JP2007090374A - Structure and method of joining cylindrical member - Google Patents

Structure and method of joining cylindrical member Download PDF

Info

Publication number
JP2007090374A
JP2007090374A JP2005281159A JP2005281159A JP2007090374A JP 2007090374 A JP2007090374 A JP 2007090374A JP 2005281159 A JP2005281159 A JP 2005281159A JP 2005281159 A JP2005281159 A JP 2005281159A JP 2007090374 A JP2007090374 A JP 2007090374A
Authority
JP
Japan
Prior art keywords
metal member
joining
iron
based metal
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005281159A
Other languages
Japanese (ja)
Inventor
Kenichi Sugiyama
健一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005281159A priority Critical patent/JP2007090374A/en
Publication of JP2007090374A publication Critical patent/JP2007090374A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve corrosion resistance on the side of an iron based metallic member in the weld zone of friction welding of cylindrical members comprising an aluminum based metallic member and the iron based metallic member. <P>SOLUTION: A propeller shaft 1 has a stub shaft 11 made of an iron based metallic material, formed in a hollow cylindrical shape, and is provided with a protective layer 13 on the outer circumferential face, and a hollow cylindrical first tube 12 made of an aluminum based metallic material, wherein the two components are joined by friction welding. In joining the two, there are formed: a burr 16 expanded in diameter from the joining end of the stub shaft and folded nearly in a warpage; a non-protective part 14 on the joining face side; and a protective layer in a reduced diameter part 17 which is reduced to the reverse end side in the axial direction, with the maximum expanded diameter part 16a as a boundary. Consequently, corrosion is prevented in the stub shaft single unit and, moreover, in the outer circumferential part 14b of the non-protective part having a minute exposed area, growth of corrosion is suppressed by the formation of an oxidation product even in the presence of electro-erosion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミ系金属部材及び鉄系金属部材によって夫々形成された各円筒状部材同士を摩擦圧接により接合してなる円筒状部材の接合構造及びその接合方法に関するものである。   The present invention relates to a cylindrical member joining structure in which respective cylindrical members formed of an aluminum-based metal member and an iron-based metal member are joined by friction welding and a joining method thereof.

従来の円筒状部材の接合構造としては、例えば以下の特許文献1に記載されたものが提案されている。   As a conventional joining structure of cylindrical members, for example, a structure described in Patent Document 1 below has been proposed.

この円筒状部材の接合構造は、異種金属部材同士を摩擦圧接して、この異種金属部材間において相対的に自然電位の卑な金属部材である第1部材の外周側から自然電位の貴な金属部材である第2部材の外周に沿った方向にバリを延在させて、このバリが接合界面の外周部に覆い被さった構造になっている。   This cylindrical member joining structure is formed by friction welding the dissimilar metal members to each other and from the outer peripheral side of the first member, which is a base metal member having a relatively natural potential between the dissimilar metal members, a noble metal having a natural potential. A burr is extended in the direction along the outer periphery of the second member, which is a member, and the burr covers the outer peripheral portion of the bonding interface.

これにより、前記バリによって塩水などの電解液が接合界面に到達するのを防止するようになっている。また、前記電解液がバリの内側に入り込んだ場合には、該電解液により接合界面付近のバリや第2部材の一部が腐食されて酸化生成物が生成されて、該酸化生成物がバリと第2部材との隙間に堆積することによって、さらなる電解液の接合界面付近への供給を遮断して、接合界面の腐食を防止することができるようになっている。
特開2003−48078号公報
Thus, the burr prevents an electrolyte such as salt water from reaching the bonding interface. Further, when the electrolytic solution enters the inside of the burr, the electrolytic solution corrodes the burr near the bonding interface and a part of the second member to generate an oxidized product, and the oxidized product is By depositing in the gap between the second member and the second member, the supply of further electrolyte solution to the vicinity of the joint interface can be cut off, and corrosion of the joint interface can be prevented.
JP 2003-48078 A

しかしながら、従来の円筒状部材の接合構造のように、前記バリを延在させただけでは、雨水などの電解液が接合界面に到達するのを完全に防止することはできない。   However, it is not possible to completely prevent an electrolytic solution such as rainwater from reaching the joining interface only by extending the burr as in the conventional joining structure of cylindrical members.

すなわち、前述のように、接合界面付近のバリや第2部材の一部が電食することによって生成される酸化生成物がバリと第2部材との隙間に堆積して、接合界面の腐食進行速度が遅延しても、前記酸化生成物の周辺から腐食が進行すると共に、鋼材単体としても腐食が進行してしまうおそれがある。   That is, as described above, burrs in the vicinity of the bonding interface and oxidation products generated by electrolytic corrosion of a part of the second member accumulate in the gap between the burr and the second member, and the corrosion of the bonding interface proceeds. Even if the speed is delayed, corrosion progresses from the periphery of the oxidation product, and corrosion may occur as a single steel material.

本発明は、このような技術的課題に着目して案出されたものであって、アルミ系金属部材及び鉄系金属部材からなる各円筒状部材の摩擦圧接接合部において、電解液の付着による鉄系金属部材側の耐食性を向上し得る円筒状部材の接合構造及びその接合方法を提供するものである。   The present invention has been devised by paying attention to such a technical problem, and is based on the adhesion of the electrolytic solution in the friction welding portion of each cylindrical member made of an aluminum-based metal member and an iron-based metal member. The present invention provides a joining structure of a cylindrical member and a joining method thereof that can improve the corrosion resistance on the side of an iron-based metal member.

請求項1に記載の発明は、円筒状に形成されたアルミ系金属部材と鉄系金属部材とを摩擦圧接によって接合してなる円筒状部材の接合構造であって、前記鉄系金属部材の接合端に形成され、該接合端から外方へ拡径した非保護部と、該非保護部の最大拡径端縁から前記鉄系金属部材の外周面にわたって形成されて、電解液との接触を保護する保護層と、を有することを特徴としている。   The invention according to claim 1 is a joining structure of a cylindrical member formed by joining an aluminum-based metal member and an iron-based metal member formed in a cylindrical shape by friction welding, and joining the iron-based metal member A non-protected portion formed at the end and expanded outward from the joint end, and formed from the maximum expanded end edge of the non-protected portion to the outer peripheral surface of the iron-based metal member to protect the contact with the electrolytic solution And a protective layer.

この発明によれば、前記アルミ系金属部材と前記鉄系金属部材との接合部に形成された前記非保護部には、該非保護部が電食することによって酸化生成物が生成されて、この酸化生成物が前記非保護部周辺に堆積するために、前記非保護部の腐食の進行が防止されると共に、前記保護層によって前記鉄系金属部材単体の外周側の腐食も防止される。   According to the present invention, an oxidation product is generated in the non-protected portion formed at the joint portion between the aluminum-based metal member and the iron-based metal member by electrolytic corrosion of the non-protected portion. Since the oxidation product is deposited around the non-protected portion, the progress of the corrosion of the non-protected portion is prevented, and the outer peripheral side of the iron-based metal member alone is also prevented by the protective layer.

