JP2007090384A - Molding method of self-hardening-mold using lost pattern - Google Patents

Molding method of self-hardening-mold using lost pattern Download PDF

Info

Publication number
JP2007090384A
JP2007090384A JP2005282808A JP2005282808A JP2007090384A JP 2007090384 A JP2007090384 A JP 2007090384A JP 2005282808 A JP2005282808 A JP 2005282808A JP 2005282808 A JP2005282808 A JP 2005282808A JP 2007090384 A JP2007090384 A JP 2007090384A
Authority
JP
Japan
Prior art keywords
self
mold
hardening
model
disappearance model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005282808A
Other languages
Japanese (ja)
Other versions
JP4623465B2 (en
Inventor
Katsuzo Unemoto
勝三 宇根本
Hiroyuki Kitajima
弘之 北島
Kazuo Imanishi
和男 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMANISHI SEISAKUSHO KK
Original Assignee
IMANISHI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMANISHI SEISAKUSHO KK filed Critical IMANISHI SEISAKUSHO KK
Priority to JP2005282808A priority Critical patent/JP4623465B2/en
Publication of JP2007090384A publication Critical patent/JP2007090384A/en
Application granted granted Critical
Publication of JP4623465B2 publication Critical patent/JP4623465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method of a self-hardening-mold using a lost pattern, which has both of convenience of the molding method of a self-hardening-mold and certainty of formation of a mold cavity in a mold. <P>SOLUTION: An integrated mold composed of a pattern and a mold is prepared in such a way that a lost pattern consisting of urea composition is buried in a self-hardening-mold that does not collapse in boiling water. The lost pattern is eluted and removed by immersing the integrated mold in boiling water for 10-50 minutes. The mold, in which a mold cavity is formed, is taken out from the boiling water, dried with heat for 3-8 hours, so that the self-hardening-mold is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ユリア組成物を消失模型として用いた自硬性鋳型造型法に関する。   The present invention relates to a self-hardening mold making method using a urea composition as a disappearance model.

消失模型鋳造法の代表的なものとして、インベストメント精密鋳造法に代表されるセラミックスシェル鋳型を用いる方法や自硬性鋳型を用いるフルモールド鋳造法が知られている。   As a typical disappearance model casting method, a method using a ceramic shell mold represented by an investment precision casting method and a full mold casting method using a self-hardening mold are known.

インベストメント鋳造法では、ワックス、合成樹脂発泡体、ユリア樹脂、他の熱分解可能な材料からなる消失模型を使い、鋳型はバインダーに耐火材を混合したセラミックスラリーを用い、スタッコイングしてセル状生鋳型を成型し、焼成することによって消失模型が焼却除去され、鋳込みキャビティを形成したセラミックシェル鋳型が作られる。この鋳型は強固な耐火性セラミックで造られ、鋳込みキャビティも消失模型を忠実に転写した形状が得られ、鋳造性にも優れているので精密鋳造法に広く使用されることが知られている。   The investment casting method uses a vanishing model made of wax, synthetic resin foam, urea resin, and other thermally decomposable materials, and the mold is made of ceramic slurry in which a refractory material is mixed with a binder. By molding and firing the mold, the disappeared model is incinerated and removed, and a ceramic shell mold having a cast cavity is formed. This mold is made of strong refractory ceramic, and the casting cavity has a shape that faithfully transfers the disappearance model, and is excellent in castability, so it is known to be widely used in precision casting.

このインベストメント精密鋳造法の例としては、消失模型をユリア樹脂などの可溶性材料で作り、鋳型材料の耐火材スラリー中にこの模型をディッピングし引き上げ乾燥する操作を反復して行い、模型の内外両面に付着生成した耐火材層が所要厚さに達した後、耐火材層を焼成する際に、同時に耐火材層に挟まれた模型を溶融させて除去することにより中空のセラミック鋳型を製作することは知られている(例えば特許文献1)。   As an example of this investment precision casting method, the disappearance model is made of a soluble material such as urea resin, and this model is repeatedly dipped in the refractory material slurry of the mold material, and then pulled up and dried repeatedly on both the inside and outside of the model. It is possible to produce a hollow ceramic mold by melting and removing the model sandwiched between the refractory material layers when firing the refractory material layer after the attached refractory material layer reaches the required thickness. Known (for example, Patent Document 1).

ろう模型をケイ酸ソーダ又はケイ酸カリあるいはこれらの混合物を粘結剤とするスラリー中に浸漬し、これをスラリーから引き上げサンディングし、薄いシェル状鋳型層を生成させ、この鋳型層を炭酸ガスと反応させることによって、鋳型層を迅速に硬化させ、この工程を数回繰り返して、セラミック鋳型を製造することは知られている(例えば特許文献2)。   The wax model is immersed in a slurry containing sodium silicate or potassium silicate or a mixture thereof as a binder, and this is pulled up from the slurry and sanded to form a thin shell mold layer. It is known that a mold layer is rapidly cured by reacting, and this process is repeated several times to produce a ceramic mold (for example, Patent Document 2).

消失模型を発泡ポリスチレン、ポリメチルメタアクリレートおよび両者の共重体の発泡体で作り、外周にセラミック基材を塗布した消失模型を加熱炉にて加熱し、消失模型を気化させて前記セラミック基材内部から排出するとともに前記セラミック基材を焼成してセラミック鋳型を形成することは知られている(例えば特許文献3)。   The vanishing model is made of foamed polystyrene, polymethylmethacrylate, and a copolymer of both, and the vanishing model with the ceramic substrate applied to the outer periphery is heated in a heating furnace to vaporize the vanishing model and internalize the ceramic substrate. It is known that a ceramic mold is formed by firing the ceramic substrate and firing the ceramic substrate (for example, Patent Document 3).

インベストメント精密鋳造鋳型に含まれるろう模型をバーナーなどによって直接加熱し、湯口部分、湯道部分及び製品部分を順次液化流出させて模型材料を回収すること、この様にしてろう模型を流出させた鋳型を熱湯中に浸漬して残留したろう成分を溶融し、湯面に浮上したろう成分を回収すること、これらの脱ろうされた鋳型を焼成炉に入れてろう成分を燃焼除去するとともに焼成されたセラミックス鋳型を作ることが知られている(例えば特許文献4)。   The wax model contained in the investment precision casting mold is directly heated by a burner, etc., and the mold material is collected by sequentially liquefying and flowing out the sprue part, runner part and product part. Was melted in hot water to melt the remaining brazing component, and the brazing component that floated on the surface of the molten metal was recovered, and these dewaxed molds were placed in a firing furnace to burn and remove the brazing component. It is known to make a ceramic mold (for example, Patent Document 4).

上述したようなインベストメント鋳造法では、一般的に精密な鋳造品を得る点で優れているが、鋳型の造型プロセスが複雑で特別な設備を必要とする点で、適用範囲が限られる。   The investment casting method as described above is generally superior in obtaining a precise cast product, but the application range is limited in that the molding process of the mold is complicated and special equipment is required.

