JP2007087901A - Flat discharge lamp lighting system - Google Patents

Flat discharge lamp lighting system Download PDF

Info

Publication number
JP2007087901A
JP2007087901A JP2005278453A JP2005278453A JP2007087901A JP 2007087901 A JP2007087901 A JP 2007087901A JP 2005278453 A JP2005278453 A JP 2005278453A JP 2005278453 A JP2005278453 A JP 2005278453A JP 2007087901 A JP2007087901 A JP 2007087901A
Authority
JP
Japan
Prior art keywords
discharge lamp
flat
flat discharge
lighting system
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005278453A
Other languages
Japanese (ja)
Inventor
Eiju Yano
英寿 矢野
Masasane Takagi
将実 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2005278453A priority Critical patent/JP2007087901A/en
Priority to TW095134814A priority patent/TW200746911A/en
Priority to CNA2006101413717A priority patent/CN1941266A/en
Priority to KR1020060092603A priority patent/KR20070034945A/en
Publication of JP2007087901A publication Critical patent/JP2007087901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat discharge lamp lighting system capable of preventing fusion of a dielectric layer and a glass container separating an electrode and a discharge medium due to extreme temperature rise of an electrode part while shortening rise time of luminance in early stages of lighting in the flat discharge lamp of a barrier discharge system. <P>SOLUTION: This flat discharge lamp lighting system detects the temperature of the electrodes 6a, 6b of the flat discharge lamp L, and controls to continuously or gradually reduce tube power supplied to the lamp according to the rise of the electrode temperature in start of lighting. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、平面型放電ランプ点灯システムに関する。   The present invention relates to a flat discharge lamp lighting system.

従来、液晶ディスプレイのバックライト光源や照明装置として、特開平11−204080号公報(特許文献1)に記載された平面型放電ランプが知られている。この従来の平面型放電ランプは、特許文献1の図1(a)に示されているように、例えば、ソーダガラス等からなる透光性の前面板20とソーダガラスやセラミック等からなる背面基板10と側板30とが例えば低融点ガラスで一体に気密封着され、扁平状の放電容器を構成している。そして前面板20の内面には互いに平行な一対の放電電極40,41が設けられ、該放電電極40,41の表面は厚膜印刷法等によって設けられた誘電体層50によって覆われ、絶縁基板10の内面には蛍光体60が塗布されており、密閉容器の放電空間70には水銀や希ガスの放電ガスが封入されている。   Conventionally, a flat discharge lamp described in Japanese Patent Application Laid-Open No. 11-204080 (Patent Document 1) is known as a backlight light source or illumination device for a liquid crystal display. As shown in FIG. 1A of Patent Document 1, the conventional flat discharge lamp includes a translucent front plate 20 made of soda glass and a rear substrate made of soda glass, ceramic, or the like. 10 and the side plate 30 are integrally hermetically sealed with, for example, a low melting point glass to constitute a flat discharge vessel. A pair of discharge electrodes 40 and 41 parallel to each other are provided on the inner surface of the front plate 20, and the surfaces of the discharge electrodes 40 and 41 are covered with a dielectric layer 50 provided by a thick film printing method or the like. A fluorescent material 60 is applied to the inner surface of 10, and mercury or a rare gas discharge gas is sealed in the discharge space 70 of the sealed container.

この従来の平面型放電ランプでは、放電電極40,41間に高周波電圧を印加することにより、放電空間70内に放電が発生し、放電で放電媒体である水銀から発生した紫外線により蛍光体60が励起されて発光し、その光が前面板20を通して外部に放射される。   In this conventional flat discharge lamp, by applying a high-frequency voltage between the discharge electrodes 40 and 41, a discharge is generated in the discharge space 70, and the phosphor 60 is caused by ultraviolet rays generated from mercury as a discharge medium by the discharge. The light is excited and emitted, and the light is emitted to the outside through the front plate 20.

この種の放電媒体として水銀を封入した平面型放電ランプの明るさは、封入されている水銀の蒸気圧、すなわち、ランプの管壁温度に大きく影響される。ランプの発光効率が最高となるランプ管壁温度は40℃〜60℃であり、これよりも高くても低くても、ランプ効率は低下する。   The brightness of a flat discharge lamp enclosing mercury as this type of discharge medium is greatly influenced by the vapor pressure of the enclosed mercury, that is, the tube wall temperature of the lamp. The lamp tube wall temperature at which the luminous efficiency of the lamp is maximized is 40 ° C. to 60 ° C., and the lamp efficiency is lowered whether it is higher or lower.

一方、一般的な特性として、平面型放電ランプは、放電容器を構成するガラス材料の熱容量が大きいため、管壁温度が一定の動作温度に達するにはかなりの時間を要する。その結果、点灯初期は輝度の立上りが遅く、所定の明るさに達するまでかなりの時間を要する問題点があった。   On the other hand, as a general characteristic, a flat discharge lamp requires a considerable time for the tube wall temperature to reach a constant operating temperature because the glass material constituting the discharge vessel has a large heat capacity. As a result, the rise of luminance is slow at the beginning of lighting, and there is a problem that it takes a considerable time to reach a predetermined brightness.

この問題点を解決するものとして、同特許文献1の図1(b)には、放電容器の外表面に加熱手段80を設けて、始動時に密閉容器を加熱してガラスの管壁温度の上昇を促進させることにより、輝度の立上り特性を改善する技術が開示されている。しかしながら、この従来技術にあって、加熱手段80にヒーターを用いる構成の場合、ヒーターやヒーター制御回路が必要であり、放電点灯以外の部品を多く搭載しなければならず、装置コストの大幅な上昇が避けられない問題点があった。   In order to solve this problem, FIG. 1B of Patent Document 1 is provided with a heating means 80 on the outer surface of the discharge vessel, and the sealed vessel is heated at the start to increase the glass tube wall temperature. A technique for improving the rising characteristic of luminance by promoting the above is disclosed. However, in this prior art, in the case of using a heater as the heating means 80, a heater and a heater control circuit are necessary, and many parts other than the discharge lighting must be mounted, resulting in a significant increase in apparatus cost. There was an inevitable problem.

