JP2007090892A - Composite article using ptfe porous article - Google Patents

Composite article using ptfe porous article Download PDF

Info

Publication number
JP2007090892A
JP2007090892A JP2006303977A JP2006303977A JP2007090892A JP 2007090892 A JP2007090892 A JP 2007090892A JP 2006303977 A JP2006303977 A JP 2006303977A JP 2006303977 A JP2006303977 A JP 2006303977A JP 2007090892 A JP2007090892 A JP 2007090892A
Authority
JP
Japan
Prior art keywords
pore
ptfe
forming agent
porous body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006303977A
Other languages
Japanese (ja)
Other versions
JP5004212B2 (en
Inventor
Yoshikazu Yasukawa
佳和 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Niterra Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd, NGK Spark Plug Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP2006303977A priority Critical patent/JP5004212B2/en
Publication of JP2007090892A publication Critical patent/JP2007090892A/en
Application granted granted Critical
Publication of JP5004212B2 publication Critical patent/JP5004212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite body using a finely-textured PTFE porous body. <P>SOLUTION: This composite body is obtained by molding a PTFE paste article comprising ≥7 pts.wt. pore-forming agent relative to 100 pts.wt. PTFE powder, where the pore-forming agent is held in the PTFE powder by virtue of its viscous behavior, into a predetermined shape, and then removing the pore-forming agent to thereby obtain a PTFE porous article having pores, and holding the PTFE porous article in a fluororubber molded article. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリテトラフルオロエチレン(以下、PTFEと記す。)多孔体を用いた複合体に係るものであり、特に、肌理の細かいPTFE多孔体を使用した複合体に関する。   The present invention relates to a composite using a polytetrafluoroethylene (hereinafter referred to as PTFE) porous body, and particularly relates to a composite using a fine-textured PTFE porous body.

PTFE多孔体は、耐熱性、耐薬品性に優れ、且つ比誘電率、エネルギー損失角などの電気特性に優れるため、電線被覆材、同軸ケーブルの誘電体、フィルタ、ガスケット、断熱材、分離膜、人工血管、カテーテル、培養器など多くの用途に使用されている。このようなPTFE多孔体の製造方法としては、PTFE粉末と結着剤との混合物を微粉砕した後、公知の方法にて成形し、この成形体を焼成する製造方法が広く一般的に知られている。又、他の製造方法として、PTFE粉末と造孔剤との混合物を所定形状に成形した後、上記造孔剤を除去することによって気孔を設ける製造方法が広く一般的に知られている。   PTFE porous body is excellent in heat resistance and chemical resistance and has excellent electrical characteristics such as relative permittivity and energy loss angle, so that it can be used as a wire covering material, a coaxial cable dielectric, a filter, a gasket, a heat insulating material, a separation membrane, It is used in many applications such as artificial blood vessels, catheters, and incubators. As a method for manufacturing such a PTFE porous body, a manufacturing method in which a mixture of PTFE powder and a binder is finely pulverized, then molded by a known method, and this molded body is fired is widely known. ing. As another manufacturing method, a manufacturing method in which pores are formed by forming a mixture of PTFE powder and a pore forming agent into a predetermined shape and then removing the pore forming agent is widely known.

例えば、特許文献1には、未焼成PTFEをPTFEの融点以上の温度で焼成し、この焼成したPTFEを粉砕して焼成PTFE粉末とし、次いで、この粉末を1g/cm〜800kg/cmの圧力で所定形状に成形し、再度PTFEの融点以上の温度で焼成することでPTFE多孔体を製造する方法が開示されている。 For example, Patent Document 1 discloses that unfired PTFE is fired at a temperature equal to or higher than the melting point of PTFE, and the fired PTFE is pulverized to obtain a fired PTFE powder. Then, the powder is 1 g / cm 2 to 800 kg / cm 2 . A method is disclosed in which a porous PTFE material is produced by molding into a predetermined shape with pressure and firing again at a temperature equal to or higher than the melting point of PTFE.

例えば、特許文献2には、PTFE粉末と、融点がPTFEよりも低く且つ分解温度がPTFEの焼成温度よりも高い結着剤とを混合する工程、この混合物をゲル化した後に微粉砕する工程、微粉砕された粉末をラム押出成形して予備成形体を作成する工程、予備成形体を無拘束下で焼成する工程からなるPTFE多孔体の製造方法が開示されている。   For example, Patent Document 2 includes a step of mixing PTFE powder and a binder having a melting point lower than that of PTFE and a decomposition temperature higher than that of PTFE, a step of pulverizing the mixture after gelling, There is disclosed a method for producing a porous PTFE body comprising a step of producing a preform by ram extrusion molding finely pulverized powder, and a step of firing the preform under no constraint.

例えば、特許文献3には、造孔剤として作用する液状潤滑剤を含むPTFEを成形した後、延伸した状態で加熱することで多孔体を製造する方法が開示されている。又、従来技術として、PTFEと造孔剤として作用する液状潤滑剤を混和して成形した後、この液状潤滑剤を除去することで多孔体を製造する方法が開示されている。ここで、液状潤滑剤としては、ナフサ、ホワイトオイル、トルオール、キシロールなどが挙げられている。   For example, Patent Document 3 discloses a method for producing a porous body by forming PTFE containing a liquid lubricant that acts as a pore-forming agent and then heating in a stretched state. Further, as a prior art, there is disclosed a method for producing a porous body by mixing PTFE and a liquid lubricant acting as a pore-forming agent and molding the mixture, and then removing the liquid lubricant. Here, examples of the liquid lubricant include naphtha, white oil, toluol, and xylol.

又、特許文献4には、PTFE粉末に造孔剤として作用する発泡剤及び液状潤滑剤を加えた混和物を所定形状に成形し、この混和物を加熱して発泡させることで無数の微細気孔を形成した後、延伸をすることで多孔体を製造する方法が開示されている。ここで、発泡剤としては、アゾ系発泡剤、ヒドラジド系発泡剤、セミカルバジド系発泡剤、ニトロソ系発泡剤、炭酸アンモニウム、重炭酸ナトリウム、亜硝酸アンモニウムなどが挙げられている。液状潤滑剤としては、流動パラフィン、ナフサ、ホワイトオイル、トルエン、キシレンなどが挙げられている。   In Patent Document 4, a mixture of PTFE powder with a foaming agent and a liquid lubricant acting as a pore-forming agent is formed into a predetermined shape, and the mixture is heated and foamed to produce countless fine pores. A method for producing a porous body by stretching after forming is disclosed. Here, examples of the foaming agent include azo foaming agents, hydrazide foaming agents, semicarbazide foaming agents, nitroso foaming agents, ammonium carbonate, sodium bicarbonate, and ammonium nitrite. Liquid lubricants include liquid paraffin, naphtha, white oil, toluene, xylene and the like.

又、特許文献5には、PTFE粉末と、造孔剤として作用する細孔形成剤、膨張剤、及び、潤滑油とを混合して冷間押出し、上記潤滑油の蒸発と、上記細孔形成剤及び上記膨張剤の昇華又は分解と、PTFEの焼結とを順次行う製造方法が開示されている。ここで、潤滑油としては、脂肪族炭化水素の混合物が挙げられている。細孔形成剤としては、ベンゼン、トルエン、ナフタレン、ベンズアルデヒド、アニリンの如き化合物又はこれら化合物のモノハロゲン化もしくはポリハロゲン化誘導体が挙げられている。膨張剤としては、アゾジカルボンアミド、改質アゾジカルボンアミド、5-フェニルテトラゾール及びその誘導体又はヒドラジンの芳香族誘導体が挙げられている。   Patent Document 5 discloses that PTFE powder is mixed with a pore-forming agent that acts as a pore-forming agent, a swelling agent, and a lubricating oil, and cold-extruded to evaporate the lubricating oil and form the pores. The manufacturing method which performs sublimation or decomposition | disassembly of an agent and the said swelling agent, and sintering of PTFE one by one is disclosed. Here, examples of the lubricating oil include a mixture of aliphatic hydrocarbons. Examples of the pore forming agent include compounds such as benzene, toluene, naphthalene, benzaldehyde, aniline, and monohalogenated or polyhalogenated derivatives of these compounds. Examples of the swelling agent include azodicarbonamide, modified azodicarbonamide, 5-phenyltetrazole and derivatives thereof, or aromatic derivatives of hydrazine.

又、特許文献6,7には、造孔剤を含有したPTFEを加熱焼成し、その際に造孔剤の作用によってPTFEを多孔化させることが開示されている。ここで、造孔剤としては、炭酸水素アンモニウム、炭酸アンモニウム、亜硝酸アンモニウムが挙げられている。   Patent Documents 6 and 7 disclose that PTFE containing a pore-forming agent is heated and fired, and at that time, the PTFE is made porous by the action of the pore-forming agent. Here, examples of the pore-forming agent include ammonium hydrogen carbonate, ammonium carbonate, and ammonium nitrite.

又、特許文献8には、造孔剤として作用する発泡剤を含むPTFEを押出成形した後、この発泡剤を除去することで多孔体を製造する方法が開示されている。ここで、発泡剤としては、アゾ化合物、炭酸ナトリウム、炭酸アンモニウム、ヒドラジン、テトラゾール、ベンゾキサジン、セミカルバジドなどが挙げられている。   Patent Document 8 discloses a method for producing a porous body by extruding PTFE containing a foaming agent that acts as a pore-forming agent and then removing the foaming agent. Here, examples of the foaming agent include azo compounds, sodium carbonate, ammonium carbonate, hydrazine, tetrazole, benzoxazine, and semicarbazide.

特開昭61−66730号公報JP-A-61-66730 特開平5−93086号公報JP-A-5-93086 特公昭42−13560号公報Japanese Patent Publication No.42-13560 特公昭57−30059号公報Japanese Patent Publication No.57-30059 特開昭60−93709号公報JP 60-93709 A 特開平11−124458号公報Japanese Patent Laid-Open No. 11-124458 特開2001−67944号公報JP 2001-67944 A 特表2004−500261号公報JP-T-2004-500026

しかしながら、特許文献1,2で開示されたような、微粉砕したPTFE粉末を再度成形する製造方法では、気孔の径が粗大になるため肌理の細かい成形体を得ることができないだけでなく、気孔率の高い成形体を得ることや、気孔率を制御することが非常に困難である。又、バッチ式の金型成形あるいはラム押出しによる連続成形は可能であるが、ペースト押出しによる連続成形が非常に困難である。   However, in the manufacturing method for re-molding finely pulverized PTFE powder as disclosed in Patent Documents 1 and 2, not only can the pore size be coarse, but a fine textured body cannot be obtained. It is very difficult to obtain a molded body having a high rate and to control the porosity. Moreover, although continuous molding by batch-type mold molding or ram extrusion is possible, continuous molding by paste extrusion is very difficult.