上述したインベストメント鋳造法に対して、消失模型を用いた鋳造法の1つであるフルモールド鋳造法は、合成樹脂発泡体で製作した消失模型を自硬性フラン樹脂などの有機自硬性粘結剤を使った鋳物砂に埋設した自硬性鋳型とし、この鋳型に鋳込まれた溶湯によって消失模型を熱分解させ溶湯金属と置換して、所望の鋳造品を得る方法であり、インベストメント鋳造法に比較して簡便な鋳造法として知られている。ただ、このフルモールド鋳造法では合成樹脂発泡体の熱分解によって発生する燃焼ガスと残渣によって様々な鋳造欠陥を起こすことがあり、この問題を解決するため、溶湯鋳込みの前に鋳型中の消失模型を溶剤で溶解除する方法、消失模型を焼き切って除去する方法などが知られているが、作業性が悪く十分な効果が得られておらず、各種の研究開発が行われている。   In contrast to the investment casting method described above, the full mold casting method, which is one of the casting methods using the disappearance model, uses an organic self-hardening binder such as a self-hardening furan resin for the disappearance model made of synthetic resin foam. This is a self-hardening mold embedded in the foundry sand used, and the disappeared model is pyrolyzed by the molten metal cast into the mold and replaced with molten metal to obtain the desired cast product, compared to the investment casting method. It is known as a simple and easy casting method. However, in this full mold casting method, various casting defects may occur due to the combustion gas and residue generated by the thermal decomposition of the synthetic resin foam. In order to solve this problem, the disappearance model in the mold before casting the molten metal There are known methods such as dissolving and removing the solvent with a solvent, and removing the vanished model by burning, but the workability is poor and sufficient effects have not been obtained, and various research and development have been conducted.

例えば、上記問題を解決して合成樹脂発泡体を自硬性鋳型から消去する手法として、合成樹脂発泡体製の消失模型を鋳物砂に埋設し、鋳造を行う消失模型鋳造法において、合成樹脂発泡体を溶解する溶剤を鋳物砂に添加混合して消失模型と鋳型の間に空隙を生成させ、焼失模型を抜型せずに鋳造することなどが知られている(例えば特許文献5)。   For example, as a technique for solving the above-mentioned problem and erasing the synthetic resin foam from the self-hardening mold, in the disappearance model casting method in which the disappearance model made of the synthetic resin foam is embedded in the foundry sand and cast, the synthetic resin foam It is known that a solvent that dissolves is added to and mixed with foundry sand to form a gap between the disappearance model and the mold, and the burnt model is cast without being extracted (for example, Patent Document 5).

発泡ポリスチレン模型への鋳物砂の付着を防止して模型の抜型作業性を改善するために、模型を埋設する自硬性鋳型の鋳物砂に混練するバインダーにフェノール樹脂、ポリイソシアネート化合物、脂肪酸カルボン酸エステルを主成分とする有機溶剤などを使用することが知られている(例えば特許文献6)。   In order to prevent the casting sand from adhering to the foamed polystyrene model and improve the mold cutting workability, phenol resin, polyisocyanate compound, fatty acid carboxylic acid ester are mixed in the binder kneaded into the molding sand of the self-hardening mold that embeds the model It is known to use an organic solvent containing as a main component (for example, Patent Document 6).

通常のフルモールド鋳造法における消失模型の強度不足、鋳造時に生じる欠陥などを改善するために、発泡樹脂製消失模型の一部または全部を高密度に形成すると共に、鋳物砂に予め酸化剤を含浸させて鋳造型を造型することが知られている(例えば特許文献7)。
特公平08-018754号公報 特開2003-080345号公報 特開2003-340546号公報 特開2004-268129号公報 特開2000-271701号公報 特開2004-017085号公報 特開2004-188479号公報
In order to improve the strength of the disappearance model in the normal full mold casting method, defects that occur during casting, etc., part or all of the disappearance model made of foam resin is formed with high density, and the molding sand is impregnated with an oxidizer in advance. It is known to mold a casting mold (for example, Patent Document 7).
Japanese Patent Publication No. 08-018754 JP2003-080345A JP2003-340546 JP 2004-268129 A JP 2000-271701 A Japanese Patent Laid-Open No. 2004-017085 JP 2004-188479 A

特許文献1に示すものは、消失模型がユリア樹脂など可溶性材料で作ったものであり、耐火材スラリーへの浸漬とサンディングによって消失模型の表面に耐火材層のシェル状鋳型を生成し、この鋳型を焼成してセラミック鋳型とする際に消失模型を溶融除去するもので、鋳型の造型プロセスが複雑で特別な設備も必要とし、簡便な自硬性鋳型の造型には適用できない。   In Patent Document 1, the disappearance model is made of a soluble material such as urea resin, and a shell-like mold of the refractory layer is generated on the surface of the disappearance model by immersion in the refractory material slurry and sanding. When the material is fired to form a ceramic mold, the disappearance model is melted and removed, and the molding process of the mold is complicated and special equipment is required, and it cannot be applied to the molding of a simple self-hardening mold.

特許文献2に示すものは、消失模型がろう模型であり、ケイ酸ソーダなどの水溶性のスラリー粘結剤を使いサンディングを行い、模型表面に生成したシェル鋳型層を炭酸ガスで急速硬化させるもので、通常のインベストメント鋳造法を用いる鋳型造型と同様な複雑なプロセスと特別な設備を必要とし、簡便な自硬性鋳型の造型には適用できない。   The one shown in Patent Document 2 is a wax model where the disappearance model is sanded using a water-soluble slurry binder such as sodium silicate, and the shell mold layer generated on the model surface is rapidly cured with carbon dioxide gas Therefore, it requires a complicated process and special equipment similar to the mold making using the ordinary investment casting method, and cannot be applied to simple self-hardening mold making.

特許文献3に示すものは、消失模型が発泡ポリスチレンなどの発泡体であり、消失模型の外周にセラミック基材を塗布し、これを加熱炉にて消失模型を気化排出させたセラミック基材を焼成してセラミックシェル鋳型を形成するもので、鋳型造型のプロセスは通常のインベストメント鋳造法と同様に複雑なプロセスと特別な設備が必要で、簡便な自硬性鋳型には適用できない。   As shown in Patent Document 3, the disappearance model is a foamed material such as expanded polystyrene, and a ceramic base material is applied to the outer periphery of the disappearance model, and the ceramic base material that is vaporized and discharged from the disappearance model in a heating furnace is fired. Thus, the mold making process requires a complicated process and special equipment as in the ordinary investment casting method, and cannot be applied to a simple self-hardening mold.

特許文献4に示すものは、消失模型がろう模型であり、通常のインベストメント精密鋳造鋳型の造型プロセスに従って作られた鋳型から、ろう模型を燃焼することなく液化し流出させて脱ろうするもので、バーナー、トーチランプの炎でろう模型を直接加熱する方法、この方法に引き続き鋳型を熱湯中に浸漬して残留したろう成分を溶融する方法がとられ、完全な脱ろうは鋳型を焼成することにより達成される。この鋳型造型法は複雑なプロセスを必要とするセラミックシェル鋳型造型に係り、簡便な自硬性鋳型の造型には適用できない。   In Patent Document 4, the disappearance model is a wax model, and the wax model is liquefied and discharged without burning from the mold made according to the molding process of a normal investment precision casting mold. A method of directly heating the wax model with a flame of a burner or torch lamp, followed by a method of immersing the mold in hot water and melting the remaining wax components, complete dewaxing is done by firing the mold Achieved. This mold making method is related to ceramic shell mold making that requires a complicated process, and cannot be applied to simple self-hardening mold making.

特許文献5に示すものは、消失模型が合成樹脂発泡体であり、消失模型を鋳型に埋設したままの状態で溶湯が鋳込まれるもので、鋳型中で消失模型が熱分解することによる弊害を皆無にすることはできない。   In Patent Document 5, the disappearance model is a synthetic resin foam, and the molten metal is cast with the disappearance model embedded in the mold, and there is a problem caused by the thermal decomposition of the disappearance model in the mold. You can't be ridiculous.

特許文献6に示すものは、模型が発泡ポリスチレン製であり、この模型を鋳型から抜型し繰返し使用するもので、消失模型として鋳型中に埋設して使用する鋳型造型法とは異なり、その効果は期待できない。   The model shown in Patent Document 6 is a model made of polystyrene foam, and this model is extracted from the mold and used repeatedly. Unlike the mold making method, which is embedded in the mold as the disappearing model, the effect is I can't expect it.