また、ランプの形状が異なるが、水銀を含有する放電媒体を封入した冷陰極放電ランプを用いた液晶ディスプレイの輝度の立上り特性を改善するものとして、特開平9−288262号公報(特許文献2)には下記の技術が記載されている。この特許文献2の図2に示されているように、インバータ回路10は、定電圧回路9から供給される直流電圧90を所定周波数の交流に変換し、ランプに電圧を供給する。サーミスタ4は、冷陰極蛍光ランプの陽光柱の中央部のガラス管外壁に設置され、ランプの温度に応じたサーミスタ出力電圧40を出力している。温度制御部7は、サーミスタ出力電圧40に応じたコントロールDC電圧72を輝度制御部8に対して出力する。輝度制御部8は、コントロールDC電圧72及びそのときのユーザー設定値に応じたデューティ比の調整信号80をインバータ回路10に出力する。インバータ回路10は、該調整信号80に従って直流電圧90の入力をON/OFFすることでランプヘ供給される交流電圧のデューティ比を調整する。これにより、同特許文献2の図3に示されているように、ランプの管壁温度に応じて電圧のデューティ比を制御しながらランプは点灯される。そしてこの従来例では、点灯初期のランプの温度が低い場合には、デューティ比を高くすることでランプヘの投入電力を増加させてランプの発熱を促進し、ランプの温度上昇にしたがってデューティ比を小さくするような制御を行う。   Japanese Patent Laying-Open No. 9-288262 (Patent Document 2) discloses an improvement in luminance rise characteristics of a liquid crystal display using a cold cathode discharge lamp in which a discharge medium containing mercury is enclosed, although the shape of the lamp is different. Describes the following technologies. As shown in FIG. 2 of Patent Document 2, the inverter circuit 10 converts the DC voltage 90 supplied from the constant voltage circuit 9 into AC having a predetermined frequency, and supplies the voltage to the lamp. The thermistor 4 is installed on the outer wall of the glass tube at the center of the positive column of the cold cathode fluorescent lamp, and outputs a thermistor output voltage 40 corresponding to the lamp temperature. The temperature control unit 7 outputs a control DC voltage 72 corresponding to the thermistor output voltage 40 to the luminance control unit 8. The luminance control unit 8 outputs to the inverter circuit 10 an adjustment signal 80 having a duty ratio corresponding to the control DC voltage 72 and the user set value at that time. The inverter circuit 10 adjusts the duty ratio of the AC voltage supplied to the lamp by turning ON / OFF the input of the DC voltage 90 according to the adjustment signal 80. As a result, as shown in FIG. 3 of Patent Document 2, the lamp is turned on while controlling the duty ratio of the voltage in accordance with the tube wall temperature of the lamp. In this conventional example, when the temperature of the lamp at the beginning of lighting is low, the duty ratio is increased to increase the input power to the lamp to promote the heat generation of the lamp, and the duty ratio is decreased as the lamp temperature rises. Control to do.

ところが、電極と放電媒体を誘電体層やガラス容器によって遮断する構成のバリア放電方式の平面型放電ランプの場合、上記の点灯システムを適用すると以下の問題を生じる。つまり、バリア放電方式の平面型放電ランプの場合、電極部の温度が極度に増加すると、電極と放電媒体とを分離する誘電体層やガラス容器が溶融することがあるので、電極部の温度を規定値以下に保つ必要がある。しかしながら、特許文献2の図2、図3に示されている点灯システムのように、温度を検出する部分がランプの陽光柱部分の場合、電極部の温度検出ができないことから、最悪の場合には電極部の温度が上昇し、放電媒体を分離する誘電体層やガラス容器が溶融する可能性がある。特にランプが大型化した場合、ランプの中央部の管壁温度の上昇速度は、電極部の管壁温度の上昇速度に対して非常に遅くなるため、危険度は増加する。
特開平11−204080号公報 特開平9−288262号公報
However, in the case of a flat discharge lamp of the barrier discharge type in which the electrode and the discharge medium are blocked by a dielectric layer or a glass container, the following problems occur when the above lighting system is applied. In other words, in the case of a barrier discharge type flat discharge lamp, if the temperature of the electrode part is extremely increased, the dielectric layer or glass container that separates the electrode and the discharge medium may be melted. It is necessary to keep below the specified value. However, as in the lighting system shown in FIGS. 2 and 3 of Patent Document 2, when the temperature detection part is the positive column part of the lamp, the temperature of the electrode part cannot be detected. In this case, the temperature of the electrode part rises, and there is a possibility that the dielectric layer separating the discharge medium and the glass container are melted. In particular, when the size of the lamp is increased, the rate of increase in the tube wall temperature at the center of the lamp becomes very slow relative to the rate of increase in the tube wall temperature at the electrode portion, and the degree of risk increases.
Japanese Patent Laid-Open No. 11-204080 Japanese Patent Laid-Open No. 9-288262

本発明は、上述した従来の技術的な課題に鑑みてなされたもので、電極と放電媒体を誘電体層やガラス容器によって遮断する構成のバリア放電方式の平面型放電ランプにおいて、点灯初期の輝度の立上り時間を短縮すると共に、電極部の過度の温度上昇による電極と放電媒体とを分離する誘電体層やガラス容器が溶融するのを防止できる平面型放電ランプ点灯システムを提供することを目的とする。   The present invention has been made in view of the above-described conventional technical problems, and in a flat discharge lamp of a barrier discharge type configured to cut off an electrode and a discharge medium with a dielectric layer or a glass container, the luminance at the initial stage of lighting is provided. An object of the present invention is to provide a flat type discharge lamp lighting system capable of shortening the rise time and preventing the dielectric layer and the glass container separating the electrode and the discharge medium from being melted due to excessive temperature rise of the electrode part. To do.