又、上記したように、特許文献3〜8で開示されている造孔剤や、造孔剤として作用する液状潤滑剤、発泡剤、細孔形成剤、膨張剤、及び、潤滑油は、低粘度の液体若しくは粉体のものである。又、従来から広く一般的に使用されている造孔剤はナフサであり、これも低粘度の液体である。これらのような造孔剤を使用すると、以下のような問題が発生する。   In addition, as described above, the pore-forming agent disclosed in Patent Documents 3 to 8, the liquid lubricant that acts as the pore-forming agent, the foaming agent, the pore-forming agent, the expansion agent, and the lubricating oil are low. It is a liquid or powder of viscosity. Further, a pore forming agent that has been widely used conventionally is naphtha, which is also a low-viscosity liquid. When such a pore-forming agent is used, the following problems occur.

まず、造孔剤が低粘度の液体のみからなる場合には、低粘度の液体がPTFE粉末に所定量しか保持されず、過剰分は滲み出てしまうため、25%を越えるような気孔率の多孔体を製造することは困難である。しかも、このような多孔体を完全焼成したような場合には、気孔が潰れて気孔率が減少してしまうという問題がある。   First, when the pore-forming agent is composed only of a low-viscosity liquid, only a predetermined amount of the low-viscosity liquid is retained in the PTFE powder, and the excess part oozes out, so that the porosity exceeds 25%. It is difficult to produce a porous body. In addition, when such a porous body is completely fired, there is a problem that the pores are crushed and the porosity is reduced.

次に、造孔剤が粉体の場合には、粉体粒子の抜けた部分が気孔になるので気孔が粗大になってしまうとともに、粉体粒子が継粉状になり易いことにより、更に気孔が粗大になってしまうため、肌理の細かい多孔体を製造することができない。このような粗大な気孔が存在していると、多孔体に曲げなどの外力が加わった際に、気孔部分で応力集中が発生し割れや切れが発生するというように、機械的強度が低下してしまう。又、粉体の造孔剤を多量に混合させた場合には、押出成形をする際、管壁抵抗が大きくなることから押出機内部の圧力が高くなるため、押出成形性が悪くなるという問題がある。   Next, when the pore-forming agent is a powder, the portion from which the powder particles are removed becomes pores, so that the pores become coarse and the powder particles are likely to be in the form of a powder. Becomes coarse, so that it is not possible to manufacture a fine porous body. When such coarse pores exist, when external force such as bending is applied to the porous body, the mechanical strength decreases, such as stress concentration occurs in the pores and cracks and breaks occur. End up. In addition, when a large amount of powder pore former is mixed, the pressure inside the extruder increases because the tube wall resistance increases during extrusion, and the extrusion moldability deteriorates. There is.

次に、造孔剤が低粘度の液体と粉体を混合したものである場合には、上記の造孔剤が粉体の場合や、造孔剤が低粘度の液体である場合と同様の問題が生じる。即ち、粉体粒子の抜けた部分が気孔になるので気孔が粗大になってしまうとともに、液体の粘度が低いために粉体粒子を分散した状態で保持することができず粉体粒子が継粉状になり易いことにより、更に気孔が粗大になってしまうため、肌理の細かい多孔体を製造することができない。又、低粘度の液体の造孔剤を多量に混合すると、過剰分が滲み出てしまう。又、粉体の造孔剤を多量に混合すると、押出成形をする際、管壁抵抗が大きくなることから押出機内部の圧力が高くなるため、押出成形性が悪くなる。   Next, when the pore-forming agent is a mixture of a low-viscosity liquid and powder, the case is the same as when the pore-forming agent is a powder or the pore-forming agent is a low-viscosity liquid. Problems arise. That is, since the part where the powder particles are removed becomes pores, the pores become coarse, and since the viscosity of the liquid is low, the powder particles cannot be held in a dispersed state, and the powder particles are spliced. Since the pores become coarser due to the tendency to become a shape, a fine porous body cannot be manufactured. In addition, when a large amount of a low-viscosity liquid pore-forming agent is mixed, an excessive amount oozes out. Moreover, when a large amount of a powder pore former is mixed, the tube wall resistance increases during extrusion molding, and the pressure inside the extruder increases, so the extrusion moldability deteriorates.

又、特許文献3、4のように延伸を行う場合には、特殊な装置が必要になり、工程が増加するため生産性が低下してしまう。更に、延伸の場合は、気孔率の制御が困難である。   Moreover, when extending | stretching like patent document 3, 4, a special apparatus is needed and since productivity increases, productivity will fall. Furthermore, in the case of stretching, it is difficult to control the porosity.

本発明はこのような従来技術の問題点を解決するためになされたもので、その目的とするところは、特に、肌理の細かいPTFE多孔体を使用した複合体を提供することにある。   The present invention has been made in order to solve such problems of the prior art, and an object of the present invention is to provide a composite using a fine PTFE porous body.

上記目的を達成するべく、本発明の請求項1による複合体は、ポリテトラフルオロエチレン粉末100重量部に対し、7重量部以上の造孔剤を含み、且つ上記造孔剤の粘性により当該造孔剤が上記ポリテトラフルオロエチレン粉末に保持されたポリテトラフルオロエチレンペースト体を所定形状に成形した後、上記造孔剤を除去することによって得た気孔を有するポリテトラフルオエチレン多孔体を、フッ素ゴム成形体に保持させてなることを特徴とするものである。
又、請求項2による複合体は、請求項1記載の複合体において、上記PTFE多孔体と、上記フッ素ゴム成形体とを、接着剤により接着したことを特徴とするものである。
又、請求項3による複合体は、請求項1記載の複合体において、上記フッ素ゴム成形体が未加硫又は半加硫の状態で、上記PTFE多孔体を保持位置に配置し、その後に上記フッ素ゴム成形体と上記PTFE多孔体を加熱して上記フッ素ゴム成形体を加硫することで、上記フッ素ゴム成形体と上記PTFE多孔体とを一体化したことを特徴とするものである。
又、請求項4による複合体は、請求項1記載の複合体において、上記PTFE多孔体に溝又は突起が形成され、上記フッ素ゴム成形体に上記PTFE多孔体の溝又は突起に対応した突起又は溝が形成され、それぞれに形成された溝と突起とを嵌合させるようにして、上記PTFE多孔体を上記フッ素ゴム成形体に保持したことを特徴とするものである。
又、請求項5による複合体は、請求項1記載の複合体において、上記PTFE多孔体の周囲に環状部材が配置されていることを特徴とするものである。
又、請求項6による複合体は、請求項1〜請求項5記載の複合体において、上記PTFE多孔体が金属メッキされたものであることを特徴とするものである。
In order to achieve the above object, the composite according to claim 1 of the present invention contains 7 parts by weight or more of a pore forming agent with respect to 100 parts by weight of the polytetrafluoroethylene powder, and the structure is formed by the viscosity of the pore forming agent. After forming the polytetrafluoroethylene paste body in which the pore agent is held in the polytetrafluoroethylene powder into a predetermined shape, the polytetrafluoroethylene porous body having pores obtained by removing the pore former is converted into fluorine. It is characterized by being held by a rubber molded body.
A composite according to claim 2 is characterized in that, in the composite according to claim 1, the PTFE porous body and the fluororubber molded body are bonded with an adhesive.
Further, the composite according to claim 3 is the composite according to claim 1, wherein the PTFE porous body is disposed in a holding position in a state where the fluororubber molded body is unvulcanized or semi-vulcanized, and thereafter The fluororubber molded body and the PTFE porous body are integrated by heating the fluororubber molded body and the PTFE porous body to vulcanize the fluororubber molded body.
Further, the composite according to claim 4 is the composite according to claim 1, wherein grooves or protrusions are formed in the PTFE porous body, and protrusions or protrusions corresponding to the grooves or protrusions of the PTFE porous body are formed in the fluororubber molded body. Grooves are formed, and the PTFE porous body is held by the fluororubber molded body so that the grooves and projections formed in the grooves are fitted to each other.
The composite according to claim 5 is the composite according to claim 1, wherein an annular member is disposed around the PTFE porous body.
A composite according to claim 6 is the composite according to claim 1 to 5, wherein the PTFE porous body is metal-plated.

本発明で得られる複合体によれば、肌理の細かいPTFE多孔体を用いた複合体とすることができるとともに、PTFEへの造孔剤の混合量を自由に設定することにより、気孔率を容易に制御することが可能であり、高気孔率の多孔体を製造することも可能である。加えて、管壁抵抗が大きくなるようなこともないため、押出成形をする際に、押出成形性を低下させることもない。   According to the composite obtained in the present invention, it is possible to obtain a composite using a fine-textured PTFE porous body and to easily set the porosity by freely setting the mixing amount of the pore-forming agent to PTFE. It is also possible to produce a porous body having a high porosity. In addition, since the tube wall resistance is not increased, the extrusion moldability is not deteriorated during extrusion molding.

