JP2007091716A - Drug-sustained releasing fine particle in water and method for producing the same - Google Patents

Drug-sustained releasing fine particle in water and method for producing the same Download PDF

Info

Publication number
JP2007091716A
JP2007091716A JP2006227316A JP2006227316A JP2007091716A JP 2007091716 A JP2007091716 A JP 2007091716A JP 2006227316 A JP2006227316 A JP 2006227316A JP 2006227316 A JP2006227316 A JP 2006227316A JP 2007091716 A JP2007091716 A JP 2007091716A
Authority
JP
Japan
Prior art keywords
drug
sustained
fine particles
water
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006227316A
Other languages
Japanese (ja)
Inventor
Shinya Inada
真也 稲田
Shoichi Nishiyama
正一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006227316A priority Critical patent/JP2007091716A/en
Publication of JP2007091716A publication Critical patent/JP2007091716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide sustained releasing fine particles in water, equipped with a sustained releasing performance of gradually releasing a drug into water and also having an excellent skin film strength. <P>SOLUTION: The drug-sustained releasing fine particles are characterized by covering the drug aiming at its sustained release, with a polyvinyl alcohol-based polymer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、徐放を目的とする薬剤あるいは該薬剤を内包した多孔質体をポリビニルアルコール(以下、PVAと称す)系ポリマーで被覆してなる水中薬剤徐放性微粒子およびその製造方法に関する。   The present invention relates to an underwater drug sustained-release fine particle obtained by coating a drug intended for sustained release or a porous body containing the drug with a polyvinyl alcohol (hereinafter referred to as PVA) polymer, and a method for producing the same.

各種薬剤を内包した多孔質微粒子は、マイクロカプセルの一種として従来より様々な用途で検討されてきたが、単に内包するだけでは水中等では速やかに拡散され、持続性に欠けるものであった。そのため、薬剤が基材から水中に徐々に放出される徐放機能の付与が、医薬・農薬等の分野で盛んに開発が行われている。その徐放機構として、例えばロウの様に水に不溶の基剤中に薬物を分散させたり、塩類や水不溶性ポリマーの被覆で徐放機能をもたせる等の開発が行われている。   Porous fine particles encapsulating various drugs have been conventionally studied as various types of microcapsules for various uses. However, simply encapsulating the microparticles diffuses rapidly in water and lacks sustainability. For this reason, development of a sustained release function in which a drug is gradually released from a base material into water has been actively developed in the fields of pharmaceuticals and agricultural chemicals. As the sustained release mechanism, for example, a drug is dispersed in a water-insoluble base such as wax, and a sustained release function is provided by coating with a salt or a water-insoluble polymer.

その中で色素、香料、農薬、医薬等を多孔性微粒子に担持させた被担持物質を透過性物質で被覆することで徐放性を持たせた徐放性微粒子及びその製造方法が開示されている(例えば、特許文献1参照。)。しかしながら、特許文献1のように実質的に水不溶性の透過性物質で被担持物質を被覆する場合には、水中への徐放制御が困難である。
またゼラチンのように水溶性天然高分子を採用しているケースもあるが、水溶性天然高分子は一般的に皮膜強度が非常に弱く、使用条件によっては適用が困難となるばかりか、天然物であるが故に生分解しやすく、海中等自然界に暴露する場合は徐放に寄与する寿命が著しく短くなる。さらにはその被覆方法も生成微粒子の凝集抑制等が考慮されていないものであった。
Among them, there are disclosed sustained-release fine particles having sustained release properties by coating a supported material in which porous fine particles carry pigments, fragrances, agricultural chemicals, medicines, etc., and a method for producing the same. (For example, refer to Patent Document 1). However, when the supported substance is coated with a substantially water-insoluble permeable substance as in Patent Document 1, it is difficult to control the sustained release into water.
In some cases, water-soluble natural polymers such as gelatin are used, but water-soluble natural polymers are generally very weak in film strength and are difficult to apply depending on the conditions of use. Therefore, it is easy to biodegrade, and when exposed to the natural world such as in the sea, the life that contributes to sustained release is remarkably shortened. Further, the coating method does not take into account the suppression of aggregation of the generated fine particles.

特開2003−286196号公報JP 2003-286196 A

本発明の目的は、薬剤が水中に徐々に放出される徐放性能を備え、かつ皮膜強度の優れた水中徐放性微粒子を提供することにある。   An object of the present invention is to provide sustained-release microparticles in water that have a sustained-release capability for gradually releasing a drug into water and that have excellent film strength.

本発明者等は上記課題を達成すべく鋭意検討を行った結果、徐放を目的とする薬剤あるいは該薬剤を内包した多孔質体がPVA系ポリマーで被覆された微粒子とすることにより、水中への徐放制御に優れ、かつ皮膜強度が優れた水中薬剤徐放性微粒子が得られることを見出した。
すなわち本発明は、徐放を目的とする薬剤がPVA系ポリマーで被覆されていることを特徴とする水中薬剤徐放性微粒子であり、好ましくは徐放を目的とする薬剤が多孔質体で内包されてなり、さらに該多孔質体がPVA系ポリマーで被覆されていることを特徴とする上記の水中薬剤徐放性微粒子であり、より好ましくはPVA系ポリマーが微粒子当り1〜95質量%被覆されていることを特徴とする上記の水中薬剤徐放性微粒子である。
As a result of diligent studies to achieve the above-mentioned problems, the present inventors have made into a fine particle coated with a PVA polymer a drug intended for sustained release or a porous body containing the drug. It was found that sustained-release drug-in-water fine particles having excellent sustained release control and excellent film strength can be obtained.
That is, the present invention is a drug-in-water sustained release fine particle characterized in that a drug intended for sustained release is coated with a PVA polymer, and preferably the drug intended for sustained release is encapsulated in a porous material. Further, the above-mentioned sustained-release drug-in-water fine particles are characterized in that the porous body is coated with a PVA polymer, more preferably 1 to 95% by mass of the PVA polymer is coated per fine particle. The above-mentioned sustained-release drug-in-water fine particles.