請求項1の発明の平面型放電ランプ点灯システムは、透光性の前面基板と背面基板とを対向させて配置し、両板間の内部を気密に封止した面状放電容器の内部に放電媒体を封入し、当該面状放電容器の外部又は内部に前記放電媒体と接触しないように少なくとも1対の電極を設けた平面型放電ランプと、前記平面型放電ランプの電極の温度を直接的又は間接的に検出する温度検出手段と、前記温度検出手段の検出温度に基づいて前記平面型放電ランプに印加する電力値を指定する制御信号を生成する制御回路と、前記制御信号に従った電力値を供給する電圧供給回路とを具備し、前記電圧供給回路は、前記平面型放電ランプの点灯開始時に、前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させる制御をすることを特徴とするものである。   In the flat discharge lamp lighting system according to the first aspect of the present invention, a translucent front substrate and a rear substrate are disposed so as to face each other, and the discharge between the two plates is hermetically sealed. A flat discharge lamp in which a medium is enclosed and at least one pair of electrodes is provided outside or inside the planar discharge vessel so as not to contact the discharge medium, and the temperature of the electrode of the flat discharge lamp is set directly or A temperature detection means for indirectly detecting; a control circuit for generating a control signal for designating a power value to be applied to the flat discharge lamp based on a temperature detected by the temperature detection means; and a power value according to the control signal The voltage supply circuit continuously or stepwise supplies the tube power supplied to the flat discharge lamp as the electrode temperature increases at the start of lighting of the flat discharge lamp. Decrease And it is characterized in that the control.

請求項2の発明は、請求項1の平面型放電ランプ点灯システムにおいて、前記電圧供給回路は、前記平面型放電ランプに印加する電圧の振幅値を低くすることで、前記点灯開始時に前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させることを特徴とするものである。   According to a second aspect of the present invention, in the flat discharge lamp lighting system according to the first aspect, the voltage supply circuit lowers the amplitude value of the voltage applied to the flat discharge lamp so that the electrode temperature at the start of lighting is reduced. The tube power supplied to the flat discharge lamp is reduced continuously or stepwise according to the rise in the pressure.

請求項3の発明は、請求項1の平面型放電ランプ点灯システムにおいて、前記電圧供給回路は、前記平面型放電ランプに印加する電圧の周波数を低くすることで、前記点灯開始時に前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させることを特徴とするものである。   According to a third aspect of the present invention, in the flat discharge lamp lighting system according to the first aspect, the voltage supply circuit lowers the frequency of the voltage applied to the flat discharge lamp, thereby reducing the electrode temperature at the start of lighting. The tube power supplied to the flat type discharge lamp is decreased continuously or stepwise as it rises.

請求項4の発明は、請求項1の平面型放電ランプ点灯システムにおいて、前記電圧供給回路は、前記平面放電ランプに印加する電圧にON期間とOFF期間とを設けたPWM点灯とし、ON期間の比率を小さくすることで、前記点灯開始時に前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させることを特徴とするものである。   According to a fourth aspect of the present invention, in the planar discharge lamp lighting system according to the first aspect, the voltage supply circuit performs PWM lighting in which an ON period and an OFF period are provided for a voltage applied to the planar discharge lamp, By reducing the ratio, the tube power supplied to the flat discharge lamp is decreased continuously or stepwise as the electrode temperature rises at the start of lighting.

請求項5の発明は、請求項1〜4の平面型放電ランプ点灯システムにおいて、前記電圧供給回路は、前記平面型放電ランプの点灯開始時に、前記電極温度が所定値を超えないように前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させる制御をすることを特徴とするものである。   According to a fifth aspect of the present invention, in the flat discharge lamp lighting system according to the first to fourth aspects, the voltage supply circuit is configured so that the electrode temperature does not exceed a predetermined value at the start of lighting of the flat discharge lamp. The tube electric power supplied to the discharge lamp is controlled to decrease continuously or stepwise.

請求項6の発明は、請求項1〜5の平面型放電ランプ点灯システムにおいて、前記電圧供給回路は、略正弦波形の電圧を前記平面型放電ランプに供給することを特徴とするものである。   According to a sixth aspect of the present invention, in the flat discharge lamp lighting system according to the first to fifth aspects, the voltage supply circuit supplies a voltage having a substantially sinusoidal waveform to the flat discharge lamp.

本発明によれば、電圧供給回路によって平面型放電ランプの点灯開始時に、電極温度の上昇に従い平面型放電ランプに供給する管電力を連続的又は段階的に減少させる制御をすることで、点灯初期の輝度の立上り時間を短縮すると共に、電極部の過度の温度上昇による電極と放電媒体とを分離する誘電体層やガラス容器が溶融するのを防止できる平面型放電ランプ点灯システムを提供できる。   According to the present invention, at the start of lighting of the flat discharge lamp by the voltage supply circuit, the tube power supplied to the flat discharge lamp is controlled to decrease continuously or stepwise according to the increase of the electrode temperature. It is possible to provide a flat discharge lamp lighting system capable of shortening the rise time of the brightness and preventing the dielectric layer and the glass container separating the electrode and the discharge medium from being melted due to excessive temperature rise of the electrode section.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の1つの実施の形態の平面型放電ランプ点灯システムを適用するバリア放電方式の平面型放電ランプの構造を図1〜図3に示す。透光性のガラス板から構成される前面基板1と、側壁部3とスペーサ5とを一体的に形成した背面基板2を略一定の間隔で対向させて配置し、周辺部をフリットガラス7で封着して平面型放電容器を形成している。この平面型放電容器の内部には、放電媒体として水銀蒸気、キセノン、クリプトン、アルゴン、ネオン、ヘリウムの内の1つを単独もしくは2種類以上を混合して、数kPaから数100kPaの封入圧力で封入してある。封入ガスの一例としては、水銀蒸気とアルゴンとネオンの混合気体であり、ネオンとアルゴンガスの比率は、発光効率及びランプの低電圧始動を優先させる場合は50:50〜99:1とネオンの配合比を多くした構成とし、発光の立上り速度を優先させる場合は1:99〜50:50とアルゴンの配合比を多くした構成をとる。ガス圧力に関しては、1Torr〜700Torrの範囲であり、好ましくは低電圧始動性、発光効率、寿命の観点から、20〜100Torrの範囲に設定する。   The structure of a flat discharge lamp of the barrier discharge system to which the flat discharge lamp lighting system of one embodiment of the present invention is applied is shown in FIGS. A front substrate 1 made of a light-transmitting glass plate and a rear substrate 2 integrally formed with a side wall portion 3 and a spacer 5 are arranged facing each other at a substantially constant interval, and the peripheral portion is made of frit glass 7. A flat discharge vessel is formed by sealing. Inside the flat discharge vessel, one of mercury vapor, xenon, krypton, argon, neon, and helium as a discharge medium is used alone or in combination of two or more, and the sealed pressure is from several kPa to several hundred kPa. Enclosed. An example of the enclosed gas is a mixed gas of mercury vapor, argon, and neon, and the ratio of neon to argon gas is 50:50 to 99: 1 when priority is given to luminous efficiency and low voltage starting of the lamp. When the composition ratio is increased and priority is given to the rising speed of light emission, the composition ratio is increased from 1:99 to 50:50 and argon. The gas pressure is in the range of 1 Torr to 700 Torr, and is preferably set in the range of 20 to 100 Torr from the viewpoint of low voltage startability, luminous efficiency, and lifetime.

