JP2007087814A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2007087814A
JP2007087814A JP2005276301A JP2005276301A JP2007087814A JP 2007087814 A JP2007087814 A JP 2007087814A JP 2005276301 A JP2005276301 A JP 2005276301A JP 2005276301 A JP2005276301 A JP 2005276301A JP 2007087814 A JP2007087814 A JP 2007087814A
Authority
JP
Japan
Prior art keywords
thickness
current collector
negative electrode
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005276301A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsumoto
恵明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005276301A priority Critical patent/JP2007087814A/en
Publication of JP2007087814A publication Critical patent/JP2007087814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery whose safety is improved by reliably suppressing temperature rise of the battery due to internal short-circuiting by external shock and heat generation in excessive charging. <P>SOLUTION: A lithium secondary battery has an electrode body, having a positive electrode in which a positive electrode active material layer is formed on the surface of a positive electrode collector made of aluminum foil, and a negative electrode 30 in which negative electrode active material layers 34, 36 are formed on the surface of a negative electrode collector 32 made of copper foil. The layer thickness of the positive electrode active material layer to the thickness of the positive electrode collector and that of the negative electrode active material layer to the thickness of the negative electrode collector are 2.5 or smaller and 3.5 or smaller, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池に関する。詳しくは、リチウム二次電池内で局所的な発熱が発生したときに、それを周囲に伝熱することによって、局所的に過熱される現象の発生を防止する能力が改善されたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery. Specifically, when a local heat generation occurs in a lithium secondary battery, the lithium secondary battery has an improved ability to prevent the phenomenon of local overheating by transferring the heat to the surroundings. About.

リチウム二次電池は、リチウムイオンを吸蔵・放出する能力を備えている正極活物質を有する正極と、リチウムイオンを放出・吸蔵する能力を備えている負極活物質を有する負極と、電解質を有する。典型的なリチウム二次電池は、アルミニウム箔からなる正極集電体の表面に正極活物質層が形成されている正極と、銅箔からなる負極集電体の表面に負極活物質層が形成されている負極を有する。正極活物質層と負極活物質層が向い合っている面積を広く確保することによって、大きな電池容量を得ることができる。小型で大容量の電池を得るためには、大面積の正極と大面積の負極をコンパクトに収容する必要があり、正極と負極(以下では両者を電極と総称する)がセパレータを介して密に重なった状態で密封容器内に収容されている。   The lithium secondary battery includes a positive electrode having a positive electrode active material having the ability to occlude and release lithium ions, a negative electrode having a negative electrode active material having an ability to release and occlude lithium ions, and an electrolyte. A typical lithium secondary battery has a positive electrode in which a positive electrode active material layer is formed on the surface of a positive electrode current collector made of aluminum foil, and a negative electrode active material layer on the surface of a negative electrode current collector made of copper foil. A negative electrode. A large battery capacity can be obtained by ensuring a wide area where the positive electrode active material layer and the negative electrode active material layer face each other. In order to obtain a small-sized and large-capacity battery, it is necessary to accommodate a large-area positive electrode and a large-area negative electrode in a compact manner, and the positive electrode and the negative electrode (hereinafter collectively referred to as electrodes) are closely connected via a separator. It is housed in a sealed container in an overlapping state.

リチウム二次電池が過充電されたり、リチウム二次電池に機械的な衝撃が加えられたりすると、内部短絡が発生し、内部短絡が生じた箇所で局所的に発熱する現象が生じることがある。内部短絡が発生すると、前記したように、正極と負極がセパレータを介して密に重なった状態で収容されているために、局所的に生じた発熱が周囲に伝熱されにくく、局所的に過熱される現象が発生しやすい。正極活物質や負極活物質(以下では両者を活物質と総称する)が局所的に過熱されると、その過熱状態が周囲に伝播し、電極の広い範囲が過熱される現象につながりやすい。
局所的な発熱が発生したとしても、それを周囲に効率的に伝熱することによって、局所的に過熱される現象の発生を防止する技術が必要とされている。
If the lithium secondary battery is overcharged or a mechanical impact is applied to the lithium secondary battery, an internal short circuit may occur, and a phenomenon may occur in which heat is generated locally at the location where the internal short circuit occurs. When an internal short circuit occurs, as described above, since the positive electrode and the negative electrode are accommodated in a closely overlapped state via the separator, locally generated heat is not easily transmitted to the surroundings, and overheating locally. The phenomenon is likely to occur. When a positive electrode active material or a negative electrode active material (hereinafter collectively referred to as an active material) is locally heated, the overheated state propagates to the surroundings, and is likely to lead to a phenomenon in which a wide area of the electrode is overheated.
There is a need for a technique for preventing the occurrence of local overheating by efficiently transferring heat to the surroundings even if local heat generation occurs.

そのために特許文献1に開示されている技術が提案されている。この技術では、正極と負極をセパレータを介して密に重ねて電極体を構成するに当たって、電極体の外側に位置する電極では集電体の厚みを厚くし、電極体の内側に位置する電極では集電体の厚みを薄くする。特許文献1の技術では、内部短絡が発生するとすれば、それは電極体の外側の部分で発生するとし、その部分では集電体の厚みを厚くすることによって、局所的に過熱され、それが周囲に伝播する現象の発生を防止している。特許文献1の技術では、内部短絡が発生しないとされている電極体の内側に位置する部分では、薄い集電体を利用することによって、電極体の小型化を計っている。   Therefore, a technique disclosed in Patent Document 1 has been proposed. In this technique, when the electrode body is configured by closely stacking the positive electrode and the negative electrode with a separator interposed therebetween, the current collector is thickened in the electrode located outside the electrode body, and the electrode located inside the electrode body is used. Reduce the thickness of the current collector. In the technique of Patent Document 1, if an internal short circuit occurs, it occurs in an outer portion of the electrode body, and the portion is overheated locally by increasing the thickness of the current collector. This prevents the occurrence of a phenomenon that propagates to In the technique of Patent Document 1, the electrode body is miniaturized by using a thin current collector at a portion located inside the electrode body where an internal short circuit is not caused.

特開2002−110170号公報JP 2002-110170 A

特許文献1に記載の電池では、通常の厚さの内側用集電体と、通常より厚い外側用集電体の2種類が必要となる。2種類の集電体が必要とされるために、電極体の製造作業が煩雑になる。
また特許文献1の技術では、電極体の内側では内部短絡が発生しないとされているが、実際には過充電等に起因して、電極体の内側でも内部短絡が発生する。特許文献1の技術では、電極体の内側で内部短絡が発生した場合には、集電体が薄いために周囲に効率的に伝熱できず、局所的な過熱現象の発生を防止することができない。
The battery described in Patent Document 1 requires two types of current collectors, one with a normal thickness and one with a thicker outer current collector than usual. Since two types of current collectors are required, the manufacturing work of the electrode body becomes complicated.
Further, in the technique of Patent Document 1, it is said that an internal short circuit does not occur inside the electrode body, but actually an internal short circuit also occurs inside the electrode body due to overcharge or the like. In the technique of Patent Document 1, when an internal short circuit occurs inside the electrode body, the current collector cannot be efficiently transferred to the surroundings because the current collector is thin, and the occurrence of a local overheating phenomenon can be prevented. Can not.

電極体の内側でも厚い集電体を利用すれば、上記の問題は解決される。しかしながら、電極体の内側にまで特許文献1に記載の厚い外側用集電体を利用すると、電極体の容積が増大してしまう。特許文献1に記載の技術では、内部短絡に起因する局所的発熱を周囲に伝熱することによって局所的な過熱の発生を防止するのに必要な電極体の厚みに関する定量的な研究が進んでいない。局所的な過熱の発生を防止するのに必要な厚みに関する研究がなされていないことから、外側用集電体の厚みを余裕を持って設定しており(局所的な過熱の発生を防止するのには過剰な厚みとなっている)、それを電極体の全体に利用すると、電極体の容積が増大してしまう。   If a thick current collector is used even inside the electrode body, the above problem is solved. However, when the thick outer current collector described in Patent Document 1 is used even inside the electrode body, the volume of the electrode body increases. In the technique described in Patent Document 1, quantitative research on the thickness of the electrode body necessary to prevent the occurrence of local overheating by transferring local heat generated due to an internal short circuit to the surroundings has advanced. Not in. Since there has been no research on the thickness necessary to prevent the occurrence of local overheating, the thickness of the outer current collector is set with a margin (to prevent the occurrence of local overheating). If it is used for the entire electrode body, the volume of the electrode body will increase.

本発明のリチウム二次電池は、アルミニウム箔からなる正極集電体の表面に正極活物質層が形成されている正極と、銅箔からなる負極集電体の表面に負極活物質層が形成されている負極を有しており、正極集電体の厚さに対する正極活物質層の層厚の比が2.5以下であり、負極集電体の厚さに対する負極活物質層の層厚の比が3.5以下であることを特徴とする。   The lithium secondary battery of the present invention has a positive electrode in which a positive electrode active material layer is formed on the surface of a positive electrode current collector made of aluminum foil, and a negative electrode active material layer on the surface of a negative electrode current collector made of copper foil. The ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector is 2.5 or less, and the thickness of the negative electrode active material layer relative to the thickness of the negative electrode current collector is The ratio is 3.5 or less.