そして本発明は、PVA系ポリマーを溶解した溶液中で徐放を目的とする薬剤をエマルジョン化した後、溶媒を除去することでエマルジョン化された前記薬剤をPVA系ポリマーで被覆する上記の水中薬剤徐放性微粒子の製造方法であるか、あるいはPVA系ポリマーを溶解した溶液に徐放を目的とする薬剤を内包した多孔質体を浸漬後、溶媒を除去することで前記多孔質体をポリビニルアルコール系ポリマーで被覆する上記の水中薬剤徐放性微粒子の製造方法であり、より好ましくはPVA系ポリマーを熱処理することを特徴とする上記の水中薬剤徐放性微粒子の製造方法であり、さらに好ましくはスプレードライ方式により溶媒を除去することを特徴とする上記の水中薬剤徐放性微粒子の製造方法である。   Then, the present invention provides the above-mentioned drug in water in which the drug intended for sustained release is emulsified in a solution in which the PVA polymer is dissolved, and then the emulsified drug is coated with the PVA polymer by removing the solvent. It is a method for producing sustained-release fine particles, or after immersing a porous body containing a drug intended for sustained release in a solution in which a PVA polymer is dissolved, the solvent is removed to remove the porous body from polyvinyl alcohol. The above-mentioned method for producing sustained-release drug-in-water fine particles coated with a polymer, more preferably, the above-described method for producing sustained-release drug-in-water fine particles, characterized by heat-treating a PVA-based polymer, more preferably The method for producing the above-mentioned sustained-release drug-in-water fine particles, wherein the solvent is removed by a spray drying method.

本発明の微粒子はあらゆる用途に使用でき、農林業、水産、医療、その他徐放目的の分野にて好適に使用することができる。   The fine particles of the present invention can be used for various purposes, and can be suitably used in the fields of agriculture and forestry, fisheries, medicine, and other sustained release purposes.

以下、本発明について具体的に説明する。
本発明の水中薬剤徐放性微粒子において、徐放を目的とする薬剤を被覆する被覆材は、制御の容易さの点から水溶性であることが好ましい。薬剤を徐放させるためには、水溶性の被覆材が徐々に溶解することで溶出を制御することが可能となる。水溶性高分子としては、PVA、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド、ポリアクリル酸、ポリビニルピロリドン、水溶性アルキッド、ポリビニルエーテル、ポリマレイン酸共重合体、ポリエチレンイミン等が挙げられるが、その中でもPVA系ポリマーであることが必要である。
PVA系ポリマーは他の水溶性高分子に比べて皮膜強度に優れるという特性を有しており、水溶性高分子の中で最適である。PVA系ポリマーは分子中に有する水酸基により強固な水素結合を形成するだけでなく、無機多孔性微粒子や極性有機多孔性微粒子との親和性に富んでおり、これらに対する皮膜としても優れた特性を有する。また、PVA被覆部位が水に溶解することで内包薬剤が徐放するだけでなく、被覆PVAが膨潤することで分子ふるいレベルで薬剤徐放制御が可能となる。
また生分解性においてもPVA系ポリマーはPseudomonas属等の微生物でしか分解されない傾向にあるので、後述するが水溶性天然高分子に比べて徐放材として好適である。
また、ポリアクリル酸、ポリエチレンイミン等といったアニオン、カチオン性高分子は、海水中ではその水溶性が低下する傾向となり好ましくないが、PVA系ポリマーは基本的にノニオンであるから、海水中でもその水溶性は大きく変動することなく、徐放性も確保されるという特長を有する。
Hereinafter, the present invention will be specifically described.
In the underwater drug sustained-release fine particles of the present invention, the coating material for coating the drug intended for sustained release is preferably water-soluble from the viewpoint of ease of control. In order to release the drug gradually, the dissolution can be controlled by gradually dissolving the water-soluble coating material. Examples of the water-soluble polymer include PVA, polyethylene glycol, polypropylene glycol, polyacrylamide, polyacrylic acid, polyvinyl pyrrolidone, water-soluble alkyd, polyvinyl ether, polymaleic acid copolymer, and polyethyleneimine. It must be a polymer.
PVA-based polymers have the property of being superior in film strength compared to other water-soluble polymers, and are optimal among water-soluble polymers. PVA-based polymers not only form strong hydrogen bonds due to hydroxyl groups in the molecule, but also have excellent affinity with inorganic porous particles and polar organic porous particles, and have excellent properties as a film against these. . Further, not only the drug contained in the PVA-coated part dissolves in water, but also the sustained release of the drug can be controlled at the molecular sieve level because the coated PVA swells.
Also, in terms of biodegradability, PVA polymers tend to be decomposed only by microorganisms such as Pseudomonas, so that they are suitable as sustained release materials compared to water-soluble natural polymers, which will be described later.
In addition, anionic and cationic polymers such as polyacrylic acid and polyethyleneimine are not preferred because their water solubility tends to decrease in seawater. However, since PVA polymers are basically nonionic, their water solubility in seawater is also undesirable. Has the feature that sustained release is ensured without greatly changing.

一方、例えば塩のような低分子の場合は溶解制御が非常に困難であり、また被覆しにくい。
また、水溶性の天然高分子化合物では一般的に結晶性が弱いため皮膜強度が弱く、使用条件によっては皮膜が容易に崩壊し、徐放寿命を短くする恐れがあるし、天然物であるが故に生分解しやすく、海中等自然界に暴露する場合は徐放に寄与する寿命が著しく短くなる。さらには天然高分子は品種、産地が同一であっても、気温、天候、採取時期によって分子量が若干変化し、またその物性の変化もみられる可能性があり好ましくない。
さらに、水不溶性の被覆材では徐放が非常に困難となる。透過性物質として、透析等の中空濾過膜に用いられているような相分離による連続多孔の導入も考えられるが、担持薬物に応じた孔径制御の必要性があり、非常に汎用性に劣るものとなる。
On the other hand, in the case of a low molecule such as a salt, the dissolution control is very difficult and it is difficult to coat.
In addition, water-soluble natural polymer compounds generally have poor crystallinity, so the film strength is weak, and depending on the conditions of use, the film can easily disintegrate, which may shorten the sustained release life, and is a natural product. Therefore, it is easily biodegradable, and when it is exposed to the natural world such as in the sea, the life that contributes to sustained release is remarkably shortened. Furthermore, natural polymers are not preferable even if the cultivar and production area are the same, the molecular weight slightly changes depending on the temperature, weather, and sampling time, and the physical properties may change.
Furthermore, sustained release becomes very difficult with a water-insoluble coating material. As a permeable substance, introduction of continuous pores by phase separation as used in hollow filtration membranes such as dialysis can be considered, but there is a need for pore size control according to the drug carried, and it is extremely inferior in versatility. It becomes.

