was prepared as the second water-soluble polysaccharide, and dissolved in water at a concentration of 10% by weight to prepare an aqueous solution. Each solution was mixed with 193.3 g of a mixed solution of propylene glycol alginate and gelatin so that the weight ratio was 11: 1, 1.2 g of sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) as a foaming agent, A foam was prepared in the same manner as in Example 1, except that 5.7 g of glycerin (manufactured by Nacalai Tesque) was added as a plasticizer. The apparent density of the foam after drying was 0.055 g / cm 3 and the expansion ratio was about 16.7 times.

また、この発泡体を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡材料は8分で完全に溶解し、発泡体は十分な水溶性を有していることがわかった。   Also, an aqueous solution containing this foam at a concentration of 5% by weight was prepared, and the time until the foam was completely dissolved (water-soluble time) was measured. In this example, it was found that the foam material was completely dissolved in 8 minutes and the foam had sufficient water solubility.

さらに、作製された発泡体について実施例1と同様にして柔軟性を評価した。その結果を、表1に示す。本実施例の発泡体は、加熱後も十分な柔軟性を維持しており、柔軟性が良好と判断した。   Further, the flexibility of the produced foam was evaluated in the same manner as in Example 1. The results are shown in Table 1. The foam of this example maintained sufficient flexibility even after heating and was judged to have good flexibility.

(実施例6)
まず、水溶性多糖類としてアルギン酸プロピレングリコールエステル(キミカ製キミロイドHV、重量平均分子量Mw:約100,000)を用意し、6重量%の濃度で水に溶解して水溶性多糖類の水溶液を調製した。また第二の水溶性多糖類としてヒドロキシエチルセルロース(ダイセル化学工業製HECダイセルSP600)を用意し、5重量%の濃度で水に溶解して水溶液を調製した。各水溶液をアルギン酸プロピレングリコールエステルとヒドロキシエチルセルロースの重量比が3:1となるように混合して得られた混合溶液210gに、発泡剤としてドデシル硫酸ナトリウム(和光純薬工業製)1.2g、および可塑剤としてグリセリン(ナカライテスク製)5.7gを添加した以外は、実施例1と同様の処方で発泡体を作製した。乾燥後の発泡体の見かけ密度は0.072g/cm3、発泡倍率は約12.8倍であった。
(Example 6)
First, a propylene glycol alginate (Kimiloid HV manufactured by Kimika, weight average molecular weight Mw: about 100,000) is prepared as a water-soluble polysaccharide and dissolved in water at a concentration of 6% by weight to prepare an aqueous solution of the water-soluble polysaccharide. did. Further, hydroxyethyl cellulose (HEC Daicel SP600 manufactured by Daicel Chemical Industries) was prepared as the second water-soluble polysaccharide, and dissolved in water at a concentration of 5% by weight to prepare an aqueous solution. To a mixed solution 210 g obtained by mixing each aqueous solution so that the weight ratio of propylene glycol alginate and hydroxyethyl cellulose is 3: 1, 1.2 g of sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries) as a foaming agent, and A foam was prepared in the same manner as in Example 1 except that 5.7 g of glycerin (manufactured by Nacalai Tesque) was added as a plasticizer. The apparent density of the foam after drying was 0.072 g / cm 3 and the expansion ratio was about 12.8 times.

また、この発泡体を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡体は12分で完全に溶解し、発泡体は十分な水溶性を有していることがわかった。   Also, an aqueous solution containing this foam at a concentration of 5% by weight was prepared, and the time until the foam was completely dissolved (water-soluble time) was measured. In this example, the foam was completely dissolved in 12 minutes, and it was found that the foam had sufficient water solubility.

さらに、作製された発泡体について実施例1と同様にして柔軟性を評価した。その結果を、表1に示す。本実施例の発泡体は、加熱後も十分な柔軟性を維持しており、柔軟性が良好と判断した。   Further, the flexibility of the produced foam was evaluated in the same manner as in Example 1. The results are shown in Table 1. The foam of this example maintained sufficient flexibility even after heating and was judged to have good flexibility.