前面基板1の外面には、放電容器の端部に沿って、高圧電圧を印加する外部電極6aと低圧電圧を印加する外部電極6bとを、放電媒体と接触しないように配置してある。本例の場合、外部電極6a,6bと放電媒体との遮断は、前面基板1自身で行っているが、誘電体層を用いて遮断しても構わない。また本例では、両方の電極6a,6bを放電媒体と遮蔽する構成にしているが、一方の電極を内部電極とし、他方の電極だけを放電媒体と遮断するような構成でも構わない。また、本例では、外部電極6a,6bは前面基板1にのみ設けているが、外部電極6a,6bを背面基板2のみに形成した構成や、前面基板1と背面基板2との両面に形成する構成や、前面基板1、背面基板2及び前面基板1と背面基板2とを接合する側面に形成する構成をとることもできる。   On the outer surface of the front substrate 1, an external electrode 6a for applying a high voltage and an external electrode 6b for applying a low voltage are arranged along the end of the discharge vessel so as not to come into contact with the discharge medium. In the case of this example, the external electrodes 6a and 6b and the discharge medium are blocked by the front substrate 1 itself, but may be blocked using a dielectric layer. In this example, both electrodes 6a and 6b are shielded from the discharge medium, but one electrode may be an internal electrode and only the other electrode may be shielded from the discharge medium. In this example, the external electrodes 6 a and 6 b are provided only on the front substrate 1. However, the external electrodes 6 a and 6 b are formed only on the rear substrate 2 or formed on both the front substrate 1 and the rear substrate 2. The structure which forms in the side surface which joins the structure which carries out, the front substrate 1, the back substrate 2, and the front substrate 1 and the back substrate 2 can also be taken.

電極6a,6bの形成方法としては、アルミニウムなどの導電性テープを導電性接着剤を介して放電容器上に形成する方法や、銀などの金属粉と溶剤とバインダーとを混合させた導電性ペーストをスクリーン印刷、ディスペンサー塗布又は浸漬によリ放電容器表面に塗布した後、乾燥、焼成を行って形成する方法や、スズ、インジウム、ビスマス、鉛、亜鉛、アンチモン又は銀を少なくとも1種以上含む半田を加熱溶融したものを、例えば、超音波振動を加えながらディスペンサーや浸漬により放電容器の表面に塗布する方法をとることができる。さらに、電極層と放電容器との接着性を高めるために、電極6a,6bが形成される位置の放電容器の表面を、例えばサンドブラスト処理で凹凸化する方法をとることができる。   As a method of forming the electrodes 6a and 6b, a method of forming a conductive tape such as aluminum on a discharge vessel through a conductive adhesive, or a conductive paste in which a metal powder such as silver, a solvent, and a binder are mixed. Is applied to the surface of the discharge vessel by screen printing, dispenser application or dipping, followed by drying and baking, and solder containing at least one or more of tin, indium, bismuth, lead, zinc, antimony or silver For example, a method in which a material melted by heating is applied to the surface of the discharge vessel by a dispenser or immersion while applying ultrasonic vibration can be employed. Furthermore, in order to improve the adhesiveness between the electrode layer and the discharge vessel, a method can be used in which the surface of the discharge vessel at the position where the electrodes 6a and 6b are formed is roughened by, for example, sandblasting.

外部電極6a,6bの形状は、図示した帯形状とする以外に、スペーサで分離した各放電空間8ヘ向かって凸部を形成するなど、多彩な異形状をとることができる。また、図1〜図3では一対の電極を示したが、複数対の電極構成とすることも可能である。   The external electrodes 6a and 6b can have various shapes such as a convex shape toward each discharge space 8 separated by a spacer, in addition to the strip shape shown in the figure. 1 to 3 show a pair of electrodes, a plurality of pairs of electrodes may be used.

背面基板2に一体的に形成された細長状のスペーサ5は、所定の間隔で配置されており、前面基板1と背面基板2との間隔を一定に保つとともに、放電容器の内外気圧差によるランプの爆縮による破損を防止する。また、スペーサ5は、電極6a,6bに対して垂直方向に配置されており、電極6a,6b間を複数の放電領域に分割している。このスペーサ5の形状は、図に示す断面台形状以外に、図4(a)に示すような波型形状、図4(b)に示すような半楕円形状など任意形状をとることができる。また、図4(c)に示すように、前面基板1と背面基板2を平板形状とし、スペーサ5を別個に設けた構成とすることもできる。また、本例では、背面基板2を熱加工して一体的に形成しているが、図4(d),(e)に示すように前面基板1を熱加工して平板の背面基板2と張り合わせる構成や、図4(f)に示すように前面基板1と背面基板2を共に熱加工して張り合わせる構成もとることができる。   The elongated spacers 5 formed integrally with the rear substrate 2 are arranged at a predetermined interval, keep the distance between the front substrate 1 and the rear substrate 2 constant, and also a lamp caused by a difference in internal and external pressures of the discharge vessel. Prevent damage due to implosion. The spacer 5 is disposed in a direction perpendicular to the electrodes 6a and 6b, and divides the electrodes 6a and 6b into a plurality of discharge regions. In addition to the trapezoidal cross section shown in the figure, the spacer 5 can have an arbitrary shape such as a wave shape as shown in FIG. 4A or a semi-elliptical shape as shown in FIG. Moreover, as shown in FIG.4 (c), it can also be set as the structure which made the front substrate 1 and the back substrate 2 flat plate shape, and provided the spacer 5 separately. In this example, the rear substrate 2 is integrally formed by thermal processing. However, as shown in FIGS. 4D and 4E, the front substrate 1 is thermally processed to form a flat rear substrate 2. A configuration in which the front substrate 1 and the rear substrate 2 are bonded together by thermal processing as illustrated in FIG.