本発明に用いられるPVAは特に限定されないが、ビニルアルコールユニットを70モル%以上有するポリマーが好適に使用される。もちろん所望によりエチレン、酢酸ビニル、イタコン酸、ビニルアミン、アクリルアミド、ピバリン酸ビニル、無水マレイン酸、スルホン酸含有ビニル化合物などの構成単位を有していても構わない。しかしながら、皮膜を構成するポリマーの結晶性が低いほど耐水性が低く、「徐放」となるには多量のPVAが必要となることから、結晶化を進行させるためにビニルアルコールユニットが95モル%以上のポリマーが好適に使用される。   The PVA used in the present invention is not particularly limited, but a polymer having 70 mol% or more of vinyl alcohol units is preferably used. Of course, if desired, it may have structural units such as ethylene, vinyl acetate, itaconic acid, vinylamine, acrylamide, vinyl pivalate, maleic anhydride, and sulfonic acid-containing vinyl compounds. However, the lower the crystallinity of the polymer constituting the film, the lower the water resistance, and a large amount of PVA is required for “sustained release”, so that the vinyl alcohol unit is 95 mol% or more in order to promote crystallization. Polymers are preferably used.

さらに本発明の水中薬剤徐放性微粒子は、徐放を目的とする薬剤を内包した多孔質体の状態とし、さらに該多孔質体がPVA系ポリマーで被覆されていることが好ましい。徐放を目的とする薬剤の乳化・微粒子化は一般的に困難で、保護コロイド効果のあるPVA系ポリマーで乳化できるようになるが、薬剤によっては安定な乳化が困難で微粒子化できない場合がある。そのような場合には徐放を目的とする薬剤を予め後述する多孔質微粒子に担持させ、該薬剤を内包した多孔質体とした後、PVA系ポリマーで該多孔質体表面を被覆すればよい。   Further, it is preferable that the sustained-release drug-in-water fine particles of the present invention are in a state of a porous body containing a drug intended for sustained release, and further the porous body is coated with a PVA polymer. It is generally difficult to emulsify and microparticulate a drug for sustained release, and it can be emulsified with a PVA polymer having a protective colloid effect, but depending on the drug, stable emulsification may be difficult and may not be microparticulated. . In such a case, a drug intended for sustained release may be supported in advance on porous fine particles, which will be described later, to form a porous body containing the drug, and then the surface of the porous body may be covered with a PVA polymer. .

また、本発明においてはPVA系ポリマーが微粒子当り1〜95質量%被覆されていることが好ましい。1質量%未満の場合は、被覆量が少ないだけでなく被覆斑も多く、薬剤放出量は未被覆と殆ど変わらず、「徐放」にはなり得ず不適である。一方、被覆率が95質量%より多い場合には、徐放を目的とする薬剤の、微粒子当りの含有量が少なく、そのため薬剤放出量が少ないため不適である。要求される徐放性能に応じ、該範囲内で被覆率を制御すればよいが、より好ましくは5〜90質量%、さらには10〜80質量%であることが徐放寿命の点で好ましい。   In the present invention, the PVA polymer is preferably coated with 1 to 95% by mass per fine particle. When the amount is less than 1% by mass, not only the coating amount is small, but also there are many coating spots, the drug release amount is almost the same as that of the uncoated, and cannot be “sustained release”, which is unsuitable. On the other hand, when the coverage is more than 95% by mass, the content of the drug intended for sustained release per particle is small, and therefore, the drug release amount is small, which is not suitable. The coverage may be controlled within the range according to the required sustained release performance, but it is more preferably 5 to 90% by mass, and further preferably 10 to 80% by mass in terms of sustained release life.

本発明における徐放を目的とする薬剤とは特に限定されず、農薬、医薬、香料、色素、酸素等、微粒子に担持できる薬剤ならば何ら差し支えない。
また、該薬剤を内包する多孔質体に用いる多孔質微粒子も特に限定されず、二酸化ケイ素やケイ酸カルシウム、ゼオライト等の無機多孔質微粒子でもよいし、ポリウレタン、セルロース、フェノール樹脂、エポキシ樹脂等の有機多孔質微粒子でもよい。
薬剤を内包させた多孔質体にPVA系ポリマーを被覆して水中薬剤徐放性微粒子を得るためには、多孔質体の平均粒径は50μm以下であることが好ましい。
The drug for the purpose of sustained release in the present invention is not particularly limited, and any drug that can be carried on fine particles, such as agricultural chemicals, medicines, fragrances, pigments, oxygen, etc. may be used.
Further, the porous fine particles used for the porous material encapsulating the drug are not particularly limited, and may be inorganic porous fine particles such as silicon dioxide, calcium silicate, zeolite, polyurethane, cellulose, phenol resin, epoxy resin, etc. Organic porous fine particles may be used.
In order to obtain a drug-in-water sustained-release fine particle by coating a PVA polymer on a porous body encapsulating a drug, the average particle diameter of the porous body is preferably 50 μm or less.