(比較例1)
まず、水溶性多糖類としてアルギン酸プロピレングリコールエステル(キミカ製キミロイドHV、重量平均分子量Mw:約100,000)を用意し、6重量%の濃度で水に溶解して水溶液を調製した。得られた水溶液200gに、発泡剤としてドデシル硫酸ナトリウム(和光純薬工業製)1.2g、および可塑剤としてグリセリン(ナカライテスク製)5.7gを添加して、比較例1の発泡材料組成物を調製した。この発泡材料組成物を台所用ミキサーで撹拌して、発泡材料の湿潤状態を形成した。さらに、金属トレイの上に拡げ、2日間常温送風乾燥させて発泡体を作製した。乾燥後の発泡体の見かけ密度は0.158g/cm3、発泡倍率は約5.8倍であった。作製された発泡体について断面写真を撮影した。この写真を図2に示す。図1の実施例1の断面写真と比較して、気泡が大きく、かつ粗大気泡も見られた。
(Comparative Example 1)
First, alginic acid propylene glycol ester (Kimiloid HV produced by Kimika, weight average molecular weight Mw: about 100,000) was prepared as a water-soluble polysaccharide, and dissolved in water at a concentration of 6% by weight to prepare an aqueous solution. To 200 g of the obtained aqueous solution, 1.2 g of sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries) as a foaming agent and 5.7 g of glycerin (manufactured by Nacalai Tesque) as a plasticizer are added. Was prepared. This foam material composition was stirred with a kitchen mixer to form a wet state of the foam material. Further, it was spread on a metal tray and dried by blowing at room temperature for 2 days to produce a foam. The apparent density of the foam after drying was 0.158 g / cm 3 and the expansion ratio was about 5.8 times. A cross-sectional photograph was taken of the produced foam. This photograph is shown in FIG. Compared with the cross-sectional photograph of Example 1 in FIG. 1, large bubbles and coarse bubbles were also observed.

また、発泡材料を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡体は25分で完全に溶解したが、本発明の実施例と比較して十分ではなかった。   Moreover, the aqueous solution which contains a foaming material by the density | concentration of 5 weight% was prepared, and time (water-soluble time) until a foam melt | dissolves completely was measured. In this example, the foam completely dissolved in 25 minutes, but was not sufficient compared to the example of the present invention.

さらに、作製された発泡体について実施例1と同様にして柔軟性を評価した。その結果を、表1に示す。本比較例の発泡体は、加熱処理をすると硬化してしまったため、本実施例の発泡体に比べ、圧縮特性は良好ではなかった。   Further, the flexibility of the produced foam was evaluated in the same manner as in Example 1. The results are shown in Table 1. Since the foam of this comparative example was cured by heat treatment, the compression characteristics were not good compared to the foam of this example.