PTFE多孔体の肌理が細かいことにより、以下のような効果を得ることができる。まず、気孔の大きさが微細且つ均一であり、粗大な気孔がないため、曲げなどの外力が加わっても応力が分散され、割れや切れが起き難く機械的強度に優れたものとなる。又、断熱材の用途で使用した場合は、気孔が微細であるため、熱伝導の一要素である輻射による熱伝達を低減させることができる。又、ガスケットなどシール材の用途で使用した場合は、表面平滑性が向上するため、シール性を向上させることができる。又、電線被覆など絶縁体の用途で使用した場合は、絶縁破壊強度を向上させることができる。又、同軸ケーブルなど誘電体の用途で使用した場合、気孔部分とPTFEが存在する部分で誘電率が異なるため、気孔が粗大で不均一であると、部分部分での信号の遅延時間にムラを生じてしまうが、気孔が微細且つ均一であればこのようなムラを防止することができる。   Due to the fine texture of the PTFE porous body, the following effects can be obtained. First, since the pores are fine and uniform, and there are no coarse pores, the stress is dispersed even when an external force such as bending is applied, and cracks and breaks do not easily occur and the mechanical strength is excellent. In addition, when used for a heat insulating material, since the pores are fine, heat transfer by radiation, which is one element of heat conduction, can be reduced. Further, when used for a sealing material such as a gasket, the surface smoothness is improved, so that the sealing property can be improved. Further, when used for an insulator such as a wire coating, the dielectric breakdown strength can be improved. Also, when used in dielectric applications such as coaxial cables, the dielectric constant differs between the pores and the part where PTFE is present, so if the pores are coarse and non-uniform, the signal delay time will be uneven in the part. However, if the pores are fine and uniform, such unevenness can be prevented.

又、PTFE多孔体を高気孔率とすることにより、以下のような効果を得ることができる。まず、多孔体全体としての比重を小さくすることができるため、軽量化の要求に対応することができる。又、断熱材の用途で使用する場合は、熱伝導率が低い空気の含有量が増加することになるため、断熱効果を向上させることができる。又、フィルタの用途で使用する場合は、導通路が多くなるため、目詰まりまでの寿命を長くすることができる。又、誘電体の用途で使用する場合、多孔体の実効比誘電率(ε)は、PTFEの比誘電率(ε)と気孔率(V)により、
ε=ε 1−V
の式によって導かれるため、実効比誘電率を低くすることができる。そして、信号の遅延時間(τ)は多孔体の実効比誘電率(ε)により、
τ=3.33561√ε(ns/m)
の式によって導かれることから、高気孔率とすることで信号の遅延時間を小さくすることができる。
Moreover, the following effects can be acquired by making a PTFE porous body into a high porosity. First, since the specific gravity of the entire porous body can be reduced, it is possible to meet the demand for weight reduction. Moreover, when using it for the use of a heat insulating material, since the content of the air with low heat conductivity will increase, the heat insulation effect can be improved. Further, when used in a filter application, since the number of conduction paths increases, the life until clogging can be extended. When used in dielectric applications, the effective relative permittivity (ε e ) of the porous body is determined by the relative permittivity (ε A ) and porosity (V) of PTFE,
ε e = ε A 1-V
Therefore, the effective relative dielectric constant can be lowered. The signal delay time (τ) is determined by the effective relative dielectric constant (ε e ) of the porous body.
τ = 3.33561√ε e (ns / m)
Therefore, the signal delay time can be reduced by setting the porosity to be high.

本発明の複合体に用いられるPTFEペースト体用のPTFE粉末と混合される造孔剤の一態様としては、粘性を有しているものが挙げられる。造孔剤が粘性を発現するケースとしては種々のものがあるが、例えば、造孔剤成分が部分的に溶融して粘性を発現するケース、造孔剤自体が組成変形可能な粘性体であるケース、造孔剤がコロイド、即ち液体に固体が分散して粘性を発現するケースなどが考えられる。   As an aspect of the pore forming agent mixed with the PTFE powder for PTFE paste used in the composite of the present invention, one having viscosity can be mentioned. There are various cases in which the pore-forming agent develops viscosity. For example, the pore-forming agent component partially melts to develop viscosity, and the pore-forming agent itself is a viscous material whose composition can be deformed. A case, a case where the pore-forming agent is colloid, that is, a case where a solid is dispersed in a liquid and develops viscosity may be considered.

粘性を有している造孔剤としては、PTFE粉末と造孔剤とを混合するとき、及び、PTFE粉末と造孔剤との混合物を所定形状に成形するとき、の環境条件における粘度が5mPa・s以上の粘性体を含有するものが挙げられる。粘性体の粘度は、例えば、回転粘度計などを用いて測定することができる。この際、測定条件の設定は、混合時及び成形時の温度や圧力などの環境条件を考慮して行えば良い。   As the pore-forming agent having viscosity, when mixing PTFE powder and pore-forming agent, and molding a mixture of PTFE powder and pore-forming agent into a predetermined shape, the viscosity in the environmental condition is 5 mPa -The thing containing the viscous body more than s is mentioned. The viscosity of the viscous material can be measured using, for example, a rotational viscometer. At this time, measurement conditions may be set in consideration of environmental conditions such as temperature and pressure during mixing and molding.

このような粘性体を含んでいるものであれば、造孔剤は、圧力を加えることによって容易にその形状を変えて流動し、PTFE粉末などの粉体の粒子間に容易且つ均等に侵入して保持され、更に、一旦浸透した後はその粘性により保持される。これらの造孔剤は、粉体の粒子間に一旦保持されれば、ナフサ、トルエンといった低粘度の流体をそのまま造孔剤として使用したときとは異なり、所定形状に成形する際の圧力が加わっても造孔剤のみが滲み出て、PTFE粉末と造孔剤とが分離するようなことは起こらない。又、粉体粒子が凝集して継粉となることを防ぎ、且つ、そのような微小な状態の粉体粒子を分散して保持されることができるため、微細且つ均一な気孔を形成することができる。尚、造孔剤として複数の成分を混合して使用する場合、造孔剤を構成する各成分は、単体で存在している状態では粉体や低粘度の液体のものであっても良い。要は、造孔剤を構成する各成分を混合した状態で、粘性体を含むようになっていれば良い。   If it contains such a viscous material, the pore-forming agent easily changes its shape by applying pressure and flows, and easily and evenly enters between powder particles such as PTFE powder. Furthermore, once it permeates, it is held by its viscosity. Once these pore-forming agents are held between the powder particles, unlike the case where a low-viscosity fluid such as naphtha or toluene is used as it is as a pore-forming agent, pressure is applied when forming into a predetermined shape. However, it does not occur that only the pore-forming agent oozes out and the PTFE powder and the pore-forming agent are separated. In addition, powder particles can be prevented from agglomerating and becoming a spatter, and such fine particles can be dispersed and held, so that fine and uniform pores can be formed. Can do. When a plurality of components are mixed and used as the pore-forming agent, each component constituting the pore-forming agent may be a powder or a low-viscosity liquid when present alone. In short, it is only necessary to contain a viscous material in a state where the components constituting the pore-forming agent are mixed.

又、造孔剤が上記した特定粘度の粘性体であれば、粉体粒子の形状に起因した気孔が発生することがなくなることから、より微細且つ均一な気孔を形成することができため、より好ましい。   In addition, if the pore-forming agent is a viscous material having the above-mentioned specific viscosity, pores due to the shape of the powder particles will not be generated, and therefore finer and more uniform pores can be formed. preferable.

又、造孔剤は、空気中での加熱により気化する性質を有するものであれば、加熱によって造孔剤を気化させて除去することが容易であるため、好ましい。造孔剤を気化させて除去する場合、例えば、造孔剤を熱分解させて除去する場合に比べて、PTFE中に造孔剤の残渣を残しにくく、残渣による電気諸特性への悪影響を防止することができる。このような空気中での加熱により気化する性質を有する造孔剤として、例えば、沸点が300℃以下のものであれば、特別な装置を必要とせず、通常用いられる加熱炉などにより容易に造孔剤を除去することができるため、好ましい。又、造孔剤の沸点が300℃以下のものであれば、PTFEの焼成の温度(370〜400℃)より低い温度で造孔剤が除去されるため、造孔剤成分が焼成中に引火するような事故を防ぐことができる。   In addition, it is preferable that the pore forming agent has a property of being vaporized by heating in air, since it is easy to vaporize and remove the pore forming agent by heating. When removing the pore-forming agent by evaporating it, for example, compared to removing the pore-forming agent by thermal decomposition, it is less likely to leave a residue of the pore-forming agent in PTFE, preventing the residue from adversely affecting various electrical properties. can do. As such a pore-forming agent having a property of being vaporized by heating in air, for example, if it has a boiling point of 300 ° C. or less, a special apparatus is not required, and it can be easily produced by a commonly used heating furnace. It is preferable because the pore agent can be removed. If the pore forming agent has a boiling point of 300 ° C. or lower, the pore forming agent is removed at a temperature lower than the PTFE firing temperature (370 to 400 ° C.). Can prevent accidents.

上記のような条件を満足する好ましい造孔剤としては、例えば、テルペン類を主成分としたものが使用できる。テルペン類としては、例えば、ショウノウ、メントール、カンフェン、ボルネオールなどが挙げられる。これらの中でも、ショウノウ、メントールから選択された少なくとも1種を主成分とすることが好ましい。   As a preferable pore-forming agent that satisfies the above conditions, for example, those having terpenes as the main component can be used. Examples of terpenes include camphor, menthol, camphene, borneol and the like. Among these, it is preferable that at least one selected from camphor and menthol is a main component.

造孔剤が特定粘度の粘性体を含んでいるようにするため、有機溶剤を造孔剤の一成分として使用しても良い。例えば、メントールやショウノウは、常温で固体の物質であるが、有機溶剤と混合することで特定粘度の粘性体とすることができる。又、有機溶剤の混合量により、造孔剤の粘度を調整できるため、PTFE粉末への造孔剤の混合量や、PTFE粉末と造孔剤の混合物を成形する際の成形方法などに応じて、適宜に有機溶剤の混合量を設定することができる。   An organic solvent may be used as a component of the pore-forming agent so that the pore-forming agent contains a viscous material having a specific viscosity. For example, menthol and camphor are solid substances at room temperature, but can be made into a viscous material having a specific viscosity by mixing with an organic solvent. Moreover, since the viscosity of the pore-forming agent can be adjusted by the mixing amount of the organic solvent, depending on the mixing amount of the pore-forming agent to the PTFE powder, the molding method when molding the mixture of the PTFE powder and the pore-forming agent, etc. The mixing amount of the organic solvent can be appropriately set.