スペーサ5によって分割された放電空間8の大きさは、要求されるランプの始動電圧、管電圧及び光量に応じて設定され、例えば、放電空間の幅Wが0.5〜30mmの範囲で、放電空間の高さHが0.5〜6mmの範囲で設定される。図4の各例では、各放電空間8の断面積を全て同一にした場合を図示しているが、場所によって放電空間の断面積を異なる構成とすることも可能である。   The size of the discharge space 8 divided by the spacer 5 is set according to the required lamp starting voltage, tube voltage, and light quantity. For example, the discharge space 8 has a width W of 0.5 to 30 mm. The height H of the space is set in the range of 0.5 to 6 mm. In each example of FIG. 4, the case where all the discharge spaces 8 have the same cross-sectional area is illustrated, but the cross-sectional area of the discharge space may be different depending on the location.

前面基板1、背面基板2、スペーサ5の内側には、それぞれ、蛍光体層4が形成されている。この蛍光体層4は、放電によって放電媒体から放射される紫外線を可視光に変換する。蛍光体層4は、一般照明、冷陰極放電ランプ、PDPに使用される蛍光体が用いられ、単独で又は発光色の異なる数種類の蛍光体が混合して塗布されている。尚、異なる発光色の蛍光体を個別に縞状に又はドット状に塗布して蛍光体層4を構成することもできる。光を取り出す側の前面基板1の蛍光体層4は、背面基板2側からの蛍光体の光を損失なく透過させるために、例えば、平均粒径(1次粒子径)が約2.5μm以上の蛍光体粒子を、厚さ5〜15μmと薄く形成する構成とする。一方、光を取り出さない背面基板2の蛍光体層4は、光を前面基板1側に多く導くために、例えば、平均粒径が約2.5μm以下の蛍光体粒子を厚さ30〜100μmと厚く形成して、反射輝度を高める構成とする。   A phosphor layer 4 is formed inside each of the front substrate 1, the back substrate 2, and the spacer 5. The phosphor layer 4 converts ultraviolet rays radiated from the discharge medium by discharge into visible light. The phosphor layer 4 uses phosphors used in general illumination, cold cathode discharge lamps, and PDPs, and is coated with several kinds of phosphors having different emission colors. In addition, the fluorescent substance layer 4 can also be comprised by apply | coating the fluorescent substance of a different luminescent color separately in stripe shape or dot shape. The phosphor layer 4 of the front substrate 1 on the light extraction side has, for example, an average particle size (primary particle size) of about 2.5 μm or more in order to transmit the phosphor light from the back substrate 2 side without loss. The phosphor particles are formed as thin as 5 to 15 μm. On the other hand, the phosphor layer 4 of the back substrate 2 from which light is not extracted has a thickness of 30 to 100 μm, for example, with a phosphor particle having an average particle size of about 2.5 μm or less in order to guide much light to the front substrate 1 side. The thickness is increased to increase the reflection luminance.

また、図示していないが、電極6a,6bが形成されている基板において、電極が形成される位置の基板内側に蛍光体層がある場台、蛍光体層が放電によりスパッタリングされてガスの消耗速度を速めることから、電極6a,6bが設けられる位置の基板内側には蛍光体層を設けない構成も一般的である。   Although not shown, in the substrate on which the electrodes 6a and 6b are formed, the stage where the phosphor layer is located inside the substrate at the position where the electrode is formed, the phosphor layer is sputtered by discharge, and gas is consumed. In order to increase the speed, a configuration in which no phosphor layer is provided on the inner side of the substrate where the electrodes 6a and 6b are provided is also common.

背面基板2と蛍光体層4との間には、微粒子の金属酸化物の反射層を形成することもできる。また、前面基板1及び背面基板2と蛍光体層4との間に、例えば、酸化チタン、酸化アルミニウム、酸化イットリウムなどの金属酸化物の層を形成し、水銀がガラス表面に移動するのを防止したり、放電から発生する紫外線を吸収させたりすることも可能である。尚、本例では、両方のガラス基板1,2の内面に蛍光体層4を設けているが、どちらか一方の蛍光体層を省略する構成にすることもできる。また、当該ランプの用途によっては、前面基板1と背面基板2との両方の蛍光体層4を省略して、放電媒体から放射される可視光を直接利用する形態もとることができる。   Between the back substrate 2 and the phosphor layer 4, a fine metal oxide reflective layer can be formed. Further, a metal oxide layer such as titanium oxide, aluminum oxide or yttrium oxide is formed between the front substrate 1 and the rear substrate 2 and the phosphor layer 4 to prevent mercury from moving to the glass surface. It is also possible to absorb ultraviolet rays generated from discharge. In this example, the phosphor layer 4 is provided on the inner surfaces of both the glass substrates 1 and 2, but either one of the phosphor layers may be omitted. Further, depending on the use of the lamp, it is possible to omit the phosphor layers 4 of the front substrate 1 and the rear substrate 2 and directly use visible light emitted from the discharge medium.

上記構成の平面型放電ランプLを点灯させる平面型放電ランプ点灯システムを図5に示す。電極6aの近傍には、例えば、サーミスタ等の電極部温度検出器11が設置され、間接的に電極6aの温度を検出するようにしてある。この電極部温度検出器11には、あらかじめ、その出力と実際の電極部の温度とを計測して求めた相関式を保持させてあり、自器の測定値を相関式に当てはめることにより電極部の実温度を判断し、これを電極部温度として制御回路12に出力するようにしてある。   FIG. 5 shows a flat discharge lamp lighting system for lighting the flat discharge lamp L having the above configuration. In the vicinity of the electrode 6a, for example, an electrode temperature detector 11 such as a thermistor is installed to indirectly detect the temperature of the electrode 6a. This electrode temperature detector 11 holds in advance a correlation equation obtained by measuring its output and the actual temperature of the electrode portion, and by applying the measured value of its own device to the correlation equation, the electrode portion The actual temperature is determined and output to the control circuit 12 as the electrode portion temperature.