(比較例2)
まず、水溶性多糖類または水溶性蛋白質としてアルギン酸プロピレングリコールエステル(キミカ製キミロイドHV、重量平均分子量Mw:約100,000)を用意し、6重量%の濃度で水に溶解して水溶性多糖類の水溶液を調製した。また第二の水溶性多糖類としてアルファ化澱粉(日本食品化工製ワキシーアルファーD−6)を用意し、30重量%の濃度で水に溶解して水溶液を調製した。各水溶液をアルギン酸プロピレングリコールエステルとアルファ化澱粉の重量比が3:1となるように混合して得られた混合溶液160gに、発泡剤としてドデシル硫酸ナトリウム(和光純薬工業製)1.2g、および可塑剤としてグリセリン(ナカライテスク製)5.7gを添加して、本実施例の発泡剤組成物を調製した。この発泡材料組成物を台所用ミキサーで撹拌して、発泡材料の湿潤状態を形成した。さらに、金属トレイの上に拡げ、2日間常温送風乾燥させて発泡体を作製した。乾燥後の発泡体の見かけ密度は0.228g/cm3、発泡倍率は約4.2倍であった。また、発泡体を5重量%の濃度で含む水溶液を調製し、発泡体が完全に溶解するまでの時間(水溶時間)を測定した。本実施例においては、発泡体は25分で完全に溶解した。発泡体は水溶性を有しているが、本発明の実施例と比較して十分ではなかった。
(Comparative Example 2)
First, as a water-soluble polysaccharide or water-soluble protein, alginate propylene glycol ester (Kimiloid HV, manufactured by Kimika, weight average molecular weight Mw: about 100,000) is prepared and dissolved in water at a concentration of 6% by weight to dissolve the water-soluble polysaccharide. An aqueous solution of was prepared. Also, pregelatinized starch (Nippon Food Chemicals Waxy Alpha D-6) was prepared as the second water-soluble polysaccharide and dissolved in water at a concentration of 30% by weight to prepare an aqueous solution. Into 160 g of a mixed solution obtained by mixing each aqueous solution so that the weight ratio of propylene glycol alginate and pregelatinized starch was 3: 1, 1.2 g of sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) as a foaming agent, Then, 5.7 g of glycerin (manufactured by Nacalai Tesque) was added as a plasticizer to prepare a foaming agent composition of this example. This foam material composition was stirred with a kitchen mixer to form a wet state of the foam material. Further, it was spread on a metal tray and dried by blowing at room temperature for 2 days to produce a foam. The apparent density of the foam after drying was 0.228 g / cm 3 and the expansion ratio was about 4.2 times. Further, an aqueous solution containing the foam at a concentration of 5% by weight was prepared, and the time until the foam was completely dissolved (water solution time) was measured. In this example, the foam was completely dissolved in 25 minutes. Although the foam has water solubility, it was not sufficient as compared with the examples of the present invention.

さらに、作製された発泡体について実施例1と同様にして柔軟性を評価した。その結果を、表1に示す。本比較例の発泡体は、加熱処理をすると硬化してしまったため、本実施例の材料に比べ、圧縮特性は良好ではなかった。
Further, the flexibility of the produced foam was evaluated in the same manner as in Example 1. The results are shown in Table 1. Since the foam of this comparative example was cured by heat treatment, the compression characteristics were not good as compared with the material of this example.

本発明の実施例1で作製した発泡体の断面写真であるIt is a cross-sectional photograph of the foam produced in Example 1 of the present invention. 比較例1で作製した発泡体の断面写真であるIt is a cross-sectional photograph of the foam produced in Comparative Example 1.

Claims (6)

水溶性高分子で形成された多孔質体であって、該多孔質体を構成する気孔が、気泡の破壊により連通している気孔であることを特徴とする発泡体。   A foam comprising a porous body formed of a water-soluble polymer, wherein pores constituting the porous body are pores communicating with each other by destruction of bubbles. 前記気孔の最小径(a)と最大径(b)の比(b/a)が3以上である気孔が、前記発泡体の全気孔体積の80%以上を占めることを特徴とする請求項1に記載の発泡体。   The pores having a ratio (b / a) of 3 or more of the minimum diameter (a) and the maximum diameter (b) of the pores occupy 80% or more of the total pore volume of the foam. The foam described in 1. 前記気孔の最小径(a)が、0.10mm以上0.35mm以下の範囲にあることを特徴とする請求項1に記載の発泡体。   2. The foam according to claim 1, wherein the pore has a minimum diameter (a) in a range of 0.10 mm to 0.35 mm. 前記水溶性高分子が、アルギン酸エステル類であることを特徴とする請求項1に記載の発泡体。   The foam according to claim 1, wherein the water-soluble polymer is an alginate. 水溶性高分子からなる樹脂の水溶液を発泡して発泡組成物を得る工程と、
前記発泡組成物を凍結させ発泡凍結物を得る工程と、
前記発泡凍結物を乾燥する工程とを具備することを特徴とする発泡体の製造方法。
Foaming an aqueous resin solution comprising a water-soluble polymer to obtain a foamed composition;
Freezing the foam composition to obtain a frozen foam;
And a step of drying the frozen foamed product.
水溶性高分子で形成された発泡体を水に溶解して水溶性高分子の水溶物を得る工程と、
前記水溶物を発泡して発泡組成物を得る工程と、
前記発泡組成物を凍結させ発泡凍結物を得る工程と、
前記発泡凍結物を乾燥させ発泡体を形成する工程とを具備することを特徴とする発泡体の再生方法。
Dissolving a foam formed of a water-soluble polymer in water to obtain a water-soluble polymer water-soluble matter;
Foaming the aqueous solution to obtain a foamed composition;
Freezing the foam composition to obtain a frozen foam;
And a step of drying the frozen foam to form a foam.
JP2005285507A 2005-09-29 2005-09-29 Foam and methods for manufacturing and regenerating the same Pending JP2007091954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285507A JP2007091954A (en) 2005-09-29 2005-09-29 Foam and methods for manufacturing and regenerating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285507A JP2007091954A (en) 2005-09-29 2005-09-29 Foam and methods for manufacturing and regenerating the same