次に本発明の水中徐放性微粒子の製造方法について説明する。
本発明の水中徐放性微粒子を得るためには、PVA系ポリマーを溶解した溶液に徐放を目的とする薬剤を分散させた後、加熱するなどして溶媒を除去して前記薬剤をPVA系ポリマーで被覆するか、あるいはPVA系ポリマーを溶解した溶液に前記薬剤を内包した多孔質体を分散させた後、加熱するなどして溶媒を除去して前記薬剤を内包した多孔質体をPVA系ポリマーで被覆することで得られる。
PVA系ポリマーの溶解方法、溶媒の除去方法は特に限定されるものではなく、用途に応じ選定することが可能であるが、徐放を目的とする薬剤をPVA系ポリマーで被覆する方法としては、1)徐放を目的とする薬剤そのものをPVA系ポリマーで被覆した微粒子、2)前記薬剤を内包した多孔質体をPVA系ポリマーで被覆した微粒子、のケースでそれぞれ異なる。
前者1)のケースについては、PVA系ポリマーで構成される微粒子内に徐放を目的とする薬剤が分散、すなわち実質的にPVA系ポリマーが前記薬剤を被覆している状態であればよく、例えば前記薬剤が水溶性である場合はPVA系ポリマー溶液中に前記薬剤を溶解させた後、溶液中の水を乾燥することで、PVA系ポリマーで被覆された微粒子を得ればよい。
また前記薬剤が非水溶性である場合は、前記薬剤を融点以上に加熱して溶融させた状態でPVA系ポリマー溶液中で乳化分散させた後、溶液中の溶媒を乾燥・除去することで、PVA系ポリマーで被覆された微粒子を得ればよいし、単純に融点以下の温度で薬剤そのものをPVA系ポリマー溶液中で分散させた後に同様の処理をしてPVA系ポリマーで被覆された微粒子を得てもよい。
後者2)のケースについては、前記した多孔質体の孔内に徐放を目的とする薬剤を内包させたものを、PVA系ポリマーを溶解した溶液に添加した後、溶媒を除去することで得られる。多孔質体へ前記薬剤を内包させる方法としては、前記薬剤を融点以上に加熱した溶融液中へ多孔質体を浸漬する方法でもよいし、前記薬剤が溶解し得る溶媒に溶解させた溶液中へ多孔質体を浸漬する方法でもよい。
また、前記多孔質体の浸漬分散濃度については、多孔質体のPVA系ポリマー水溶液中での分散安定性により適宜適正量を調整すればよいが、多孔質体の分散濃度が低すぎると乾燥にかかるエネルギーが多く非効率であり、また多すぎると分散が不安定となり、二次凝集や沈降、チキソトロピック性が発現するなどの問題が生じる。好ましくは1〜30質量%、さらには5〜20質量%が好適である。
Next, the method for producing sustained-release fine particles in water of the present invention will be described.
In order to obtain the sustained-release fine particles in water of the present invention, a drug intended for sustained release is dispersed in a solution in which a PVA polymer is dissolved, and then the solvent is removed by heating or the like to remove the drug from the PVA system. After the porous body containing the drug is dispersed in a solution in which the polymer is coated or the PVA polymer is dissolved, the solvent is removed by heating or the like, and the porous body containing the drug is removed from the PVA system. Obtained by coating with polymer.
The method for dissolving the PVA-based polymer and the method for removing the solvent are not particularly limited and can be selected according to the use. However, as a method for coating a drug intended for sustained release with a PVA-based polymer, 1) Fine particles obtained by coating a drug intended for sustained release with a PVA polymer, and 2) Fine particles obtained by coating a porous material containing the drug with a PVA polymer.
For the case of the former 1), it is sufficient that the drug intended for sustained release is dispersed in the fine particles composed of the PVA polymer, that is, the PVA polymer is substantially covered with the drug. When the drug is water-soluble, the drug is dissolved in the PVA polymer solution, and then water in the solution is dried to obtain fine particles coated with the PVA polymer.
When the drug is water-insoluble, after the drug is heated to the melting point or higher and melted in a PVA polymer solution, the solvent in the solution is dried and removed. It is only necessary to obtain fine particles coated with a PVA polymer, or simply disperse a drug itself in a PVA polymer solution at a temperature below the melting point and then perform the same treatment to obtain fine particles coated with the PVA polymer. May be obtained.
In the case of the latter 2), the above-mentioned porous body is encapsulated with a drug intended for sustained release, added to the solution in which the PVA polymer is dissolved, and then the solvent is removed. It is done. The method of encapsulating the drug in the porous body may be a method of immersing the porous body in a melt in which the drug is heated to a melting point or higher, or into a solution in which the drug can be dissolved. A method of immersing the porous body may be used.
The immersion dispersion concentration of the porous body may be appropriately adjusted depending on the dispersion stability of the porous body in the PVA polymer aqueous solution. However, if the dispersion concentration of the porous body is too low, the porous body is dried. Such energy is inefficient and inefficient, and if too much, dispersion becomes unstable, causing problems such as secondary aggregation, sedimentation, and thixotropic properties. Preferably it is 1-30 mass%, Furthermore, 5-20 mass% is suitable.

また、徐放速度を制御する目的でPVA系ポリマーを熱処理することも好適である。一般的に結晶性水溶性合成高分子であるPVA系ポリマーを熱処理することにより結晶化が促進され、皮膜の水溶速度や膨潤度に変化が生じることで、徐放速度を制御することができる。徐放速度は熱処理温度および時間により制御できる。   It is also preferable to heat treat the PVA polymer for the purpose of controlling the sustained release rate. In general, crystallization is promoted by heat-treating a PVA polymer that is a crystalline water-soluble synthetic polymer, and the sustained release rate can be controlled by causing a change in the water rate and swelling degree of the film. The sustained release rate can be controlled by the heat treatment temperature and time.

さらに、本発明の水中薬剤徐放性微粒子を得るためには、PVA系ポリマーを溶解した溶液に徐放を目的とする薬剤を分散、あるいは該薬剤を内包した多孔質体を分散させた後、加熱するなどして溶媒を除去することで得られるが、溶媒の除去にはスプレードライ方式を採用することが好ましい。単純に乾燥機に投入する方法では被覆樹脂が微粒子同士のバインダーとして寄与し、結果として微粒子同士が大きく凝集したものしか得られない場合が多い。
スプレードライ方式では噴霧ノズルからミスト状に噴霧された微粒子が、サイクロン空気滞留中に乾燥が完結するため、凝集のない非常に良好な微粒子を得ることができる。また、分散液のまま乾燥できるので、pick−up変動もみられない。またスプレードライ方式を実施するにあたっては、溶液、浸漬等他の条件について特に限定されないが、噴霧ミスト状のまま装置の壁面に付着すると壁面にスケールが溜まり、収率の面で好ましくないため、ミストが壁面に付着しない程度の条件にする必要がある。乾燥温度は溶媒の沸点以上であることが必要で、水の場合は100℃以上、好ましくは120℃以上で乾燥できる。また壁面付着は噴霧ノズルから壁面までの距離や噴霧量にもよるため、装置に応じて適宜調整する必要がある。
Furthermore, in order to obtain the underwater drug sustained-release fine particles of the present invention, after dispersing a drug intended for sustained release in a solution in which a PVA polymer is dissolved, or after dispersing a porous body containing the drug, Although it can be obtained by removing the solvent by heating or the like, it is preferable to employ a spray drying method for removing the solvent. In the method of simply putting it into the dryer, the coating resin contributes as a binder between the fine particles, and as a result, only particles in which the fine particles are largely aggregated are often obtained.
In the spray drying method, fine particles sprayed in a mist form from the spray nozzle are completely dried while the cyclone air stays, and therefore, very good fine particles without aggregation can be obtained. Moreover, since it can dry with a dispersion liquid, pick-up fluctuation | variation is not seen. In carrying out the spray drying method, there are no particular restrictions on other conditions such as solution and immersion, but if it adheres to the wall surface of the device in the form of a spray mist, scale accumulates on the wall surface, which is undesirable in terms of yield. It is necessary to make the condition that does not adhere to the wall surface. The drying temperature needs to be equal to or higher than the boiling point of the solvent. In the case of water, drying can be performed at 100 ° C. or higher, preferably 120 ° C. or higher. Further, since the wall surface adhesion depends on the distance from the spray nozzle to the wall surface and the spray amount, it is necessary to adjust appropriately according to the apparatus.

以下、実施例により本発明を詳述するが、本発明はこれら実施例により何等限定されるものではない。尚、本発明の実施例において、PVA被覆率、徐放剤濃度の測定は以下の方法によって行ったものとする。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples. In the examples of the present invention, the PVA coverage and the sustained-release agent concentration are measured by the following methods.