本発明者の定量的な解析によって、アルミニウム箔からなる正極集電体の厚さに対する正極活物質層の層厚の比が2.5以下であり、銅箔からなる負極集電体の厚さに対する負極活物質層の層厚の比が3.5以下であると、内部短絡に起因する局所的発熱が生じた場合も、それを周囲に効率的に伝熱することによって、活物質が過熱されることを防止できることが確認された。正極と負極の双方で、集電体の厚さに対する活物質層の層厚の比を上記の条件に管理すると、活物質が局所的に過熱されることを防止できることが確認された。   According to the quantitative analysis of the present inventors, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector made of aluminum foil is 2.5 or less, and the thickness of the negative electrode current collector made of copper foil When the ratio of the layer thickness of the negative electrode active material layer to 3.5 is 3.5 or less, even when local heat generation due to an internal short circuit occurs, the active material is overheated by efficiently transferring heat to the surroundings. It was confirmed that it can be prevented. It was confirmed that when the ratio of the thickness of the active material layer to the thickness of the current collector is controlled to the above-mentioned conditions in both the positive electrode and the negative electrode, the active material can be prevented from being overheated locally.

負極集電体の厚さに対する負極活物質層の層厚の比が3.1以下であれば、正極集電体に関する制約が解除され、通常に利用されている薄い正極集電体で足りることも確認された。   If the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 3.1 or less, restrictions on the positive electrode current collector are lifted, and a normally used thin positive electrode current collector is sufficient. Was also confirmed.

負極集電体を構成する銅は、熱伝導率が高い。負極集電体の厚さに対する負極活物質層の層厚の比が3.1以下であれば、負極集電体の熱容量が大きくて伝熱効率が高い。負極集電体の厚さに対する負極活物質層の層厚の比が3.1以下であれば、内部短絡に起因する局所的発熱が負極集電体に吸収されるのと同時に周囲に効率的に伝熱され、活物質が局所的に過熱されることを防止できる。負極集電体の厚さに対する負極活物質層の層厚の比が3.1以下であれば、正極集電体の厚さを厚くしないでも、活物質が局所的な過熱されることを防止できる。   Copper constituting the negative electrode current collector has high thermal conductivity. When the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 3.1 or less, the heat capacity of the negative electrode current collector is large and the heat transfer efficiency is high. If the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 3.1 or less, local heat generation due to an internal short-circuit is absorbed by the negative electrode current collector and at the same time efficient around It is possible to prevent the active material from being overheated locally. If the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 3.1 or less, the active material is prevented from being overheated locally without increasing the thickness of the positive electrode current collector. it can.

本発明のリチウム二次電池によると、内部短絡が発生して局所的な発熱が生じたとしても、その熱は集電体を利用して周囲に効率的に伝熱され、活物質が過熱されることを防止できる。活物質層の広い範囲が過熱される現象の発生を防止することができ、安全に使用できるリチウム二次電池を実現することができる。
しかも、1種類の正極集電体と1種類の負極集電体を用意すればよく、簡単に製造することができる。
According to the lithium secondary battery of the present invention, even if an internal short circuit occurs and local heat generation occurs, the heat is efficiently transferred to the surroundings using the current collector, and the active material is overheated. Can be prevented. Occurrence of a phenomenon that a wide range of the active material layer is overheated can be prevented, and a lithium secondary battery that can be used safely can be realized.
Moreover, it is sufficient to prepare one type of positive electrode current collector and one type of negative electrode current collector, which can be easily manufactured.

下記に詳細に説明する実施例の主要な特徴を最初に列記する。
(形態1)リチウム複合酸化物を正極活物質に用いている。リチウム複合酸化物を正極活物質に用いると高い電池能力を実現することができる。ただし、リチウム複合酸化物は、高温(例えば170℃以上)にさらされると、結晶格子からリチウムイオンが離脱して結晶構造が崩壊し、この際に発熱するという性質を持っている。平面的に拡がる電極の一部で短絡が生じて発熱すると、それが周囲のリチウム複合酸化物に伝熱されて周囲のリチウム複合酸化物を加熱する。周囲のリチウム複合酸化物が過熱されると、周囲のリチウム複合酸化物の結晶構造が崩壊し、新たに発熱する。この結果、さらに周囲のリチウム複合酸化物が過熱されて発熱する連鎖が始まり、短時間のうちに平面的に拡がる電極の全部で、リチウム複合酸化物の結晶構造が崩壊する現象(熱暴走)が生じる。熱暴走が生じると、発煙といった異常事象が発生しやすい。リチウム複合酸化物を正極活物質に用いる電池は、熱暴走の発生を防止する技術が必要とされる。
そのために、平面的に拡がる電極の一部で短絡が生じて局所的な発熱が発生しても、結晶構造が崩壊する温度にまで過熱されないようにする技術が重要であり、周囲に効率的に伝熱する技術が有効である。周囲に効率的に伝熱されて結晶構造が崩壊する温度にまで過熱されないようにできれば、熱暴走は開始しない。
本発明の技術は、リチウム複合酸化物を正極活物質に用いる電池に特に有用である。
(形態2)スピネル型の結晶構造を有するリチウム複合酸化物を正極活物質に用いている。スピネル型の結晶構造を有するリチウム複合酸化物は、高い電池能力を実現する一方、熱暴走が開始しやすい。本発明の技術によると、熱暴走しやすいスピネル型の結晶構造を有するリチウム複合酸化物を利用することが可能となり、高い電池性能を得ることができる。
(形態3)層状岩塩型の結晶構造を有するリチウム複合酸化物を正極活物質に用いている。層状岩塩型の結晶構造を有するリチウム複合酸化物は、高い電池能力を実現する一方、熱暴走が開始しやすい。本発明の技術によると、熱暴走しやすい層状岩塩型の結晶構造を有するリチウム複合酸化物を利用することが可能となり、高い電池性能を得ることができる。
(形態4)層状岩塩型の結晶構造を有するニッケル酸リチウム(LiNiO)、コバルト酸リチウム(LiCoO)、スピネル型の結晶構造を有するマンガン酸リチウム(LiMn)、のいずれかを正極活物質に用いる。
(形態5)正極活物質層は、正極集電体の両面に形成されている。
(形態6)リチウム二次電池は、負極活物質として、グラファイトを用いている。
(形態7)負極活物質層は、負極集電体の両面に形成されている。
(形態8)リチウム二次電池の電極体は、捲回型電極体である。
(形態9)リチウム二次電池の密封容器は、袋状に成形されたラミネートフィルムで構成されている。
(形態10)アルミニウム箔からなる正極集電体と、結晶構造を有するリチウム複合酸化物からなる正極活物質と、銅箔からなる負極集電体と、負極活物質を備えており、正極集電体の厚さに対する正極活物質層の層厚の比が0.3〜2.5であり、負極集電体の厚さに対する負極活物質層の層厚の比が1.0〜3.5である。
(形態11)
銅箔からなる負極集電体の表面に負極活物質層が形成されており、負極集電体の厚さに対する負極活物質層の層厚の比が1.0〜3.5である。
The main features of the embodiments described in detail below are listed first.
(Mode 1) A lithium composite oxide is used as a positive electrode active material. When lithium composite oxide is used for the positive electrode active material, high battery performance can be realized. However, when the lithium composite oxide is exposed to a high temperature (for example, 170 ° C. or higher), lithium ions are detached from the crystal lattice and the crystal structure is destroyed, and heat is generated at this time. When a short circuit occurs in a part of the electrode spreading in a plane and heat is generated, it is transferred to the surrounding lithium composite oxide to heat the surrounding lithium composite oxide. When the surrounding lithium composite oxide is overheated, the crystal structure of the surrounding lithium composite oxide is destroyed, and new heat is generated. As a result, the surrounding lithium composite oxide is overheated and a chain of heat is generated, and the crystal structure of the lithium composite oxide collapses (thermal runaway) in all of the electrodes that expand in a plane in a short time. Arise. When thermal runaway occurs, abnormal events such as smoke are likely to occur. A battery using a lithium composite oxide as a positive electrode active material requires a technique for preventing the occurrence of thermal runaway.
Therefore, even if a short circuit occurs in a part of the electrode spreading in a plane and local heat generation occurs, it is important to have a technology that prevents the crystal structure from being overheated to a temperature at which it collapses. Heat transfer technology is effective. Thermal runaway does not start if it can be efficiently transferred to the surroundings to prevent overheating to a temperature at which the crystal structure collapses.
The technique of the present invention is particularly useful for a battery using a lithium composite oxide as a positive electrode active material.
(Mode 2) A lithium composite oxide having a spinel crystal structure is used as the positive electrode active material. Lithium composite oxide having a spinel crystal structure achieves high battery performance, but thermal runaway tends to start. According to the technology of the present invention, it is possible to use a lithium composite oxide having a spinel type crystal structure that easily undergoes thermal runaway, and high battery performance can be obtained.
(Mode 3) A lithium composite oxide having a layered rock salt type crystal structure is used as the positive electrode active material. The lithium composite oxide having a layered rock salt type crystal structure realizes a high battery capacity, but is likely to start a thermal runaway. According to the technology of the present invention, it is possible to use a lithium composite oxide having a layered rock salt type crystal structure that is likely to be thermally runaway, and high battery performance can be obtained.
(Form 4) Any one of lithium nickelate (LiNiO 2 ) having a layered rock salt type crystal structure, lithium cobaltate (LiCoO 2 ), and lithium manganate (LiMn 2 O 4 ) having a spinel type crystal structure is used as a positive electrode Used for active materials.
(Form 5) The positive electrode active material layer is formed on both surfaces of the positive electrode current collector.
(Mode 6) The lithium secondary battery uses graphite as a negative electrode active material.
(Form 7) The negative electrode active material layer is formed on both surfaces of the negative electrode current collector.
(Embodiment 8) The electrode body of the lithium secondary battery is a wound electrode body.
(Embodiment 9) The sealed container of the lithium secondary battery is composed of a laminate film formed in a bag shape.
(Mode 10) A positive electrode current collector comprising an aluminum foil, a positive electrode active material comprising a lithium composite oxide having a crystal structure, a negative electrode current collector comprising a copper foil, and a negative electrode active material, The ratio of the thickness of the positive electrode active material layer to the thickness of the body is 0.3 to 2.5, and the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 1.0 to 3.5. It is.
(Form 11)
A negative electrode active material layer is formed on the surface of a negative electrode current collector made of copper foil, and the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 1.0 to 3.5.