Publications (1)

Publication Number Publication Date
JP2007091954A true JP2007091954A (en) 2007-04-12

Family

ID=37978026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285507A Pending JP2007091954A (en) 2005-09-29 2005-09-29 Foam and methods for manufacturing and regenerating the same

Country Status (1)

Country Link
JP (1) JP2007091954A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091953A (en) * 2005-09-29 2007-04-12 Toshiba Corp Foaming material composition, foam and method for regenerating foam
US8268764B2 (en) 2008-12-08 2012-09-18 The Procter & Gamble Company Porous, dissolvable solid substrate and surface resident starch perfume complexes
US8273333B2 (en) 2008-04-16 2012-09-25 The Procter & Gamble Company Non-lathering personal care composition in the form of an article
US8349787B2 (en) 2009-12-08 2013-01-08 The Procter & Gamble Company Porous, dissolvable solid substrate and a cationic surfactant conditioner material
US8349341B2 (en) 2009-12-08 2013-01-08 The Procter & Gamble Company Porous, dissolvable solid substrate and a surface resident coating of cationic surfactant conditioner
US8425622B2 (en) 2011-05-27 2013-04-23 The Procter & Gamble Company Soluble solid hair coloring article
US8439981B2 (en) 2011-05-27 2013-05-14 The Procter & Gamble Company Soluble solid hair coloring article
US8444716B1 (en) 2012-05-23 2013-05-21 The Procter & Gamble Company Soluble solid hair coloring article
US8461090B2 (en) 2008-12-08 2013-06-11 The Procter & Gamble Company Personal care composition in the form of an article having a porous, dissolvable solid structure
US8461091B2 (en) 2008-12-08 2013-06-11 The Procter & Gamble Company Personal care composition in the form of an article having a porous, dissolvable solid structure
US8466099B2 (en) 2008-12-08 2013-06-18 The Procter & Gamble Company Process of making an article for dissolution upon use to deliver surfactants
US8765170B2 (en) 2008-01-30 2014-07-01 The Procter & Gamble Company Personal care composition in the form of an article
CN104231333A (en) * 2014-09-11 2014-12-24 浙江理工大学 Preparation method of modified algae cushion packaging material
US9173826B2 (en) 2010-02-16 2015-11-03 The Procter & Gamble Company Porous, dissolvable solid substrate and surface resident coating comprising a zync pyrithione
US9233055B2 (en) 2012-10-12 2016-01-12 The Procter & Gamble Company Personal care composition in the form of a dissolvable article
US9295859B2 (en) 2009-12-08 2016-03-29 The Procter & Gamble Company Porous, dissolvable solid substrate and surface resident coating comprising matrix microspheres
US9545364B2 (en) 2010-07-02 2017-01-17 The Procter & Gamble Company Dissolvable fibrous web structure article comprising active agents
US10717839B2 (en) 2014-04-22 2020-07-21 The Procter And Gamble Company Compositions in the form of dissolvable solid structures
JPWO2021186982A1 (en) * 2020-03-17 2021-09-23
US11142848B2 (en) 2010-07-02 2021-10-12 The Procter & Gamble Company Dissolvable fibrous web structure article comprising active agents
USD939359S1 (en) 2019-10-01 2021-12-28 The Procter And Gamble Plaza Packaging for a single dose personal care product
USD941051S1 (en) 2020-03-20 2022-01-18 The Procter And Gamble Company Shower hanger
US11351094B2 (en) 2017-05-16 2022-06-07 The Procter And Gamble Company Conditioning hair care compositions in the form of dissolvable solid structures
US11395789B2 (en) 2017-01-27 2022-07-26 The Procter & Gamble Company Compositions in the form of dissolvable solid structures
US11419808B2 (en) 2019-07-03 2022-08-23 The Procter & Gamble Company Fibrous structures containing cationic surfactants and soluble acids
USD962050S1 (en) 2020-03-20 2022-08-30 The Procter And Gamble Company Primary package for a solid, single dose beauty care composition
USD965440S1 (en) 2020-06-29 2022-10-04 The Procter And Gamble Company Package
US11525104B2 (en) 2019-11-20 2022-12-13 The Procter & Gamble Company Porous dissolvable solid structure
US11597191B2 (en) 2019-10-14 2023-03-07 The Procter & Gamble Company Biodegradable and/or home compostable sachet containing a solid article
USD980060S1 (en) 2018-07-16 2023-03-07 The Procter & Gamble Company Container
US11633338B2 (en) 2020-08-11 2023-04-25 The Procter & Gamble Company Moisturizing hair conditioner compositions containing brassicyl valinate esylate