請求項2に記載の発明は、円筒状に形成されたアルミ系金属部材と鉄系金属部材とを摩擦圧接によって接合してなる円筒状部材の接合方法であって、前記鉄系金属部材の外面に保護層を形成する工程と、前記鉄系金属部材の接合端側の端面を切削加工して、前記保護層を削り落とすと共に、外周側に拡径部を形成する工程と、前記アルミ系金属部材と前記鉄系金属部材とを摩擦圧接して、該両部材を接合する工程と、からなることを特徴としている。   The invention according to claim 2 is a joining method of a cylindrical member formed by joining an aluminum-based metal member and an iron-based metal member formed in a cylindrical shape by friction welding, and the outer surface of the iron-based metal member Forming a protective layer, cutting an end surface of the ferrous metal member on the joining end side, scraping off the protective layer, and forming an enlarged diameter portion on the outer peripheral side, and the aluminum-based metal And a step of friction-welding the member and the iron-based metal member to join the two members.

この発明によれば、この接合方法の発明にあっても、前記請求項1に記載の発明と同様な作用効果が得られる。   According to this invention, even if it exists in invention of this joining method, the effect similar to the invention of the said Claim 1 is acquired.

請求項3に記載の発明は、円筒状に形成されたアルミ系金属部材と鉄系金属部材とを接合してなる円筒状部材の接合構造であって、前記アルミ系金属部材と前記鉄系金属部材との接合部を除く前記鉄系金属部材の外周面のみに電解液との接触を保護する保護層を形成したことを特徴としている。   The invention according to claim 3 is a joining structure of a cylindrical member formed by joining an aluminum metal member formed in a cylindrical shape and an iron metal member, and the aluminum metal member and the iron metal. A protective layer that protects the contact with the electrolytic solution is formed only on the outer peripheral surface of the iron-based metal member excluding the joint with the member.

この発明によれば、前記アルミ系金属部材と前記鉄系金属部材との接合部を除く前記鉄系金属部材の外周面のみに電解液との接触を保護する保護層を形成したため、前記保護層によって、特に、前記鉄系金属部材単体における外周側の腐食が確実に防止される。   According to this invention, since the protective layer that protects the contact with the electrolytic solution is formed only on the outer peripheral surface of the iron-based metal member excluding the joint portion between the aluminum-based metal member and the iron-based metal member, the protective layer In particular, corrosion on the outer peripheral side of the iron-based metal member alone is reliably prevented.

以下、本発明に係る円筒状部材の接合構造の実施の形態を図面に基づいて詳述する。この実施形態では、円筒状部材の接合構造を車両用のプロペラシャフトに適用したものを示している。   Embodiments of a cylindrical member joining structure according to the present invention will be described below in detail with reference to the drawings. In this embodiment, a cylindrical member joining structure is applied to a propeller shaft for a vehicle.

すなわち、プロペラシャフト1は、図6に示すように、四輪駆動車やフロントエンジン・リヤドライブの車両において、車体のほぼ中央部に車両前後方向に沿って配設されて、車両先端側の第1シャフト2と車両後端側の第2シャフト3とが、前記第2シャフトの前端部に設けられた等速ジョイント4を介して連結されている。   That is, as shown in FIG. 6, the propeller shaft 1 is disposed along the vehicle front-rear direction at a substantially central portion of the vehicle body in a four-wheel drive vehicle or a front engine / rear drive vehicle. The first shaft 2 and the second shaft 3 on the vehicle rear end side are connected via a constant velocity joint 4 provided at the front end portion of the second shaft.

また、前記プロペラシャフト1は、前記第1シャフト2の前端部が第1自在継手5を介して図外のトランスミッションの出力軸と連結されている一方、前記第2シャフト3の後端部が第2自在継手6を介して図外のリヤデファレンシャルの入力軸と連結されており、車体の上下及び左右方向へ揺動可能になっている。   The propeller shaft 1 has a front end portion of the first shaft 2 connected to an output shaft of a transmission (not shown) via a first universal joint 5, while a rear end portion of the second shaft 3 is a first end portion. It is connected to a rear differential input shaft (not shown) through a universal joint 6 so that it can swing in the vertical and horizontal directions of the vehicle body.

さらに、前記プロペラシャフト1は、前記第1シャフト2と等速ジョイント4との間に設けられたセンターベアリング7によって、支持部材8を介して車体のフロア下部に固定され、回転自在に支持されつつ、全体の撓みが防止されている。   Further, the propeller shaft 1 is fixed to the lower part of the floor of the vehicle body via a support member 8 by a center bearing 7 provided between the first shaft 2 and the constant velocity joint 4 and is rotatably supported. The entire bending is prevented.

前記第1シャフト2は、前記第1自在継手5の第1ヨーク10と前記等速ジョイント4を介して第2シャフト3に連結するスタブシャフト11とが、前記第1チューブ12を介して連結されている。   The first shaft 2 is connected to the first yoke 10 of the first universal joint 5 and the stub shaft 11 connected to the second shaft 3 via the constant velocity joint 4 via the first tube 12. ing.

前記スタブシャフト11は、鉄系金属材料、例えば機械構造用炭素鋼であるS45Cからなる段差形状の円筒状に形成され、前記第1チューブ12の後端側に接合される基部11aと、この基部11aの後端に段差部を介して縮径して連続する主軸部11bと、この主軸部11bの後端に段差部を介してさらに縮径して連続する先端部11cと、を有している。   The stub shaft 11 is formed in a stepped cylindrical shape made of a ferrous metal material, for example, S45C, which is carbon steel for mechanical structures, and a base portion 11a joined to the rear end side of the first tube 12, and the base portion A main shaft portion 11b having a reduced diameter through the step portion at the rear end of the main shaft portion 11a, and a leading end portion 11c having a diameter reduced at the rear end of the main shaft portion 11b through the step portion; Yes.

また、前記スタブシャフト11は、図1及び図2に示すように、雨水などの電解液による該スタブシャフト11単体の腐食を防止するために、外周面に塗装やメッキなどの保護層13が施されている。   Further, as shown in FIGS. 1 and 2, the stub shaft 11 is provided with a protective layer 13 such as coating or plating on the outer peripheral surface in order to prevent corrosion of the stub shaft 11 alone by an electrolyte such as rain water. Has been.

さらに、前記スタブシャフト11は、前記第1チューブ12との接合力の低下を防止するために、該基部11aの開口端面が、後述する切削加工によって前記保護層13が削除された非保護部14となっている。   Further, the stub shaft 11 has a non-protected portion 14 in which the protective layer 13 is removed from the opening end surface of the base portion 11a by a cutting process to be described later in order to prevent a decrease in the joining force with the first tube 12. It has become.