特許文献7に示すものは、消失模型が高密度発泡体であり、鋳型を構成する鋳物砂に含浸させた酸化剤により、消失模型の完全燃焼を行うものであるが、溶湯が鋳込まれたとき鋳型中で消失模型が熱分解することによる弊害は避けられない。   As shown in Patent Document 7, the disappearance model is a high-density foam, and the disappearance model is completely burned by the oxidant impregnated in the molding sand constituting the mold, but the molten metal was cast. Sometimes, the harmful effect of the disappearance model thermally decomposing in the mold is inevitable.

本発明は、消失模型を用いる自硬性鋳型造型法における鋳型造型の利便性を生かし、かつ自硬性鋳型に埋設した消失模型を溶湯鋳込み前に除去することによって、インベストメント精密鋳造鋳型の鋳込みキャビティ形成の確実性を、自硬性鋳型造型法に生かすことができないかということに着目し、種々検討の結果得られたものである。それは、インベストメント鋳造法の消失模型材としてよく知られている材料から選択した、ユリアを主成分とするポリビニールアルコールと少量の分散調整剤を配合したユリア組成物を消失模型として使用することによって、強固で剛性があり、通常の自硬性鋳型を作るときの鋳物砂のつき固めに十分に耐え得ることと、水溶性を利用して自硬性鋳型中に埋設した消失模型を除去できることであった。更に煮沸した沸騰水中に消失模型を埋設した鋳型を浸けることで、消失模型の除去が迅速確実に行われることと、熱湯水中で崩解しない自硬性鋳型の選択が必要なことが解かった。   The present invention makes use of the convenience of mold making in the self-hardening mold making method using the disappearance model and removes the disappearance model embedded in the self-hardening mold before casting the molten metal, thereby forming the casting cavity of the investment precision casting mold. This was obtained as a result of various studies focusing on whether certainty could be utilized in the self-hardening mold making method. It is selected from materials well-known as disappearance model materials for investment casting, by using as a disappearance model a urea composition containing a urea-based polyvinyl alcohol and a small amount of a dispersion regulator. It was strong and rigid, was able to withstand the compaction of foundry sand when making a normal self-hardening mold, and was able to remove the disappeared model embedded in the self-hardening mold using water solubility. Furthermore, it was found that the disappearance model can be removed quickly and surely by immersing the mold in which the disappearance model is embedded in boiling water, and that a self-hardening mold that does not collapse in hot water is necessary.

上記の目的を達成するために、請求項1の発明は、ユリアを主成分とし、ポリビニールアルコールと少量の分散調整剤を配合したユリア組成物からなる消失模型を、熱湯水で崩解しない自硬性鋳型中に埋設した模型鋳型一体型を造り、これを煮沸した沸騰水中に浸けて消失模型が自硬性鋳型から溶出するまで保持し、自硬性鋳型を沸騰水中から取り出して乾燥することからなる構成である。   In order to achieve the above-mentioned object, the invention of claim 1 is based on the fact that a disappearance model composed of a urea composition containing urea as a main component and blended with a polyvinyl alcohol and a small amount of a dispersion regulator is not dissolved in hot water. The model consists of a model mold embedded in a rigid mold, immersed in boiling boiling water, held until the disappeared model is eluted from the self-hardening mold, and the self-hardening mold is removed from the boiling water and dried. It is.

請求項2の発明は、請求項1記載の消失模型を用いた自硬性鋳型造型法において、上記沸騰水中から取り出した自硬性鋳型を、煮沸した清浄な沸騰水に浸漬して洗浄する構成である。   The invention of claim 2 is a self-hardening mold making method using the disappearance model according to claim 1, wherein the self-hardening mold taken out from the boiling water is immersed and washed in boiled clean boiling water. .

請求項3の発明は、請求項1又は2記載の消失模型を用いた自硬性鋳型造型法において、上記煮沸した沸騰水に少量の界面活性剤を添加する構成である。   A third aspect of the invention is a self-hardening mold making method using the disappearance model according to the first or second aspect, wherein a small amount of a surfactant is added to the boiled boiling water.

請求項4の発明は、請求項1ないし3のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、上記模型鋳型一体型を煮沸した沸騰水中に浸ける前に、オートクレープにおいて消失模型の補助溶出を行う構成である。   According to a fourth aspect of the present invention, there is provided a self-hardening mold making method using the disappearance model according to any one of the first to third aspects, wherein the model mold-integrated mold is immersed in boiling water in an autoclave. This is a configuration that performs auxiliary elution of the disappearance model.

請求項5の発明は、請求項1ないし4のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、上記ユリア組成物がユリア95〜85重量%にポリビニールアルコール3〜6重量%、ステアリン酸、パラフィン、水などからなる分散調整剤2〜9重量%を混合したものからなる構成である。   The invention according to claim 5 is the self-hardening mold making method using the disappearance model according to any one of claims 1 to 4, wherein the urea composition is 95 to 85% by weight of urea and 3 to 6 polyvinyl alcohol. The composition is composed of a mixture of 2 to 9% by weight of a dispersion adjusting agent composed of, for example, wt%, stearic acid, paraffin and water.

請求項6の発明は、請求項1ないし5のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、上記熱湯水で崩解しない自硬性鋳型の粘結剤がフラン自硬性樹脂、フェノールウレタン自硬性樹脂、フェノール酸硬化自硬性樹脂、アルカリフェノール自硬性樹脂からなる構成である。   The invention according to claim 6 is the self-hardening mold making method using the disappearance model according to any one of claims 1 to 5, wherein the binder of the self-hardening mold that does not disintegrate with hot water is furan self-hardening. It is the structure which consists of resin, phenol urethane self-hardening resin, phenol acid hardening self-hardening resin, alkali phenol self-hardening resin.

請求項7の発明は、請求項1ないし6のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、上記模型鋳型一体型が、消失模型を自硬性鋳型中に埋設した中子鋳型として形成される構成である。   The invention according to claim 7 is the self-hardening mold making method using the disappearance model according to any one of claims 1 to 6, wherein the model mold-integrated mold has the disappearance model embedded in the self-hardening mold. It is the structure formed as a child mold.

請求項8の発明は、請求項1ないし7のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、上記消失模型が、同じ寸法、形状の消失模型セグメントの集合体からなる構成となっている。   The invention according to claim 8 is the self-hardening mold making method using the disappearance model according to any one of claims 1 to 7, wherein the disappearance model is composed of a collection of disappearance model segments having the same size and shape. It has a configuration.

請求項1の発明によると、消失模型をユリア組成物で作ることにより、強固で剛性のあるものとなり、通常の自硬性鋳型を作るときの鋳物砂のつき固めにより変形することなく十分に耐えることができる。この消失模型を自硬性鋳型中に埋設し、模型鋳型一体型として構成したものを、煮沸した沸騰水中に浸けることにより、水溶性の消失模型は自硬性鋳型から容易に溶出除去される。煮沸した沸騰水の使用は、沸騰水の対流などにより消失模型の溶出が加速され、消失模型が除去された鋳型キャビティの洗浄作用が向上する。また鋳型は熱湯水で崩解しない自硬性鋳型を選択使用することで、自硬性鋳型造型法の利便性が失われることはない。以上の各要素技術の組合せにより消失模型を用いる自硬性鋳型造型法の生産効率を上げることができる。   According to the invention of claim 1, by making the disappearance model with the urea composition, it becomes strong and rigid, and it can sufficiently withstand without deformation due to compaction of the foundry sand when making a normal self-hardening mold. Can do. By embedding the disappearance model in a self-hardening mold and immersing the model mold-integrated mold in boiling water, the water-soluble disappearance model is easily eluted and removed from the self-hardening mold. When boiling water is used, elution of the disappearance model is accelerated by convection of boiling water, and the cleaning action of the mold cavity from which the disappearance model has been removed is improved. Moreover, the convenience of the self-hardening mold making method is not lost by selectively using a self-hardening mold that does not break down with hot water. By combining the above elemental technologies, the production efficiency of the self-hardening mold making method using the disappearance model can be increased.