US11633336B2 (en) 2020-08-11 2023-04-25 The Procter & Gamble Company Low viscosity hair conditioner compositions containing brassicyl valinate esylate
US11666514B2 (en) 2018-09-21 2023-06-06 The Procter & Gamble Company Fibrous structures containing polymer matrix particles with perfume ingredients
US11672748B2 (en) 2020-12-01 2023-06-13 The Procter & Gamble Company Aqueous hair conditioner compositions containing solubilized anti-dandruff actives
US11679066B2 (en) 2019-06-28 2023-06-20 The Procter & Gamble Company Dissolvable solid fibrous articles containing anionic surfactants
US11696882B2 (en) 2020-08-11 2023-07-11 The Procter & Gamble Company Clean rinse hair conditioner compositions containing brassicyl valinate esylate
US11826439B2 (en) 2020-09-10 2023-11-28 The Procter & Gamble Company Dissolvable solid article containing anti-bacterial actives
US11896693B2 (en) 2019-12-01 2024-02-13 The Procter & Gamble Company Hair conditioner compositions with a preservative system containing sodium benzoate and glycols and/or glyceryl esters
US11925698B2 (en) 2020-07-31 2024-03-12 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care
US11944693B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Method for delivering an active agent
US11944696B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Detergent product and method for making same
US11951194B2 (en) 2017-01-27 2024-04-09 The Procter & Gamble Company Compositions in the form of dissolvable solid structures comprising effervescent agglomerated particles
US11970789B2 (en) 2010-07-02 2024-04-30 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091953A (en) * 2005-09-29 2007-04-12 Toshiba Corp Foaming material composition, foam and method for regenerating foam
US8765170B2 (en) 2008-01-30 2014-07-01 The Procter & Gamble Company Personal care composition in the form of an article
US8273333B2 (en) 2008-04-16 2012-09-25 The Procter & Gamble Company Non-lathering personal care composition in the form of an article
US8628706B2 (en) 2008-04-16 2014-01-14 The Procter & Gamble Company Non-lathering personal care composition in the form of an article
US8461090B2 (en) 2008-12-08 2013-06-11 The Procter & Gamble Company Personal care composition in the form of an article having a porous, dissolvable solid structure
US8461091B2 (en) 2008-12-08 2013-06-11 The Procter & Gamble Company Personal care composition in the form of an article having a porous, dissolvable solid structure
US8415287B2 (en) 2008-12-08 2013-04-09 The Procter & Gamble Company Porous, dissolvable solid substrate and surface resident inorganic particulate perfume complexes
US8268764B2 (en) 2008-12-08 2012-09-18 The Procter & Gamble Company Porous, dissolvable solid substrate and surface resident starch perfume complexes
US8476211B2 (en) 2008-12-08 2013-07-02 The Procter & Gamble Company Porous, dissolvable solid substrates and surface resident starch perfume complexes
US8349786B2 (en) 2008-12-08 2013-01-08 The Procter & Gamble Company Porous, dissolvable solid substrates and surface resident cyclodextrin perfume complexes
US8466099B2 (en) 2008-12-08 2013-06-18 The Procter & Gamble Company Process of making an article for dissolution upon use to deliver surfactants
US8349787B2 (en) 2009-12-08 2013-01-08 The Procter & Gamble Company Porous, dissolvable solid substrate and a cationic surfactant conditioner material
US8349341B2 (en) 2009-12-08 2013-01-08 The Procter & Gamble Company Porous, dissolvable solid substrate and a surface resident coating of cationic surfactant conditioner
US9295859B2 (en) 2009-12-08 2016-03-29 The Procter & Gamble Company Porous, dissolvable solid substrate and surface resident coating comprising matrix microspheres
US9173826B2 (en) 2010-02-16 2015-11-03 The Procter & Gamble Company Porous, dissolvable solid substrate and surface resident coating comprising a zync pyrithione
US9545364B2 (en) 2010-07-02 2017-01-17 The Procter & Gamble Company Dissolvable fibrous web structure article comprising active agents
US11944696B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Detergent product and method for making same
US11944693B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Method for delivering an active agent
US11142848B2 (en) 2010-07-02 2021-10-12 The Procter & Gamble Company Dissolvable fibrous web structure article comprising active agents
US11970789B2 (en) 2010-07-02 2024-04-30 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same