<実施例1>
本実施例のフィルムパッケージ型リチウム二次電池について、図1〜4を参照して説明する。図1は本実施例に係るリチウム二次電池10の概略を示す模式図である。図2は電極体20を示す模式図である。図2では、電極体18の捲回状態を示すため、一部解体させた状態を示している。図3は本実施例にかかる正極シート30の断面を示す模式図である。図4は本実施例に係る負極シート40の断面を示す模式図である。
<Example 1>
The film package type lithium secondary battery of this example will be described with reference to FIGS. FIG. 1 is a schematic diagram showing an outline of a lithium secondary battery 10 according to the present embodiment. FIG. 2 is a schematic view showing the electrode body 20. FIG. 2 shows a partially disassembled state in order to show the wound state of the electrode body 18. FIG. 3 is a schematic view showing a cross section of the positive electrode sheet 30 according to the present example. FIG. 4 is a schematic view showing a cross section of the negative electrode sheet 40 according to this example.

図1に示すように、本実施例のリチウム二次電池10は、大まかにいって、ラミネートフィルムからなるパッケージ12と、パッケージ12の内部に収容される電極体20と、パッケージ12の外に突出する正極リード端子13と、パッケージの外に突出する負極リード端子14を備えている。
パッケージ12は、二枚のラミネートフィルム16、17をあわせて、それらの外周にわたって熱溶着部18を形成して構成されている。
パッケージ12の内部には電極体20とともに適当な電解質が注入されている。本実施例に係る電解質は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)が3:7(体積比)の比率で混合された溶媒に、溶質として1mol/LのLiPFを溶解させた組成の電解液を用いた。
As shown in FIG. 1, the lithium secondary battery 10 according to the present embodiment roughly includes a package 12 made of a laminate film, an electrode body 20 accommodated in the package 12, and a protrusion outside the package 12. And a negative electrode lead terminal 14 projecting out of the package.
The package 12 is configured by combining two laminate films 16 and 17 and forming a heat welding portion 18 over the outer periphery thereof.
An appropriate electrolyte is injected into the package 12 together with the electrode body 20. Electrolyte according to the present embodiment, ethylene carbonate (EC) and diethyl carbonate (DEC) is 3: 7 in a solvent are mixed in a ratio (volume ratio), a composition obtained by dissolving LiPF 6 of 1 mol / L as a solute An electrolytic solution was used.

電極体20の大まかな構成について説明する。図2に示すように本実施例に係る電極体20は捲回型電極体である。この電極体20は、長尺状の正極シート30と、長尺状の負極シート40と、二枚の長尺状のセパレータ22、24を備えている。これらのシートを、セパレータ22、正極シート30、セパレータ24、負極シート40の順に積層し、捲回機等を用いて長尺方向に捲回し、径方向にプレスすることにより、偏平状に捲回された電極体20が作製される。正極シート30及び負極シート40の構成については、図3及び図4を用いて後で詳述する。
電極体20の一端において、アルミニウム材料により板状に形成された正極リード端子13の一端が正極シート30に接続(固定)されている。電極体20の他端において、銅材料により板状(正極端子13と同様の形状)に形成された負極リード端子14の一端が負極シート40に接続(固定)されている。これら端子13、14と電極体20との接続は超音波溶接等により実施することができる。
A rough configuration of the electrode body 20 will be described. As shown in FIG. 2, the electrode body 20 according to the present embodiment is a wound electrode body. The electrode body 20 includes a long positive electrode sheet 30, a long negative electrode sheet 40, and two long separators 22 and 24. These sheets are laminated in the order of the separator 22, the positive electrode sheet 30, the separator 24, and the negative electrode sheet 40, wound in a longitudinal direction using a winding machine or the like, and pressed in a radial direction to be wound in a flat shape. The electrode body 20 made is produced. The configurations of the positive electrode sheet 30 and the negative electrode sheet 40 will be described in detail later with reference to FIGS. 3 and 4.
At one end of the electrode body 20, one end of the positive electrode lead terminal 13 formed in a plate shape from an aluminum material is connected (fixed) to the positive electrode sheet 30. At the other end of the electrode body 20, one end of the negative electrode lead terminal 14 formed in a plate shape (the same shape as the positive electrode terminal 13) with a copper material is connected (fixed) to the negative electrode sheet 40. Connection between the terminals 13 and 14 and the electrode body 20 can be performed by ultrasonic welding or the like.

次に図3を参照しつつ正極シート30について説明する。図3は、本実施例に係る正極シート30の構成を示している。
本実施例にかかる正極シートは、厚さが約33μm(t3)の長尺状アルミニウム箔からなる正極集電体32と、層厚が36.5μm(t1)の正極活物質層34と、層厚が36.5μm(t2)の正極活物質層36から構成されている。正極活物質層34、36の層厚の合計(t1+t2)は、約73μmである。正極シート30は、正極集電体32の厚さ(t1)に対する正極活物質層34、36の層厚の合計(t2+t3)の比率が約2.2になるよう作製されている。
Next, the positive electrode sheet 30 will be described with reference to FIG. FIG. 3 shows the configuration of the positive electrode sheet 30 according to this example.
The positive electrode sheet according to this example includes a positive electrode current collector 32 made of a long aluminum foil having a thickness of about 33 μm (t3), a positive electrode active material layer 34 having a layer thickness of 36.5 μm (t1), a layer The positive electrode active material layer 36 has a thickness of 36.5 μm (t2). The total thickness (t1 + t2) of the positive electrode active material layers 34 and 36 is about 73 μm. The positive electrode sheet 30 is manufactured so that the ratio of the total thickness (t2 + t3) of the positive electrode active material layers 34 and 36 to the thickness (t1) of the positive electrode current collector 32 is about 2.2.

正極シート30の作製手順は、次のとおりである。
先ず、正極活物質層34、36を形成するための正極用スラリーを調整した。正極用スラリーは、正極活物質であるLiNiOと、集電材であるアセチレンブラックと、結着材であるカルボキシセルロース(CMC)及びポリエチレンテトラフルオロエチレン(PTEE)を水に混合して調整した。正極用スラリー中の各成分(水以外)の含有率は、LiNiOが87質量%、アセチレンブラックが10質量%、CMCが2質量%、PTFEが1質量%とした。次いで、正極集電体32の両面に正極用スラリーを塗布し、正極活物質が集電体の両面に結着された多孔質層を得た。そして、ロールプレスにより前記多孔質層に圧縮処理を施し、前記層厚の正極活物質層34、36を形成した。以上の手順で、前述した構成の正極シート30を得た。
The production procedure of the positive electrode sheet 30 is as follows.
First, a positive electrode slurry for forming the positive electrode active material layers 34 and 36 was prepared. The positive electrode slurry was prepared by mixing LiNiO 2 as a positive electrode active material, acetylene black as a current collector, and carboxycellulose (CMC) and polyethylene tetrafluoroethylene (PTEE) as binders in water. The content of each component of the positive electrode slurry (other than water), LiNiO 2 87 wt%, acetylene black 10 wt%, CMC is 2 mass%, PTFE is 1% by mass. Next, the positive electrode slurry was applied to both surfaces of the positive electrode current collector 32 to obtain a porous layer in which the positive electrode active material was bound to both surfaces of the current collector. Then, the porous layer was compressed by a roll press to form the positive electrode active material layers 34 and 36 having the layer thickness. With the above procedure, the positive electrode sheet 30 having the above-described configuration was obtained.

次に図4を参照しつつ負極シート40について説明する。図4は、本実施例に係る負極シート40の構成を示している。
本実施例にかかる負極シートは、厚さが約22μm(T3)の長尺状銅箔からなる負極集電体42と、層厚が38.5μm(T1)の負極活物質層44と、層厚が38.5μm(T2)の負極活物質層46から構成されている。負極活物質層44、46の層厚の合計(T1+T2)は、約77μmである。負極シート40は、負極集電体42の厚さ(T1)に対する負極活物質層44、46の層厚の合計(T2+T3)の比率が約3.5になるように作製されている。
Next, the negative electrode sheet 40 will be described with reference to FIG. FIG. 4 shows the configuration of the negative electrode sheet 40 according to this example.
The negative electrode sheet according to this example includes a negative electrode current collector 42 made of a long copper foil having a thickness of about 22 μm (T3), a negative electrode active material layer 44 having a layer thickness of 38.5 μm (T1), The negative electrode active material layer 46 has a thickness of 38.5 μm (T2). The total thickness (T1 + T2) of the negative electrode active material layers 44 and 46 is about 77 μm. The negative electrode sheet 40 is produced so that the ratio of the total thickness (T2 + T3) of the negative electrode active material layers 44 and 46 to the thickness (T1) of the negative electrode current collector 42 is about 3.5.