[PVA被覆率 %]
PVAのヨウ素呈色反応を利用して、以下の方法にて算出した。
1)PVAで被覆した微粒子1gを精秤し[A(g)]、水100mlに投入し、95℃で60分攪拌して被覆PVAを溶解する。その後濾過し、濾液を10ml共栓付試験管に採取し、PVA検出液10mlを加えて混合し、10分後AKA光電比色計で波長670nmにおける吸光度を測定する。
2)別に、既知濃度のPVA水溶液で同様の吸光度を測定し、3点以上で検量線を作成する。
3)検量線より、被覆PVA溶解液中のPVA量[B(g)]を算出する。
4)次式により、微粒子へのPVA被覆率を算出する。
PVA被覆率(%)=B(g)×[100(ml)/10(ml)]/A(g)×100
なお、PVA検出液はヨウ素107g/l、ホウ酸21g/lを含む水溶液である
[PVA coverage%]
It calculated by the following method using the iodine color reaction of PVA.
1) 1 g of fine particles coated with PVA are precisely weighed [A (g)], put into 100 ml of water, and stirred at 95 ° C. for 60 minutes to dissolve the coated PVA. After filtration, the filtrate is collected in a 10 ml stoppered test tube, 10 ml of PVA detection solution is added and mixed, and after 10 minutes, the absorbance at a wavelength of 670 nm is measured with an AKA photoelectric colorimeter.
2) Separately, the same absorbance is measured with a PVA aqueous solution having a known concentration, and a calibration curve is created at three or more points.
3) From the calibration curve, the amount of PVA [B (g)] in the coated PVA solution is calculated.
4) The PVA coverage on the fine particles is calculated by the following formula.
PVA coverage (%) = B (g) × [100 (ml) / 10 (ml)] / A (g) × 100
The PVA detection solution is an aqueous solution containing 107 g / l iodine and 21 g / l boric acid.

[徐放剤濃度 %]
試料溶液を0.5μmのメンブランフィルターで濾過し、5μLを高速液体クロマトグラフに注入、測定した。別途、徐放剤濃度が既知の溶液を測定して検量線を作成し、その検量線より試料溶液中の徐放剤濃度を算出した。尚、測定条件は下記の通りである。
測定機器; 東ソー(株)製高速液体クロマトグラフ(HPLC)
溶離液; アセトニトリル/蒸留水=8/2(体積比)
カラムオーブン温度; 45℃
流量; 0.8mL/min
検出UV波長; 285nm
[Sustained release agent concentration%]
The sample solution was filtered through a 0.5 μm membrane filter, and 5 μL was injected into a high performance liquid chromatograph and measured. Separately, a calibration curve was prepared by measuring a solution having a known sustained release agent concentration, and the sustained release agent concentration in the sample solution was calculated from the calibration curve. Measurement conditions are as follows.
Measuring instrument: Tosoh Corporation high performance liquid chromatograph (HPLC)
Eluent: acetonitrile / distilled water = 8/2 (volume ratio)
Column oven temperature; 45 ° C
Flow rate: 0.8mL / min
Detection UV wavelength: 285 nm

[実施例1]
(1)PVA(株式会社クラレ製「PVA−117」の2質量%水溶液100質量部に対し、徐放を目的とする薬剤として、ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オンをPVAに対し50質量%添加し、50℃にてジクロロ−2−n−オクチル−4−イソチアゾリン−3−オンを溶融させた状態で、1000rpmで3分以上攪拌することで、該薬剤が均一に分散した微粒子分散液を作製した。該分散液をスプレードライ装置(東京理化株式会社製、卓上型スプレードライヤー「SD−1型」)にて乾燥温度120℃でスプレードライを実施し、PVA被覆率65.8質量%の微粒子を作製した。この微粒子は前記薬剤とPVAからのみ構成されており、前記薬剤の含有量は微粒子当り34.2質量%であった。
(2)得られた微粒子を海水(岡山県牛窓沖より採取)中に0.01g/lの濃度で懸濁させ、振とう機を用いて25℃、20rpm/分で所定時間振とうした。所定時間毎に浸漬海水をサンプリングし、該海水中の徐放剤濃度を液体クロマトグラフィーにて測定し、微粒子中に存在する徐放剤濃度を求めた。徐放性能を表1に示す。
[Example 1]
(1) PVA (dichloro-2-n-octyl-4-isothiazolin-3-one as a drug intended for sustained release with respect to 100 parts by mass of a 2% by weight aqueous solution of “PVA-117” manufactured by Kuraray Co., Ltd.) Add 50% by mass with respect to PVA and stir at 1000 rpm for 3 minutes or more with dichloro-2-n-octyl-4-isothiazolin-3-one melted at 50 ° C. A dispersed fine particle dispersion was prepared, and the dispersion was spray-dried at a drying temperature of 120 ° C. using a spray drying apparatus (manufactured by Tokyo Rika Co., Ltd., desktop spray dryer “SD-1 type”) to obtain a PVA coverage. 65.8% by mass of fine particles were prepared, which consisted only of the drug and PVA, and the content of the drug was 34.2% by mass of the fine particles.
(2) The obtained fine particles were suspended at a concentration of 0.01 g / l in seawater (collected from off Ushimado, Okayama Prefecture), and shaken at 25 ° C. and 20 rpm / min for a predetermined time using a shaker. Immersion seawater was sampled every predetermined time, and the sustained-release agent concentration in the seawater was measured by liquid chromatography to determine the sustained-release agent concentration present in the fine particles. The sustained release performance is shown in Table 1.

[実施例2]
徐放を目的とする薬剤であるジクロロ−2−n−オクチル−4−イソチアゾリン−3−オンを、40℃にてメタノールに50質量%溶解させた溶液を作製し、この40℃溶液100質量部に対し多孔質シリカ微粒子(東海化学工業所製「マイクロイドML−384」)を10質量部添加し、30分間浸漬することで前記多孔質シリカ微粒子の孔内部にジクロロ−2−n−オクチル−4−イソチアゾリン−3−オンを注入させた後、濾紙上で濾過し、20℃のメタノールで粒子表面を洗浄し、30℃で一晩放置することで、ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オンを30.3質量%内包した多孔質体を作製した。この多孔質体20質量部とPVA(株式会社クラレ製「PVA−117」)の10質量%水溶液100質量部とを混合し、均一な微粒子分散液を作製する以外は、実施例1と同様にスプレードライを実施し、PVA被覆率33.8%の微粒子を作製した。この微粒子は前記薬剤および該薬剤を内包する多孔質体およびPVAから構成されており、前記薬剤の含有量は微粒子当り20.2質量%であった。得られた微粒子の徐放性能を表1に示す。
[Example 2]
A solution prepared by dissolving 50% by mass of dichloro-2-n-octyl-4-isothiazolin-3-one, a drug intended for sustained release, in methanol at 40 ° C. was prepared, and 100 parts by mass of this 40 ° C. solution. 10 parts by mass of porous silica fine particles (“Microid ML-384” manufactured by Tokai Chemical Industry Co., Ltd.) are added to the inside of the porous silica fine particles to dichloro-2-n-octyl- After injecting 4-isothiazolin-3-one, the mixture was filtered on filter paper, the particle surface was washed with methanol at 20 ° C., and allowed to stand at 30 ° C. overnight, whereby dichloro-2-n-octyl-4- A porous body containing 30.3% by mass of isothiazoline-3-one was produced. Except for mixing 20 parts by mass of this porous body and 100 parts by mass of a 10% by mass aqueous solution of PVA (manufactured by Kuraray Co., Ltd. “PVA-117”), a uniform fine particle dispersion was prepared, as in Example 1. Spray drying was performed to produce fine particles with a PVA coverage of 33.8%. The fine particles were composed of the drug, a porous body containing the drug, and PVA, and the content of the drug was 20.2 mass% per fine particle. The sustained release performance of the obtained fine particles is shown in Table 1.