また、前記第1ヨーク10は、前記スタブシャフト11と同様の鉄系金属材料からなり、外周面には前記保護層13が施されていると共に、前記第1チューブ12と接合する中空円筒状に形成された円筒部10aを有している。   The first yoke 10 is made of an iron-based metal material similar to the stub shaft 11, and the outer peripheral surface is provided with the protective layer 13 and has a hollow cylindrical shape that is joined to the first tube 12. It has a cylindrical portion 10a formed.

前記第1チューブ12は、アルミ系金属材料、例えば熱処理型合金である6000系のA6061や非熱処理型合金である5000系のA5154からなり、中間部が拡径した段差形状の中空円筒状に形成されている。なお、この第1チューブ12は、前記第1ヨーク10及びスタブシャフト11よりも、表面積が大きく設定されている。   The first tube 12 is made of an aluminum-based metal material, for example, a heat-treatable alloy of 6000 series A6061 or a non-heat treatable alloy of 5000 series A5154, and is formed in a hollow cylindrical shape having a stepped shape with an enlarged middle portion. Has been. The first tube 12 has a larger surface area than the first yoke 10 and the stub shaft 11.

また、前記第1チューブ12は、前端部12aの径が第1ヨーク10の円筒部10aとほぼ同じ内径及び外径に設定されている一方、後端部12bの径がスタブシャフト11の基部11aとほぼ同じ内径及び外径に設定されている。   The first tube 12 has a front end portion 12 a having a diameter substantially the same as the cylindrical portion 10 a of the first yoke 10 and an outer diameter, while the rear end portion 12 b has a base portion 11 a of the stub shaft 11. Are set to the same inner and outer diameters.

そして、前記スタブシャフト11の基部11aと第1チューブ12の後端部12bとは、摩擦圧接によって一体に接合されている。   The base portion 11a of the stub shaft 11 and the rear end portion 12b of the first tube 12 are integrally joined by friction welding.

この摩擦圧接接合は、後述するように、前記スタブシャフト11に対して第1チューブ12を回転させつつ加圧することによって行われ、前記第1チューブ12の後端部12bの開口周縁部には、図1〜図4に示すように、全周にわたってカール部15が形成されている。   As will be described later, this friction welding is performed by applying pressure while rotating the first tube 12 with respect to the stub shaft 11, and at the opening peripheral edge portion of the rear end portion 12 b of the first tube 12, As shown in FIGS. 1-4, the curl part 15 is formed over the perimeter.

このカール部15は、前記スタブシャフト11の非保護部14に対する摩擦によって融点以下の摩擦熱が発生し、前記第1チューブ12の後端部12bにおいて、非保護部14の端面14aと当接する平坦面が形成される一方、圧接させるために軸方向に加圧されることによって、該後端部12bの肉が径方向に押し出されて、該第1チューブ12の外周面側へ折り返し状に折曲形成されている。そして、スタブシャフト11の基部11aと第1チューブ12の後端部12bとの接合部C1は、図5及び図8に示すように、基部11aにおける非保護部14の端面14aとカール部15の平坦面とが、突き合わせ状態に一体となっている。   The curled portion 15 generates frictional heat below the melting point due to friction with the non-protected portion 14 of the stub shaft 11, and is flat with the rear end portion 12 b of the first tube 12 contacting the end surface 14 a of the non-protected portion 14. While the surface is formed, the rear end portion 12b is pushed in the radial direction by being pressed in the axial direction so as to be brought into pressure contact with the outer peripheral surface of the first tube 12, and is folded back. A song is formed. And the junction part C1 of the base 11a of the stub shaft 11 and the rear-end part 12b of the 1st tube 12 is as shown in FIG.5 and FIG.8, and the end surface 14a of the non-protection part 14 in the base 11a and the curl part 15 are shown. The flat surface is integrated with the butt.

ここで、前記スタブシャフト11の基部11aと第1チューブ12の後端部12bとの接合方法について具体的に説明すると、図7(a)に示すように、まず、スタブシャフト11単体を塗装又はメッキの槽に浸すことによって、該スタブシャフト11全体に防食のための塗装又はメッキを施して、外面全体に前記保護層13を形成する。   Here, the method for joining the base portion 11a of the stub shaft 11 and the rear end portion 12b of the first tube 12 will be described in detail. First, as shown in FIG. By dipping in a plating tank, the entire stub shaft 11 is coated or plated to prevent corrosion, and the protective layer 13 is formed on the entire outer surface.

続いて、図7(b)及び(c)に示すように、摩擦圧接機において、前記スタブシャフト11を回転側チャック31にセットしてクランプする一方、前記第1チューブ12を固定側チャック32にセットしてクランプして、接合する各端面同士を軸方向から対峙状態に配置する。   Subsequently, as shown in FIGS. 7B and 7C, in the friction welding machine, the stub shaft 11 is set and clamped on the rotation side chuck 31, while the first tube 12 is fixed on the fixed side chuck 32. It sets and clamps and arrange | positions each end surface to join in an opposing state from an axial direction.

次に、図7(d)に示すように、固定側チャック32を、移動機構33を介して回転側チャック31側へ前進させて、スタブシャフト11の基部11aの開口端部と第1チューブ12の後端部12bとを突き合わせ状態に当接させる。   Next, as shown in FIG. 7 (d), the fixed side chuck 32 is advanced to the rotary side chuck 31 side via the moving mechanism 33, and the opening end of the base portion 11 a of the stub shaft 11 and the first tube 12. The rear end portion 12b is brought into contact with the butted state.

その後、図7(e)に示すように、固定側チャック32のクランプを一時的に解放して、前記スタブシャフト11の基部11aと第1チューブ12の第1後端部12bとの接合面における軸心の位置決めを行い、図7(f)に示すように、再び第1チューブ12をクランプして、固定側チャック32を移動機構33によって後退させる。   Thereafter, as shown in FIG. 7 (e), the clamp of the fixed side chuck 32 is temporarily released, and at the joint surface between the base portion 11a of the stub shaft 11 and the first rear end portion 12b of the first tube 12. As shown in FIG. 7 (f), the axial center is positioned, and the first tube 12 is clamped again, and the stationary chuck 32 is moved backward by the moving mechanism 33.

続いて、前記スタブシャフト11の基部11aの開口端部の端面を仕上げるために、図8(g)に示すように、回転側チャック31を回転させて、前記基部11aの開口端面にバイト34を当接させることによって、該基部11aの開口端面を切削加工する。   Subsequently, in order to finish the end face of the opening end portion of the base portion 11a of the stub shaft 11, as shown in FIG. 8G, the rotating side chuck 31 is rotated, and the cutting tool 34 is placed on the opening end surface of the base portion 11a. By abutting, the opening end surface of the base portion 11a is cut.