請求項2の発明によると、ユリア組成物からなる消失模型の溶出除去がより確実になるとともに、鋳型内部に浸透し残留するユリア組成物を少なくすることができる。   According to the invention of claim 2, the elution removal of the disappearing model made of the urea composition becomes more reliable, and the urea composition that permeates and remains inside the mold can be reduced.

請求項3の発明によると、ユリア組成物からなる消失模型の溶出除去を加速するとともに、鋳型内部に浸透し残留するユリア組成物をより少なくすることができる。   According to the invention of claim 3, it is possible to accelerate the elution and removal of the disappearing model made of the urea composition, and to reduce the urea composition that permeates and remains inside the mold.

請求項4の発明によると、ユリア組成物からなる消失模型を溶出除去する時間を大幅に短縮することができる。   According to the invention of claim 4, the time for elution and removal of the disappearance model made of the urea composition can be greatly shortened.

請求項5の発明によると、消失模型は強固で剛性のあるものにでき、大気中での保存性及び水溶性を適切なものにすることができる。   According to the invention of claim 5, the disappearance model can be made strong and rigid, and the preservation property and water solubility in the air can be made appropriate.

請求項6の発明によると、通常使用されている自硬性鋳型から選択可能で自硬性鋳型造型法の利便性を活用することができる。   According to the invention of claim 6, it is possible to select from commonly used self-hardening molds, and the convenience of the self-hardening mold making method can be utilized.

請求項7の発明によると、消失模型を用いた自硬性鋳型造型法の利便性と生産性を上げることができる。   According to the invention of claim 7, the convenience and productivity of the self-hardening mold making method using the disappearance model can be improved.

請求項8の発明によると、消失模型を溶出除去して造型された鋳込みキャビティが形成された自硬性鋳型は、精度が向上するとともにその生産効率を上げることができる。   According to the invention of claim 8, the self-hardening mold in which the cast cavity formed by eluting and removing the disappearance model is formed can improve the accuracy and increase the production efficiency.

以下、図面に基づいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る消失模型を用いた自硬性鋳型の全体構成を示す。1は下部鋳型、2は上部鋳型、3は下部鋳型に嵌め込まれた中子鋳型、4は中子鋳型に形成された消失模型を溶出除去した鋳込キャビティ、5は下部鋳型に形成された鋳込みキャビティ、6は上部鋳型に形成された鋳込キャビティである。鋳込キャビティ4、5、6が鋳造品に相当する鋳込キャビティを形成する。7は上部鋳型に設けた湯口である。
(Embodiment 1)
FIG. 1 shows an overall configuration of a self-hardening mold using a disappearance model according to Embodiment 1 of the present invention. 1 is a lower mold, 2 is an upper mold, 3 is a core mold fitted into the lower mold, 4 is a casting cavity in which the disappeared model formed in the core mold is eluted and removed, and 5 is a casting formed in the lower mold A cavity 6 is a casting cavity formed in the upper mold. The casting cavities 4, 5, and 6 form casting cavities corresponding to castings. 7 is a gate provided in the upper mold.

図2は、上記構成の自硬性鋳型の鋳込キャビティ4、5、6に溶融金属を注湯して造られる鋳造品8の概略形状を示す。9は鋳造品の羽根部であって8枚で構成されている。   FIG. 2 shows a schematic shape of a casting 8 produced by pouring molten metal into the casting cavities 4, 5, and 6 of the self-hardening mold having the above-described configuration. 9 is a blade part of a cast product, and is composed of 8 sheets.

図3は上記鋳造品8の羽根部9を構成する消失模型セグメント集合体10の平面図を示す。11はユリア組成物で成形された消失模型セグメントであって、先端部分11aが略三角柱形状に形成された同一形状からなる。これらのセグメント11の先端部分11aを中心にして羽根部部分11bを放射状に配設して、8個のセグメント11を組立て消失模型集合体10を形成する。   FIG. 3 shows a plan view of the vanishing model segment assembly 10 constituting the blade portion 9 of the casting 8. Reference numeral 11 denotes a vanishing model segment formed of a urea composition, and the tip portion 11a has the same shape formed in a substantially triangular prism shape. The vane portion 11b is arranged radially around the tip portion 11a of these segments 11, and the eight segments 11 are assembled to form the vanishing model assembly 10.

図4は、上記の消失模型セグメント集合体10を自硬性中子鋳型3に埋設した模型中子鋳型一体型3aを示す。   FIG. 4 shows a model core mold integrated type 3 a in which the above disappearance model segment assembly 10 is embedded in a self-hardening core mold 3.

この実施形態1は、消失模型を用いた自硬性鋳型造型法を中子鋳型の造型に適用して自硬性中子鋳型を造型し、これを通常の自硬性鋳型である下部鋳型と上部鋳型と一緒に組立て使用する鋳型造型法を示す。この実施形態1の鋳型鋳造法の詳細について、図に基づいて説明する。   In the first embodiment, a self-hardening core mold is formed by applying the self-hardening mold making method using the disappearance model to the forming of the core mold, and the lower mold and the upper mold, which are normal self-hardening molds, are formed. The mold making method to be assembled and used together is shown. Details of the mold casting method of the first embodiment will be described with reference to the drawings.

鋳造する鋳造品8の羽根部9は同一寸法形状で8枚構成である。先ず羽根部9に相当する消失模型セグメント11をインベストメント鋳造法で使用する消失模型と同様な成形法で、ユリア組成物を用い簡易金型を使って成形する。この場合、多数の同一寸法形状の消失模型セグメント11が使えるので有利である。また最終鋳造品の品質が安定し良好となる。   The blade part 9 of the cast product 8 to be cast has the same size and shape, and is composed of eight sheets. First, the vanishing model segment 11 corresponding to the blade portion 9 is molded using a simple mold using a urea composition by a molding method similar to the vanishing model used in the investment casting method. In this case, a large number of erasure model segments 11 having the same size and shape can be used, which is advantageous. In addition, the quality of the final casting is stable and good.

同様にして造られた消失模型セグメント11の8枚を図3に示すように組立て、セグメント集合体10を構成する。次いで、図4に示すように、この消失模型セグメント集合体10を自硬性中子鋳型3に埋設した模型中子鋳型一体型3aを造る。この場合、自硬性鋳物砂は通常のフルモールド鋳型造型法と同様につき固めを行う。実施形態1のユリア組成物からなる消失模型セグメント11は強固で剛性があるので強くつき固めても壊れたり変形したりすることはない。   Eight vanishing model segments 11 made in the same manner are assembled as shown in FIG. Next, as shown in FIG. 4, a model core mold integrated type 3a in which the vanishing model segment assembly 10 is embedded in the self-hardening core mold 3 is manufactured. In this case, the self-hardening foundry sand is hardened in the same manner as a normal full mold molding method. Since the vanishing model segment 11 made of the urea composition of Embodiment 1 is strong and rigid, it does not break or deform even if it is strongly crushed.