有機溶剤としては、例えば、流動パラフィン、ナフサ、ホワイトオイル、灯油等の炭化水素類、トルエン、キシレン等の芳香族炭化水素類、アルコール類、ケトン類、エステル類などの溶剤が挙げられ、これらの中でも、PTFEとの浸透性からナフサなどの石油系溶剤を使うことが好ましい。但し、PTFEを焼成させる場合、通常370〜400℃程度の温度で焼成させるので、焼成時の高温まで溶剤が残っていると引火する危険性があり、焼成前に完全に溶剤が蒸発していることが必要になるため、有機溶剤の沸点は300℃以下のものが好ましい。   Examples of the organic solvent include hydrocarbons such as liquid paraffin, naphtha, white oil, and kerosene, aromatic hydrocarbons such as toluene and xylene, alcohols, ketones, esters, and the like. Among them, it is preferable to use a petroleum solvent such as naphtha because of its permeability to PTFE. However, when PTFE is fired, it is usually fired at a temperature of about 370 to 400 ° C., so there is a risk of ignition if the solvent remains up to a high temperature during firing, and the solvent is completely evaporated before firing. Therefore, the boiling point of the organic solvent is preferably 300 ° C. or lower.

尚、ショウノウとメントール両方を含有する場合は、これらを混合することにより液化するため、有機溶剤がなくても特定粘度の粘性体とすることが可能である。勿論、ショウノウとメントールの混合物に有機溶剤を加えても構わない。   In addition, when both camphor and menthol are contained, since they are liquefied by mixing them, it is possible to obtain a viscous material having a specific viscosity without an organic solvent. Of course, an organic solvent may be added to the mixture of camphor and menthol.

上記のような造孔剤は、PTFE粉末100重量部に対し、7重量部以上を混合することになる。造孔剤の混合量が7重量部未満であると、造孔剤を除去しても充分な気孔の量を得ることができない。特に、PTFEを焼成した際には、僅かに気孔が残っていても全て潰れてしまい、気孔が全く残らなくなってしまう。   The pore former as described above is mixed in an amount of 7 parts by weight or more with respect to 100 parts by weight of the PTFE powder. When the mixing amount of the pore-forming agent is less than 7 parts by weight, a sufficient amount of pores cannot be obtained even if the pore-forming agent is removed. In particular, when PTFE is baked, even if pores remain slightly, they are all crushed and no pores remain at all.

又、PTFE粉末と混合される造孔剤の他の態様として、上記したショウノウなどのテルペン類をそのまま粉末として使用しても良い。ショウノウなどのテルペン類は、それ自身が塑性変形しやすい柔軟性を有しているため、粘性体を含有していない粉末のまま造孔剤として使用しても、PTFE粉末の粒子間に容易且つ均等に侵入して保持され、更に、その後も塑性変形した状態で保持されることになる。そのため、このような造孔剤を混合したPTFEペースト体であれば、微細且つ均一な気孔が形成されたPTFE多孔体を得ることができる。勿論、テルペン類が粉末ではなく、粘性体の状態であっても構わない。   Further, as another aspect of the pore-forming agent mixed with the PTFE powder, the above-mentioned terpenes such as camphor may be used as a powder as it is. Since terpenes such as camphor have the flexibility to be easily plastically deformed, even if they are used as a pore-forming agent in a powder that does not contain a viscous material, It will penetrate evenly and be held, and then it will be held in a state of plastic deformation. Therefore, a PTFE porous body in which fine and uniform pores are formed can be obtained with a PTFE paste body mixed with such a pore-forming agent. Of course, the terpenes may be in a viscous state instead of powder.

上記のような造孔剤とPTFE粉末を、タンブラーなどで攪拌して混合し、PTFEペースト体を得る。この際、造孔剤の混合量を変えることにより、気孔率を容易に制御することができる。尚、造孔剤として複数の成分を混合して使用する場合、予め造孔剤を構成する各成分を混合しておけば、造孔剤が均質となるため、より肌理の細かいPTFE多孔体を作製することができ好ましいが、造孔剤を構成する各成分をPTFE粉末に別に加えた後、攪拌などによりこれらを一括して混合しても良い。   The pore former as described above and PTFE powder are mixed by stirring with a tumbler or the like to obtain a PTFE paste body. At this time, the porosity can be easily controlled by changing the mixing amount of the pore-forming agent. In addition, when mixing and using a plurality of components as a pore-forming agent, if each component constituting the pore-forming agent is mixed in advance, the pore-forming agent becomes homogeneous. Although it can be prepared, each component constituting the pore former may be separately added to the PTFE powder, and then mixed together by stirring or the like.

又、PTFEペースト体の他の態様としては、PTFE粉末と粉末又は粘性体の造孔剤とが一体化した粒子となるように混合したものがある。このように、PTFE粉末と造孔剤とが一体化した粒子となるように混合すれば、例え造孔剤が粉末のものであっても、上記した特許文献2〜7のように、気孔が粗大になってしまうことがないため、肌理の細かいPTFE多孔体を得ることができる。又、管壁抵抗が大きくなることもなく、押出成形性も良好なものとなる。ここで「一体化した粒子」とは、PTFE粉末の粒子と造孔剤の粒子とが、別々の粒子としてはほぼ観察されず、容易にそれぞれの粒子に分離しない状態となっていることを示す。   Further, as another aspect of the PTFE paste body, there is one in which PTFE powder and powder or a viscous pore former are mixed so as to form particles. Thus, if the PTFE powder and the pore-forming agent are mixed so as to be integrated particles, even if the pore-forming agent is a powder, the pores are not as in Patent Documents 2 to 7 described above. Since it does not become coarse, a fine textured PTFE porous body can be obtained. Further, the tube wall resistance is not increased and the extrusion moldability is also improved. Here, “integrated particles” means that the particles of PTFE powder and the pore-forming agent are hardly observed as separate particles and are not easily separated into the respective particles. .

上記のように、PTFE粉末と造孔剤とが一体化した粒子となるように混合した場合、造孔剤としては特に限定はない。例えば、上記したテルペン類、ナフタレン、アニリン、安息香酸、炭酸水素アンモニウム、炭酸アンモニウム、亜硝酸アンモニウムなどが挙げられ、これらの中でも、PTFE粉末の焼成温度未満で気化するものであれば、残渣を残しにくいため好ましい。更に、上記したテルペン類、特にショウノウは、残渣を残しにくいだけでなく、PTFE粉末と一体化させ易いため特に好ましい。勿論、これらの造孔剤に上記したような有機溶剤を混合しても構わない。   As described above, when the PTFE powder and the pore former are mixed so as to be integrated particles, the pore former is not particularly limited. For example, the above-mentioned terpenes, naphthalene, aniline, benzoic acid, ammonium hydrogen carbonate, ammonium carbonate, ammonium nitrite and the like can be mentioned. Among these, it is difficult to leave a residue as long as it vaporizes below the firing temperature of PTFE powder. Therefore, it is preferable. Furthermore, the above-mentioned terpenes, particularly camphor, are particularly preferred because they are not only difficult to leave a residue but also easily integrated with PTFE powder. Of course, an organic solvent as described above may be mixed with these pore formers.

PTFE粉末と造孔剤とが一体化した粒子となるように混合する方法としては、PTFE粉末と造孔剤を混合した後、あるいは混合しながら、PTFE粉末と造孔剤との間にせん断応力を加えることにより一体化する方法が挙げられる。具体的には、例えば、PTFE粉末と造孔剤とをロール等で練って一体化させた後、粉砕して微粉末化させることや、ミキサー等の高速回転する刃でPTFE粉末と造孔剤との間にせん断応力を加えることにより一体化することが挙げられる。この内の後者は、一体化と粉砕微粉末化が同時工程でできるため好ましい。尚、上記した有機溶剤等を添加する場合には、一体化する前に添加しても良いし、一体化した後に添加しても良い。又、一部の量を一体化する前に添加し、残りを一体化した後に添加しても良い。   As a method of mixing so that the PTFE powder and the pore forming agent become integrated particles, after mixing the PTFE powder and the pore forming agent, or while mixing, the shear stress between the PTFE powder and the pore forming agent. The method of integrating by adding is mentioned. Specifically, for example, the PTFE powder and the pore former are kneaded and integrated with a roll or the like, and then pulverized into a fine powder, or the PTFE powder and the pore former with a high-speed rotating blade such as a mixer. And integration by applying a shear stress between the two. Of these, the latter is preferable because integration and pulverization can be performed in the same process. In addition, when adding the above-mentioned organic solvent etc., you may add before integrating, and may add after integrating. Alternatively, a part of the amount may be added before integration, and the rest may be added after integration.

上記のPTFEペースト体を所定形状に成形し、造孔剤を除去することにより、PTFEに気孔が設けられ、PTFE多孔体が作製される。PTFEペースト体の成形に際して、一般に知られている種々の成形方法により成形をすることができる。例えば、金型成形などにより成形してバルク状の素材に仕上げても良いし、圧延成形などにより成形して膜状の素材に仕上げても良い。更に、管壁抵抗が大きくなることがないことから押出成形を行うこともできるため、押出成形により導体上に被覆成形して電線としても良い。又、造孔剤を除去する方法としては、設備の簡便さから加熱により造孔剤を気化させること好ましいが、減圧により造孔剤を気化させることも考えられる。   By forming the PTFE paste body into a predetermined shape and removing the pore-forming agent, pores are provided in the PTFE, and a PTFE porous body is produced. In forming the PTFE paste body, it can be formed by various generally known forming methods. For example, a bulk material may be formed by molding or the like, or a film material may be formed by rolling or the like. Furthermore, since tube wall resistance does not increase, extrusion molding can also be performed. Therefore, a conductor may be formed by coating on a conductor by extrusion molding. Moreover, as a method for removing the pore-forming agent, it is preferable to vaporize the pore-forming agent by heating for the convenience of equipment, but it is also conceivable to vaporize the pore-forming agent by reducing the pressure.

尚、PTFEペースト体を成形する際、又は、成形した後に、表面にせん断応力をかけることにより、PTFE多孔体にスキン層を形成することができる。スキン層を形成する具体的な態様として、例えば、上記した押出成形により成形することが挙げられる。   In addition, when shape | molding a PTFE paste body or after shape | molding, a skin layer can be formed in a PTFE porous body by applying a shear stress to the surface. As a specific mode for forming the skin layer, for example, molding by the above-described extrusion molding may be mentioned.