なお、このスタブシャフト11の基部11aの端面仕上げ加工は、摩擦圧接機上で行わずに、前記塗装又はメッキ施工工程の後に、他の切削加工機によって行うことも可能である。   Note that the end surface finishing of the base portion 11a of the stub shaft 11 can be performed by another cutting machine after the painting or plating process, without being performed on the friction welding machine.

また、前記スタブシャフト11の基部11aの開口端面を切削加工することによって、前記塗装又はメッキ施工工程において基部11aの開口端面に形成された保護層13を削り落とすことができる。   Further, by cutting the opening end face of the base portion 11a of the stub shaft 11, the protective layer 13 formed on the opening end face of the base portion 11a can be scraped off in the painting or plating process.

そして、前記スタブシャフト11の基部11aの開口端面を切削加工する際に、該開口端面の所定の仕上げ寸法を満足できる程度にバイト34の送り速度を上げて、切削抵抗を大きくすることによって、図1、図2及び図4に示すように、基部11aの開口端部の外周縁に、拡径部であるバリ16を形成する。   Then, when cutting the opening end face of the base portion 11a of the stub shaft 11, the feed speed of the cutting tool 34 is increased to a level that satisfies a predetermined finish dimension of the opening end face, thereby increasing the cutting resistance. As shown in FIG. 1, FIG. 2 and FIG.

このバリ16は、図1及び図2に示すように、前記基部11aの開口端部から外周側へほぼ反り返り状に形成されており、該基部11aの開口端部の肉が外周側へ押しのけられた状態になっている。つまり、基部11aの開口端部は、該開口端面から外周側へフランジ状に徐々に拡径しており、したがって、バリ16が形成された該基部11aの開口端部の外径L1は、図2に示すように、バリ16が形成されていない基部11aの外径L2よりも大きくなるように設定されている。   As shown in FIGS. 1 and 2, the burr 16 is formed so as to be almost curved back from the opening end of the base portion 11a to the outer peripheral side, and the meat of the opening end portion of the base portion 11a is pushed to the outer peripheral side. It is in the state. That is, the diameter of the opening end of the base 11a is gradually increased from the opening end surface to the outer peripheral side in a flange shape. Therefore, the outer diameter L1 of the opening end of the base 11a on which the burr 16 is formed is As shown in FIG. 2, it is set to be larger than the outer diameter L2 of the base portion 11a where the burr 16 is not formed.

そして、この切削加工によって、前記基部11aの開口端面からバリ16の最大拡径部16aまで、前記端面14aと該端面14aの外周部14bとからなる接合面側全体に非保護部14が形成されるようになっている。   And by this cutting process, the non-protection part 14 is formed in the whole joint surface side which consists of the said end surface 14a and the outer peripheral part 14b of this end surface 14a from the opening end surface of the said base 11a to the largest diameter expansion part 16a of the burr | flash 16. It has become so.

さらに、前記バリ16は、前記第1チューブ12と反対側の背面側が、前記最大拡径部16aから徐々に縮径して、基部11aの外周面と連続する縦断面円弧凹状となる縮径部17が形成されている。   Further, the burr 16 has a reduced diameter portion in which the back side opposite to the first tube 12 is gradually reduced in diameter from the maximum diameter enlarged portion 16a, and becomes a circular arc concave shape continuous with the outer peripheral surface of the base portion 11a. 17 is formed.

ただし、前記基部11aの接合面側は、前記端面切削加工によって前記保護層13が削除されているが、該基部11aの切削加工面に対して背面側となる前記縮径部17の外面には保護層13が残存している。   However, on the joint surface side of the base portion 11a, the protective layer 13 is deleted by the end face cutting, but the outer surface of the reduced diameter portion 17 that is on the back side with respect to the cutting surface of the base portion 11a The protective layer 13 remains.

そして、前記スタブシャフト11の基部11aの端面仕上げ加工が完了した後、図8(h)に示すように、バイト34を後退させると共に、回転側チャック31の回転を停止させて、仕上げた開口端面の状態を確認後、再度回転側チャック31を回転させる。   Then, after finishing the end face finishing of the base portion 11a of the stub shaft 11, as shown in FIG. 8 (h), the cutting tool 34 is retracted and the rotation of the rotation side chuck 31 is stopped to finish the opening end face. After confirming this state, the rotation side chuck 31 is rotated again.

続いて、図8(i)に示すように、固定側チャック32を移動機構33によって前進させることにより、回転しているスタブシャフト11の非保護部14に対して第1チューブ12の後端部12bを当接させて、さらに軸方向に加圧すると共に、所定の時間その加圧状態を保持することによって、両者の端面の間に融点以下の摩擦熱を発生させる。   Subsequently, as shown in FIG. 8I, the rear end portion of the first tube 12 is moved with respect to the non-protection portion 14 of the rotating stub shaft 11 by moving the stationary chuck 32 forward by the moving mechanism 33. 12b is brought into contact and further pressurized in the axial direction, and the pressure state is maintained for a predetermined time, thereby generating frictional heat below the melting point between the two end faces.

その後、図8(j)に示すように、固定側チャック32を回転側チャック31側へ加圧状態に保持したまま、回転側チャック31の回転を停止させる。これにより、前記スタブシャフト11と第1チューブ12とが、摩擦圧接によって接合される。   Thereafter, as shown in FIG. 8J, the rotation of the rotation-side chuck 31 is stopped while the fixed-side chuck 32 is held in a pressurized state toward the rotation-side chuck 31. Thereby, the stub shaft 11 and the first tube 12 are joined by friction welding.

そして、前記回転側チャック31の回転を停止させた後、図8(k)に示すように、回転側チャック31のクランプを解放して、固定側チャック32を後退させ、図8(l)に示すように、該固定側チャック32のクランプを解放することによって、摩擦圧接により一体に接合されたスタブシャフト11と第1チューブ12の接合体を取り出す。   Then, after the rotation of the rotation side chuck 31 is stopped, as shown in FIG. 8 (k), the clamp of the rotation side chuck 31 is released, and the fixed side chuck 32 is moved backward, and FIG. As shown, by releasing the clamp of the fixed side chuck 32, the joined body of the stub shaft 11 and the first tube 12 joined together by friction welding is taken out.

なお、前記回転側チャック31側に移動機構33を設けて、該回転側チャック31を固定側チャック32に対して進退させることも可能であると共に、該回転側チャック31を固定側チャック32側へ加圧して、前記基部11aの開口端部を第1チューブ12の後端部12bに押し付けてもよい。   It is also possible to provide a moving mechanism 33 on the rotation side chuck 31 side to move the rotation side chuck 31 forward and backward with respect to the fixed side chuck 32 and to move the rotation side chuck 31 to the fixed side chuck 32 side. The opening end of the base 11a may be pressed against the rear end 12b of the first tube 12 by applying pressure.