[実施例3]
PVAの10質量%水溶液を20質量部とする以外は実施例2と同様に微粒子を作製したところ、PVA被覆率は7.0%であり、薬剤含有量は微粒子当り28.2質量%であった。得られた微粒子の徐放性能を表1に示す。
[Example 3]
Fine particles were produced in the same manner as in Example 2 except that the 10% by mass aqueous solution of PVA was changed to 20 parts by mass. As a result, the PVA coverage was 7.0% and the drug content was 28.2% by mass per fine particle. It was. The sustained release performance of the obtained fine particles is shown in Table 1.

[実施例4]
実施例2において、被覆PVAに対し200℃で5分間熱処理を実施した。PVA被覆率は実施例と同じく33.8%であり、薬剤含有量は微粒子当り20.2質量%であった。得られた微粒子の徐放性能を表1に示す。
[Example 4]
In Example 2, the coated PVA was heat treated at 200 ° C. for 5 minutes. The PVA coverage was 33.8% as in the example, and the drug content was 20.2% by mass per fine particle. The sustained release performance of the obtained fine particles is shown in Table 1.

[比較例1]
PVAの1質量%水溶液を6質量部とする以外は実施例2と同様に微粒子を作製した。PVA被覆率は0.3%であり、薬剤含有量は微粒子当り29.8質量%であった。得られた微粒子の徐放性能を表1に示す。
[Comparative Example 1]
Fine particles were prepared in the same manner as in Example 2 except that the 1% by mass aqueous solution of PVA was changed to 6 parts by mass. The PVA coverage was 0.3% and the drug content was 29.8% by mass per microparticle. The sustained release performance of the obtained fine particles is shown in Table 1.

[比較例2]
被覆高分子材料として、固形分濃度を10質量%水溶液に調製したエチレン酢ビ共重合エマルジョン(株式会社クラレ製「パンフレックスOM−4000」)100質量部を選定する以外は実施例1と同様の製法にてエチレン酢ビ共重合体被覆微粒子を作製した。被覆による重量増加分より算出したエチレン酢ビ共重合体被覆率は38.3%であり、薬剤含有量は微粒子当り18.7質量%であった。この得られた微粒子の徐放性能を表1に示す。
[Comparative Example 2]
The same as Example 1 except that 100 parts by mass of an ethylene vinyl acetate copolymer emulsion (Kuraray Co., Ltd. “Panflex OM-4000”) prepared in an aqueous solution having a solid content concentration of 10% by mass was selected as the coating polymer material. Ethylene vinyl acetate copolymer-coated fine particles were produced by the production method. The ethylene vinyl acetate copolymer coverage calculated from the weight increase due to coating was 38.3%, and the drug content was 18.7 mass% per fine particle. The sustained release performance of the obtained fine particles is shown in Table 1.

[比較例3]
被覆高分子材料として、ゼラチン(和光純薬工業株式会社製)の10質量%水溶液100質量部とする以外は実施例1と同様の製造方法にてゼラチン被覆微粒子を作製した。被覆による重量増加分より算出したゼラチン被覆率は35.5%であり、薬剤含有量は微粒子当り19.5質量%であった。この得られた微粒子の徐放性能を表1に示す。
[Comparative Example 3]
Gelatin-coated fine particles were produced by the same production method as in Example 1 except that the coating polymer material was 100 parts by weight of a 10% by weight aqueous solution of gelatin (manufactured by Wako Pure Chemical Industries, Ltd.). The gelatin coverage calculated from the weight increase due to coating was 35.5%, and the drug content was 19.5 mass% per fine particle. The sustained release performance of the obtained fine particles is shown in Table 1.

[比較例4]
被覆高分子材料としてポリアクリル酸(日本純薬株式会社製「AC−10L」、重量平均分子量25,000)の10質量%水溶液100質量部とする以外は、実施例2と同様の製造方法にてポリアクリル酸被覆微粒子を作製した。被覆による重量増加分より算出したポリアクリル酸被覆率は32.4%であり、薬剤含有量は微粒子当り20.5質量%であった。この得られた微粒子の徐放性能を表1に示す。
[Comparative Example 4]
The manufacturing method is the same as in Example 2 except that 100 parts by mass of a 10% by mass aqueous solution of polyacrylic acid (“AC-10L” manufactured by Nippon Pure Chemical Co., Ltd., weight average molecular weight 25,000) is used as the covering polymer material. Thus, polyacrylic acid-coated fine particles were produced. The polyacrylic acid coverage calculated from the weight increase due to coating was 32.4%, and the drug content was 20.5% by mass per fine particle. The sustained release performance of the obtained fine particles is shown in Table 1.

[参考例1]
PVA被覆処理を施していない、実施例2と同様に水中徐放性微粒子を作製し、徐放性能を測定した。結果を表1に示す。
[Reference Example 1]
Underwater sustained-release fine particles were prepared in the same manner as in Example 2 that was not subjected to PVA coating treatment, and the sustained-release performance was measured. The results are shown in Table 1.