制御回路12は、電極部温度検出器11の出力する温度情報に基づいて、例えば、図6に示す電極温度と投入電力との関係に基づいてランプに投入する電力を決定し、電力値を指定する信号を電圧供給回路13に出力する。図6の関係では、電極部温度が高いほど投入する電力を低くするように設定してあり、また、電極と放電容器を分離する誘電体層やガラス容器が溶融する限界温度に近づくほど電力値の減衰率を大きくして限界温度に達しないように配慮している。   Based on the temperature information output from the electrode temperature detector 11, the control circuit 12 determines the power to be input to the lamp based on the relationship between the electrode temperature and the input power shown in FIG. 6, and designates the power value. The signal to be output is output to the voltage supply circuit 13. In the relationship of FIG. 6, the higher the electrode temperature, the lower the electric power to be applied, and the closer to the limit temperature at which the dielectric layer separating the electrode and the discharge vessel and the glass vessel melt, the electric power value. Consideration is made so as not to reach the limit temperature by increasing the attenuation rate of the.

電圧供給回路13は、例えば直流の電圧のような駆動用電圧を、例えば正弦波交流のようなランプLに印加する電圧に変換すると同時に、制御回路12から出力される電力値を指定する信号に従って、ランプLに供給する電力を調整する。   The voltage supply circuit 13 converts a driving voltage such as a direct current voltage into a voltage applied to the lamp L such as a sine wave alternating current, and at the same time, according to a signal designating a power value output from the control circuit 12. The power supplied to the lamp L is adjusted.

制御の一例を図7に示す。点灯初期(STEP1)において、電極部温度が低い場合は、ランプLの電極6a,6bに供給する電力値を高くして、ランプLの発熱を促進し、ランプの温度が上昇するに従い、ランプヘ投入する管電力値をSTEP2,STEP3のように段階的に減少させて輝度を一定に保つように制御する。その結果、一定の電力を加える場合に比べて、輝度の立上り時間を短縮することができる。また、電力の変更制御を連続的に行うことにより、電力の切替時の発光のちらつきを低減することができる。   An example of the control is shown in FIG. In the initial stage of lighting (STEP 1), when the electrode temperature is low, the power supplied to the electrodes 6a and 6b of the lamp L is increased to promote the heat generation of the lamp L, and as the lamp temperature rises, the lamp is turned on The tube power value to be controlled is decreased stepwise as in STEP 2 and STEP 3 so as to keep the luminance constant. As a result, the rise time of luminance can be shortened compared to the case where constant power is applied. Further, by continuously performing the power change control, it is possible to reduce flickering of light emission at the time of power switching.

点灯開始時に管電力を低減する手段としては、
(i)図8(a)〜(c)に示すように、ランプLに印加する電圧の振幅値を低くする方法、
(ii)図9(a)〜(c)に示すように、ランプLに印加する電圧の周波数を低くする方法、あるいは、
(iii)図10(a)〜(c)に示すように、ランプLに印加する電圧にON期間とOFF期間を設けて、そのON期間の比率を小さくする方法、
をとることができる。尚、これら(i)〜(iii)の方法を2つ又は3つ組み合わせて用いることもできる。また、印加電圧を正弦波にすることで、高調波に起因するノイズの発生を軽減することができる。
As a means to reduce tube power at the start of lighting,
(I) a method of reducing the amplitude value of the voltage applied to the lamp L, as shown in FIGS.
(Ii) a method of lowering the frequency of the voltage applied to the lamp L, as shown in FIGS.
(Iii) A method of providing an ON period and an OFF period for the voltage applied to the lamp L and reducing the ratio of the ON period as shown in FIGS.
Can be taken. In addition, these methods (i) to (iii) can be used in combination of two or three. Further, by making the applied voltage a sine wave, it is possible to reduce the occurrence of noise due to the harmonics.

本実施の形態の平面型放電ランプ点灯システムによれば、点灯初期の輝度の立上り時間を短縮すると共に、電極部の過度の温度上昇による電極と放電媒体とを分離する誘電体層やガラス容器が溶融するのを防止することができる。   According to the planar discharge lamp lighting system of the present embodiment, the dielectric layer and the glass container that reduce the rise time of the luminance at the beginning of lighting and separate the electrode and the discharge medium due to the excessive temperature rise of the electrode portion are provided. Melting can be prevented.

(第2の実施の形態)図11を用いて、本発明の第2の実施の形態である平面型放電ランプ点灯システムについて説明する。本実施の形態は、図1〜図3に示した第1の実施の形態のものと同様の平面型放電ランプLをバックライト光源B/Lとし、それを点灯させるものである。   (Second Embodiment) A flat discharge lamp lighting system according to a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, a flat discharge lamp L similar to that of the first embodiment shown in FIGS. 1 to 3 is used as a backlight light source B / L and is lit.

バックライトB/Lの筐体は、フロントフレーム21aとバックフレーム21bから構成されている。ランプLは、バックケース21bの底面から0.1mm〜5.0mm離間して配置してあり、固定用部材22a,22bで固定してある。ランプLの発光の均一性をさらに向上させるために、ランプLの前面基板側(図11(b)において上面側)には約0.1mm〜30mmの間隔をおいて透過率が40%以上の拡散板23が配置されている。さらに、発光の均一性や輝度を向上させる場合は、拡散板23の上面に、拡散シート、集光シート、偏光反射シートが配置される。電極6aの近傍には、例えば、サーミスタ等の温度検出器8が固定用部材22aを介して設置され、間接的に電極6aの温度を検出する構成である。   The casing of the backlight B / L is composed of a front frame 21a and a back frame 21b. The lamp L is disposed at a distance of 0.1 mm to 5.0 mm from the bottom surface of the back case 21b, and is fixed by fixing members 22a and 22b. In order to further improve the uniformity of light emission of the lamp L, the transmittance is 40% or more at an interval of about 0.1 mm to 30 mm on the front substrate side (the upper surface side in FIG. 11B) of the lamp L. A diffusion plate 23 is arranged. Furthermore, when improving the uniformity and brightness of light emission, a diffusion sheet, a light collecting sheet, and a polarization reflection sheet are disposed on the upper surface of the diffusion plate 23. In the vicinity of the electrode 6a, for example, a temperature detector 8 such as a thermistor is installed via a fixing member 22a to indirectly detect the temperature of the electrode 6a.