一方、前記第2シャフト3は、図6に示すように、前端側に設けられた等速ジョイント4のアウターレース18と後端側に設けられた第2自在継手6の第2ヨーク19とが、第2チューブ20を介して連結されている。   On the other hand, as shown in FIG. 6, the second shaft 3 includes an outer race 18 of the constant velocity joint 4 provided on the front end side and a second yoke 19 of the second universal joint 6 provided on the rear end side. The second tube 20 is connected.

前記アウターレース18は、前記スタブシャフト11と同様の鉄系金属材料からなり、段差形状の中空円筒状に形成されていると共に、外周面には前記保護層13が施されており、前記第2チューブ20と接合される大径部18aと、該大径部18aの前端側に連続する小径部18bと、を有している。   The outer race 18 is made of a ferrous metal material similar to that of the stub shaft 11, is formed in a stepped hollow cylindrical shape, and the protective layer 13 is applied to the outer peripheral surface thereof. It has a large-diameter portion 18a joined to the tube 20 and a small-diameter portion 18b continuous to the front end side of the large-diameter portion 18a.

前記第2ヨーク19は、前記第ヨーク10と同様の鉄系金属材料からなり、外周面に前記保護部13が形成されており、前記第2チューブ20と接合される中空円筒状に形成された円筒部19aを有している。   The second yoke 19 is made of an iron-based metal material similar to that of the first yoke 10, the protective portion 13 is formed on the outer peripheral surface, and is formed in a hollow cylindrical shape that is joined to the second tube 20. It has a cylindrical portion 19a.

前記第2チューブ20は、前記第1チューブ12と同様のアルミ系金属材料からなる段差形状の中空円筒状に形成されており、前記アウターレース18の大径部18aと接合されて、該大径部18aの後端とほぼ同じ内径及び外径に設定された前端部20aと、前記第2ヨーク19の円筒部19aと接合されて、該円筒部19aとほぼ同じ内径及び外径に設定された後端部20bと、を有している。   The second tube 20 is formed in a stepped hollow cylindrical shape made of an aluminum-based metal material similar to the first tube 12, and is joined to the large-diameter portion 18a of the outer race 18, so that the large-diameter The front end portion 20a set to have substantially the same inner diameter and outer diameter as the rear end of the portion 18a and the cylindrical portion 19a of the second yoke 19 are joined to be set to substantially the same inner diameter and outer diameter as the cylindrical portion 19a. And a rear end portion 20b.

なお、前記第1ヨーク10の円筒部10aと第1チューブ12の前端部12aとの接合部C2、前記アウターレース18の大径部18aと第2チューブ20の前端部20aとの接合部C3及び第2ヨーク19の円筒部19aと第2チューブ20の後端部20bとの接合部C4は、いずれも前記スタブシャフト11と第1チューブ12との接合と同様に摩擦圧接によって接合されており、前記接合部C1とほぼ同様に形成されている。   A joint C2 between the cylindrical portion 10a of the first yoke 10 and the front end 12a of the first tube 12, a joint C3 between the large diameter portion 18a of the outer race 18 and the front end 20a of the second tube 20, and The joint portion C4 between the cylindrical portion 19a of the second yoke 19 and the rear end portion 20b of the second tube 20 is joined by friction welding similarly to the joint between the stub shaft 11 and the first tube 12, It is formed in substantially the same manner as the junction C1.

したがって、この実施形態によれば、前記スタブシャフト11と第1チューブ12との接合部C1おいて、前記スタブシャフト11の基部11aの開口端部にバリ16を形成したため、接合部C1の接合面から露出した非保護部14の外周部14bに雨水などの電解液が付着することによって、該外周部14bはカール部15との電位差により電食するものの、この電食によって酸化生成物が生成されると共に、この酸化生成物が外周部14bとカール部15との間に堆積する。   Therefore, according to this embodiment, since the burr 16 is formed at the opening end portion of the base portion 11a of the stub shaft 11 in the joint portion C1 between the stub shaft 11 and the first tube 12, the joint surface of the joint portion C1. The electrolytic solution such as rainwater adheres to the outer peripheral portion 14b of the non-protected portion 14 exposed from the above, and the outer peripheral portion 14b is eroded due to a potential difference with the curled portion 15. However, an oxidation product is generated by this erosion. At the same time, this oxidation product is deposited between the outer peripheral portion 14 b and the curled portion 15.

これにより、露出面積の微小な非保護部14の外周部14bは腐食の進行が防止される一方、前記基部11aの外周面は保護層13によって防食されているために、該基部11a単体の外周面側の腐食も防止されることによって、前記スタブシャフトの基部11aの全体的な腐食を防止することが可能となる。   As a result, the outer peripheral portion 14b of the non-protected portion 14 with a small exposed area is prevented from progressing corrosion, while the outer peripheral surface of the base portion 11a is protected by the protective layer 13, so that the outer periphery of the base portion 11a alone is prevented. By preventing surface side corrosion, it is possible to prevent overall corrosion of the base portion 11a of the stub shaft.

また、前記バリ16を接合部C1に対して外側へほぼ反り返り状に拡径させた形状としたことによって、前記保護層13を基部11aの軸方向逆端側からバリ16の縮径部17までにとどめて、前記最大拡径部16aを境界に接合面側全体を非保護部14として形成したために、保護層13として施された塗装やメッキの成分が、基部11aの開口端面と第1チューブ12の後端部12bの端面とを摩擦圧接接合する際に、両者の接合面に混入することがなくなる。   In addition, by forming the burr 16 in a shape that is enlarged in a curved manner outwardly with respect to the joint C1, the protective layer 13 is extended from the axially opposite end side of the base portion 11a to the reduced diameter portion 17 of the burr 16. However, since the entire joint surface side is formed as the non-protection part 14 with the maximum diameter-expanded part 16a as a boundary, the coating and plating components applied as the protective layer 13 are applied to the opening end face of the base part 11a and the first tube. When the end surface of the rear end portion 12b of 12 is joined by friction welding, it is not mixed into the joint surfaces of the two.

したがって、前記保護層13の成分が、基部11aの開口端面と第1チューブ12の後端部12bの端面との摩擦圧接接合において悪影響を及ぼすことがないために、両者のより強固な接合状態を得ることができ、充分な接合強度を確保することが可能となる。   Therefore, since the component of the protective layer 13 does not adversely affect the friction welding between the opening end surface of the base portion 11a and the end surface of the rear end portion 12b of the first tube 12, a stronger bonding state between them can be achieved. It is possible to obtain a sufficient bonding strength.