次いでこの模型中子鋳型一体型3aを煮沸した沸騰水中に浸ける。この沸騰水とは、通常の水を約100℃に加熱することで、水が煮沸状態にあり、流動している状態の熱湯水で、激しく対流を起こし煮沸している状態の沸騰水である。鋳型に埋設した消失模型は鋳型上下面の露出部から熱湯中に溶け始め、沸騰水により短時間でユリア組成物からなる消失模型は自硬性中子鋳型から溶出除去される。なお、鋳型上下面の一方に消失模型の露出部がないものでは、鋳型に仮の穴を設け溶出除去を助け、後でこの穴を鋳型材で塞ぐ。   Next, the model core mold integrated type 3a is immersed in boiling water. This boiling water is boiling water that is heated and heated to about 100 ° C. so that the water is in a boiled state and is in a flowing state, and is violently convectioned and boiled. . The disappearance model embedded in the mold begins to melt in the hot water from the exposed portions of the upper and lower surfaces of the mold, and the disappearance model composed of the urea composition is eluted and removed from the self-hardening core mold by boiling water in a short time. In the case where there is no exposed portion of the disappeared model on one of the upper and lower surfaces of the mold, a temporary hole is provided in the mold to help elution removal, and this hole is closed later with the mold material.

消失模型10の溶出除去の時間は、消失模型の形状寸法により左右されるが、10分〜50分を要する。時間が短すぎると消失模型が十分に溶出除去されず、時間が長すぎると、鋳込みキャビティ内面の角部などに損傷を生じる恐れがあるし、エネルギーロスになるので、消失模型が溶出除去したことを確認し、上記時間内とすることが好ましい。   Although the elution removal time of the disappearance model 10 depends on the shape and size of the disappearance model, it takes 10 to 50 minutes. If the time is too short, the disappearance model will not be sufficiently eluted and removed. If the time is too long, the corners on the inner surface of the casting cavity may be damaged, resulting in energy loss. It is preferable that the time is within the above time.

煮沸した沸騰水から取り出した自硬性中子鋳型は、鋳型の組織中に残留する水分を排除するため乾燥炉にて、150℃〜170℃の温度で、3時間〜8時間乾燥する。乾燥時間は、短すぎると水分の排出が不足し、長すぎると経済性に劣るので、上記範囲とすることが好ましい。   The self-hardening core mold taken out from the boiled boiling water is dried at a temperature of 150 ° C. to 170 ° C. for 3 hours to 8 hours in a drying furnace in order to eliminate moisture remaining in the mold structure. If the drying time is too short, the drainage of water is insufficient, and if it is too long, the economy is inferior.

この様にして製作された自硬性中子鋳型は、図1に示すように下部鋳型1と上部鋳型2の間にセットし、鋳造品8に相当した鋳込キャビティ4、5、6を形成した鋳型を構成する。この場合下部鋳型1及び上部鋳型2は、通常の方法で鋳込キャビティ5、6及び湯口7を形成した自硬性鋳型とする。かくしてこの鋳型に溶融金属を注湯し鋳造品8を製作する。   The self-hardening core mold manufactured in this way is set between the lower mold 1 and the upper mold 2 as shown in FIG. 1, and cast cavities 4, 5, and 6 corresponding to the cast product 8 are formed. Construct a mold. In this case, the lower mold 1 and the upper mold 2 are self-hardening molds in which the casting cavities 5 and 6 and the gate 7 are formed by a usual method. Thus, molten metal is poured into this mold to produce a casting 8.

(実施形態2)
実施形態2について説明する。なお、実施形態1と異なるところのみ説明し、同じところの説明は省略する。実施形態1と同様に煮沸した沸騰水から自硬性中子鋳型3を取り出した後、実施形態2では、この自硬性中子鋳型3に対して、別に用意した煮沸した清浄な沸騰水に短時間(5〜10分程度)浸けるようにしたものである。かくして自硬性中子鋳型3の外表面、鋳込キャビティ内面、鋳型組織内に浸透し残留するユリア組成物の除去がより完全に行える。
(Embodiment 2)
Embodiment 2 will be described. Only the differences from the first embodiment will be described, and the description of the same portions will be omitted. After taking out the self-hardening core mold 3 from the boiling water boiled in the same manner as in the first embodiment, in the second embodiment, the self-hardening core mold 3 is briefly added to the boiled clean boiling water prepared separately. (5-10 minutes) soaked. Thus, the urea composition that penetrates and remains in the outer surface of the self-hardening core mold 3, the inner surface of the casting cavity, and the mold structure can be removed more completely.

実施形態1及び2の煮沸した沸騰水に、少量の界面活性剤、例えば中性タイプのアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル、脂肪酸アルカノールアミドなどを添加使用すると、消失模型の溶出除去が加速されるとともに、沸騰水中に溶出したユリア組成物が自硬性中子鋳型の内外表面に付着残留することを防止できる。界面活性剤の添加量は、水1リットルに対し約0.5ミリリットル程度である。   When a small amount of surfactant, for example, neutral type sodium alkyl ether sulfate, polyoxyethylene alkyl ether, fatty acid alkanolamide, or the like is added to the boiling boiling water of Embodiments 1 and 2, elution removal of disappearance model is accelerated. In addition, the urea composition eluted in the boiling water can be prevented from remaining on the inner and outer surfaces of the self-hardening core mold. The amount of surfactant added is about 0.5 milliliters per liter of water.

(実施形態3)
実施形態3について説明する。なお、実施形態1と異なるところのみ説明し、同じところの説明は省略する。実施形態3としては、実施形態1において模型中子鋳型一体型3aを煮沸した沸騰水に浸ける前に、オートクレープを使って、ユリア組成物からなる消失模型の補助溶出除去を行う。オートクレープはインベストメント鋳造法で脱ロウに常用されている140〜170℃の過熱水蒸気が使用され10〜25分程度の短時間で、自硬性中子鋳型を壊すことなく消失模型の補助溶出ができる。オートクレープから取り出した自硬性中子鋳型は実施形態1と同様に煮沸した沸騰水に浸ける。この場合の所要時間は5〜10分程度の短時間で十分であり、鋳型の内外表面に付着残留するユリア組成分を効果的に除去できる。
(Embodiment 3)
A third embodiment will be described. Only the differences from the first embodiment will be described, and the description of the same portions will be omitted. In the third embodiment, before the model core mold integrated type 3a in the first embodiment is immersed in the boiling water, the disappearance model made of the urea composition is removed by auxiliary elution using an autoclave. Autoclave uses superheated steam at 140 to 170 ° C, which is commonly used for dewaxing in the investment casting method, and can be used for auxiliary elution of disappearance models without breaking the self-hardening core mold in a short time of about 10 to 25 minutes. . The self-hardening core mold taken out from the autoclave is immersed in boiling water as in the first embodiment. In this case, the time required is about 5 to 10 minutes, and the urea component adhering to the inner and outer surfaces of the mold can be effectively removed.