負極シート40の作製手順は、次のとおりである。
先ず、負極活物質層44、46を形成するための負極用スラリーを調整した。負極用スラリーは、負極活物質であるグラファイト粉末、結着材であるCMC及びスチレンブタジエンブロック共重合体(SBR)を水に混合して調整した。負極用スラリー中に含まれる成各分(水以外)の含有率は、グラファイトが98質量%、CMCが1質量%、SBRが1質量%とした。次いで、負極集電体42の両面に負極用スラリーを塗布し、負極活物質が負極用集電体42の両面に結着された多孔質層を得た。そして、ロールプレスにより前記多孔質層に圧縮処理を施し、前記層厚の負極活物質層44、46を形成した。以上の手順で、前述した構成の負極シート40を得た。
The production procedure of the negative electrode sheet 40 is as follows.
First, a negative electrode slurry for forming the negative electrode active material layers 44 and 46 was prepared. The negative electrode slurry was prepared by mixing graphite powder as a negative electrode active material, CMC as a binder and styrene-butadiene block copolymer (SBR) in water. The content of each component (other than water) contained in the negative electrode slurry was 98% by mass for graphite, 1% by mass for CMC, and 1% by mass for SBR. Next, the negative electrode slurry was applied to both surfaces of the negative electrode current collector 42 to obtain a porous layer in which the negative electrode active material was bound to both surfaces of the negative electrode current collector 42. Then, the porous layer was compressed by a roll press to form negative electrode active material layers 44 and 46 having the thickness. With the above procedure, the negative electrode sheet 40 having the above-described configuration was obtained.

これら作製した正極シート30及び負極シート40を2枚のセパレータシート22、24(ここでは多孔質ポリエチレンシートを用いた。)とともに積層し、この積層シートを捲回して捲回型電極体20を作製した。この電極体20を電解液とともにパッケージ12に収容し、本実施例にかかるリチウム二次電池10を完成した。
実施例1のリチウム二次電池における正極集電体の厚さ、正極集電体の厚さに対する正極活物質層の層厚の比率、負極集電体の厚さ、及び、負極集電体の厚さに対する負極活物質層の層厚の比率を表1に示す。表1には他の実施例と比較例の正極シート及び負極シートについても表示する。
The produced positive electrode sheet 30 and negative electrode sheet 40 are laminated together with two separator sheets 22 and 24 (here, a porous polyethylene sheet is used), and the laminated sheet is wound to produce a wound electrode body 20. did. The electrode body 20 was accommodated in the package 12 together with the electrolytic solution, and the lithium secondary battery 10 according to this example was completed.
The thickness of the positive electrode current collector in the lithium secondary battery of Example 1, the ratio of the layer thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, and the negative electrode current collector Table 1 shows the ratio of the layer thickness of the negative electrode active material layer to the thickness. Table 1 also shows positive electrode sheets and negative electrode sheets of other examples and comparative examples.

Figure 2007087814
Figure 2007087814

<実施例2>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成であり、同様の手順で作製した。
表1に示すように、本実施例に係る正極シートは、厚さが約40.1μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚の合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率は約1.82である。
負極シートは、厚さが約27.0μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に厚さの合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された正極活物質層の合計の層厚と負極集電体の厚さの比率が約2.82である。
<Example 2>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, Except that the ratio of the thickness of the negative electrode active material layer to the thickness was different, the configuration was the same as in Example 1, and the same procedure was used.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 40.1 μm, and a total layer thickness of about 2 on both sides of the positive electrode current collector. It is comprised from the positive electrode active material layer formed so that it might become 73 micrometers. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 1.82.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 27.0 μm, and a negative electrode active material layer formed so that the total thickness is about 76 μm on both surfaces of the negative electrode current collector It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 2.82.

<実施例3>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成であり、同様の手順で作製した。
表1に示すように、本実施例に係る正極シートは、厚さが約50μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約1.46である。
負極シートは、厚さが約32.6μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約2.33である。
<Example 3>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, Except that the ratio of the thickness of the negative electrode active material layer to the thickness was different, the configuration was the same as in Example 1, and the same procedure was used.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 50 μm and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 1.46.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 32.6 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 2.33.

<実施例4>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成であり、同様の手順で作製した。
表1に示すように、本実施例に係る正極シートは、厚さが約40.1μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約1.82である。
負極シートは、厚さが約32.6μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約2.33である。
<Example 4>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, Except that the ratio of the thickness of the negative electrode active material layer to the thickness was different, the configuration was the same as in Example 1, and the same procedure was used.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 40.1 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed so that it may become. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 1.82.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 32.6 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 2.33.

<実施例5>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成であり、同様の手順で作製した。
表1に示すように、本実施例に係る正極シートは、厚さが約30μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約2.43である。
負極シートは、厚さが約32.6μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約2.33である。
<Example 5>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, Except that the ratio of the thickness of the negative electrode active material layer to the thickness was different, the configuration was the same as in Example 1, and the same procedure was used.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 30 μm and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 2.43.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 32.6 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 2.33.

<実施例6>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本実施例に係る正極シートは、厚さが約50μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約1.46である。
負極シートは、厚さが約24.7μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約3.08である。
<Example 6>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 50 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 1.46.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 24.7 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 3.08.

<実施例7>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本実施例に係る正極シートは、厚さが約40.1μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約1.82である。
負極シートは、厚さが約24.7μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約3.08である。
<Example 7>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 40.1 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed so that it may become. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 1.82.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 24.7 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 3.08.

<実施例8>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本実施例に係る正極シートは、厚さが約30μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約2.43である。
負極シートは、厚さが約24.7μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約3.08である。
<Example 8>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 30 μm and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 2.43.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 24.7 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total layer thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 3.08.

<実施例9>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成であり、同様の手順で作製した。
表1に示すように、本実施例に係る正極シートは、厚さが約15μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約4.87である。かかる比率は、従来から用いられている正極シートの比率と同等の比率である。
負極シートは、厚さが約32.6μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。なお、本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約2.33である。
<Example 9>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, Except that the ratio of the thickness of the negative electrode active material layer to the thickness was different, the configuration was the same as in Example 1, and the same procedure was used.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 15 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 4.87. This ratio is equivalent to the ratio of the positive electrode sheet that has been conventionally used.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 32.6 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 2.33.

<実施例10>
本実施例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本実施例に係る正極シートは、厚さが約15μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本実施例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約4.87である。かかる比率は、従来から用いられている正極シートの比率と同等の比率である。
負極シートは、厚さが約24.7μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本実施例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約3.08である。
<Example 10>
The lithium secondary battery of this example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this example has a positive electrode current collector made of a long aluminum foil having a thickness of about 15 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 4.87. This ratio is equivalent to the ratio of the positive electrode sheet that has been conventionally used.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 24.7 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 3.08.

<比較例1>
本比較例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本比較例に係る正極シートは、厚さが約50μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本比較例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約1.46である。
負極シートは、厚さが約9.9μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本比較例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約7.70である。かかる比率は、従来から用いられている負極シートの比率と同等の比率である。
<Comparative Example 1>
The lithium secondary battery of this comparative example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this comparative example has a positive electrode current collector made of a long aluminum foil having a thickness of about 50 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this comparative example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 1.46.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 9.9 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this comparative example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 7.70. Such a ratio is equivalent to the ratio of the negative electrode sheet conventionally used.

<比較例2>
本比較例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本比較例に係る正極シートは、厚さが約40.1μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本比較例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約1.82である。
負極シートは、厚さが約9.9μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本比較例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約7.70である。かかる比率は、従来から用いられている負極シートの比率と同等の比率である。
<Comparative example 2>
The lithium secondary battery of this comparative example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this comparative example has a positive electrode current collector made of a long aluminum foil having a thickness of about 40.1 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed so that it may become. In the positive electrode sheet according to this comparative example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 1.82.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 9.9 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this comparative example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 7.70. Such a ratio is equivalent to the ratio of the negative electrode sheet conventionally used.

<比較例3>
本比較例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本比較例に係る正極シートは、厚さが約30μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本比較例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約2.43である。
負極シートは、厚さが約9.9μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本比較例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約7.70である。かかる比率は、従来から用いられている負極シートの比率と同等の比率である。
<Comparative Example 3>
The lithium secondary battery of this comparative example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this comparative example has a positive electrode current collector made of a long aluminum foil having a thickness of about 30 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this comparative example, the ratio of the total thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 2.43.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 9.9 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this comparative example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 7.70. Such a ratio is equivalent to the ratio of the negative electrode sheet conventionally used.