尚、本発明の複合体に用いられるPTFE多孔体は、200℃程度の加熱処理などにより造孔剤を除去し、その後に焼成を行わず、未焼成PTFE多孔体として使用しても良い。又、造孔剤を除去した後、更に370℃以上の焼成を行い、完全焼成PTFEとして使用しても良い。又、焼成温度を調節することで未焼成と完全焼成が混在したPTFE多孔体としても良い。尚、これらのPTFE多孔体に、更に延伸加工を加えても構わない。   Note that the PTFE porous body used in the composite of the present invention may be used as an unfired PTFE porous body after removing the pore-forming agent by a heat treatment at about 200 ° C. and thereafter without firing. Further, after removing the pore-forming agent, further baking at 370 ° C. or more may be performed and used as a completely fired PTFE. Moreover, it is good also as a PTFE porous body with which unbaking and complete baking were mixed by adjusting baking temperature. In addition, you may add an extending | stretching process further to these PTFE porous bodies.

このようにして得られたPTFE多孔体は、完全焼成で且つ非延伸であっても、気孔率が5%以上、平均気孔径が300μm以下、硬度がA95未満のものとすることができる。このようなPTFE多孔体であれば、例えば、優れた比誘電率を有する同軸ケーブルの誘電体や、バルクフィルタとしても好適に使用することができる。特に、平均気孔径が100μm以下であれば、気体(空気、水蒸気など)と液体(水など)、あるいは、気体(空気、水蒸気など)と固体(粉体など)を分離する目的のフィルターとして、高いフィルター機能を発現するため好ましい。又、造孔剤の混合量を増加させることにより、例えば気孔率80%以上のPTFE多孔体を得ることも可能である。   Even if the PTFE porous body thus obtained is completely fired and non-stretched, it can have a porosity of 5% or more, an average pore diameter of 300 μm or less, and a hardness of less than A95. Such a PTFE porous body can be suitably used, for example, as a dielectric of a coaxial cable having an excellent relative dielectric constant or a bulk filter. In particular, if the average pore size is 100 μm or less, as a filter for the purpose of separating gas (air, water vapor, etc.) and liquid (water, etc.), or gas (air, water vapor, etc.) and solid (powder, etc.), This is preferable because it exhibits a high filter function. Further, by increasing the mixing amount of the pore-forming agent, for example, a PTFE porous body having a porosity of 80% or more can be obtained.

又、上記のようにして得られたPTFE多孔体は、気孔状態を制御することも可能であり、例えば、気孔率5%以上40%未満では独立気孔を主体とし、気孔率40%以上50%未満では独立気孔と連続気孔をともに有し、気孔率50%以上では独立気孔を主体とする、というような気孔状態とすることができる。   Further, the porous PTFE material obtained as described above can also control the pore state. For example, when the porosity is 5% or more and less than 40%, the porous material is mainly independent pores, and the porosity is 40% or more and 50%. If the ratio is less than 50%, both the independent pores and the continuous pores are included, and if the porosity is 50% or more, the independent pores are mainly used.

上記のようにして得られたPTFE多孔体は、フッ素ゴム成形体に保持して複合体とされる。このようにPTFE多孔体をフッ素ゴム成形体に保持した複合体は、高温環境での使用が可能なため、例えば、酸素センサに使用されるフィルタ付きグロメットなどに好適に使用することが可能である。   The PTFE porous body obtained as described above is held in a fluororubber molded body to form a composite. Thus, since the composite body which hold | maintained the PTFE porous body in the fluororubber molded object can be used in a high temperature environment, it can be used suitably for the grommet with a filter used for an oxygen sensor etc., for example. .

複合体の具体的な例としては、例えば、図25に示すようなものが挙げられる。図25は、貫通穴を設けた形状に成形したフッ素ゴム成形体2の貫通孔に、PTFE多孔体1を保持させたものである。この際、フッ素ゴム成形体2及び/又はPTFE多孔体1に接着剤を塗布し、フッ素ゴム成形体2とPTFE多孔体1とを接着しても良い。接着剤としては、例えば、フッ素ゴム系接着剤、シラン溶液、チタネート溶液、アルミネート溶液などが挙げられる。又、フッ素ゴム成形体2が未加硫又は半加硫の状態で、フッ素ゴム成形体2の貫通孔にPTFE多孔体1を配置し、その後にこれらフッ素ゴム成形体2及びPTFE多孔体1を加熱し、フッ素ゴム成形体2を加硫することで、フッ素ゴム成形体2とPTFE多孔体1とを一体化しても良い。又、PTFE多孔体1を所定位置に配置し、その周囲にフッ素ゴムを射出成形等により成形して、フッ素ゴム成形体2にPTFE多孔体1を保持させても良い。   Specific examples of the complex include those shown in FIG. FIG. 25 shows the PTFE porous body 1 held in the through hole of the fluororubber molded body 2 formed into a shape having a through hole. At this time, an adhesive may be applied to the fluororubber molded body 2 and / or the PTFE porous body 1 to bond the fluororubber molded body 2 and the PTFE porous body 1 together. Examples of the adhesive include a fluororubber adhesive, a silane solution, a titanate solution, and an aluminate solution. Further, the PTFE porous body 1 is disposed in the through-hole of the fluororubber molded body 2 in a state in which the fluororubber molded body 2 is unvulcanized or semi-vulcanized, and thereafter, the fluororubber molded body 2 and the PTFE porous body 1 are disposed The fluororubber molded body 2 and the PTFE porous body 1 may be integrated by heating and vulcanizing the fluororubber molded body 2. Alternatively, the PTFE porous body 1 may be disposed at a predetermined position, and fluoro rubber is molded around the PTFE porous body 1 by injection molding or the like, so that the PTFE porous body 1 is held by the fluoro rubber molded body 2.

複合体の他の具体的な例としては、例えば、図26に示すようなものが挙げられる。図26は、貫通穴を設けた形状に成形したフッ素ゴム成形体2の貫通孔に、PTFE多孔体1を保持させたものであり、PTFE多孔体1の側面に溝11を形成し、フッ素ゴム成形体2の貫通孔に突起12を形成し、これら溝11と突起12とを嵌合させるようにしている。これにより、PTFE多孔体1がフッ素ゴム成形体2から抜けてしまうことがなく、確実に保持することができる。勿論、PTFE多孔体1の側面に突起を形成し、フッ素ゴム成形体2の貫通孔に溝を形成しても良い。又、溝や突起の形状にも限定はなく、嵌め易く抜け難い形状を適宜選定すれば良い。   Another specific example of the complex is as shown in FIG. 26, for example. FIG. 26 shows a PTFE porous body 1 held in a through hole of a fluororubber molded body 2 formed into a shape having a through hole. A groove 11 is formed on the side surface of the PTFE porous body 1 to form a fluororubber. Protrusions 12 are formed in the through holes of the molded body 2 and the grooves 11 and the protrusions 12 are fitted. Thereby, the PTFE porous body 1 does not come off from the fluororubber molded body 2 and can be reliably held. Of course, a protrusion may be formed on the side surface of the PTFE porous body 1 and a groove may be formed in the through hole of the fluororubber molded body 2. Also, there is no limitation on the shape of the grooves and protrusions, and a shape that is easy to fit and difficult to remove may be selected as appropriate.

又、複合体の他の具体的な例としては、例えば、図27に示すようなものが挙げられる。図27は、貫通穴を設けた形状に成形したフッ素ゴム成形体2の貫通孔に、PTFE多孔体1を保持させたものであり、PTFE多孔体1の周囲には、環状部材3が固定配置されている。このように、環状部材3がPTFE多孔体1の周囲に固定配置されているので、PTFE多孔体1がフッ素ゴム成形体2から抜けてしまうことがなく、確実に保持することができる。尚、環状部材3の形状等に限定はなく、例えば、筒形状のものや、コイル形状のものを用いても良いし、複数個の環状部材3を用いても良い。又、環状部材3が金属製のものであれば、カシメ加工などにより、PTFE多孔体1との間に隙間がないように環状部材3を固定配置できるとともに、フッ素ゴムは金属材料と接着し易い性質を有していることから、フッ素ゴム成形体2と環状部材3との間の隙間も容易になくすことができる。   Another specific example of the composite is shown in FIG. 27, for example. FIG. 27 shows a PTFE porous body 1 held in a through hole of a fluororubber molded body 2 formed into a shape having a through hole. An annular member 3 is fixedly disposed around the PTFE porous body 1. Has been. Thus, since the annular member 3 is fixedly disposed around the PTFE porous body 1, the PTFE porous body 1 does not come out of the fluororubber molded body 2 and can be reliably held. The shape of the annular member 3 is not limited. For example, a cylindrical shape or a coil shape may be used, or a plurality of annular members 3 may be used. Further, if the annular member 3 is made of metal, the annular member 3 can be fixedly disposed by caulking or the like so that there is no gap between the porous PTFE body 1 and the fluororubber is easily bonded to the metal material. Since it has the property, the gap between the fluororubber molded body 2 and the annular member 3 can be easily eliminated.

又、フッ素ゴム成形体2とPTFE多孔体1とを隙間なく接着することを目的として、PTFE多孔体1に表面処理を施しても良い。表面処理としては、例えば、コロナ放電やプラズマ放電による放電処理、放射線処理、UV処理、レーザー処理、火炎処理、金属メッキ層の形成などが挙げられる。これらの中でも、上記したようにフッ素ゴムは金属材料と接着し易い性質を有していることから、金属メッキ層の形成が好ましい。金属メッキ層の形成方法としては、例えば、金属コロイド溶液によるメッキ、真空蒸着によるメッキ、溶融金属によるメッキ、電解メッキなどが挙げられ、これらの中から適宜に選択すれば良く、又、これらを適宜に組合せても良い。   Further, the PTFE porous body 1 may be subjected to a surface treatment for the purpose of bonding the fluororubber molded body 2 and the PTFE porous body 1 without a gap. Examples of the surface treatment include discharge treatment using corona discharge or plasma discharge, radiation treatment, UV treatment, laser treatment, flame treatment, and formation of a metal plating layer. Among these, as described above, the fluororubber has the property of easily adhering to a metal material, and therefore it is preferable to form a metal plating layer. Examples of the method for forming the metal plating layer include plating with a metal colloid solution, plating with vacuum deposition, plating with molten metal, electrolytic plating, and the like, and may be appropriately selected from these. May be combined.