本発明において用いられる消失模型を造る組成物の成分及びその混合割合を説明する。消失模型に求められる特性としては、消失模型を埋設した自硬性中子鋳型を造るときの鋳物砂のつき固めにより変形破壊しないだけの剛性強度、煮沸した沸騰水に浸けて消失模型を溶出するときの可溶性の良さ、消失模型を金型を用いて成形するときの成形性の良さと成形後の保存性の良さなどが必要である。かかる特性はユリア組成物の主成分ユリアとポリビニールアルコールの配合割合が支配的な要素となって決まり、添加される少量の分散調整剤によって、混合生成される組成物に付加的性質が付与される。本発明では、ユリアが95〜85重量%、ポリビニールアルコールは3〜6重量%の範囲のものが使用可能で、ユリアの割合が多くなると成形された消失模型の水溶性が良くなり、ポリビニールアルコールの割合が多くなると成形された消失模型の強度が増す、使用上の要求に応じて適当な配合割合が選択される。   The components of the composition for making the disappearance model used in the present invention and the mixing ratio thereof will be described. The characteristics required for the disappearance model include the rigidity and strength that does not cause deformation and breakage due to the compaction of the foundry sand when making a self-hardening core mold with the disappearance model embedded, and when the dissolution model is dissolved in boiling boiling water. It is necessary to have good solubility, good formability when the disappearing model is formed using a mold, good preservability after forming, and the like. Such properties are determined by the mixing ratio of the main component urea and polyvinyl alcohol of the urea composition, and additional properties are imparted to the mixed composition by the small amount of the dispersion modifier added. The In the present invention, the urea can be used in the range of 95 to 85% by weight and the polyvinyl alcohol in the range of 3 to 6% by weight. As the proportion of alcohol increases, the strength of the molded disappearance model increases, and an appropriate blending proportion is selected according to usage requirements.

分散調整剤としては、ユリア組成物の均質混合性と使用用途への対応性を付与するため、ステアリン酸、パラフィン、水などが適当な割合で用いられる。この分散調整剤は、2〜9重量%で使用される。   As the dispersion adjusting agent, stearic acid, paraffin, water, and the like are used at an appropriate ratio in order to impart a uniform mixing property of the urea composition and compatibility with the intended use. This dispersion regulator is used at 2 to 9% by weight.

(実施例1)
実施例1として、ユリア90重量%、ポリビニールアルコール4.5重量%、ステアリン酸2重量%、パラフィン1重量%、水2.5重量%からなる組成物で図2に示す消失模型を成形した。そして、熱湯水で崩解しない自硬性中子鋳型3は、35メッシュ珪砂に粘結剤としてフラン樹脂0.8重量%とスルフオン酸0.4重量%を配合した自硬性フラン砂を使って、通常のフルモールド鋳造法または通常の鋳型造型法と同様なつき固めによって、ユリア組成物からなる消失模型を埋設した図4に示した模型中子鋳型一体型3aとして造型された。このものは実施形態1の製造工程により、100℃の沸騰水に45分浸漬した後、さらに清浄な100℃の沸騰水に7分浸漬して消失模型を溶出除去し、その後取り出して乾燥炉を使い170℃の温度で5時間乾燥して、鋳込キャビティを形成した自硬性中子鋳型3として作成した。
Example 1
As Example 1, a disappearing model shown in FIG. 2 was formed with a composition comprising 90% by weight of urea, 4.5% by weight of polyvinyl alcohol, 2% by weight of stearic acid, 1% by weight of paraffin, and 2.5% by weight of water. The self-hardening core mold 3 that does not disintegrate with hot water is a normal full mold using self-hardening furan sand containing 35% silica sand and 0.8% by weight furan resin and 0.4% by weight sulfonic acid as a binder. By the same compaction as the casting method or the normal mold making method, it was formed as the model core mold integrated type 3a shown in FIG. 4 in which the disappearance model made of the urea composition was embedded. This product is immersed in boiling water at 100 ° C. for 45 minutes according to the manufacturing process of Embodiment 1, and further immersed in clean 100 ° C. boiling water for 7 minutes to elute and remove the disappeared model, and then taken out and a drying furnace is removed. It was dried at a temperature of 170 ° C. for 5 hours and produced as a self-hardening core mold 3 in which a casting cavity was formed.

実施例2として、実施例1と同じユリア組成物からなる消失模型を、実施例1と同じ自硬性鋳型内に埋設して、模型中子鋳型一体型3aを成形した。この模型中子鋳型一体型3aを、オートクレーブで170℃の過熱水蒸気で15分処理し、その後100℃の沸騰水に7分浸漬し、170℃の温度で5時間乾燥した。実施例3としては、実施例2と同様に過熱水蒸気で処理した後、沸騰水に浸漬し、その後清浄の沸騰水にさらに浸漬した後乾燥乾燥した。なお、過熱水蒸気は150℃で20分、100℃の沸騰水には5分間浸漬し、その後清浄な沸騰水100℃に5分浸漬した後、170℃の温度で3時間乾燥した。実施例4として、実施例1において、沸騰水に、界面活性剤として水1リットルに対して0.5ミリリットルの中性タイプのアルキルエーテル硫酸ナトリウムを添加したものを使用した。   As Example 2, a disappearance model made of the same urea composition as in Example 1 was embedded in the same self-hardening mold as in Example 1 to form a model core mold integrated type 3a. This model core mold integrated type 3a was treated with superheated steam at 170 ° C. for 15 minutes in an autoclave, then immersed in boiling water at 100 ° C. for 7 minutes, and dried at a temperature of 170 ° C. for 5 hours. As Example 3, after treating with superheated steam in the same manner as Example 2, it was immersed in boiling water, then further immersed in clean boiling water, and then dried and dried. The superheated steam was immersed in boiling water at 150 ° C. for 20 minutes and 5 minutes in 100 ° C. boiling water, then immersed in clean boiling water 100 ° C. for 5 minutes, and then dried at a temperature of 170 ° C. for 3 hours. As Example 4, a solution obtained by adding 0.5 ml of neutral type alkyl ether sodium sulfate to 1 liter of water as a surfactant in boiling water in Example 1 was used.

実施例5及び6として、実施例1のユリア組成物の配合割合を変更したものを使用した。実施例5は、ユリア88重量%、ポリビニールアルコール5.5重量%、ステアリン酸2重量%、パラフィン2重量%、水2.5重量%、更に界面活性剤として水1リットルに対して0.3ミリリットルの中性タイプのアルキルエーテル硫酸ナトリウムを添加したものとし、実施例6はユリア93重量%、ポリビニールアルコール3.5重量%、ステアリン酸1重量%、パラフィン1重量%、水1.5重量%のものを使用した。   As Examples 5 and 6, those in which the mixing ratio of the urea composition of Example 1 was changed were used. Example 5 contains 88% by weight of urea, 5.5% by weight of polyvinyl alcohol, 2% by weight of stearic acid, 2% by weight of paraffin, 2.5% by weight of water, and 0.3 ml of surfactant as 1 liter of water. Sex type sodium alkyl ether sulfate was added, and Example 6 used 93% by weight of urea, 3.5% by weight of polyvinyl alcohol, 1% by weight of stearic acid, 1% by weight of paraffin, and 1.5% by weight of water.

比較例1として、実施形態1と同じ消失模型を用意し、90℃の熱湯水で2時間処理し、さらに清浄な90℃の熱湯水で1時間処理した。この90℃の熱湯水とは、沸騰してない状態の高温の加熱水のことである。比較例2は実施形態1と同じ消失模型を用意し、100℃の沸騰水で1.5時間処理し、さらに100℃の沸騰水で7分処理、170℃の温度で5時間乾燥処理した。比較例3は、ユリア93重量%、ポリビニールアルコール35重量%、ステアリン酸1重量%、パラフィン重量1%、水1.5重量%のもので消失模型を成形し、100℃の沸騰水で15分処理し、更に100℃の沸騰水で5分処理し、170℃の温度で5時間乾燥した。   As Comparative Example 1, the same disappearance model as that of Embodiment 1 was prepared, treated with hot hot water of 90 ° C. for 2 hours, and further treated with clean hot hot water of 90 ° C. for 1 hour. This hot water of 90 ° C. is high-temperature heated water that is not boiling. In Comparative Example 2, the same disappearance model as that of Embodiment 1 was prepared, treated with boiling water at 100 ° C. for 1.5 hours, further treated with boiling water at 100 ° C. for 7 minutes, and dried at a temperature of 170 ° C. for 5 hours. In Comparative Example 3, a disappearance model was formed with 93% by weight of urea, 35% by weight of polyvinyl alcohol, 1% by weight of stearic acid, 1% of paraffin, and 1.5% by weight of water, and treated with boiling water at 100 ° C. for 15 minutes. Further, it was treated with boiling water at 100 ° C. for 5 minutes and dried at a temperature of 170 ° C. for 5 hours.