<比較例4>
本比較例のリチウム二次電池は、従来のリチウム二次電池と同仕様のリチウム二次電池である。本比較例のリチウム二次電池は、正極集電体の厚さと、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さと、負極集電体の厚さに対する負極活物質層の層厚の比率が異なる以外は、実施例1と同様の構成である。
表1に示すように、本比較例に係る正極シートは、厚さが約15μmの長尺状アルミニウム箔からなる正極集電体と、正極集電体の両面に層厚合計が約73μmになるように形成された正極活物質層から構成されている。本比較例に係る正極シートは、正極集電体の両面に形成された正極活物質層の合計の層厚と正極集電体の厚さの比率が約4.87である。
負極シートは、厚さが約9.9μmの長尺状銅箔からなる負極集電体と、負極集電体の両面に層厚の合計が約76μmになるように形成された負極活物質層から構成されている。本比較例に係る負極シートは、負極集電体の両面に形成された負極活物質層の合計の層厚と負極集電体の厚さの比率が約7.70である。
<Comparative example 4>
The lithium secondary battery of this comparative example is a lithium secondary battery having the same specifications as a conventional lithium secondary battery. The lithium secondary battery of this comparative example includes the thickness of the positive electrode current collector, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, The configuration is the same as that of Example 1 except that the ratio of the thickness of the negative electrode active material layer to the thickness is different.
As shown in Table 1, the positive electrode sheet according to this comparative example has a positive electrode current collector made of a long aluminum foil having a thickness of about 15 μm, and a total layer thickness of about 73 μm on both surfaces of the positive electrode current collector. It is comprised from the positive electrode active material layer formed in this way. In the positive electrode sheet according to this comparative example, the ratio of the total layer thickness of the positive electrode active material layers formed on both surfaces of the positive electrode current collector to the thickness of the positive electrode current collector is about 4.87.
The negative electrode sheet has a negative electrode current collector made of a long copper foil having a thickness of about 9.9 μm, and a negative electrode active material layer formed on both surfaces of the negative electrode current collector so that the total thickness is about 76 μm. It is composed of In the negative electrode sheet according to this comparative example, the ratio of the total thickness of the negative electrode active material layers formed on both surfaces of the negative electrode current collector to the thickness of the negative electrode current collector is about 7.70.

<試験1:釘刺し試験>
本発明のリチウム二次電池の効果を調べるために、実施例1〜10及び比較例1〜4のリチウム二次電池について、釘刺し試験を実施した。本試験では、実施例1〜10及び比較例1〜4の電池に釘刺しによる内部短絡が生じたときに、過熱現象(電池の破裂、発煙、発火をもたらす温度にまで過熱されること)が生じるか否かを確認した。結果を表2に示す。表2には、正極集電体の厚さに対する正極活物質層の層厚の比率と、負極集電体の厚さに対する負極活物質層の層厚の比率も表示している。表2中の○印で示された電池は、内部短絡が生じても過熱現象が生じなかったことを示し、×印で示された電池は、内部短絡の発生に起因して過熱現象が発生したことを示している。
釘刺し試験とは、電池のパッケージの外方から金属製の釘を刺して強制的に内部短絡させる試験である。本試験では、直径2.5mmの金属製の釘を350mm/secの速さで挿入し、その釘が刺さった状態で2時間放置する手法で行った。釘刺しによって電池が内部短絡すると、電池内部が急激に発熱し、電池内の温度が上昇する。内部短絡による熱を効率よく伝熱できる電池であれば、電池内の温度が過度に上昇することが抑制される。そのような構成の電池は、内部短絡時に過熱されにくい。
<Test 1: Nail penetration test>
In order to investigate the effect of the lithium secondary battery of the present invention, a nail penetration test was performed on the lithium secondary batteries of Examples 1 to 10 and Comparative Examples 1 to 4. In this test, when an internal short circuit occurs due to nail penetration in the batteries of Examples 1 to 10 and Comparative Examples 1 to 4, an overheating phenomenon (being heated to a temperature that causes battery rupture, smoke, and ignition) occurs. It was confirmed whether or not it occurred. The results are shown in Table 2. Table 2 also shows the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector and the ratio of the layer thickness of the negative electrode active material layer to the thickness of the negative electrode current collector. The battery indicated by a circle in Table 2 indicates that the overheating phenomenon did not occur even if an internal short circuit occurred, and the battery indicated by the x mark caused an overheating phenomenon due to the occurrence of an internal short circuit. It shows that.
The nail penetration test is a test in which a metal nail is inserted from the outside of the battery package to forcibly short-circuit the inside. In this test, a metal nail having a diameter of 2.5 mm was inserted at a speed of 350 mm / sec, and the nail was pierced and left for 2 hours. When the battery is internally short-circuited by nail penetration, the inside of the battery suddenly generates heat, and the temperature inside the battery rises. If the battery can efficiently transfer heat due to an internal short circuit, the temperature inside the battery is prevented from excessively rising. The battery having such a configuration is not easily overheated when an internal short circuit occurs.

Figure 2007087814
Figure 2007087814

表2に示すように、釘刺し試験の結果、実施例1〜10の電池は、過熱しなかった。実施例1及び実施例2の電池については、試験中の電池温度についても調べた。実施例1のリチウム二次電池は、試験中の最高温度が約130℃であった。実施例2の電池も、本試験中の最高温度が約130℃であった。
実施例1〜8の電池では、正極集電体及び負極集電体の厚さが十分に確保されている。実施例1〜8の電池の集電体に対する活物質層の厚さの比率は、正極側ではいずれも2.5以下であり、負極側ではいずれも3.5以下である。内部短絡に伴う局所的発熱は、正極集電体及び負極集電体の両者で好適に伝熱されたものと考えられる。
As shown in Table 2, as a result of the nail penetration test, the batteries of Examples 1 to 10 were not overheated. For the batteries of Example 1 and Example 2, the battery temperature during the test was also examined. The maximum temperature during the test of the lithium secondary battery of Example 1 was about 130 ° C. The battery of Example 2 also had a maximum temperature of about 130 ° C. during this test.
In the batteries of Examples 1 to 8, the thicknesses of the positive electrode current collector and the negative electrode current collector are sufficiently secured. The ratio of the thickness of the active material layer to the current collectors of the batteries of Examples 1 to 8 is 2.5 or less on the positive electrode side and 3.5 or less on the negative electrode side. The local heat generation due to the internal short circuit is considered to have been suitably transferred by both the positive electrode current collector and the negative electrode current collector.

実施例9、10の電池は、正極集電体の厚さが15μmで設定されており、従来の構成と同等の構成を有する正極シートを採用している。実施例9の電池は、負極集電体の厚さが33μm(負極集電体の厚さに対する負極活物質層の層厚の比率が約2.33である。)と厚く設定された負極シートを採用している。実施例10の電池も、負極集電体の厚さが25μm(負極集電体の厚さに対する負極活物質層の層厚の比率が約3.08である。)と厚く設定されている。負極集電体を構成する銅は、体積当たりの熱容量が大きく熱伝導率も高いので、熱吸収効率がよい。実施例9及び実施例10の電池は、正極集電体の厚さは薄いが負極集電体の厚さが十分に確保されているため、内部短絡に伴う局所的発熱が負極集電体によって好適に分散されたものと考えられる。   In the batteries of Examples 9 and 10, the thickness of the positive electrode current collector is set to 15 μm, and a positive electrode sheet having a configuration equivalent to the conventional configuration is employed. In the battery of Example 9, the thickness of the negative electrode current collector was 33 μm (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector was about 2.33), and the negative electrode sheet Is adopted. Also in the battery of Example 10, the thickness of the negative electrode current collector was set to 25 μm (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector was about 3.08). Copper constituting the negative electrode current collector has a high heat absorption efficiency because of its large heat capacity per volume and high thermal conductivity. In the batteries of Example 9 and Example 10, since the thickness of the positive electrode current collector is thin but the thickness of the negative electrode current collector is sufficiently secured, local heat generation due to an internal short circuit is caused by the negative electrode current collector. It is thought that it was suitably dispersed.

比較例1〜4の電池は、電池内の温度が過度に上昇する過熱現象が生じた。比較例1〜3のリチウム二次電池は、負極集電体の厚さが10μmに設定されており(負極集電体の厚さに対する負極活物質層の層厚の比率が約7.70である。)、従来の構成と同等の構成を有する負極シートを採用している。正極側の集電体は、従来よりも厚い構成であり、活物質層に対する集電体厚さの比率は約1.46〜約2.43で構成されている。しかし、比較例1〜3のリチウム二次電池では熱吸収効率のよい銅からなる負極側の集電体が薄いため、内部短絡に伴う急激な発熱をより拡散しにくい。比較例1〜3の電池は、内部短絡に伴う局所的発熱が正極集電体によって伝熱しきれず、結果、過熱現象を起こしたものと考えられる。
また、比較例4のリチウム二次電池は、両極とも従来の構成と同等の構成の電極シートを採用している。比較例4では、負極集電体の厚さが約9.9μm(負極集電体の厚さに対する負極活物質層の層厚の比率が約7.70である。)と薄く、且つ、正極集電体の厚さが約15μm(正極集電体の厚さに対する正極活物質層の層厚の比率が約4.87である。)と薄い。比較例4の電池は、内部短絡に伴う局所的発熱が集電体によって伝熱しきれず、結果、異常を起こしたものと考えられる。
In the batteries of Comparative Examples 1 to 4, an overheating phenomenon in which the temperature in the battery excessively increased occurred. In the lithium secondary batteries of Comparative Examples 1 to 3, the thickness of the negative electrode current collector was set to 10 μm (the ratio of the layer thickness of the negative electrode active material layer to the thickness of the negative electrode current collector was about 7.70. A negative electrode sheet having a configuration equivalent to the conventional configuration. The current collector on the positive electrode side is thicker than before, and the ratio of the current collector thickness to the active material layer is about 1.46 to about 2.43. However, in the lithium secondary batteries of Comparative Examples 1 to 3, since the current collector on the negative electrode side made of copper having good heat absorption efficiency is thin, rapid heat generation due to an internal short circuit is less likely to diffuse. In the batteries of Comparative Examples 1 to 3, it is considered that local heat generation due to an internal short circuit could not be transferred by the positive electrode current collector, resulting in an overheating phenomenon.
Moreover, the lithium secondary battery of Comparative Example 4 employs an electrode sheet having a configuration equivalent to the conventional configuration for both electrodes. In Comparative Example 4, the thickness of the negative electrode current collector is as thin as about 9.9 μm (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is about 7.70), and the positive electrode The current collector is as thin as about 15 μm (the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector is about 4.87). In the battery of Comparative Example 4, it is considered that local heat generated due to the internal short circuit could not be transferred by the current collector, resulting in an abnormality.