本実施の形態にあっても、電極6a,6bに対する電圧印加回路は第1の実施の形態と同様であり、また電圧印加の方式も第1の実施の形態と同様である。これにより、バックライト点灯システムとして、その光源である平面型放電ランプLの点灯初期の輝度の立上り時間を短縮すると共に、電極部の過度の温度上昇による電極と放電媒体とを分離する誘
電体層やガラス容器が溶融するのを防止することができる。
Also in this embodiment, the voltage application circuit for the electrodes 6a and 6b is the same as that in the first embodiment, and the voltage application method is also the same as that in the first embodiment. Thus, as a backlight lighting system, a dielectric layer that shortens the rise time of the initial brightness of the flat discharge lamp L that is the light source and separates the electrode and the discharge medium due to excessive temperature rise of the electrode portion And the glass container can be prevented from melting.

本発明の第1の実施の形態の平面型放電ランプ点灯システムにより点灯させる平面型放電ランプの斜視図。1 is a perspective view of a flat discharge lamp that is turned on by the flat discharge lamp lighting system according to the first embodiment of the present invention. 図1の平面型放電ランプの上側から見た一部破断斜視図。The partially broken perspective view seen from the upper side of the flat discharge lamp of FIG. 図1の平面型放電ランプの下側から見た一部破断斜視図。The partially broken perspective view seen from the lower side of the flat type discharge lamp of FIG. 図1の平面型放電ランプの変形例群の各断面図。Sectional drawing of the modification group of the planar discharge lamp of FIG. 本発明の第1の実施の形態の平面型放電ランプ点灯システムのブロック図。1 is a block diagram of a flat discharge lamp lighting system according to a first embodiment of the present invention. 図1に示した平面型放電ランプの電極部温度と投入管電力との関係を示すグラフ。The graph which shows the relationship between the electrode part temperature and input tube electric power of the flat type discharge lamp shown in FIG. 本発明の第1の実施の形態の平面型放電ランプ点灯システムによる電力制御の特性グラフ。The characteristic graph of the electric power control by the flat type discharge lamp lighting system of the 1st Embodiment of this invention. 本発明の第1の実施の形態の平面型放電ランプ点灯システムにより電圧振幅を制御する制御例における管電圧波形図。The tube voltage waveform figure in the example of control which controls a voltage amplitude by the flat type discharge lamp lighting system of the 1st Embodiment of this invention. 本発明の第1の実施の形態の平面型放電ランプ点灯システムにより電圧周波数を制御する制御例における管電圧波形図。The tube voltage waveform figure in the control example which controls a voltage frequency by the flat type discharge lamp lighting system of the 1st Embodiment of this invention. 本発明の第1の実施の形態の平面型放電ランプ点灯システムにより電圧印加期間を制御する制御例における管電圧波形図。The tube voltage waveform figure in the example of control which controls a voltage application period with the planar discharge lamp lighting system of the 1st Embodiment of this invention. 本発明の第2の実施の形態の平面型放電ランプ点灯システムを適用するバックライトの正面図及び断面図。The front view and sectional drawing of the backlight which apply the flat type discharge lamp lighting system of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

L 平面型放電ランプ
1 前面基板
2 背面基板
6a,6b 外部電極
11 電極部温度検出器
12 制御回路
13 電圧供給回路
L Flat discharge lamp 1 Front substrate 2 Rear substrate 6a, 6b External electrode 11 Electrode temperature detector 12 Control circuit 13 Voltage supply circuit

Claims (6)

透光性の前面基板と背面基板とを対向させて配置し、両板間の内部を気密に封止した面状放電容器の内部に放電媒体を封入し、当該面状放電容器の外部又は内部に前記放電媒体と接触しないように少なくとも1対の電極を設けた平面型放電ランプと、
前記平面型放電ランプの電極の温度を直接的又は間接的に検出する温度検出手段と、
前記温度検出手段の検出温度に基づいて前記平面型放電ランプに印加する電力値を指定する制御信号を生成する制御回路と、
前記制御信号に従った電力値を供給する電圧供給回路とを具備し、
前記電圧供給回路は、前記平面型放電ランプの点灯開始時に、前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させる制御をすることを特徴とする平面型放電ランプ点灯システム。
A translucent front substrate and a rear substrate are arranged to face each other, and a discharge medium is sealed inside a planar discharge vessel in which the interior between both plates is hermetically sealed, and the outside or inside of the planar discharge vessel A flat discharge lamp provided with at least one pair of electrodes so as not to contact the discharge medium;
Temperature detecting means for directly or indirectly detecting the temperature of the electrode of the flat discharge lamp;
A control circuit for generating a control signal for designating a power value to be applied to the flat discharge lamp based on a detected temperature of the temperature detecting means;
A voltage supply circuit for supplying a power value according to the control signal,
The voltage supply circuit performs control to reduce the tube power supplied to the planar discharge lamp continuously or stepwise as the electrode temperature rises at the start of lighting of the planar discharge lamp. Type discharge lamp lighting system.
前記電圧供給回路は、前記平面型放電ランプに印加する電圧の振幅値を低くすることで、前記点灯開始時に前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させることを特徴とする請求項1に記載の平面型放電ランプ点灯システム。   The voltage supply circuit reduces the amplitude value of the voltage applied to the flat discharge lamp, thereby continuously or stepwise supplying tube power supplied to the flat discharge lamp as the electrode temperature increases at the start of lighting. The flat discharge lamp lighting system according to claim 1, wherein the flat discharge lamp lighting system is reduced. 前記電圧供給回路は、前記平面型放電ランプに印加する電圧の周波数を低くすることで、前記点灯開始時に前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させることを特徴とする請求項1に記載の平面型放電ランプ点灯システム。   The voltage supply circuit lowers the frequency of the voltage applied to the flat discharge lamp, thereby continuously or stepwise supplying tube power supplied to the flat discharge lamp as the electrode temperature rises at the start of lighting. The flat discharge lamp lighting system according to claim 1, wherein the flat discharge lamp lighting system is reduced. 前記電圧供給回路は、前記平面放電ランプに印加する電圧にON期間とOFF期間とを設けたPWM点灯とし、ON期間の比率を小さくすることで、前記点灯開始時に前記電極温度の上昇に従い前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させることを特徴とする請求項1に記載の平面型放電ランプ点灯システム。   The voltage supply circuit performs PWM lighting in which an ON period and an OFF period are provided in a voltage applied to the flat discharge lamp, and reduces the ratio of the ON period, thereby reducing the flat surface according to an increase in the electrode temperature at the start of the lighting. 2. The flat discharge lamp lighting system according to claim 1, wherein the tube power supplied to the flat discharge lamp is reduced continuously or stepwise. 前記電圧供給回路は、前記平面型放電ランプの点灯開始時に、前記電極温度が所定値を超えないように前記平面型放電ランプに供給する管電力を連続的又は段階的に減少させる制御をすることを特徴とする請求項1〜4のいずれかに記載の平面型放電ランプ点灯システム。   The voltage supply circuit performs control to continuously or stepwise decrease the tube power supplied to the planar discharge lamp so that the electrode temperature does not exceed a predetermined value at the start of lighting of the planar discharge lamp. The flat discharge lamp lighting system according to any one of claims 1 to 4. 前記電圧供給回路は、略正弦波形の電圧を前記平面型放電ランプに供給することを特徴とする請求項1〜5のいずれかに記載の平面型放電ランプ点灯システム。