US8439981B2 (en) 2011-05-27 2013-05-14 The Procter & Gamble Company Soluble solid hair coloring article
US8425622B2 (en) 2011-05-27 2013-04-23 The Procter & Gamble Company Soluble solid hair coloring article
US8444716B1 (en) 2012-05-23 2013-05-21 The Procter & Gamble Company Soluble solid hair coloring article
US9233055B2 (en) 2012-10-12 2016-01-12 The Procter & Gamble Company Personal care composition in the form of a dissolvable article
US10717839B2 (en) 2014-04-22 2020-07-21 The Procter And Gamble Company Compositions in the form of dissolvable solid structures
US11352474B2 (en) 2014-04-22 2022-06-07 The Procter And Gamble Company Compositions in the form of dissolvable solid structures
CN104231333A (en) * 2014-09-11 2014-12-24 浙江理工大学 Preparation method of modified algae cushion packaging material
US11951194B2 (en) 2017-01-27 2024-04-09 The Procter & Gamble Company Compositions in the form of dissolvable solid structures comprising effervescent agglomerated particles
US11529292B2 (en) 2017-01-27 2022-12-20 The Procter & Gamble Company Compositions in the form of dissolvable solid structures
US11395789B2 (en) 2017-01-27 2022-07-26 The Procter & Gamble Company Compositions in the form of dissolvable solid structures
US11351094B2 (en) 2017-05-16 2022-06-07 The Procter And Gamble Company Conditioning hair care compositions in the form of dissolvable solid structures
USD980060S1 (en) 2018-07-16 2023-03-07 The Procter & Gamble Company Container
US11666514B2 (en) 2018-09-21 2023-06-06 The Procter & Gamble Company Fibrous structures containing polymer matrix particles with perfume ingredients
US11679066B2 (en) 2019-06-28 2023-06-20 The Procter & Gamble Company Dissolvable solid fibrous articles containing anionic surfactants
US11419808B2 (en) 2019-07-03 2022-08-23 The Procter & Gamble Company Fibrous structures containing cationic surfactants and soluble acids
USD939359S1 (en) 2019-10-01 2021-12-28 The Procter And Gamble Plaza Packaging for a single dose personal care product
USD1007328S1 (en) 2019-10-01 2023-12-12 The Procter & Gamble Company Packaging for a single dose personal care product
US11597191B2 (en) 2019-10-14 2023-03-07 The Procter & Gamble Company Biodegradable and/or home compostable sachet containing a solid article
US11525104B2 (en) 2019-11-20 2022-12-13 The Procter & Gamble Company Porous dissolvable solid structure
US11896693B2 (en) 2019-12-01 2024-02-13 The Procter & Gamble Company Hair conditioner compositions with a preservative system containing sodium benzoate and glycols and/or glyceryl esters
US11957773B2 (en) 2019-12-01 2024-04-16 The Procter & Gamble Company Hair conditioner compositions containing behenamidopropyl dimethylamine
JPWO2021186982A1 (en) * 2020-03-17 2021-09-23
JP7274041B2 (en) 2020-03-17 2023-05-15 日本たばこ産業株式会社 Porous body manufacturing method and porous body
WO2021186982A1 (en) 2020-03-17 2021-09-23 日本たばこ産業株式会社 Porous body production method and porous body
USD966089S1 (en) 2020-03-20 2022-10-11 The Procter & Gamble Company Primary package for a solid, single dose beauty care composition
USD966088S1 (en) 2020-03-20 2022-10-11 The Procter & Gamble Company Primary package for a solid, single dose beauty care composition
USD941051S1 (en) 2020-03-20 2022-01-18 The Procter And Gamble Company Shower hanger
USD962050S1 (en) 2020-03-20 2022-08-30 The Procter And Gamble Company Primary package for a solid, single dose beauty care composition
USD965440S1 (en) 2020-06-29 2022-10-04 The Procter And Gamble Company Package
US11925698B2 (en) 2020-07-31 2024-03-12 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care
US11696882B2 (en) 2020-08-11 2023-07-11 The Procter & Gamble Company Clean rinse hair conditioner compositions containing brassicyl valinate esylate
US11633336B2 (en) 2020-08-11 2023-04-25 The Procter & Gamble Company Low viscosity hair conditioner compositions containing brassicyl valinate esylate
US11633338B2 (en) 2020-08-11 2023-04-25 The Procter & Gamble Company Moisturizing hair conditioner compositions containing brassicyl valinate esylate
US11826439B2 (en) 2020-09-10 2023-11-28 The Procter & Gamble Company Dissolvable solid article containing anti-bacterial actives
US11672748B2 (en) 2020-12-01 2023-06-13 The Procter & Gamble Company Aqueous hair conditioner compositions containing solubilized anti-dandruff actives