本試験の結果から、正極集電体の厚さに対する正極活物質層の層厚の比率が約2.43以下の正極と、負極集電箔の厚さに対する負極活物質層の層厚の比率が約3.5以下の負極を採用したリチウム二次電池は、内部短絡に伴う局所的発熱が正極集電体及び負極集電体の両者で好適に伝熱され、電池の過度な温度上昇が抑制されることがわかった。
また、従来仕様の正極シート(正極集電体の厚さに対する正極活物質層の厚さの比率が約4.87である。)を採用したリチウム二次電池では、負極集電体の厚さに対する負極活物質層の層厚の比率が約3.08以下である負極シートを併用することで、電池の過度な温度上昇が抑制されることが確認された。
From the result of this test, the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector is about 2.43 or less, and the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector foil However, in the lithium secondary battery adopting a negative electrode of about 3.5 or less, local heat generation due to an internal short circuit is suitably transferred in both the positive electrode current collector and the negative electrode current collector, and an excessive temperature rise of the battery is caused. It was found to be suppressed.
In addition, in a lithium secondary battery employing a positive electrode sheet of a conventional specification (the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector is about 4.87), the thickness of the negative electrode current collector It was confirmed that an excessive increase in the temperature of the battery was suppressed by using a negative electrode sheet having a ratio of the thickness of the negative electrode active material layer to about 3.08 or less.

<試験2:過充電試験>
本発明のリチウム二次電池の効果を調べるため、実施例3〜10及び比較例1〜4のリチウム二次電池について、過充電試験を実施した。過充電状態になると、リチウム二次電池内の温度が上昇する。リチウム二次電池が過充電状態になると、正極活物質の結晶格子からリチウムイオンが離脱してリチウム欠損状態になる。リチウム二次電池が過充電状態になると、負極表面で金属リチウムが析出する。リチウム二次電池は、過充電状態になると、過充電に伴う発熱でセパレータが破損する虞がある。その結果、電池内の微視的な部分で内部短絡が生じることがある。内部短絡が生じると、過熱現象が生じやすくなる。本試験では、実施例3〜10及び比較例1〜4の電池が、過充電に起因して、過熱現象(例えば、破裂、発煙、発火をもたらす温度にまで過熱されること)が生じるか否かを確認した。結果を表3に示す。表3には、正極集電体の厚さに対する正極活物質層の層厚の比率と負極集電体の厚さに対する負極活物質層の層厚も表示している。表3中の○印で示された電池は、過充電されても過熱現象が生じなかったことを示し、×印で示された電池は、過充電されることに起因して過熱現象が発生したことを示している。
過充電試験とは、充電が完了した後のリチウム電池に強制的に充電電流を流し続ける試験である。本試験では、実施例3〜10及び比較例1〜4の電池を充電した後、20Aの充電電流を3時間に渡って強制的に印加する手法で行った。
<Test 2: Overcharge test>
In order to investigate the effect of the lithium secondary battery of the present invention, overcharge tests were performed on the lithium secondary batteries of Examples 3 to 10 and Comparative Examples 1 to 4. When the battery is overcharged, the temperature in the lithium secondary battery increases. When the lithium secondary battery is overcharged, lithium ions are released from the crystal lattice of the positive electrode active material, resulting in a lithium deficient state. When the lithium secondary battery is overcharged, metallic lithium is deposited on the negative electrode surface. When the lithium secondary battery is overcharged, the separator may be damaged by heat generated by overcharge. As a result, an internal short circuit may occur at a microscopic portion in the battery. When an internal short circuit occurs, an overheating phenomenon tends to occur. In this test, whether or not the batteries of Examples 3 to 10 and Comparative Examples 1 to 4 are overheated (for example, overheated to a temperature causing explosion, smoke generation, or ignition) due to overcharge. I confirmed. The results are shown in Table 3. Table 3 also shows the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector and the layer thickness of the negative electrode active material layer relative to the thickness of the negative electrode current collector. The battery indicated by a circle in Table 3 indicates that the overheating phenomenon did not occur even when overcharged, and the battery indicated by the x mark caused an overheating phenomenon due to being overcharged. It shows that.
An overcharge test is a test in which a charging current is forced to flow through a lithium battery after charging is completed. In this test, the batteries of Examples 3 to 10 and Comparative Examples 1 to 4 were charged, and then a 20 A charging current was forcibly applied over 3 hours.

Figure 2007087814
Figure 2007087814

過充電試験の結果、実施例3〜10及び比較例1〜3の電池は、過熱現象が発生しなかった。比較例4の電池のみ、過熱現象が発生した。
実施例3〜8の電池は、正極集電体及び負極集電体の厚さが十分に確保されている。十分な厚さを有する集電体は、十分な熱容量を有する。このため、過充電で電極表面に発生した熱は、電極を構成する集電体に好適に拡散され、伝熱される。集電体の熱容量が大きいと、電池の温度は上昇しにくくなる。電池の温度が上昇しにくければ、過熱現象は抑制される。実施例3〜8の電池は、正極集電体及び負極集電体の熱容量が大きいため、過熱現象が生じなかったものと考えられる。
実施例9、10の電池は、正極集電体の厚さが15μm(正極集電体の厚さに対する正極活物質層の層厚の比率が約4.87である。)と薄く設定されている。その一方、実施例9の電池は、負極集電体の厚さが33μm(負極集電体の厚さに対する負極活物質層の層厚の比率が約2.33である。)と厚く設定されている。また、実施例10の電池も、負極集電体の厚さが25μm(負極集電体の厚さに対する負極活物質層の層厚の比率が約3.08である。)と厚く設定されている。実施例9、10の電池は、正極集電体の厚さは薄いが負極集電体の厚さが十分に確保されているため、正極集電体は十分に厚みを有している過充電に伴う発熱が負極集電体によって好適に拡散され、伝熱されたものと考えられる。
As a result of the overcharge test, the batteries of Examples 3 to 10 and Comparative Examples 1 to 3 did not generate an overheating phenomenon. Only in the battery of Comparative Example 4, the overheating phenomenon occurred.
In the batteries of Examples 3 to 8, the thicknesses of the positive electrode current collector and the negative electrode current collector are sufficiently secured. A current collector having a sufficient thickness has a sufficient heat capacity. For this reason, the heat which generate | occur | produced on the electrode surface by overcharge is spread | diffused suitably for the electrical power collector which comprises an electrode, and is transmitted. When the heat capacity of the current collector is large, the temperature of the battery is difficult to increase. If the battery temperature does not rise easily, the overheating phenomenon is suppressed. It is considered that the batteries of Examples 3 to 8 did not cause an overheating phenomenon because the positive electrode current collector and the negative electrode current collector had large heat capacities.
In the batteries of Examples 9 and 10, the thickness of the positive electrode current collector was set as thin as 15 μm (the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector was about 4.87). Yes. On the other hand, in the battery of Example 9, the thickness of the negative electrode current collector was set to be as thick as 33 μm (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector was about 2.33). ing. In the battery of Example 10 as well, the thickness of the negative electrode current collector was set to 25 μm (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector was about 3.08). Yes. In the batteries of Examples 9 and 10, since the thickness of the positive electrode current collector is thin but the thickness of the negative electrode current collector is sufficiently secured, the positive electrode current collector is sufficiently thick. It is considered that the heat generated by the heat was suitably diffused and transferred by the negative electrode current collector.

比較例1〜3の電池は、負極集電体の厚さが10μm(負極集電体の厚さに対する負極活物質層の層厚の比率が約7.70である。)と薄く設定されている。比較例1〜3の電池は、正極集電体の厚さがいずれも30μm以上(負極集電体の厚さに対する負極活物質層の層厚の比率が約2.43以下である。)と厚く設定されている。比較例1〜3の電池は、負極集電体の厚さは薄いが正極集電体の厚さが十分に確保されているため、過充電に伴う発熱は正極集電体によって好適に拡散され、伝熱されたものと考えられる。
一方、比較例4の電池は、正極集電体の厚さが15μm(正極集電体の厚さに対する正極活物質層の層厚の比率は約4.87である。)、負極集電体の厚さが10μm(負極集電体の厚さに対する負極活物質層の層厚の比率が約7.70である。)であった。比較例4の電池は、過充電に伴う発熱を正極集電体及び負極集電体で拡散しきれず、結果、過熱現象を起こしたものと考えられる。
In the batteries of Comparative Examples 1 to 3, the thickness of the negative electrode current collector was set as thin as 10 μm (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector was about 7.70). Yes. In the batteries of Comparative Examples 1 to 3, the thickness of the positive electrode current collector is 30 μm or more (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is about 2.43 or less). It is set thick. In the batteries of Comparative Examples 1 to 3, since the thickness of the negative electrode current collector is thin but the thickness of the positive electrode current collector is sufficiently secured, the heat generated by overcharging is suitably diffused by the positive electrode current collector. It is thought that the heat was transferred.
On the other hand, in the battery of Comparative Example 4, the thickness of the positive electrode current collector was 15 μm (the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector was about 4.87), and the negative electrode current collector. Was 10 μm (the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector was about 7.70). In the battery of Comparative Example 4, it is considered that the heat generated due to overcharging could not be diffused by the positive electrode current collector and the negative electrode current collector, resulting in an overheating phenomenon.