上記実施例1〜6及び比較例1〜3について、消失模型の排出状態及び鋳型の状態について観察した結果を表1に示す。   Table 1 shows the results of observing the discharge state of the disappearance model and the state of the mold for Examples 1 to 6 and Comparative Examples 1 to 3.

Figure 2007090384
Figure 2007090384

実施例1〜6では、消失模型はきれいに排出され、自硬性鋳型も崩壊することなく形状を維持できた。それに対して、比較例1では、沸騰してない90℃の熱湯水に2時間浸けて処理し、更に90℃の清浄な熱湯水に1時間浸けて処理したが、消失模型がきれいには溶出されず鋳型キャビティ内に残り、排出できなかった。比較例2では、沸騰水での処理時間が長すぎて、鋳型キャビティ内面が荒れ角部に一部欠損が生じた。比較例3では、水溶性に優れたユリア組成物のユリアを多くして、溶出時間の短縮を試みたが、消失模型の排出が十分にできなかった。   In Examples 1 to 6, the disappeared model was discharged neatly, and the shape of the self-hardening mold could be maintained without collapsing. In contrast, in Comparative Example 1, it was treated by immersing it in hot non-boiling 90 ° C hot water for 2 hours, and further immersed in clean hot water at 90 ° C for 1 hour. It remained in the mold cavity and could not be discharged. In Comparative Example 2, the treatment time with boiling water was too long, and the inner surface of the mold cavity was rough and some defects were generated at the corners. In Comparative Example 3, an attempt was made to shorten the elution time by increasing the amount of urea in the urea composition excellent in water solubility, but the disappearance model could not be discharged sufficiently.

自硬性中子鋳型は鋳物砂の粘結剤に、フラン自硬性樹脂の他にフェノールウレタン自硬性樹脂、フェノール酸硬化自硬性樹脂、アルカリフェノール自硬性樹脂などが選択使用され、熱湯水で崩解しない中子鋳型を造型することができる。   For the self-hardening core mold, phenol urethane self-hardening resin, phenolic acid-hardening self-hardening resin, alkali phenol self-hardening resin, etc. are selected and used as the binder for foundry sand, in addition to furan self-hardening resin. It is possible to mold a core mold that does not.

上記した実施形態では、消失模型を用いた自硬性鋳型造型法を中子鋳型に適用した場合について述べたが、同様にこの手法を中子鋳型に代え、上部鋳型、下部鋳型のいずれか一方または両方に直接適用することによって、鋳込キャビティを形成した自硬性鋳型を造型することができる。   In the above-described embodiment, the case where the self-hardening mold making method using the disappearance model is applied to the core mold is described. Similarly, this technique is replaced with the core mold, and either the upper mold or the lower mold or By applying directly to both, a self-hardening mold in which a casting cavity is formed can be formed.

本発明の鋳型造型法を適用して鋳造できる鋳造品の他の具体例として、図5はフランシス水車の羽根車を示し、また図6は遠心ポンプの羽根車を示している。いずれも多数の同一寸法形状の羽根を有する構造であり、これらを鋳造する鋳型は本発明の鋳型造型法によって効率よく製造できる。   FIG. 5 shows an impeller of a Francis turbine, and FIG. 6 shows an impeller of a centrifugal pump, as another specific example of a cast product that can be cast by applying the mold making method of the present invention. Each of them has a structure having a large number of blades of the same size and shape, and a mold for casting these can be efficiently manufactured by the mold making method of the present invention.

本発明は、消失模型を用いた自硬性鋳型造型法を、中子鋳型や鋳型本体の造型に広く適用可能とするものであり、これらの鋳型を使って鋳造される鋳造品としては、フランシス水車の羽根車、遠心ポンプの羽根車、送風機の羽根車、タービンのノズルリングなどが特に適している。   The present invention makes it possible to widely apply the self-hardening mold making method using the disappearance model to core molds and mold body molding, and as cast products cast using these molds, Francis turbines Especially suitable are an impeller of a centrifugal pump, an impeller of a centrifugal pump, an impeller of a blower, a nozzle ring of a turbine, and the like.

熱湯水で崩解しない自硬性中子鋳型を組立て鋳込キャビティを形成した鋳型の全体構成図である。It is the whole block diagram of the mold which assembled the self-hardening core mold which does not collapse with hot water, and formed the casting cavity. 図1の鋳型を使って鋳造された鋳造品の概略図である。FIG. 2 is a schematic view of a cast product cast using the mold of FIG. 図2の鋳造品の羽根部を構成する消失模型セグメント集合体の平面図である。FIG. 3 is a plan view of a vanishing model segment assembly that constitutes a blade portion of the cast product of FIG. 2. 図3の消失模型セグメント集合体を自硬性中子鋳型に埋設した模型中子鋳型一体型の斜視図である。FIG. 4 is a perspective view of a model core mold integrated type in which the vanishing model segment assembly of FIG. 3 is embedded in a self-hardening core mold. 本発明を適用するフランシス水車の羽根車の斜視図である。It is a perspective view of the impeller of a Francis turbine to which the present invention is applied. 本発明を適用する遠心ポンプの羽根車の斜視図である。It is a perspective view of the impeller of the centrifugal pump to which the present invention is applied.

符号の説明Explanation of symbols

1 下部鋳型
2 上部鋳型
3 中子鋳型
3a 模型中子鋳型一体型
4 中子鋳型に形成された鋳込キャビティ
5 下部鋳型に形成された鋳込キャビティ
6 上部鋳型に形成された鋳込キャビティ
7 上部鋳型に設けた湯口
8 鋳造品
9 鋳造品の羽根
10 消失模型セグメント集合体
11 消失模型セグメント
DESCRIPTION OF SYMBOLS 1 Lower mold 2 Upper mold 3 Core mold 3a Model core mold integral type 4 Casting cavity 5 formed in core mold Casting cavity 6 formed in lower mold Casting cavity 7 formed in upper mold Upper part Spout 8 provided in the mold Cast product 9 Cast blade 10 Disappearance model segment assembly 11 Disappearance model segment

Claims (8)