そして、自然電位の貴な鉄系金属材料からなるスタブシャフト11よりも自然電位の卑なアルミ系金属材料からなる第1チューブ12の表面積を大きく設定して、前記保護層13を、前記第1チューブ12には形成せず、該第1チューブ12よりも表面積の小さいスタブシャフト11の外面のみに形成したことによって、該保護層13を形成する面積を最小限にとどめることが可能となる。   Then, the surface area of the first tube 12 made of an aluminum metal material having a natural potential is set larger than that of the stub shaft 11 made of a ferrous metal material having a natural potential, and the protective layer 13 is made to be the first layer. Since the tube 12 is not formed but formed only on the outer surface of the stub shaft 11 having a surface area smaller than that of the first tube 12, the area for forming the protective layer 13 can be minimized.

したがって、前記プロペラシャフト1全体の軽量化に貢献できると共に、コストの低廉化を図ることができる。   Therefore, it is possible to contribute to the weight reduction of the propeller shaft 1 as a whole and to reduce the cost.

また、摩擦圧接接合により前記第1チューブ12の後端部12bにカール部15が形成されることから、該カール部15と前記基部11aの開口端部に形成された非保護部14の外周部14bとが確実に当接して接合すると共に、両者の接触面積が拡大するため、前記接合部C1における外周部14bの露出を最小限に抑えることができ、さらなる電食防止効果が得られる。   Further, since the curled portion 15 is formed at the rear end portion 12b of the first tube 12 by friction welding, the outer peripheral portion of the unprotected portion 14 formed at the open end portion of the curled portion 15 and the base portion 11a. 14b abuts and joins with certainty, and the contact area between the two increases, so that the exposure of the outer peripheral portion 14b at the joint C1 can be minimized, and a further electrolytic corrosion prevention effect can be obtained.

また、摩擦圧接接合により前記第1チューブ12の第1後端部12bに形成されたカール部15は外周面側に折り返し状に折曲形成されているため、該カール部15が基部11aの保護層13と干渉することがなく、該保護層13の剥離防止を図ることができる。   Further, since the curled portion 15 formed on the first rear end portion 12b of the first tube 12 by friction welding is folded back on the outer peripheral surface side, the curled portion 15 protects the base portion 11a. The protective layer 13 can be prevented from peeling without interfering with the layer 13.

さらに、アルミ系金属材料からなる第1チューブ12に比して電位の貴な鉄系金属材料からなるスタブシャフト11に対して、塗装やメッキといった防食効果を有する前記保護層13を施したことによって、スタブシャフト11単体の腐食が防止される。   Furthermore, the protective layer 13 having an anticorrosive effect such as painting or plating is applied to the stub shaft 11 made of an iron-based metal material having a higher potential than the first tube 12 made of an aluminum-based metal material. Corrosion of the stub shaft 11 alone is prevented.

なお、本実施形態の作用効果は、前記接合部C1のみならず、前記各接合部C2,C3,C4についても同様の作用効果を奏することができる。   In addition, the effect of this embodiment can show | play the same effect not only about the said junction part C1, but each said junction part C2, C3, C4.

図9は、前記第1、第2ヨーク10,19が第1、第2チューブ12,20と同様なアルミ系金属材料によって形成された他例を示している。   FIG. 9 shows another example in which the first and second yokes 10 and 19 are formed of the same aluminum-based metal material as the first and second tubes 12 and 20.

すなわち、第1、第2ヨーク10,19及び第1、第2チューブ12,20はいずれも同材料のアルミ系金属材料となっていることから、各部材間の電位差が生じることはほとんどなく、単体での耐食性も高いために、第1、第2ヨーク10,19の外面には、第1、第2チューブ12,20と同様に、電食防止のための前記各保護層13,13は形成されていない。   That is, since the first and second yokes 10 and 19 and the first and second tubes 12 and 20 are all made of the same aluminum-based metal material, there is almost no potential difference between the members. Since the corrosion resistance of the single body is high, the protective layers 13 and 13 for preventing electrolytic corrosion are formed on the outer surfaces of the first and second yokes 10 and 19 in the same manner as the first and second tubes 12 and 20. Not formed.

また、摩擦圧接接合によって、前記第1、第2ヨーク10,19の円筒部10a,19aの各接合端部にはカール部15,15が形成されるため、前記各バリ16,16も形成されていない。   Further, since the curled portions 15 and 15 are formed at the joining end portions of the cylindrical portions 10a and 19a of the first and second yokes 10 and 19 by friction welding, the burrs 16 and 16 are also formed. Not.

したがって、この実施形態によれば、前記第1ヨーク10と第1チューブ12及び第2ヨーク19と第2チューブ20は、いずれも各部材間に電位差が生じることがほとんどないため、前記各接合部C2,C4が電食することはほとんどなく、前記プロペラシャフト1の耐食性をさらに向上させることができる。   Therefore, according to this embodiment, the first yoke 10 and the first tube 12 and the second yoke 19 and the second tube 20 are almost free from potential difference between the members. The corrosion resistance of the propeller shaft 1 can be further improved, with C2 and C4 being hardly eroded.

また、前記各第1、第2ヨーク10,19に対して前記各保護部13,13や各バリ16,16を形成する必要がないために、作業性が向上して、製造コストの低廉化を図ることができる。   Further, since it is not necessary to form the protective portions 13 and 13 and the burrs 16 and 16 on the first and second yokes 10 and 19, workability is improved and manufacturing cost is reduced. Can be achieved.

さらに、前記第1、第2ヨーク10,19に対して前記各保護部13,13を形成する必要がないため、前記プロペラシャフト1全体のさらなる軽量化に貢献できると共に、製造コストのさらなる低廉化を図ることが可能となる。   Further, since it is not necessary to form the protective portions 13 and 13 with respect to the first and second yokes 10 and 19, it is possible to contribute to further weight reduction of the entire propeller shaft 1 and further reduce the manufacturing cost. Can be achieved.

前記実施形態から把握される前記請求項に記載した発明以外の技術的思想について以下に説明する。   The technical ideas other than the invention described in the claims, as grasped from the embodiment, will be described below.

請求項(1) アルミ系金属からなるチューブと鉄系材料からなるヨーク又はスタブシャフトとを摩擦圧接によって接合したプロペラシャフトであって、前記ヨーク又は前記スタブシャフトの外面に電解液の付着による腐食を防止するための保護部が形成され、前記チューブの外面には前記保護層が形成されていないことを特徴とするプロペラシャフト。   (1) A propeller shaft in which a tube made of an aluminum-based metal and a yoke or stub shaft made of an iron-based material are joined by friction welding, and corrosion caused by adhesion of an electrolyte solution to the outer surface of the yoke or the stub shaft. A propeller shaft characterized in that a protective part for preventing is formed and the protective layer is not formed on the outer surface of the tube.

この発明によれば、前記ヨークや前記スタブシャフトの外面の表面積は、前記チューブの外面の表面積よりも小さいため、前記ヨーク又は前記スタブシャフトのみに前記保護層を形成することによって、プロペラシャフトの軽量化に貢献できると共に、前記保護層を形成する面積を最小限にとどめることができ、コストの低廉化も図れる。   According to this invention, since the surface area of the outer surface of the yoke or the stub shaft is smaller than the surface area of the outer surface of the tube, the protective layer is formed only on the yoke or the stub shaft, thereby reducing the weight of the propeller shaft. The area for forming the protective layer can be minimized, and the cost can be reduced.