Similar Documents

Publication Publication Date Title
JP2007091954A (en) Foam and methods for manufacturing and regenerating the same
US20230302189A1 (en) Composite materials
Donius et al. Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting
Butylina et al. Properties of as-prepared and freeze-dried hydrogels made from poly (vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique
JP2006342207A (en) Expandable material composition, expanded material, and method for recycling expanded material
Rodriguez et al. High internal phase Pickering emulsions
Demitri et al. Preparation and characterization of cellulose-based foams via microwave curing
Oh et al. High internal phase emulsion templating with self-emulsifying and thermoresponsive chitosan-graft-PNIPAM-graft-oligoproline
Olabarrieta et al. Properties of aged montmorillonite− wheat gluten composite films
JP4762785B2 (en) Gelatin sponge
JP4945157B2 (en) Reproducible foam molded article having excellent restoring force, method for producing the same, and method for regenerating the same
Andrieux et al. Highly ordered biobased scaffolds: From liquid to solid foams
Yadav et al. Emulsion templated scaffolds of poly (ε-caprolactone)–a review
Ghosh et al. The double porogen approach as a new technique for the fabrication of interconnected poly (L-lactic acid) and starch based biodegradable scaffolds
Alander et al. A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption
Mathew et al. Processing of bionanocomposites: solution casting
Barkay‐Olami et al. Novel porous soy protein‐based blend structures for biomedical applications: microstructure, mechanical, and physical properties
Alakalhunmaa et al. Softwood-based sponge gels
Ko et al. Characterization of controlled highly porous hyaluronan/gelatin cross-linking sponges for tissue engineering
JP2007262282A (en) Acoustic material, method for producing the same and method for regenerating acoustic material
Hassan et al. Thermal, mechanical, and rheological properties of micro-fibrillated cellulose-reinforced starch foams crosslinked with polysiloxane-based cross-linking agents
JP2007091953A (en) Foaming material composition, foam and method for regenerating foam
TW477802B (en) Method for preparing hydrophilic porous polymeric materials
WO2010081918A1 (en) Rigid foams of composite type based on biopolymers combined with fibrous clays and method for the preparation thereof
Xu et al. Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020