以上は、本発明の複合体に用いられるPTFE多孔体をフィルタとして活用した態様を示したが、例えば、上記のPTFE多孔体を導体上に被覆して絶縁電線(リード線)とし、この絶縁電線をフッ素ゴム成形体に保持させて、リード線付きグロメットとしても良い。   The above has shown an aspect in which the PTFE porous body used in the composite of the present invention is used as a filter. For example, the above PTFE porous body is coated on a conductor to form an insulated wire (lead wire). May be held in a fluororubber molded body to form a grommet with a lead wire.

以下、本発明複合体に用いられるPTFE多孔体の実施例と、比較例を説明する。   Examples of the PTFE porous material used in the composite of the present invention and comparative examples will be described below.

実施例1〜12
ナフサと、ショウノウと、メントールとを表1に示す重量部数により混合し、乳鉢上ですりつぶして粘性体を含んだ造孔剤を得た。この造孔剤とPTFE粉末100重量部を混合したPTFEペースト体を内径4mmの円筒状の金型に入れ、約40kgf/cmで30秒間圧縮成形した後取り出し、250℃で10分間加熱処理して造孔剤を気化させて除去した後、400℃で約10分間の加熱焼成処理をしてサンプル片を作製した。
Examples 1-12
Naphtha, camphor and menthol were mixed in the weight parts shown in Table 1, and ground on a mortar to obtain a pore-forming agent containing a viscous material. A PTFE paste body obtained by mixing 100 parts by weight of the pore former and PTFE powder is put into a cylindrical mold having an inner diameter of 4 mm, compression molded at about 40 kgf / cm 2 for 30 seconds, taken out, and heated at 250 ° C. for 10 minutes. Then, the pore-forming agent was vaporized and removed, followed by heating and baking at 400 ° C. for about 10 minutes to prepare a sample piece.

実施例13
ナフサと、ショウノウ(粉末)と、PTFE粉末とを表2に示す重量部数により混合し、PTFEペースト体を得た。このPTFEペースト体を内径7mmの円筒状の金型に入れ約40kgf/cmで30秒間仮圧縮成形したのち、外径7mm、内径4mmの円筒を上記金型に押し込み外径約4mmの円柱状の成形体を押出し成形した。この成形体を250℃で10分間加熱処理して造孔剤を気化させて除去した後、400℃で約10分間の加熱焼成処理をしてサンプル片を作製した。
Example 13
Naphtha, camphor (powder), and PTFE powder were mixed in parts by weight shown in Table 2 to obtain a PTFE paste. This PTFE paste body is put into a cylindrical mold having an inner diameter of 7 mm and temporarily compression-molded at about 40 kgf / cm 2 for 30 seconds, and then a cylinder having an outer diameter of 7 mm and an inner diameter of 4 mm is pushed into the mold to form a cylindrical shape having an outer diameter of about 4 mm. The molded body was extruded. The molded body was heat-treated at 250 ° C. for 10 minutes to vaporize and remove the pore-forming agent, and then heat-fired at 400 ° C. for about 10 minutes to produce a sample piece.

実施例14〜19
ナフサと、ショウノウ(粉末)と、PTFE粉末とを表2に示す重量部数により混合し、回転刃を有するミキサーにて一体化処理を約3分間行い、PTFEペースト体を得た。このPTFEペースト体をこのPTFEペースト体を内径7mmの円筒状の金型に入れ約40kgf/cmで30秒間仮圧縮成形したのち、外径7mm、内径4mmの円筒を上記金型に押し込み外径約4mmの円柱状の成形体を押出し成形した。この成形体を250℃で10分間加熱処理して造孔剤を気化させて除去した後、400℃で約10分間の加熱焼成処理をしてサンプル片を作製した。
Examples 14-19
Naphtha, camphor (powder), and PTFE powder were mixed in parts by weight shown in Table 2, and integrated with a mixer having a rotary blade for about 3 minutes to obtain a PTFE paste. This PTFE paste body was put into a cylindrical mold having an inner diameter of 7 mm and temporarily compression molded at about 40 kgf / cm 2 for 30 seconds, and then a cylinder having an outer diameter of 7 mm and an inner diameter of 4 mm was pushed into the mold and the outer diameter was increased. A cylindrical shaped body of about 4 mm was extruded. The molded body was heat-treated at 250 ° C. for 10 minutes to vaporize and remove the pore-forming agent, and then heat-fired at 400 ° C. for about 10 minutes to produce a sample piece.

比較例1〜3
乳鉢ですりつぶし微粉化した炭酸水素アンモニウムと、ナフサと、PTFE粉末を表3に示す重量部数で混合し、この混合物について、第1の実施形態と同じ方法によりサンプル片を作製した。
Comparative Examples 1-3
Ammonium hydrogen carbonate, naphtha, and PTFE powder ground and pulverized in a mortar were mixed in parts by weight shown in Table 3, and a sample piece was produced from this mixture by the same method as in the first embodiment.

比較例4、5
ナフサとPTFE粉末を表3に示す重量部数で混合し、この混合物について、第1の実施形態と同じ方法によりサンプル片を作製した。
Comparative Examples 4 and 5
Naphtha and PTFE powder were mixed in parts by weight shown in Table 3, and a sample piece was produced from this mixture by the same method as in the first embodiment.

比較例6
PTFE粉末を約360℃で熱処理して焼成した後、これを粉砕機にて粉砕して平均粒径約100μmの粉末を作成した。さらに370℃にて金型プレス成形し、直径2mm、長さ15.6mmの円柱状のサンプル片を作製した。
Comparative Example 6
The PTFE powder was heat treated at about 360 ° C. and fired, and then pulverized with a pulverizer to prepare a powder having an average particle size of about 100 μm. Further, the sample was press-molded at 370 ° C. to prepare a cylindrical sample piece having a diameter of 2 mm and a length of 15.6 mm.

ここで、本発明の実施例1〜12によるサンプル片の気孔率及び気孔状態を表1に、本発明の実施例13〜19によるサンプル片の気孔率及び気孔状態を表2に、比較例1〜6によるサンプル片の気孔率及び気孔状態を表3に示す。尚、気孔率は、造孔剤を混合しない他は実施例1と同じ方法により作製したサンプル片を指標サンプル片とし、
気孔率=100−(サンプル片の比重/指標サンプル片の比重)×100
の式により計算した。又、気孔状態は、サンプル片をナイフでカットした面を顕微鏡で観察した。又、図1〜19は実施例1〜19によるサンプル片の気孔状態を示す写真であり、図20〜22は比較例1〜3によるサンプル片の気孔状態を示す写真であり、図23は比較例6によるサンプル片の気孔状態を示す写真である。
Here, the porosity and the pore state of the sample pieces according to Examples 1 to 12 of the present invention are shown in Table 1, the porosity and the pore state of the sample pieces according to Examples 13 to 19 of the present invention are shown in Table 2, and Comparative Example 1 Table 3 shows the porosity and porosity of the sample pieces according to -6. In addition, the porosity is a sample piece produced by the same method as in Example 1 except that the pore-forming agent is not mixed.
Porosity = 100− (specific gravity of sample piece / specific gravity of index sample piece) × 100
It was calculated by the following formula. Moreover, the pore state observed the surface which cut the sample piece with the knife with the microscope. 1 to 19 are photographs showing the pore states of the sample pieces according to Examples 1 to 19, FIGS. 20 to 22 are photographs showing the pore states of the sample pieces according to Comparative Examples 1 to 3, and FIG. 23 is a comparison. 6 is a photograph showing the pore state of a sample piece according to Example 6. FIG.

又、実施例13〜18、及び、比較例6のサンプル片については、通気量、通水量、及び、硬度について測定を行った。通気量は、サンプル片に側面からの漏れ防止のためのシールテープを巻いた後、チューブを被せ、サンプル片の片側から0.5kgf/cmの気圧をかけ、透過空気を水上置換法にてメスシリンダー内に収集し単位時間内に貯まった体積を計測した。通水量は、同じく側面からの漏れ防止のためのシールテープを巻いた後、チューブを被せ、サンプル片の片側から0.5kgf/cmの水圧をかけ、透過した水をメスシリンダー内に収集し単位時間内に貯まった体積を計測した。硬度は、JIS K6253(ISO7619)に準拠し、デュロメータA硬度計により測定した。これら通気量、通水量、及び、硬度の測定結果については、表2及び表3に併せて示す。 Moreover, about the sample piece of Examples 13-18 and the comparative example 6, it measured about the air flow rate, the water flow rate, and the hardness. The air flow rate is measured by wrapping the sample piece with a sealing tape to prevent leakage from the side, then covering the tube, applying an air pressure of 0.5 kgf / cm 2 from one side of the sample piece, and replacing the permeated air with the water displacement method. The volume collected in the graduated cylinder and stored in the unit time was measured. The amount of water flow is also wrapped with a seal tape to prevent leakage from the side, then covered with a tube, applied with a water pressure of 0.5 kgf / cm 2 from one side of the sample piece, and the permeated water is collected in a graduated cylinder. The volume accumulated within the unit time was measured. The hardness was measured with a durometer A hardness meter according to JIS K6253 (ISO7619). The measurement results of the air flow rate, the water flow rate, and the hardness are shown together in Tables 2 and 3.

又、実施例1〜19によるサンプル片と、比較例1〜6によるサンプル片について、JIS K7122プラスチックの転移熱測定方法により示差走査熱量測定(DSC)を実施して、それによって得られた結晶融解曲線において、吸熱ピークを確認した。このDSCによれば、何れのサンプル片も、完全焼成PTFEに特徴的な320〜330℃付近のピークが見られていることから、400℃で10分間の加熱焼成処理により完全焼成PTFEとなっていることが確認できる。図24に実施例1の結晶融解曲線を示す。   Further, the sample pieces according to Examples 1 to 19 and the sample pieces according to Comparative Examples 1 to 6 were subjected to differential scanning calorimetry (DSC) by the transition heat measurement method of JIS K7122 plastic, and the crystal melting obtained thereby. An endothermic peak was confirmed in the curve. According to this DSC, since any sample piece has a peak around 320 to 330 ° C. characteristic of fully fired PTFE, it becomes fully fired PTFE by heating and firing at 400 ° C. for 10 minutes. It can be confirmed. FIG. 24 shows the crystal melting curve of Example 1.