Figure 2007091716
Figure 2007091716

表1に示すように、PVA系ポリマーを使用した実施例1〜4では、徐放剤の溶出抑制が確認された。また、被覆率の調整や熱処理により溶出速度を変化させることが可能であることも確認された。
一方で、被覆率が1質量%未満である比較例1では、PVAを被覆しない参考例1と全く同じ結果となった。また、水溶性でない高分子を被覆した比較例2では全く溶出せず、徐放性制御は困難であった。
さらに、天然水溶性高分子であるゼラチンを被覆した比較例3では、240時間浸漬後では薬剤の含有量が著しく低下していた。これは、ゼラチンの皮膜強度が弱く、振とうにより経時的に微粒子の破壊が起こったこともあるが、一方でゼラチンが海水中微生物により生分解されたこともあり、徐放効果の寿命としては短いものであった。
また水溶性合成高分子であるポリアクリル酸を被覆した比較例4では、ポリマーがアニオンであるが故に海水中での溶解速度は淡水に比べ低下するため、長寿命の傾向であったが、皮膜強度自体が弱いため、振とうにより経時的に微粒子の破壊が起こり、240時間後には微粒子の内部にあるシリカ多孔質体の脱落物が多く見られた。
As shown in Table 1, in Examples 1 to 4 using a PVA polymer, suppression of elution of the sustained release agent was confirmed. It was also confirmed that the elution rate can be changed by adjusting the coverage and heat treatment.
On the other hand, in Comparative Example 1 in which the coverage was less than 1% by mass, the same result as in Reference Example 1 in which PVA was not coated was obtained. Further, Comparative Example 2 coated with a non-water-soluble polymer did not elute at all, and it was difficult to control the sustained release.
Furthermore, in Comparative Example 3 in which gelatin, which is a natural water-soluble polymer, was coated, the drug content was significantly reduced after 240 hours of immersion. This is because the film strength of gelatin is weak and the destruction of fine particles has occurred over time due to shaking, but on the other hand, gelatin is biodegraded by microorganisms in seawater. It was short.
In Comparative Example 4 coated with polyacrylic acid, which is a water-soluble synthetic polymer, the dissolution rate in seawater was lower than in freshwater because the polymer was an anion. Since the strength itself was weak, the fine particles were destroyed over time by shaking, and after 240 hours, a large amount of the silica porous body falling off inside the fine particles was observed.

本発明の微粒子は、農林業、水産、医療、その他徐放目的のあらゆる用途分野にて好適に使用することができる。また使用形態も特に限定されず、そのままの形態で散布したり、繊維や布帛の表面に固着したり、塗料等に添加し使用する等、目的に応じた形態で使用可能である。
The fine particles of the present invention can be suitably used in all fields of application such as agriculture and forestry, fisheries, medicine, and other sustained release purposes. Also, the use form is not particularly limited, and it can be used in a form according to the purpose such as spraying as it is, sticking to the surface of a fiber or fabric, adding to a paint or the like.

Claims (7)

徐放を目的とする薬剤がポリビニルアルコール系ポリマーで被覆されていることを特徴とする水中薬剤徐放性微粒子。   An underwater drug sustained-release fine particle characterized in that a drug intended for sustained release is coated with a polyvinyl alcohol polymer. 徐放を目的とする薬剤が多孔質体で内包されてなり、さらに該多孔質体がポリビニルアルコール系ポリマーで被覆されていることを特徴とする請求項1記載の水中薬剤徐放性微粒子。   The sustained-release drug-in-water fine particles according to claim 1, wherein a drug intended for sustained release is encapsulated in a porous material, and the porous material is further coated with a polyvinyl alcohol polymer. ポリビニルアルコール系ポリマーが微粒子当り1〜95質量%被覆されていることを特徴とする請求項1または2記載の水中薬剤徐放性微粒子。   The sustained-release drug-in-water fine particles according to claim 1 or 2, wherein the polyvinyl alcohol polymer is coated in an amount of 1 to 95% by mass per fine particle. ポリビニルアルコール系ポリマーを溶解した溶液中で徐放を目的とする薬剤をエマルジョン化した後、溶媒を除去することでエマルジョン化された前記薬剤をポリビニルアルコール系ポリマーで被覆する請求項1〜3のいずれか1項記載の水中薬剤徐放性微粒子の製造方法。   4. The method according to claim 1, wherein the drug intended for sustained release is emulsified in a solution in which the polyvinyl alcohol polymer is dissolved, and then the emulsified drug is coated with the polyvinyl alcohol polymer by removing the solvent. A process for producing sustained-release fine particles of an underwater drug according to claim 1. ポリビニルアルコール系ポリマーを溶解した溶液に徐放を目的とする薬剤を内包した多孔質体を浸漬後、溶媒を除去することで前記多孔質体をポリビニルアルコール系ポリマーで被覆する請求項1〜3のいずれか1項記載の水中薬剤徐放性微粒子の製造方法。   The porous body is coated with the polyvinyl alcohol polymer by removing the solvent after immersing the porous body containing a drug intended for sustained release in a solution in which the polyvinyl alcohol polymer is dissolved. The manufacturing method of the underwater chemical | medical agent sustained release fine particle of any one of Claims 1. ポリビニルアルコール系ポリマーを熱処理することを特徴とする請求項4または5記載の水中薬剤徐放性微粒子の製造方法。   The method for producing sustained-release fine particles of drug in water according to claim 4 or 5, wherein the polyvinyl alcohol polymer is heat-treated. スプレードライ方式により溶媒を除去することを特徴とする請求項4または5記載の水中薬剤徐放性微粒子の製造方法。
6. The method for producing fine drug sustained-release fine particles in water according to claim 4, wherein the solvent is removed by a spray drying method.
JP2006227316A 2005-08-29 2006-08-24 Drug-sustained releasing fine particle in water and method for producing the same Pending JP2007091716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227316A JP2007091716A (en) 2005-08-29 2006-08-24 Drug-sustained releasing fine particle in water and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247156 2005-08-29
JP2006227316A JP2007091716A (en) 2005-08-29 2006-08-24 Drug-sustained releasing fine particle in water and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007091716A true JP2007091716A (en) 2007-04-12