請求項(2) 前記アルミ系金属部材の接合端の外周縁にはカール部を有していることを特徴とする請求項1に記載の円筒状部材の接合構造。   (2) The cylindrical member joining structure according to claim 1, wherein the outer peripheral edge of the joining end of the aluminum-based metal member has a curled portion.

この発明によれば、前記カール部と前記鉄系金属部材の接合端の外周縁に延在して拡径された非保護部とが確実に当接して接合するため、前記鉄系金属部材の非保護部の露出を最小限に抑えることができ、さらなる電食防止効果が得られる。   According to this invention, since the curled portion and the non-protected portion having an enlarged diameter extending to the outer peripheral edge of the joining end of the iron-based metal member are securely abutted and joined, The exposure of the non-protected portion can be minimized, and a further electric corrosion prevention effect can be obtained.

請求項(3) 前記カール部は、前記アルミ系金属部材の接合端から外周面側に折り返し状に折曲形成されていることを特徴とする請求項(2)に記載のプロペラシャフト。   (3) The propeller shaft according to (2), wherein the curled portion is formed in a folded shape from the joint end of the aluminum-based metal member to the outer peripheral surface side.

この発明によれば、前記カール部は、前記アルミ系金属部材の接合端から外周面側に折り返し状に折曲形成されており、このカール部が前記鉄系金属部材の外周面に形成された前記保護層を剥離させることがないため、該保護層の剥離防止を図ることができる。   According to this invention, the curled portion is formed in a folded shape from the joining end of the aluminum-based metal member to the outer peripheral surface side, and the curled portion is formed on the outer peripheral surface of the iron-based metal member. Since the protective layer is not peeled off, the protective layer can be prevented from being peeled off.

請求項(4) 前記保護層は、塗装であることを特徴とする請求項1に記載の円筒状部材の接合構造。   (4) The cylindrical member joining structure according to claim 1, wherein the protective layer is painted.

この発明によれば、前記鉄系金属部材の外周面に塗装を施すことにより、前記鉄系金属部材単体の腐食を防止することができる。   According to this invention, corrosion of the iron-based metal member alone can be prevented by coating the outer peripheral surface of the iron-based metal member.

請求項(5) 前記保護層は、メッキであることを特徴とする請求項1に記載の円筒状部材の接合構造。   (5) The cylindrical member joining structure according to claim 1, wherein the protective layer is plated.

この発明によれば、前記鉄系金属部材の外周面にメッキを施すことにより、前記鉄系金属部材単体の腐食を防止することができる。   According to this invention, it is possible to prevent corrosion of the iron-based metal member alone by plating the outer peripheral surface of the iron-based metal member.

請求項(6) 前記アルミ系金属からなる円筒状部材の外面の面積よりも前記鉄系金属からなる円筒状部材の外面の面積が小さいことを特徴とする請求項1に記載の円筒状部材の接合構造。   The area of the outer surface of the cylindrical member made of the iron-based metal is smaller than the area of the outer surface of the cylindrical member made of the aluminum-based metal. Junction structure.

この発明によれば、前記鉄系金属からなる円筒状部材の外面の表面積は、前記アルミ系金属からなる円筒状部材の外面の表面積よりも小さいために、前記鉄系金属からなる円筒状部材のみに前記保護層を形成することによって、該保護層を形成する面積を最小限にとどめることができ、コストの低廉化が図れる。   According to this invention, since the surface area of the outer surface of the cylindrical member made of the iron-based metal is smaller than the surface area of the outer surface of the cylindrical member made of the aluminum-based metal, only the cylindrical member made of the iron-based metal is used. By forming the protective layer, the area for forming the protective layer can be minimized, and the cost can be reduced.

本発明は、前記各実施形態の構成に限定されるものではなく、例えば前記第1、第2ヨーク10,19及びスタブシャフト11、第1、第2チューブ12,20及びアウターレース18の材質、形状及び大きさを、自動車の仕様や大きさなどによって自由に変更することができる。   The present invention is not limited to the configuration of each of the above embodiments. For example, the materials of the first and second yokes 10 and 19 and the stub shaft 11, the first and second tubes 12 and 20, and the outer race 18, The shape and size can be freely changed according to the specification and size of the automobile.

特に、鉄系金属材料に関しては、機械構造用炭素鋼又は合金の他に、鍛鋼材料、鋳鋼材料又は鋳鉄材料であってもよい。   In particular, with respect to the iron-based metal material, forged steel material, cast steel material or cast iron material may be used in addition to the carbon steel or alloy for machine structure.

本発明に係る実施の形態を示し、スタブシャフトと第1チューブとの接合状態を示す接合部C1の部分断面図であり、図5のC部の拡大図である。FIG. 6 is a partial cross-sectional view of a joint portion C1 showing an embodiment of the present invention and showing a joint state between the stub shaft and the first tube, and is an enlarged view of a portion C in FIG. 図1のA部の拡大図である。It is an enlarged view of the A section of FIG. スタブシャフトと第1チューブとの実物における接合状態を示す接合部C1の接合断面写真であり、図1の図面代用写真である。FIG. 3 is a joint cross-sectional photograph of the joint C1 showing a joint state of the stub shaft and the first tube in the real thing, and is a drawing substitute photograph of FIG. 図3のB部の接合断面拡大写真であり、図2の図面代用写真である。FIG. 4 is an enlarged photograph of a bonding cross section of a portion B in FIG. 3 and a drawing substitute photograph in FIG. 2. 図6のD部の拡大断面図である。It is an expanded sectional view of the D section of FIG. 本発明に係るプロペラシャフトの全体図である。1 is an overall view of a propeller shaft according to the present invention. 本発明に係るスタブシャフトと第1チューブとの摩擦圧接による接合工程の前半工程を示す断面図である。It is sectional drawing which shows the first half process of the joining process by the friction welding of the stub shaft and 1st tube which concern on this invention. 本発明に係るスタブシャフトと第1チューブとの摩擦圧接による接合工程の後半工程を示す断面図である。It is sectional drawing which shows the latter half process of the joining process by the friction welding of the stub shaft and 1st tube which concern on this invention. 本発明に係る実施の形態の他例を示すプロペラシャフトの全体図である。It is a general view of the propeller shaft which shows the other example of embodiment which concerns on this invention.