本試験の結果から、従来仕様の正極シート(正極集電体の厚さに対する正極活物質層の厚みの比率が約4.87である正極シート)を採用したリチウム二次電池では、負極集電体の厚さに対する負極活物質層の層厚の比率が約3.08以下である負極シートを併用することで、過充電時の温度上昇を抑制することが可能であることが確認された。
また、従来仕様の負極シート(負極集電体の厚さに対する負極活物質層の厚さの比率が約7.70である負極シート)を採用したリチウム二次電池では、正極集電体の厚さに対する正極活物質層の層厚の比率が約2.43以下である正極シートを併用することで、過充電時の温度上昇を抑制することが可能であることが確認された。
From the result of this test, in the lithium secondary battery employing the positive electrode sheet of the conventional specification (the positive electrode sheet in which the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector is about 4.87), the negative electrode current collector It was confirmed that a temperature increase during overcharge can be suppressed by using a negative electrode sheet having a ratio of the thickness of the negative electrode active material layer to the body thickness of about 3.08 or less.
Further, in a lithium secondary battery employing a negative electrode sheet of a conventional specification (a negative electrode sheet in which the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is about 7.70), the thickness of the positive electrode current collector It was confirmed that a temperature increase during overcharging can be suppressed by using a positive electrode sheet having a ratio of the thickness of the positive electrode active material layer to the thickness of about 2.43 or less.

<熱解析1>
正極集電体の厚さに対する正極活物質層の層厚の比率が異なるいくつかの電極を想定し、熱解析を実施した。本熱解析は前記実施例と同じ材料からなる7Ah相当の容量を有するリチウム二次電池を想定して行った。負極側の構成は一定とし、集電体の厚さに対する活物質層の層厚の比率が7.70のものを想定して解析した。
本熱解析では、正極活物質に含まれるすべてのLiNiO結晶の構造が崩壊したときに発生する熱量と正極集電体を構成するアルミニウムの比熱と熱伝導率に基づいて、正極活物質の結晶構造が崩壊する時に電池内の温度がどれだけ上昇するのか解析した。図5に正極側の熱解析のグラフを示す。図5のグラフ中、横軸は正極集電体の厚さに対する正極活物質層の層厚合計の比率を示し、縦軸は異常時(正極活物質の結晶構造の崩壊時)の電池の最高温度を示す。
<Thermal analysis 1>
Thermal analysis was performed assuming several electrodes with different ratios of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector. This thermal analysis was performed assuming a lithium secondary battery made of the same material as in the previous example and having a capacity equivalent to 7 Ah. The analysis was performed assuming that the structure on the negative electrode side was constant and the ratio of the thickness of the active material layer to the thickness of the current collector was 7.70.
In this thermal analysis, based on the amount of heat generated when the structure of all LiNiO 2 crystals contained in the positive electrode active material collapses and the specific heat and thermal conductivity of the aluminum constituting the positive electrode current collector, the crystal of the positive electrode active material We analyzed how the temperature inside the battery rose when the structure collapsed. FIG. 5 shows a graph of thermal analysis on the positive electrode side. In the graph of FIG. 5, the horizontal axis represents the ratio of the total thickness of the positive electrode active material layer to the thickness of the positive electrode current collector, and the vertical axis represents the highest battery in an abnormal state (when the crystal structure of the positive electrode active material collapses). Indicates temperature.

図5に示すように、正極側の熱解析の結果から、正極集電体の厚さに対する正極活物質層の厚さの比率が約3.0以下の場合は、正極活物質の結晶構造の崩壊に伴う発熱が正極集電体によって好適に拡散され、電池温度が170℃以上に上昇しないことが解析された。特に比率が約2.5以下の場合は、異常時の電池温度が150℃以上に上昇しないことが解析された。この結果、電池内で局所的に発熱し、局所的に正極活物質の結晶構造が崩壊しても、厚さのある正極集電体によって局所的な熱が好適に拡散されることが予測される。熱が拡散されると局所的な温度上昇は生じず、正極活物質の結晶構造が連鎖的に崩壊しにくくなる。正極活物質の結晶構造の崩壊が進行しなければ、電池が過度に発熱する過熱現象が抑制される。
本熱解析により、厚さのある正極集電体が備えられたリチウム電池は過熱現象が生じにくいことがわかった。
As shown in FIG. 5, from the result of the thermal analysis on the positive electrode side, when the ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector is about 3.0 or less, the crystal structure of the positive electrode active material It was analyzed that the heat generated by the collapse was suitably diffused by the positive electrode current collector, and the battery temperature did not rise above 170 ° C. In particular, when the ratio was about 2.5 or less, it was analyzed that the battery temperature at the time of abnormality did not rise to 150 ° C. or higher. As a result, even if heat is generated locally in the battery and the crystal structure of the positive electrode active material is locally broken, it is predicted that local heat is suitably diffused by the positive electrode current collector having a thickness. The When heat is diffused, a local temperature rise does not occur, and the crystal structure of the positive electrode active material is unlikely to collapse in a chain manner. If the collapse of the crystal structure of the positive electrode active material does not proceed, the overheating phenomenon in which the battery generates excessive heat is suppressed.
From this thermal analysis, it was found that a lithium battery equipped with a thick positive electrode current collector is less prone to overheating.

<熱解析2>
負極集電体の厚さに対する負極活物質層の層厚の比率が異なるいくつかの電極を想定し、熱解析を実施した。本熱解析は前記実施例と同じ材料からなる7Ah相当の容量を有するリチウム二次電池を想定して行った。なお、正極側の構成は一定とし、集電体の厚さに対する活物質層の比率が4.87のものを想定して解析した。
本熱解析では、正極活物質に含まれるすべてのLiNiO結晶の構造が崩壊したときに発生する熱量と集電体を構成する材料の比熱と熱伝導率に基づいて、正極活物質の結晶構造が崩壊する時に電池内の温度がどれだけ上昇するのか解析した。図6に正極側の熱解析のグラフを示す。図6のグラフ中、横軸は負極集電体の厚さに対する負極活物質層の層厚合計の比率を示し、縦軸は異常時(正極活物質の結晶構造の崩壊時)の電池の最高温度を示す。
<Thermal analysis 2>
Thermal analysis was performed assuming several electrodes with different ratios of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector. This thermal analysis was performed assuming a lithium secondary battery made of the same material as in the previous example and having a capacity equivalent to 7 Ah. The analysis was performed assuming that the configuration on the positive electrode side was constant and the ratio of the active material layer to the thickness of the current collector was 4.87.
In this thermal analysis, based on specific heat and thermal conductivity of the material structure of all LiNiO 2 crystals contained in the positive electrode active material constituting the heat and current collector occurs when collapsed, the positive electrode active material crystal structure We analyzed how the temperature inside the battery rose when the battery collapsed. FIG. 6 shows a graph of thermal analysis on the positive electrode side. In the graph of FIG. 6, the horizontal axis indicates the ratio of the total thickness of the negative electrode active material layer to the thickness of the negative electrode current collector, and the vertical axis indicates the highest battery in an abnormal state (when the crystal structure of the positive electrode active material collapses). Indicates temperature.

図6に示すように、負極側の熱解析の結果から、負極集電体の厚さに対する負極活物質層の厚さの比率が約3.5以下の場合は、正極活物質の結晶構造の崩壊に伴う発熱が負極集電体によって好適に拡散され、電池温度が170℃以上に上昇しないことが解析された。特に、比率約3.1以下の場合は、電池温度が150℃以上に上昇しないことが解析された。この結果、電池内で局所的に発熱し、局所的に正極活物質の結晶構造が崩壊しても、厚さのある負極集電体によって局所的な熱が好適に拡散されることが予測される。熱が拡散されると局所的な温度上昇は生じず、正極活物質の結晶構造は連鎖的に崩壊しにくくなる。正極活物質の結晶構造の崩壊が進行しなければ、電池が過度に発熱する過熱現象が抑制される。
本熱解析により、厚さのある負極集電体が備えられたリチウム電池は過熱現象が生じにくいことがわかった。
As shown in FIG. 6, from the result of the thermal analysis on the negative electrode side, when the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is about 3.5 or less, the crystal structure of the positive electrode active material It was analyzed that the heat generated by the collapse was suitably diffused by the negative electrode current collector, and the battery temperature did not rise above 170 ° C. In particular, it was analyzed that the battery temperature did not rise above 150 ° C. when the ratio was about 3.1 or less. As a result, even if heat is generated locally in the battery and the crystal structure of the positive electrode active material locally collapses, it is predicted that local heat is suitably diffused by the thick negative electrode current collector. The When heat is diffused, a local temperature rise does not occur, and the crystal structure of the positive electrode active material is difficult to collapse in a chain manner. If the collapse of the crystal structure of the positive electrode active material does not proceed, the overheating phenomenon in which the battery generates excessive heat is suppressed.
From the thermal analysis, it was found that a lithium battery equipped with a thick negative electrode current collector is less prone to overheating.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、前記実施例の電池は、パッケージとしてフィルムパッケージを用いているがこれに限られるものではない。本発明の構成は、より剛性のある合成樹脂製のパッケージや金属製のパッケージを採用した電池にも適用することができる。
また、前記実施例の電池では、正極とセパレータと負極とセパレータの組を捲回した電極体を採用しているがこれに限られるものではない。本発明の構成は、正極とセパレータと負極とセパレータの組を積層して得られる積層型電極体を採用している電池にも適用することができる。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
For example, the battery of the above embodiment uses a film package as a package, but is not limited thereto. The configuration of the present invention can also be applied to a battery employing a more rigid synthetic resin package or metal package.
Moreover, in the battery of the above-described embodiment, an electrode body in which a set of a positive electrode, a separator, a negative electrode, and a separator is wound is adopted, but the present invention is not limited to this. The configuration of the present invention can also be applied to a battery that employs a laminated electrode body obtained by laminating a set of a positive electrode, a separator, a negative electrode, and a separator.