ユリアを主成分とし、ポリビニールアルコールと少量の分散調整剤を配合したユリア組成物からなる消失模型を、熱湯水で崩解しない自硬性鋳型中に埋設した模型鋳型一体型を造り、これを煮沸した沸騰水中に浸けて消失模型が自硬性鋳型から溶出するまで保持し、自硬性鋳型を沸騰水中から取り出して乾燥することを特徴とする消失模型を用いた自硬性鋳型造型法。   Created a model mold integrated type in which the disappearance model consisting of urea composition composed mainly of urea, blended with polyvinyl alcohol and a small amount of dispersion regulator, is embedded in a self-hardening mold that does not disintegrate with hot water. A self-hardening mold making method using a disappearance model, which is immersed in boiling water and held until the disappearance model elutes from the self-hardening mold, and the self-hardening mold is removed from the boiling water and dried. 請求項1記載の消失模型を用いた自硬性鋳型造型法において、
沸騰水中から取り出した自硬性鋳型を、煮沸した清浄な沸騰水に浸漬して洗浄することを特徴とする消失模型を用いた自硬性鋳型造型法。
In the self-hardening mold making method using the disappearance model according to claim 1,
A self-hardening mold making method using a disappearing model, characterized in that a self-hardening mold taken out from boiling water is immersed and washed in boiled clean boiling water.
請求項1又は2記載の消失模型を用いた自硬性鋳型造型法において、
煮沸した沸騰水に少量の界面活性剤を添加することを特徴とする消失模型を用いた自硬性鋳型造型法。
In the self-hardening mold making method using the disappearance model according to claim 1 or 2,
A self-hardening mold making method using a disappearance model, characterized by adding a small amount of a surfactant to boiling boiling water.
請求項1ないし3のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、
模型鋳型一体型を煮沸した沸騰水中に浸ける前に、オートクレープにおいて消失模型の補助溶出を行うことを特徴とする消失模型を用いた自硬性鋳型造型法。
In the self-hardening mold making method using the disappearance model according to any one of claims 1 to 3,
A self-hardening mold making method using a disappearing model, characterized in that the disappearing model is auxiliary eluted in an autoclave before immersing the model casting mold in boiling water.
請求項1ないし4のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、
ユリア組成物がユリア95〜85重量%にポリビニールアルコール3〜6重量%、ステアリン酸、パラフィン、水などからなる分散調整剤2〜9重量%を混合したものであることを特徴とする消失模型を用いた自硬性鋳型造型法。
In the self-hardening mold making method using the disappearance model according to any one of claims 1 to 4,
Disappearance model characterized in that the urea composition is a mixture of 95 to 85% by weight of urea and 3 to 6% by weight of polyvinyl alcohol, 2 to 9% by weight of a dispersion control agent comprising stearic acid, paraffin, water, etc. Self-hardening mold making method using
請求項1ないし5のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、
熱湯水で崩解しない自硬性鋳型の粘結剤がフラン自硬性樹脂、フェノールウレタン自硬性樹脂、フェノール酸硬化自硬性樹脂、アルカリフェノール自硬性樹脂であることを特徴とする消失模型を用いた自硬性鋳型造型法。
In the self-hardening mold making method using the disappearance model according to any one of claims 1 to 5,
The self-hardening mold binder that does not disintegrate in hot water is a furan self-hardening resin, a phenol urethane self-hardening resin, a phenolic acid hardening self-hardening resin, or an alkali phenol self-hardening resin. Hard mold making method.
請求項1ないし6のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、
模型鋳型一体型が、消失模型を自硬性鋳型中に埋設した中子鋳型として形成されることを特徴とする消失模型を用いた自硬性鋳型造型法。
In the self-hardening mold making method using the disappearance model according to any one of claims 1 to 6,
A self-hardening mold making method using an disappearance model, wherein the model mold-integrated mold is formed as a core mold in which the disappearance model is embedded in the self-hardening mold.
請求項1ないし7のいずれか1つに記載の消失模型を用いた自硬性鋳型造型法において、
消失模型が、同じ寸法、形状の消失模型セグメントの集合体からなることを特徴とする消失模型を用いた自硬性鋳型造型法。
In the self-hardening mold making method using the disappearance model according to any one of claims 1 to 7,
A self-hardening mold making method using an disappearance model, wherein the disappearance model is composed of an assembly of disappearance model segments having the same size and shape.
JP2005282808A 2005-09-28 2005-09-28 Self-hardening mold making using disappearance model Active JP4623465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282808A JP4623465B2 (en) 2005-09-28 2005-09-28 Self-hardening mold making using disappearance model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282808A JP4623465B2 (en) 2005-09-28 2005-09-28 Self-hardening mold making using disappearance model

Publications (2)

Publication Number Publication Date
JP2007090384A true JP2007090384A (en) 2007-04-12
JP4623465B2 JP4623465B2 (en) 2011-02-02

Family

ID=37976661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282808A Active JP4623465B2 (en) 2005-09-28 2005-09-28 Self-hardening mold making using disappearance model

Country Status (1)

Country Link
JP (1) JP4623465B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023228A (en) * 2007-07-19 2009-02-05 Sumitomo Osaka Cement Co Ltd Manufacturing method of hollow molded article made of resin
JP2012055967A (en) * 2010-09-03 2012-03-22 Taiyo Machinery Co Ltd Method for regenerating molding sand and batch-type centrifugal polishing machine and batch-type kneading machine used therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122222A (en) * 1976-04-07 1977-10-14 Hitachi Ltd Method of manufacturing precision casting mold
JPS5415417A (en) * 1977-06-10 1979-02-05 Hitachi Ltd Fabrication of cast
JPS5728652A (en) * 1980-07-25 1982-02-16 Hitachi Ltd Production of mold
JPS6137349A (en) * 1984-07-28 1986-02-22 Mitsubishi Heavy Ind Ltd Production of casting mold
JPH06292940A (en) * 1993-04-09 1994-10-21 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of mold for precision investment casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122222A (en) * 1976-04-07 1977-10-14 Hitachi Ltd Method of manufacturing precision casting mold
JPS5415417A (en) * 1977-06-10 1979-02-05 Hitachi Ltd Fabrication of cast
JPS5728652A (en) * 1980-07-25 1982-02-16 Hitachi Ltd Production of mold
JPS6137349A (en) * 1984-07-28 1986-02-22 Mitsubishi Heavy Ind Ltd Production of casting mold
JPH06292940A (en) * 1993-04-09 1994-10-21 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of mold for precision investment casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023228A (en) * 2007-07-19 2009-02-05 Sumitomo Osaka Cement Co Ltd Manufacturing method of hollow molded article made of resin
JP2012055967A (en) * 2010-09-03 2012-03-22 Taiyo Machinery Co Ltd Method for regenerating molding sand and batch-type centrifugal polishing machine and batch-type kneading machine used therefor

Also Published As

Publication number Publication date
JP4623465B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US11707779B2 (en) Method and casting core for forming a landing for welding a baffle inserted in an airfoil
JP5632136B2 (en) Disintegrating mold and manufacturing method thereof
CN102039375B (en) Method for quickly manufacturing high-temperature alloy hollow blade casting
JP5398964B2 (en) Manufacturing process for ceramic cores for turbomachine blades
CH618361A5 (en)
CN104907492A (en) Making method of surface double-walled hollow turbine blade
JPH05200486A (en) Manufacture of core for use in investment casting
CN103008547B (en) Resin sand shell mold casting method of automotive turbocharger shell
CN105057593A (en) Investment casting technology for copper alloy casting
KR100864717B1 (en) Plastery Investment used for Investment casting
CN102489670A (en) Ceramic core for molding of support plate and preparation method thereof
CN101700560B (en) Plaster mold investment casting method
JP4623465B2 (en) Self-hardening mold making using disappearance model
JP4034119B2 (en) Low carbon steel casting production method and mold
CN101716649A (en) Lost sand casting process based on photocuring rapid forming
KR102263436B1 (en) precision casting method for shell of internal passage
WO2014192825A1 (en) Core for precision casting, production method therefor, and mold for precision casting
JP7088612B2 (en) Manufacturing method of ceramic core and manufacturing method of ceramic core for investment casting
JPS5844945A (en) Mold coating material for prevention of carburization and sulfurization used for organic self-hardening mold
CN104972067B (en) A kind of investment shell and preparation method thereof
JP4374575B2 (en) Drying, dewaxing and firing methods for precision casting plaster molds
US20200246861A1 (en) Method of investment casting chaplet
Nor et al. The effect of dewaxing and burnout temperature in block mold process for copper alloy casting
JPS6030549A (en) Production of casting having fine hole
JP7448138B2 (en) Manufacturing method of slurry-like investment material and slurry-like investment material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

R150 Certificate of patent or registration of utility model

Ref document number: 4623465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250