符号の説明Explanation of symbols

1…プロペラシャフト
10…第1ヨーク(円筒状部材)
11…スタブシャフト(円筒状部材)
12…第1チューブ(円筒状部材)
13…保護部
14…非保護部
14a…端面(非保護部)
14b…外周部(非保護部)
15…カール部
16…バリ(拡径部)
16a…最大拡径部
17…縮径部
18…アウターレース(円筒状部材)
19…第2ヨーク(円筒状部材)
20…第2チューブ(円筒状部材)
DESCRIPTION OF SYMBOLS 1 ... Propeller shaft 10 ... 1st yoke (cylindrical member)
11 ... Stub shaft (cylindrical member)
12 ... 1st tube (cylindrical member)
13 ... Protection part 14 ... Non-protection part 14a ... End face (Non-protection part)
14b ... Outer peripheral part (non-protected part)
15 ... curled part 16 ... burr (expanded part)
16a ... Maximum diameter enlarged portion 17 ... Reduced diameter portion 18 ... Outer race (cylindrical member)
19 ... 2nd yoke (cylindrical member)
20 ... Second tube (cylindrical member)

Claims (3)

円筒状に形成されたアルミ系金属部材と鉄系金属部材とを摩擦圧接によって接合してなる円筒状部材の接合構造であって、
前記鉄系金属部材の接合端に形成され、該接合端から外方へ拡径した非保護部と、
該非保護部の最大拡径端縁から前記鉄系金属部材の外周面にわたって形成されて、電解液との接触を保護する保護層と、
を有することを特徴とする円筒状部材の接合構造。
A cylindrical member joining structure formed by joining an aluminum metal member and an iron metal member formed in a cylindrical shape by friction welding,
Formed at the joint end of the iron-based metal member, and a non-protection portion whose diameter is expanded outward from the joint end;
A protective layer that is formed over the outer peripheral surface of the iron-based metal member from the maximum diameter-expanded edge of the non-protection part, and protects contact with the electrolyte;
A cylindrical member joining structure characterized by comprising:
円筒状に形成されたアルミ系金属部材と鉄系金属部材とを摩擦圧接によって接合してなる円筒状部材の接合方法であって、
前記鉄系金属部材の外面に保護層を形成する工程と、
前記鉄系金属部材の接合端側の端面を切削加工して、前記保護層を削り落とすと共に、外周側に拡径部を形成する工程と、
前記アルミ系金属部材と前記鉄系金属部材とを摩擦圧接して、該両部材を接合する工程と、
からなることを特徴とする円筒状部材の接合方法。
A cylindrical member joining method comprising joining an aluminum-based metal member and an iron-based metal member formed in a cylindrical shape by friction welding,
Forming a protective layer on the outer surface of the iron-based metal member;
Cutting the end face on the joining end side of the iron-based metal member, scraping off the protective layer, and forming an enlarged diameter portion on the outer peripheral side; and
Friction welding the aluminum metal member and the iron metal member and joining the two members;
A method for joining cylindrical members, comprising:
円筒状に形成されたアルミ系金属部材と鉄系金属部材とを接合してなる円筒状部材の接合構造であって、
前記アルミ系金属部材と前記鉄系金属部材との接合部を除く前記鉄系金属部材の外周面のみに電解液との接触を保護する保護層を形成したことを特徴とする円筒状部材の接合構造。
A cylindrical member joining structure formed by joining an aluminum metal member and an iron metal member formed in a cylindrical shape,
Joining of cylindrical members characterized in that a protective layer that protects contact with the electrolyte is formed only on the outer peripheral surface of the iron-based metal member excluding the joint between the aluminum-based metal member and the iron-based metal member. Construction.
JP2005281159A 2005-09-28 2005-09-28 Structure and method of joining cylindrical member Abandoned JP2007090374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281159A JP2007090374A (en) 2005-09-28 2005-09-28 Structure and method of joining cylindrical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281159A JP2007090374A (en) 2005-09-28 2005-09-28 Structure and method of joining cylindrical member

Publications (1)

Publication Number Publication Date
JP2007090374A true JP2007090374A (en) 2007-04-12

Family

ID=37976652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281159A Abandoned JP2007090374A (en) 2005-09-28 2005-09-28 Structure and method of joining cylindrical member

Country Status (1)

Country Link
JP (1) JP2007090374A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009059055A1 (en) * 2009-12-18 2011-06-22 MAHLE International GmbH, 70376 Method for connecting two components, where each component has a joining surface, comprises connecting two joining surfaces associated to each other by means of a friction welding
GB2514216A (en) * 2013-04-02 2014-11-19 Gilbert Gilkes & Gordon Ltd Drive shafts
EP3584492A4 (en) * 2017-02-15 2021-03-17 Bogachek, Oleg Evgenievich Vessel made of thermally non-hardenable aluminum alloy and method for the production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009059055A1 (en) * 2009-12-18 2011-06-22 MAHLE International GmbH, 70376 Method for connecting two components, where each component has a joining surface, comprises connecting two joining surfaces associated to each other by means of a friction welding
GB2514216A (en) * 2013-04-02 2014-11-19 Gilbert Gilkes & Gordon Ltd Drive shafts
EP3584492A4 (en) * 2017-02-15 2021-03-17 Bogachek, Oleg Evgenievich Vessel made of thermally non-hardenable aluminum alloy and method for the production thereof
US11644151B2 (en) 2017-02-15 2023-05-09 Oleg Evgenievich BOGACHEK Vessel made of thermally non-hardenable aluminum alloy and method for the production thereof

Similar Documents

Publication Publication Date Title
Nicholas Friction processing technologies
US8016179B2 (en) Friction stir welding tool having a scroll-free concentric region
CN101187312B (en) System for manufacturing a rotor having an MMC ring component and a unitary airfoil component
JP2006518671A (en) Out-of-position friction stir welding of high melting point materials
JP2006239734A (en) Weld joint and method for forming the same
JP2006341279A (en) Method for joining edge face in superimposed material
US10151351B2 (en) Friction weed
JP2007090374A (en) Structure and method of joining cylindrical member
US9126130B2 (en) Fluid vessel with abrasion and corrosion resistant interior cladding
CN114310167B (en) Processing technology of aluminum/steel composite transition joint
CN104233285A (en) method of remanufacturing a seal surface
JP2007313541A (en) Method for manufacturing clad tube
JP2009066659A (en) Use of activating flux for tig welding of metal parts
JP2013255934A (en) Butt joining method for clad pipe
JP4453682B2 (en) Joining method and joining tool
US6180918B1 (en) Method for making a welded joint
JP2000337392A (en) Rotary shaft protective sleeve
JP6054533B2 (en) System for the production of clad materials using resistance seam welding
Chen Refill friction stir spot welding of dissimilar alloys
JP6848805B2 (en) Casting method
JP2943624B2 (en) Metal tube and cable using it
WO2014141423A1 (en) Method and structure for welding clad steel tube
JP2005138123A (en) Structure and method for joining dissimilar metal
JP2019150840A (en) Different material coupling joint and different material joint method
JP3515045B2 (en) Bend tube and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090922

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100210