Family

ID=37977826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227316A Pending JP2007091716A (en) 2005-08-29 2006-08-24 Drug-sustained releasing fine particle in water and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007091716A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012996A (en) * 2007-07-03 2009-01-22 Enex Co Ltd Porous fine particles and method for producing the same
WO2010004730A1 (en) * 2008-07-11 2010-01-14 日本曹達株式会社 Method for producing extended-release preparation composition
JP2011032476A (en) * 2009-08-05 2011-02-17 Evonik Degussa Gmbh Multifunctional inorganic coating additive having microstructure for avoiding fouling (fouling of biofilm) in underwater application
JP2011037852A (en) * 2009-08-08 2011-02-24 Evonik Degussa Gmbh Composite particle to be used for oral hygiene
JP2011519714A (en) * 2008-02-13 2011-07-14 エボニック デグサ ゲーエムベーハー Storage stability product system for premix formulations
JP2012526048A (en) * 2009-05-04 2012-10-25 サイヴィーダ ユーエス,インコーポレイテッド Porous silicon drug eluting particles
US9566235B2 (en) 1998-04-17 2017-02-14 Psimedica Limited Implants for administering substances and methods of producing implants
US9603801B2 (en) 2013-03-15 2017-03-28 Psivida Us, Inc. Bioerodible silicon-based compositions for delivery of therapeutic agents
US9808421B2 (en) 2010-11-01 2017-11-07 Psivida Us, Inc. Bioerodible silicon-based devices for delivery of therapeutic agents
KR102331449B1 (en) * 2021-03-19 2021-12-01 황대진 Manufacturing method of slow-release biocidal material that does not contain pesticides
CN113730376A (en) * 2021-09-17 2021-12-03 华中药业股份有限公司 Thiamine nitrate sustained-release microcapsule and preparation method thereof
WO2023162580A1 (en) * 2022-02-22 2023-08-31 パナソニックIpマネジメント株式会社 Solid chemical agent, method for producing solid chemical agent, and water treatment device in which same is used

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566235B2 (en) 1998-04-17 2017-02-14 Psimedica Limited Implants for administering substances and methods of producing implants
JP2009012996A (en) * 2007-07-03 2009-01-22 Enex Co Ltd Porous fine particles and method for producing the same
JP2011519714A (en) * 2008-02-13 2011-07-14 エボニック デグサ ゲーエムベーハー Storage stability product system for premix formulations
JP5271353B2 (en) * 2008-07-11 2013-08-21 日本曹達株式会社 Method for producing sustained-release pharmaceutical composition
WO2010004730A1 (en) * 2008-07-11 2010-01-14 日本曹達株式会社 Method for producing extended-release preparation composition
US20110117157A1 (en) * 2008-07-11 2011-05-19 Nippon Soda Co., Ltd. Method of manufacture of sustained-release formulation composition
CN102088844A (en) * 2008-07-11 2011-06-08 日本曹达株式会社 Method for producing extended-release preparation composition
AU2009269473B2 (en) * 2008-07-11 2012-02-16 Nippon Soda Co., Ltd. Method of manufacture of sustained-release formulation composition
KR101376397B1 (en) * 2008-07-11 2014-03-20 닛뽕소다 가부시키가이샤 Method for producing extended-release preparation composition
JP2015143257A (en) * 2009-05-04 2015-08-06 サイヴィーダ ユーエス,インコーポレイテッド porous silicon drug-eluting particles
JP2012526048A (en) * 2009-05-04 2012-10-25 サイヴィーダ ユーエス,インコーポレイテッド Porous silicon drug eluting particles
US9023896B2 (en) 2009-05-04 2015-05-05 Psivida Us, Inc. Porous silicon drug-eluting particles
US9486459B2 (en) 2009-05-04 2016-11-08 Psivida Us, Inc. Porous silicon drug-eluting particles
US9962396B2 (en) 2009-05-04 2018-05-08 Psivida Us, Inc. Porous silicon drug-eluting particles
JP2011032476A (en) * 2009-08-05 2011-02-17 Evonik Degussa Gmbh Multifunctional inorganic coating additive having microstructure for avoiding fouling (fouling of biofilm) in underwater application
JP2011037852A (en) * 2009-08-08 2011-02-24 Evonik Degussa Gmbh Composite particle to be used for oral hygiene
US9808421B2 (en) 2010-11-01 2017-11-07 Psivida Us, Inc. Bioerodible silicon-based devices for delivery of therapeutic agents
US11026885B2 (en) 2010-11-01 2021-06-08 Eyepoint Pharmaceuticas, Inc. Bioerodible silicon-based devices for delivery of therapeutic agents
US9603801B2 (en) 2013-03-15 2017-03-28 Psivida Us, Inc. Bioerodible silicon-based compositions for delivery of therapeutic agents
US9980911B2 (en) 2013-03-15 2018-05-29 Psivida Us, Inc. Bioerodible silicon-based compositions for delivery of therapeutic agents
KR102331449B1 (en) * 2021-03-19 2021-12-01 황대진 Manufacturing method of slow-release biocidal material that does not contain pesticides
CN113730376A (en) * 2021-09-17 2021-12-03 华中药业股份有限公司 Thiamine nitrate sustained-release microcapsule and preparation method thereof
CN113730376B (en) * 2021-09-17 2023-10-10 华中药业股份有限公司 Thiamine nitrate slow-release microcapsule and preparation method thereof
WO2023162580A1 (en) * 2022-02-22 2023-08-31 パナソニックIpマネジメント株式会社 Solid chemical agent, method for producing solid chemical agent, and water treatment device in which same is used

Similar Documents

Publication Publication Date Title
JP2007091716A (en) Drug-sustained releasing fine particle in water and method for producing the same
Wen et al. Controlled release of avermectin from porous hollow silica nanoparticles
JP4704039B2 (en) Porous beads and method for producing the same
JP4031362B2 (en) Core-shell particles and methods for producing them
Roy et al. Influence of process parameters on microcapsule formation from chitosan—Type B gelatin complex coacervates
Zhu et al. Microfluidic synthesis of thiourea modified chitosan microsphere of high specific surface area for heavy metal wastewater treatment
CN101626857B (en) Method for test on integrity of microporous membrane
WO2020121805A1 (en) Method for producing cellulose beads
Zhao et al. Preparation of DNA-loaded polysulfone microspheres by liquid–liquid phase separation and its functional utilization
JP2014087786A (en) Method for manufacturing microcapsule and microcapsule
Fulzele et al. Preparation and evaluation of microcapsules using polymerized rosin as a novel wall forming material
Xie et al. Preparation and adsorption selectivity of deltamethrin molecularly imprinted polymers by two‐step seed swelling method
HUT77646A (en) Microencapsulation process and product
JP2012217960A (en) Method of manufacturing microcapsule
JP3634110B2 (en)   Method for producing sustained release particles
EP3932536A1 (en) Improved microcapsules and method for the production and use thereof
JP2002020422A (en) Method for producing monodisperse cation exchanger gel
Jiang et al. Preparation and characterization of ethyl cellulose-based core–shell microcapsules containing argy wormwood solution
JP2679233B2 (en) Method for manufacturing capsule body
Riyajan Development of neem capsule via biopolymer and natural rubber for its controlled release
Tsai et al. The preparation and drug-release behaviour of CTA/EC and PMS/EC composite microcapsules
WO2001064331A1 (en) Method for producing micro and/or nanocapsules
JPH01278534A (en) Bimodal particle
WO2023032346A1 (en) Porous particles, method for producing same, and filler for chromatography using same
JPH01297429A (en) Production of dispersion highly containing hydrous fine gel particles