また、前記実施例の電池では、正極活物質としてLiNiOを採用しているがこれに限られるものではない。本発明の構成は、従来からリチウム二次電池の正極活物質として用いられているリチウム複合酸化物に適用することができる。本発明の構成は、正極活物質として、層状岩塩型の結晶構造を有するリチウム複合酸化物を含むものに有用である。本発明の構成は、スピネル型の結晶構造を有するリチウム複合酸化物を含むものにも有用である。層状岩塩型の結晶構造のリチウム複合酸化物としては、LiNiOやLiCoOが挙げられる。スピネル型の結晶構造を有するリチウム複合酸化物として、LiMnが挙げられる。また、リチウム複合酸化物に遷移金属元素が2種以上含まれる酸化物(例えば一般式:LiNiCo1−xで示される酸化物)であってもよい。 In the battery of the above embodiment, LiNiO 2 is used as the positive electrode active material, but the present invention is not limited to this. The configuration of the present invention can be applied to a lithium composite oxide that has been conventionally used as a positive electrode active material of a lithium secondary battery. The configuration of the present invention is useful for a positive electrode active material containing a lithium composite oxide having a layered rock salt type crystal structure. The structure of the present invention is also useful for a lithium composite oxide having a spinel crystal structure. Examples of the lithium composite oxide having a layered rock salt type crystal structure include LiNiO 2 and LiCoO 2 . LiMn 2 O 4 is an example of a lithium composite oxide having a spinel crystal structure. The oxide transition metal element in the lithium composite oxide contains two or more (e.g. general formula: LiNi x Co 1-x O oxide represented by 2) may be used.

前記実施例の電池は、正極集電体の両面に正極活物質層が形成された正極を適用しているが、本発明の電池は、正極集電体の片面のみに正極活物質層が形成されている正極も適用することができる。
前記実施例の電池は、負極集電体の両面に負極活物質層が形成された負極を適用しているが、本発明の電池は、負極集電体の片面のみに負極活物質層が形成されている負極も適用することができる。
In the battery of the above example, a positive electrode in which a positive electrode active material layer is formed on both surfaces of the positive electrode current collector is applied. However, in the battery of the present invention, a positive electrode active material layer is formed only on one surface of the positive electrode current collector. The positive electrode that is used can also be applied.
The battery of the above example uses a negative electrode in which a negative electrode active material layer is formed on both sides of a negative electrode current collector, but the battery of the present invention has a negative electrode active material layer formed only on one side of the negative electrode current collector. The negative electrode which is made can also be applied.

本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

実施例1の二次電池の概略を示す側面図である。1 is a side view showing an outline of a secondary battery of Example 1. FIG. 実施例1に係る電極体の構成を示した模式図である。3 is a schematic diagram illustrating a configuration of an electrode body according to Example 1. FIG. 実施例1に係る正極シートの構成を示す模式図である。3 is a schematic diagram illustrating a configuration of a positive electrode sheet according to Example 1. FIG. 実施例1のに係る負極シートの構成を示す模式図である。3 is a schematic diagram illustrating a configuration of a negative electrode sheet according to Example 1. FIG. 正極側の熱解析結果を示すグラフである。It is a graph which shows the thermal analysis result by the side of a positive electrode. 負極側の熱解析結果を示すグラフである。It is a graph which shows the thermal-analysis result by the side of a negative electrode.

符号の説明Explanation of symbols

10:リチウム二次電池、
12:パッケージ
13:負極リード端子
14:正極リード端子
16、17:ラミネートフィルム、
20:電極体
30:正極シート
32:正極集電体
34、36:正極活物質層
40:負極
42:負極集電体
44、46:負極活物質層
10: lithium secondary battery,
12: Package 13: Negative electrode lead terminal 14: Positive electrode lead terminal 16, 17: Laminate film,
20: Electrode body 30: Positive electrode sheet 32: Positive electrode current collector 34, 36: Positive electrode active material layer 40: Negative electrode 42: Negative electrode current collector 44, 46: Negative electrode active material layer

Claims (2)

アルミニウム箔からなる正極集電体の表面に正極活物質層が形成されている正極と、銅箔からなる負極集電体の表面に負極活物質層が形成されている負極を有するリチウム二次電池であり、
正極集電体の厚さに対する正極活物質層の層厚の比が2.5以下であり、負極集電体の厚さに対する負極活物質層の層厚の比が3.5以下であることを特徴とするリチウム二次電池。
Lithium secondary battery having a positive electrode having a positive electrode active material layer formed on the surface of a positive electrode current collector made of aluminum foil and a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector made of copper foil And
The ratio of the thickness of the positive electrode active material layer to the thickness of the positive electrode current collector is 2.5 or less, and the ratio of the layer thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 3.5 or less Rechargeable lithium battery.
銅箔からなる負極集電体の表面に負極活物質層が形成されている負極を有するリチウム二次電池であり、
負極集電体の厚さに対する負極活物質層の層厚の比が3.1以下であることを特徴とするリチウム二次電池。
A lithium secondary battery having a negative electrode in which a negative electrode active material layer is formed on the surface of a negative electrode current collector made of copper foil,
A lithium secondary battery, wherein the ratio of the thickness of the negative electrode active material layer to the thickness of the negative electrode current collector is 3.1 or less.
JP2005276301A 2005-09-22 2005-09-22 Lithium secondary battery Pending JP2007087814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276301A JP2007087814A (en) 2005-09-22 2005-09-22 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276301A JP2007087814A (en) 2005-09-22 2005-09-22 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2007087814A true JP2007087814A (en) 2007-04-05

Family

ID=37974580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276301A Pending JP2007087814A (en) 2005-09-22 2005-09-22 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2007087814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066800A1 (en) * 2016-10-07 2018-04-12 주식회사 엘지화학 Electrode unit and method for producing such electrode unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283830A (en) * 2000-03-29 2001-10-12 Toshiba Corp Lithium ion secondary battery
JP2003115329A (en) * 2002-08-13 2003-04-18 Hitachi Maxell Ltd Lithium secondary battery
JP2004273444A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery, active substance for negative electrode thereof and negative electrode thereof
WO2004097867A2 (en) * 2003-03-31 2004-11-11 Kanebo Ltd Organic electrolyte capacitor
JP2004349162A (en) * 2003-05-23 2004-12-09 Sony Corp Negative electrode and battery using it
JP2005025973A (en) * 2003-06-30 2005-01-27 Nissan Motor Co Ltd Lithium-ion secondary battery
JP2005174686A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Lithium ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283830A (en) * 2000-03-29 2001-10-12 Toshiba Corp Lithium ion secondary battery
JP2003115329A (en) * 2002-08-13 2003-04-18 Hitachi Maxell Ltd Lithium secondary battery
JP2004273444A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery, active substance for negative electrode thereof and negative electrode thereof
WO2004097867A2 (en) * 2003-03-31 2004-11-11 Kanebo Ltd Organic electrolyte capacitor
JP2004349162A (en) * 2003-05-23 2004-12-09 Sony Corp Negative electrode and battery using it
JP2005025973A (en) * 2003-06-30 2005-01-27 Nissan Motor Co Ltd Lithium-ion secondary battery
JP2005174686A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066800A1 (en) * 2016-10-07 2018-04-12 주식회사 엘지화학 Electrode unit and method for producing such electrode unit
KR20180038881A (en) * 2016-10-07 2018-04-17 주식회사 엘지화학 electrode unit and manufacturing the same
CN108475766A (en) * 2016-10-07 2018-08-31 株式会社Lg化学 electrode unit and method for manufacturing the electrode unit
EP3382775A4 (en) * 2016-10-07 2019-03-20 LG Chem, Ltd. Electrode unit and method for producing such electrode unit
KR102040819B1 (en) * 2016-10-07 2019-11-06 주식회사 엘지화학 electrode unit and manufacturing the same
US10971716B2 (en) 2016-10-07 2021-04-06 Lg Chem, Ltd. Electrode unit and method for manufacturing the same
CN108475766B (en) * 2016-10-07 2021-04-27 株式会社Lg化学 Electrode unit and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP4766057B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP5241314B2 (en) Laminated non-aqueous secondary battery
JP2008226807A (en) Non-aqueous electrolyte secondary battery
JP2003297303A (en) Electrochemical device module
WO2011002064A1 (en) Laminated battery
CN111095613B (en) Electrode, nonaqueous electrolyte battery and battery pack
JP4784730B2 (en) battery
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP2016143550A (en) Zigzag-folded laminate structure of secondary battery and battery module
JP4892842B2 (en) Lithium secondary battery
JP5462304B2 (en) Battery pack using lithium-ion battery
JP5150095B2 (en) Non-aqueous electrolyte battery
JP2006260990A (en) Stacked battery
JP5214364B2 (en) Lithium ion secondary battery
JP7298853B2 (en) secondary battery
JP2011119139A (en) Nonaqueous electrolyte battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP4586656B2 (en) Film exterior type lithium battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP5334109B2 (en) Laminated battery
JP2010244865A (en) Laminated battery
JP5148142B2 (en) Non-aqueous electrolyte battery
JP2013201094A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821