本実施例においては、粘性体を含有する造孔剤を使用した実施例1〜12、特定の粉体の造孔剤を使用した実施例13、粉体の造孔剤とPTFE粉末とを一体化した粒子とした実施例14〜19の何れであっても、造孔剤の配合量により気孔率を任意に変えることが可能であった。又、何れの実施例も気孔の状態が微細で均一であり、気孔率の高低に関わらず肌理の細かいPTFE多孔質1となっていることが確認された。尚、本実施例では、3.8%〜81.0%の気孔率のものを作製したが、勿論、3.8%未満の気孔率のものや81.0%を超える気孔率のものを作製することも可能である。   In this example, Examples 1 to 12 using a pore-forming agent containing a viscous material, Example 13 using a pore-forming agent of a specific powder, and a powder pore-forming agent and PTFE powder were integrated. In any of Examples 14 to 19 in which the particles were made into particles, the porosity could be arbitrarily changed depending on the blending amount of the pore-forming agent. Further, it was confirmed that in all Examples, the pore state was fine and uniform, and the PTFE porous material 1 was fine regardless of the porosity. In this example, a porosity of 3.8% to 81.0% was prepared. Of course, a porosity of less than 3.8% or a porosity of more than 81.0% was used. It is also possible to produce it.

又、実施例13〜19は、押出成型によって成形したことにより、円筒形状の側面部分にせん断応力がかかることとなったため、この側面部分にスキン層が形成されていることが確認された。   Moreover, since Examples 13-19 were formed by extrusion molding and shear stress was applied to the cylindrical side surface portion, it was confirmed that a skin layer was formed on the side surface portion.

造孔剤として粉体の炭酸水素アンモニウムを使用した比較例1〜3においても、造孔剤の配合量により気孔率を任意に変えることが可能であった。しかしながら、気孔率が36.2%と比較的低い比較例1において、数個のやや粗大な気孔2が見られ肌理がやや粗い状態となっており、気孔率51%の比較例2と69.1%の比較例3に至っては、粗大な気孔2が多数見受けられ、肌理が細かいとはとてもいえない状態であった。   In Comparative Examples 1 to 3 using powdered ammonium hydrogen carbonate as a pore-forming agent, the porosity could be arbitrarily changed depending on the amount of the pore-forming agent. However, in Comparative Example 1 where the porosity is relatively low at 36.2%, several slightly coarse pores 2 are seen and the texture is slightly rough, and Comparative Examples 2 and 69. with a porosity of 51%. In Comparative Example 3 of 1%, a large number of coarse pores 2 were observed, and it was very difficult to say that the texture was fine.

造孔剤として低粘度の液体であるナフサのみを使用した比較例4、5について、比較例4は、造孔剤の混合量が少なかったため、加熱焼成処理により気孔が潰れてしまい、気孔率が0%となってしまった。比較例4よりも造孔剤の量を増やした比較例5では、混合物を成形する際に造孔剤であるナフサが滲み出てしまい、比較例4と同程度の量の造孔剤しかPTFE粉末の粒子間に保持されなかったため、比較例4と同様に気孔率が0%となってしまった。   About Comparative Examples 4 and 5 using only naphtha which is a low-viscosity liquid as a pore-forming agent, since Comparative Example 4 had a small amount of pore-forming agent, the pores were crushed by the heat-firing treatment, and the porosity was low It was 0%. In Comparative Example 5 in which the amount of the pore-forming agent was increased as compared with Comparative Example 4, naphtha as the pore-forming agent oozed out when the mixture was formed, and only the pore-forming agent in the same amount as Comparative Example 4 was PTFE. Since it was not held between the particles of the powder, the porosity was 0% as in Comparative Example 4.

通気量及び通水量の試験結果を見ると、PTFE粉体と粉末の造孔剤とを一体化した粒子としていない実施例13は、通気量が非常に多くなっている半面、通水量も多くなっている。これに対して、PTFE粉体と粉末の造孔剤とを一体化した粒子とした実施例14〜18は、気孔率を制御することで良好な通気量を得ることができるとともに、通水量が非常に少ないという結果となっている。これは、実施例13の気孔径が実施例14〜18の気孔径よりもやや大きくなっていたことに起因する。又、比較例6については、気孔径は大きいが高気孔率のものが得られないため、通気量が非常に少なくなっている。   Looking at the test results of the air flow rate and the water flow rate, Example 13, which does not form particles in which the PTFE powder and the powder pore forming agent are integrated, has a very large air flow rate, but also has a large water flow rate. ing. On the other hand, Examples 14-18 which made the particle | grains which integrated PTFE powder and the powder pore-former can obtain favorable air flow by controlling a porosity, and the water flow is large. The result is very few. This is because the pore diameter of Example 13 was slightly larger than the pore diameters of Examples 14-18. In Comparative Example 6, since the pore diameter is large but a high porosity is not obtained, the air flow rate is very small.

以上、実施例1〜12によると、造孔剤が粘性体を含んでいるものであるため、気孔率の高低に関わらず微細且つ均一な気孔を有する肌理の細かいPTFE多孔体を得ることができる。又、造孔剤の混合量を設定することで、気孔率を容易に制御することができる。尚、造孔剤自体の粘度は、配合成分の比率によって変えることができるので、良好な成形性を併せ持たせることも可能である。   As described above, according to Examples 1 to 12, since the pore-forming agent contains a viscous material, a finely textured PTFE porous material having fine and uniform pores can be obtained regardless of the porosity. . Moreover, the porosity can be easily controlled by setting the mixing amount of the pore-forming agent. In addition, since the viscosity of the pore forming agent itself can be changed depending on the ratio of the blending components, it is possible to have good moldability.

又、実施例13によると、造孔剤が特定の粉体(テルペン類)からなるものであるため、比較的微細且つ均一な気孔を有する肌理の細かいPTFE多孔体を得ることができる。又、造孔剤の混合量を設定することで、気孔率を容易に制御することも可能である。又、実施例13によると、上記のようにやや大きい気孔が均一に形成されることにより、通気量が非常に多くなるため、気−固分離用フィルタとして非常に有用なものとなる。   Further, according to Example 13, since the pore-forming agent is made of a specific powder (terpenes), a finely textured PTFE porous body having relatively fine and uniform pores can be obtained. In addition, the porosity can be easily controlled by setting the mixing amount of the pore-forming agent. Further, according to Example 13, since the slightly larger pores are uniformly formed as described above, the amount of air flow becomes very large, which makes the filter extremely useful as a gas-solid separation filter.

又、実施例14〜19によると、造孔剤が粉体の造孔剤とPTFE粉末とを一体化した粒子としたものであるため、気孔率の高低に関わらず微細且つ均一な気孔を有する肌理の細かいPTFE多孔体を得ることができる。又、造孔剤の混合量を設定することで、気孔率を容易に制御することができる。又、実施例14〜18によると、通気量が多く、通水量が非常に少ないため、気−液分離用フィルタとして非常に有用なものとなる。   Further, according to Examples 14 to 19, since the pore-forming agent is a particle obtained by integrating a powder pore-forming agent and PTFE powder, it has fine and uniform pores regardless of the porosity. A finely textured PTFE porous body can be obtained. Moreover, the porosity can be easily controlled by setting the mixing amount of the pore-forming agent. Moreover, according to Examples 14-18, since there are much ventilation | gas_flowing amount and very little water-flowing amount, it becomes a very useful thing as a filter for gas-liquid separation.

本発明によれば、特に、肌理が細かいPTFE多孔体を用いた複合体を得ることができ、且つ、PTFE多孔体の気孔率を容易に制御することが可能である。このようなPTFE多孔体は、例えば、電線被覆材、同軸ケーブルの誘電体、フィルタ、ガスケット、断熱材、分離膜、人工血管、カテーテル、培養器など多くの用途に対して好適に使用することができる。又、このようなPTFE多孔体をフッ素ゴム成形体に保持した複合体は、高温環境での使用が可能なため、例えば、酸素センサに使用されるフィルタ付きグロメットなどに好適に使用することが可能である。   According to the present invention, in particular, a composite using a finely textured PTFE porous material can be obtained, and the porosity of the PTFE porous material can be easily controlled. Such a PTFE porous body can be suitably used for many applications such as a wire coating material, a coaxial cable dielectric, a filter, a gasket, a heat insulating material, a separation membrane, an artificial blood vessel, a catheter, and an incubator. it can. In addition, a composite in which such a PTFE porous body is held in a fluororubber molded body can be used in a high-temperature environment, and can be suitably used, for example, in a grommet with a filter used for an oxygen sensor. It is.

実施例1を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 1, and is a figure which shows the pore state of a PTFE porous body. 実施例2を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 2, and is a figure which shows the pore state of a PTFE porous body. 実施例3を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 3, and is a figure which shows the pore state of a PTFE porous body. 実施例4を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 4, and is a figure which shows the pore state of a PTFE porous body. 実施例5を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 5, and is a figure which shows the pore state of a PTFE porous body. 実施例6を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 6, and is a figure which shows the pore state of a PTFE porous body. 実施例7を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 7, and is a figure which shows the pore state of a PTFE porous body. 実施例8を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 8, and is a figure which shows the pore state of a PTFE porous body. 実施例9を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 9, and is a figure which shows the pore state of a PTFE porous body. 実施例10を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 10, and is a figure which shows the pore state of a PTFE porous body. 実施例11を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 11, and is a figure which shows the pore state of a PTFE porous body. 実施例12を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 12, and is a figure which shows the pore state of a PTFE porous body. 実施例13を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 13, and is a figure which shows the pore state of a PTFE porous body. 実施例14を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 14, and is a figure which shows the pore state of a PTFE porous body. 実施例15を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 15, and is a figure which shows the pore state of a PTFE porous body. 実施例16を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 16, and is a figure which shows the pore state of a PTFE porous body. 実施例17を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 17, and is a figure which shows the pore state of a PTFE porous body. 実施例18を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 18, and is a figure which shows the pore state of a PTFE porous body. 実施例19を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing Example 19, and is a figure which shows the pore state of a PTFE porous body. 比較例1を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing the comparative example 1, and is a figure which shows the pore state of a PTFE porous body. 比較例2を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing the comparative example 2, and is a figure which shows the pore state of a PTFE porous body. 比較例3を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing the comparative example 3, and is a figure which shows the pore state of a PTFE porous body. 比較例6を表わす図で、PTFE多孔体の気孔状態を示す図である。It is a figure showing the comparative example 6, and is a figure which shows the pore state of a PTFE porous body. 実施例1の示差走査熱量測定(DSC)による結晶融解曲線を示す図である。2 is a diagram showing a crystal melting curve by differential scanning calorimetry (DSC) of Example 1. FIG. フッ素ゴム成形体にPTFE多孔体を保持した複合体を示す図で、(A)は斜視図、(B)は(A)におけるb−b´断面図である。It is a figure which shows the composite_body | complex which hold | maintained the PTFE porous body in the fluororubber molded object, (A) is a perspective view, (B) is bb 'sectional drawing in (A). フッ素ゴム成形体にPTFE多孔体を保持した複合体を示す図で、(A)は斜視図、(B)は(A)におけるb−b´断面図である。It is a figure which shows the composite_body | complex which hold | maintained the PTFE porous body in the fluororubber molded object, (A) is a perspective view, (B) is bb 'sectional drawing in (A). フッ素ゴム成形体にPTFE多孔体を保持した複合体を示す図で、(A)は斜視図、(B)は(A)におけるb−b´断面図である。It is a figure which shows the composite_body | complex which hold | maintained the PTFE porous body in the fluororubber molded object, (A) is a perspective view, (B) is bb 'sectional drawing in (A).