6. The flat discharge lamp lighting system according to claim 1, wherein the voltage supply circuit supplies a voltage having a substantially sinusoidal waveform to the flat discharge lamp.

JP2005278453A 2005-09-26 2005-09-26 Flat discharge lamp lighting system Pending JP2007087901A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005278453A JP2007087901A (en) 2005-09-26 2005-09-26 Flat discharge lamp lighting system
TW095134814A TW200746911A (en) 2005-09-26 2006-09-20 Flat discharge lamp lighting system
CNA2006101413717A CN1941266A (en) 2005-09-26 2006-09-25 Plane discharge lamp lighting system
KR1020060092603A KR20070034945A (en) 2005-09-26 2006-09-25 Planar Discharge Lamp Lighting System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005278453A JP2007087901A (en) 2005-09-26 2005-09-26 Flat discharge lamp lighting system

Publications (1)

Publication Number Publication Date
JP2007087901A true JP2007087901A (en) 2007-04-05

Family

ID=37959289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278453A Pending JP2007087901A (en) 2005-09-26 2005-09-26 Flat discharge lamp lighting system

Country Status (4)

Country Link
JP (1) JP2007087901A (en)
KR (1) KR20070034945A (en)
CN (1) CN1941266A (en)
TW (1) TW200746911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028058A1 (en) * 2007-08-29 2009-03-05 Pioneer Corporation Light emitting control device and the like
JP2009059602A (en) * 2007-08-31 2009-03-19 Panasonic Corp Lighting method of high-pressure discharge lamp, lighting device of high-pressure discharge lamp, high-pressure discharge lamp device, and projection image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091865B1 (en) * 2017-11-13 2018-10-02 The Boeing Company Systems and methods for extending a lifespan of an excimer lamp

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028058A1 (en) * 2007-08-29 2009-03-05 Pioneer Corporation Light emitting control device and the like
JP5079812B2 (en) * 2007-08-29 2012-11-21 パイオニア株式会社 Light emission control device, etc.
JP2009059602A (en) * 2007-08-31 2009-03-19 Panasonic Corp Lighting method of high-pressure discharge lamp, lighting device of high-pressure discharge lamp, high-pressure discharge lamp device, and projection image display device
US8310174B2 (en) 2007-08-31 2012-11-13 Panasonic Corporation Lighting method and lighting apparatus for a high pressure discharge lamp, a high pressure discharge lamp apparatus, and a projection-type image display apparatus
US8648549B2 (en) 2007-08-31 2014-02-11 Panasonic Corporation Lighting method and lighting apparatus for a high pressure discharge lamp, a high pressure discharge lamp apparatus, and a projection-type image display apparatus

Also Published As

Publication number Publication date
TW200746911A (en) 2007-12-16
CN1941266A (en) 2007-04-04
KR20070034945A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
EP0550047B1 (en) A planar fluorescent and electroluminescent lamp having one or more chambers
JP3264938B2 (en) Flat fluorescent lamp for backlight and liquid crystal display device provided with the flat fluorescent lamp
JP2007087900A (en) Back light system
JP2000082441A (en) Flat plate light source
JP3569229B2 (en) Discharge lamp
JP2007087901A (en) Flat discharge lamp lighting system
CN100446172C (en) Flat plate type external extrode fluorescence lamp and its producing method
JP2007273136A (en) Planer lighting system
JP2000011958A (en) Plate-type light source and liquid crystal display device thereof
JP2000182565A (en) Flat fluorescent lamp, liquid crystal display using same and manufacture thereof
JP4144871B2 (en) Flat type rare gas discharge lamp, manufacturing method and driving method thereof
JP2008130246A (en) Discharge lamp lighting apparatus
KR100795518B1 (en) Flat panel fluorescent lamp and manufacturing method thereof
KR100550866B1 (en) Flat fluorescent lamp
JP3683200B2 (en) Backlight for light emitting device and flat display
JP2005339955A (en) Flat discharge lamp and lighting system
JPH10284010A (en) Rare gas discharge lamp
JPH03110750A (en) Flat surface emission type electric discharge lamp
JP3633227B2 (en) Discharge device, illumination device, and liquid crystal display device
JP2005158701A (en) Flat discharge tube
JP2008186683A (en) Planar light-emitting lamp and liquid-crystal display device using the same
JP2007265652A (en) Backlight unit
JP2003257378A (en) Light source device and liquid crystal display device
KR20080051552A (en) External electrode fluorescent lamp and liquid crystal display device using the same
JP2005243515A (en) Flat surface fluorescent lamp and its manufacturing method