符号の説明Explanation of symbols

1 PTFE多孔体
1a 粗大な気孔
2 フッ素ゴム成形体
3 環状部材
DESCRIPTION OF SYMBOLS 1 PTFE porous body 1a Coarse pore 2 Fluoro rubber molding 3 Ring member

Claims (6)

ポリテトラフルオロエチレン粉末100重量部に対し、7重量部以上の造孔剤を含み、且つ上記造孔剤の粘性により当該造孔剤が上記ポリテトラフルオロエチレン粉末に保持されたポリテトラフルオロエチレンペースト体を所定形状に成形した後、上記造孔剤を除去することによって得た気孔を有するポリテトラフルオエチレン多孔体を、フッ素ゴム成形体に保持させてなることを特徴とする複合体。   Polytetrafluoroethylene paste containing 7 parts by weight or more of a pore-forming agent with respect to 100 parts by weight of the polytetrafluoroethylene powder, and the pore-forming agent held by the polytetrafluoroethylene powder due to the viscosity of the pore-forming agent A composite comprising a porous polytetrafluoroethylene body having pores obtained by removing the pore-forming agent after the body is molded into a predetermined shape, and held in a fluororubber molded body. 上記ポリテトラフルオロエチレン多孔体と、上記フッ素ゴム成形体とを、接着剤により接着したことを特徴とする請求項1記載の複合体。   The composite according to claim 1, wherein the polytetrafluoroethylene porous body and the fluororubber molded body are bonded with an adhesive. 上記フッ素ゴム成形体が未加硫又は半加硫の状態で、上記ポリテトラフルオロエチレン多孔体を保持位置に配置し、その後に上記フッ素ゴム成形体と上記ポリテトラフルオロエチレン多孔体を加熱して上記フッ素ゴム成形体を加硫することで、上記フッ素ゴム成形体と上記ポリテトラフルオロエチレン多孔体とを一体化したことを特徴とする請求項1記載の複合体。   With the fluororubber molded body unvulcanized or semi-vulcanized, the polytetrafluoroethylene porous body is placed at a holding position, and then the fluororubber molded body and the polytetrafluoroethylene porous body are heated. 2. The composite according to claim 1, wherein the fluororubber molded body and the polytetrafluoroethylene porous body are integrated by vulcanizing the fluororubber molded body. 上記ポリテトラフルオロエチレン多孔体に溝又は突起が形成され、上記フッ素ゴム成形体に上記ポリテトラフルオロエチレン多孔体の溝又は突起に対応した突起又は溝が形成され、それぞれに形成された溝と突起とを嵌合させるようにして、上記ポリテトラフルオロエチレン多孔体を上記フッ素ゴム成形体に保持したことを特徴とする請求項1記載の複合体。   Grooves or protrusions are formed in the polytetrafluoroethylene porous body, and protrusions or grooves corresponding to the grooves or protrusions of the polytetrafluoroethylene porous body are formed in the fluororubber molded body. 2. The composite according to claim 1, wherein the polytetrafluoroethylene porous body is held by the fluororubber molded body so as to be fitted together. 上記ポリテトラフルオロエチレン多孔体の周囲に環状部材が配置されていることを特徴とする請求項1記載の複合体。   The composite according to claim 1, wherein an annular member is disposed around the polytetrafluoroethylene porous body. 上記ポリテトラフルオロエチレン多孔体が金属メッキされたものであることを特徴とする請求項1乃至5のいずれか一項に記載の複合体。   6. The composite according to claim 1, wherein the polytetrafluoroethylene porous body is metal-plated.
JP2006303977A 2004-04-30 2006-11-09 Composite using PTFE porous material Expired - Fee Related JP5004212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303977A JP5004212B2 (en) 2004-04-30 2006-11-09 Composite using PTFE porous material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004135551 2004-04-30
JP2004135551 2004-04-30
JP2006303977A JP5004212B2 (en) 2004-04-30 2006-11-09 Composite using PTFE porous material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005077885A Division JP4990503B2 (en) 2004-04-30 2005-03-17 PTFE paste body, PTFE porous body, composite using PTFE porous body, and method for producing PTFE porous body

Publications (2)

Publication Number Publication Date
JP2007090892A true JP2007090892A (en) 2007-04-12
JP5004212B2 JP5004212B2 (en) 2012-08-22

Family

ID=37977117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303977A Expired - Fee Related JP5004212B2 (en) 2004-04-30 2006-11-09 Composite using PTFE porous material

Country Status (1)

Country Link
JP (1) JP5004212B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035682A1 (en) * 2006-09-22 2008-03-27 Kurabe Industrial Co., Ltd. Ptfe porous body, ptfe mixture, method for producing ptfe porous body, and electric wire/cable using ptfe porous body
JP2008303338A (en) * 2007-06-08 2008-12-18 Kurabe Ind Co Ltd Dielectric substrate
CN108744723A (en) * 2018-08-07 2018-11-06 江苏泛亚微透科技股份有限公司 A kind of car light sinterable polymer micro-porous permeable component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251480A (en) * 1975-10-23 1977-04-25 Daikin Ind Ltd Composite material and a process for preparing it
JPH03265634A (en) * 1990-03-15 1991-11-26 Hitachi Chem Co Ltd Production of porous sheet
JPH03277639A (en) * 1990-03-28 1991-12-09 Sumitomo Electric Ind Ltd Production of porous tetrafluoroethylene resin film
JPH05196177A (en) * 1991-09-25 1993-08-06 Teleflex Inc Hose assembly
JP2000249676A (en) * 1999-02-26 2000-09-14 Ngk Spark Plug Co Ltd Gas sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251480A (en) * 1975-10-23 1977-04-25 Daikin Ind Ltd Composite material and a process for preparing it
JPH03265634A (en) * 1990-03-15 1991-11-26 Hitachi Chem Co Ltd Production of porous sheet
JPH03277639A (en) * 1990-03-28 1991-12-09 Sumitomo Electric Ind Ltd Production of porous tetrafluoroethylene resin film
JPH05196177A (en) * 1991-09-25 1993-08-06 Teleflex Inc Hose assembly
JP2000249676A (en) * 1999-02-26 2000-09-14 Ngk Spark Plug Co Ltd Gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035682A1 (en) * 2006-09-22 2008-03-27 Kurabe Industrial Co., Ltd. Ptfe porous body, ptfe mixture, method for producing ptfe porous body, and electric wire/cable using ptfe porous body
US8207447B2 (en) 2006-09-22 2012-06-26 Kurabe Industrial Co., Ltd. PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire/cable using PTFE porous body
JP5253171B2 (en) * 2006-09-22 2013-07-31 株式会社クラベ PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire / cable using PTFE porous body
JP2008303338A (en) * 2007-06-08 2008-12-18 Kurabe Ind Co Ltd Dielectric substrate
CN108744723A (en) * 2018-08-07 2018-11-06 江苏泛亚微透科技股份有限公司 A kind of car light sinterable polymer micro-porous permeable component
CN108744723B (en) * 2018-08-07 2024-04-19 江苏泛亚微透科技股份有限公司 Polymer sintering micropore ventilation assembly for car lamp

Also Published As

Publication number Publication date
JP5004212B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5253171B2 (en) PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire / cable using PTFE porous body
JP4990503B2 (en) PTFE paste body, PTFE porous body, composite using PTFE porous body, and method for producing PTFE porous body
KR101321176B1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
KR101321247B1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
KR101642539B1 (en) Process for production of aluminum complex comprising sintered porous aluminum body
JP5402381B2 (en) Method for producing porous aluminum sintered body
JP2003187809A (en) Diffusion film, electrode with the diffusion film, and manufacturing method for the diffusion film
JP5004212B2 (en) Composite using PTFE porous material
US20080138630A1 (en) Assembly including polytetrafluoroethylene porous body
JP4965852B2 (en) PTFE porous body and bulk filter
JP2011051210A (en) Method for manufacturing ptfe mixture molding and ptfe madreporite, and method of manufacturing insulating wire
JP2011214047A (en) Method for producing aluminum porous sintered body
WO2008050773A1 (en) Raw-material mixture with high expansion rate for producing porous metallic sinter
JP2005336459A5 (en)
JP5825311B2 (en) Aluminum porous sintered body
JP2008303339A (en) Sealing medium using ptfe porous material
JP5189793B2 (en) Dielectric substrate
JP5189871B2 (en) PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire / cable using PTFE porous body
JPS5829839A (en) Production of microporous membrane
KR102367298B1 (en) thermal conducting sheet and manufacturing method thereof
JP2011225633A (en) Ptfe porous body, insulated wire and cable
JP2008013715A (en) Method for producing fluoroplastic sheet containing filler and filled fluoroplastic sheet containing filler
JP5757078B2 (en) Manufacturing method of molded product and manufacturing method of covered electric wire
JPH05258615A (en) Insulated electric cable and its manufacture
JP2011042109A (en) Method of manufacturing ptfe mixture molded body and ptfe porous body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees