JP2007086054A - Noncontact method and noncontact apparatus for detecting dew formation, paper deformation control method using them, and image forming apparatus - Google Patents

Noncontact method and noncontact apparatus for detecting dew formation, paper deformation control method using them, and image forming apparatus Download PDF

Info

Publication number
JP2007086054A
JP2007086054A JP2006147865A JP2006147865A JP2007086054A JP 2007086054 A JP2007086054 A JP 2007086054A JP 2006147865 A JP2006147865 A JP 2006147865A JP 2006147865 A JP2006147865 A JP 2006147865A JP 2007086054 A JP2007086054 A JP 2007086054A
Authority
JP
Japan
Prior art keywords
transpiration
temperature
recording paper
ambient atmosphere
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147865A
Other languages
Japanese (ja)
Other versions
JP4810312B2 (en
Inventor
Junji Manaka
順二 間中
Kazuhisa Nagai
一寿 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006147865A priority Critical patent/JP4810312B2/en
Priority to US11/481,097 priority patent/US7360416B2/en
Publication of JP2007086054A publication Critical patent/JP2007086054A/en
Priority to US12/073,013 priority patent/US7574910B2/en
Application granted granted Critical
Publication of JP4810312B2 publication Critical patent/JP4810312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform noncontact detection on gas condensation to the surface of an object and transpiration, and to more accurately predict dew formation on the surface of the object, by speedily detecting the process of dew formation on the surface of the object. <P>SOLUTION: Temperature and humidity sensors 4a and 4b, for measuring the temperature and humidity of a gas in ambient atmosphere, are arranged at intermediate locations at a distance from the vicinity of the surface of the object 1, and a temperature and humidity sensors 4c is arranged separated by a distance from the surface of the object 1. A flow sensor is provided for measuring the flow direction or the flow velocity of the gas in the ambient atmosphere of the surface of the object. The state of distribution and transportation process of the ambient atmosphere to the surface of the object 1 are determined, on the basis of the measurement results of the temperature and humidity sensors 4a-4c and the flow sensor 5 for detecting the behavior of the adsorption and condensation of the gas of the ambient atmosphere on the surface of the object 1 and the behavior of transpiration of the liquid which has condensed on the surface of the object. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、熱容量が大きく、周囲環境の温度湿度の急速な変化に順応できなく表面に結露が発生して機能に支障をきたす比熱が大きい材料から形成された素子や質量が大きい装置で結露生成の前に、結露発生状態を汎用的かつ簡便に検出して雰囲気の湿度制御を行うことができる非接触結露検出方法と非接触結露検出装置及びそれを使用した用紙変形抑制方法並びに画像形成装置を提供することを目的とするものである。   This invention has a large heat capacity and cannot be adapted to rapid changes in the temperature and humidity of the surrounding environment, causing condensation on the surface and impairing the function. A non-contact dew condensation detection method, a non-contact dew condensation detection device, a sheet deformation suppression method using the same, and an image forming apparatus capable of performing general-purpose and simple detection of the dew generation state and controlling the humidity of the atmosphere. It is intended to provide.

比熱が大きい材料から形成された素子や質量が大きい装置は、熱容量が大きく周囲環境の温度湿度の急速な変化に順応できず、表面に結露が発生し装置の機能に支障をきたす。例えば、VTRヘッドシリンダ、ハードディスクや光ディスクなどの磁気及び光学記録媒体、レンズ,発光素子,反射鏡,プリズム,・フィルタなどの光学機器やこれらを使用した光学装置、感光ドラムやポリゴンなどの画像形成装置及び車両や航空機などの窓ガラス等は、結露発生により装置の機能へおよぼす影響が大きい。   Devices made of a material with a large specific heat or a large mass have a large heat capacity and cannot adapt to a rapid change in the temperature and humidity of the surrounding environment, causing condensation on the surface and hindering the function of the device. For example, optical devices such as VTR head cylinders, magnetic and optical recording media such as hard disks and optical disks, lenses, light emitting elements, reflecting mirrors, prisms, filters, optical devices using these, image forming devices such as photosensitive drums and polygons In addition, the window glass of vehicles and aircraft has a great influence on the function of the device due to the occurrence of condensation.

また、電子写真方式の画像形成装置等の記録用紙に吸着する水分やガスも形成される画質への影響が大きいことから、素材表面の吸着水の挙動について的確に雰囲気との関わりを検出し最適制御できることが求められている。すなわち、環境変化で記録用紙に含まれる水分が脱水し乾燥する場合、あるいは定着装置などの加熱で記録用紙に含まれる水分が急激に蒸散して乾燥する場合、記録用紙が縮んでカールやしわが発生する。このような記録用紙の変形によって記録用紙の搬送工程で搬送障害に到るので変形発生を未然に回避する必要がある。また、動植物や医療分野で生体表面への吸着水現象や蒸散現象を検出して生体の代謝状況との関連を調べることも必要である。   In addition, since water and gas adsorbed on recording paper such as electrophotographic image forming devices have a large effect on the image quality, the behavior of adsorbed water on the surface of the material is accurately detected by detecting its relationship with the atmosphere. It needs to be controllable. That is, when the moisture contained in the recording paper is dehydrated and dried due to environmental changes, or when the moisture contained in the recording paper is rapidly evaporated and dried by heating of the fixing device or the like, the recording paper shrinks and curls and wrinkles are generated. appear. Since the deformation of the recording paper leads to a conveyance failure in the recording paper conveyance process, it is necessary to prevent the deformation from occurring. In addition, it is also necessary to investigate the relationship with the metabolic state of the living body by detecting the adsorption water phenomenon and the transpiration phenomenon on the living body surface in the animal and plant and medical fields.

さらに、特開2002-310876号公報に示された、孔によって一方の側から水蒸気を透過させてかつ他方の側からの水の浸入を防ぐ多孔質防水透湿膜では、一方の側の膜表面に結露水が形成されると、透過孔が封鎖されて水蒸気の透過率が低下してしまうため、結露の発生状態を検出する必要がある。
また、特開2002-369885号公報に示された、電極触媒層と固体電解質材料の膜を複合化した発電ユニットにおいては、固体電解質材料の膜に結露水が液体の形態で形成された状態よりも、直前の高保水状態であるほうがガスの輸送が確保され水素や空気の反応効率を高めることができる。このため固体電解質材料の膜の保水率を検出する必要がある。
さらに、WO00/14522号公報に示された冷却装置等において冷却や除湿を最適制御するためには冷却側熱交換器の表面近傍で被冷凍材料の表面の結露発生状態を検出する必要がある。
また、特開2004-083385号公報等に示された有機溶剤の蒸留分離において、凝集・蒸散温度を精密に制御するために、凝集・蒸散温度は熱交換器の温度から検出するよりも、その周囲の気体の挙動を直接観測によって正確に検出できる。
このように各種分野において、凝集・蒸散挙動を迅速・高感度に検出したり、各種表面への気体蒸気分子の吸着の違いを検出して、表面の親水性・疎水性を検出することが要望されている。
Furthermore, in the porous waterproof and moisture permeable membrane shown in Japanese Patent Application Laid-Open No. 2002-310876, which allows water vapor to permeate from one side by a hole and prevents water from entering from the other side, the membrane surface on one side If dew condensation water is formed on the surface, the permeation holes are blocked and the water vapor transmission rate is lowered, so it is necessary to detect the state of dew condensation.
Further, in the power generation unit in which the electrode catalyst layer and the solid electrolyte material film are combined as disclosed in Japanese Patent Laid-Open No. 2002-369885, the condensed water is formed in a liquid form on the solid electrolyte material film. However, in the state of high water retention just before, the transport of gas is ensured and the reaction efficiency of hydrogen and air can be increased. For this reason, it is necessary to detect the water retention rate of the membrane of the solid electrolyte material.
Further, in order to optimally control cooling and dehumidification in a cooling device or the like disclosed in WO 00/14522, it is necessary to detect the state of condensation on the surface of the material to be frozen in the vicinity of the surface of the cooling side heat exchanger.
In addition, in the distillation separation of organic solvents disclosed in Japanese Patent Application Laid-Open No. 2004-083385, etc., in order to precisely control the aggregation / transpiration temperature, the aggregation / transpiration temperature is more than that detected from the temperature of the heat exchanger. The behavior of the surrounding gas can be accurately detected by direct observation.
Thus, in various fields, it is desired to detect the agglomeration and transpiration behavior quickly and with high sensitivity, and to detect the difference in adsorption of gas vapor molecules on various surfaces to detect the hydrophilicity / hydrophobicity of the surface. Has been.

このように結露の発生状態を検出するため、例えば特許文献1に示された結露検出装置は、大きな熱容量を有し結露が生じやすいVTR回転シリンダ装置において、結露により磁気テープが回転シリンダに密着し絡まってしまうことを防止するため、回転シリンダの表面温度と回転シリンダ近傍の周囲温度および周囲湿度を計測し、各湿度の温度に対する空気中水分量データ(空気線図)を参照し、過飽和状態に移行しつつあるかどうか判定するようにしている。   In order to detect the occurrence of condensation in this way, for example, the condensation detection device disclosed in Patent Document 1 is a VTR rotary cylinder device that has a large heat capacity and is likely to cause condensation. To prevent entanglement, measure the surface temperature of the rotating cylinder and the ambient temperature and ambient humidity in the vicinity of the rotating cylinder, and refer to the moisture content data in air (air diagram) for each humidity temperature. It is determined whether or not it is moving.

特許文献2に示された露点または気体濃度の測定方法と着氷予測装置は、雰囲気の相対湿度から得られる露点と測定対象の温度とから結露検知する測定方法において、鏡面冷却方式より結露応答が早い誘電体ポリマーをベースとした相対湿度センサを用いている。そして反応が速い誘電体ポリマーの静電容量型相対湿度センサを用いるに当たり、相対湿度が低い場合には相対湿度センサを外部冷却し、相対湿度が高くなる露点付近の場合には相対湿度センサは高湿環境下で湿潤を維持しやすく着氷予測が困難であるので、相対湿度センサを外部加熱することによって、相対湿度センサの温度をシフトさせ精度を高くするようにしている。   The dew point or gas concentration measurement method and the icing prediction device disclosed in Patent Document 2 have a dew condensation response than the specular cooling method in the measurement method for detecting dew condensation from the dew point obtained from the relative humidity of the atmosphere and the temperature of the measurement target. A relative humidity sensor based on a fast dielectric polymer is used. When using a capacitive polymer capacitive relative humidity sensor that responds quickly, the relative humidity sensor is externally cooled when the relative humidity is low, and high when the relative humidity is near the dew point. Since it is easy to maintain moisture in a humid environment and it is difficult to predict icing, the temperature of the relative humidity sensor is shifted to increase accuracy by externally heating the relative humidity sensor.

特許文献3に示された結露予知装置は、結露センサに熱電素子を熱的に結合し、結露センサを熱電素子により周囲温度よりも低くして結露を予知するとき、結露センサ上に水滴が長時間滞留すると材料劣化が生じるため、結露センサを熱電素子で加熱して結露センサに生じた結露水を除去するようにしている。   In the dew condensation prediction device disclosed in Patent Document 3, when a thermoelectric element is thermally coupled to the dew condensation sensor and the dew condensation sensor is predicted to be lower than the ambient temperature by the thermoelectric element, water droplets are long on the dew condensation sensor. When the material stays for a long time, the material deteriorates, so the condensation sensor is heated by a thermoelectric element to remove the condensed water generated in the condensation sensor.

また、特許文献4に示された相変化予知センサ及び着霜・結露防止装置は、被検対象物にペルチェ素子を介して結露センサを装着し、被検出系の熱出入りをさせないで被検対象物である結露面よりも結露センサの温度を常に一定値だけ低くして先に結露させて結露や着霜の発生を事前に予知するようにしている。   In addition, the phase change prediction sensor and the frost / condensation prevention device disclosed in Patent Document 4 are equipped with a dew condensation sensor via a Peltier element on the test object, and the test target is not allowed to enter and exit the detection system. The temperature of the dew condensation sensor is always lower by a certain value than the dew condensation surface, which is an object, so that dew condensation is performed in advance and the occurrence of dew condensation or frost formation is predicted in advance.

特許文献5に示された車両用湿度センサは、車室内の各エリアの温度を検出するセンサ本体の筐体と車両のウインドシールとを熱伝導材料によりカップ状に形成されている熱結合部材で連結し、各エリアから入射する赤外線をセンサエレメントで検出し、各エリアの温度分布が所定の範囲内に入ってとき、ウインドシールが結露していると判定している。   The vehicle humidity sensor disclosed in Patent Document 5 is a heat coupling member in which a housing of a sensor main body that detects the temperature of each area in a passenger compartment and a windshield of a vehicle are formed in a cup shape by a heat conductive material. The infrared rays incident from each area are detected by the sensor element, and when the temperature distribution in each area falls within a predetermined range, it is determined that the wind seal is condensed.

また、参照物体と外部物体との間の熱流が外部物体の温度に比例することを利用したものとして、特許文献6に示された非接触温度測定装置がある。この非接触温度測定装置は、移動する連続物体に沿って一定距離だけ隔てて設けられた第1の参照物体と第2の参照物体の温度を温度センサで検出して移動する物体の温度を算出するようにしている。   Further, there is a non-contact temperature measuring device disclosed in Patent Document 6 that utilizes the fact that the heat flow between the reference object and the external object is proportional to the temperature of the external object. This non-contact temperature measuring device calculates the temperature of a moving object by detecting the temperature of a first reference object and a second reference object provided at a predetermined distance along a moving continuous object by a temperature sensor. Like to do.

また、電子写真方式の画像形成装置の記録用紙にカールやしわが発生して記録用紙の搬送工程で搬送障害が生じることを未然に回避するため、特許文献7に示すように、赤外線水分計により記録用紙の各部に含まれる水分量を検出し、検出した水分量により記録用紙の各部に当てるエアの風量を調節して、水分量の不均一による部分カールを防止している。また、特許文献8に示すように、記録用紙から反射した赤外線の一定波長の透過率変化から記録用紙に含まれる水分量を検出し、検出した水分量により定着装置の定着温度と用紙搬送経路のローラ圧を制御している。また、特許文献9に示すように、マイクロ波の吸収率を測定する水分計により記録用紙に含まれる水分量を検出し、検出した水分量と記録用紙の種類すなわち記録用紙の強度(コシの強さなど)から記録用紙のカール状態を予測し、予測したカール状態に応じてカールを補正するようにしている。
特開平3−78648号公報 特許第2801156号公報 特開平1−127942号公報 特開平4−128643号公報 特開2004−66927号公報 特許第3292523号公報 特開2005−170525号公報 特開2001−301273号公報 特許第2902130号公報
Also, in order to avoid the occurrence of curling and wrinkling on the recording paper of the electrophotographic image forming apparatus and the occurrence of transport trouble in the transporting process of the recording paper, as shown in Patent Document 7, an infrared moisture meter is used. The amount of water contained in each part of the recording paper is detected, and the amount of air applied to each part of the recording paper is adjusted based on the detected amount of water to prevent partial curl due to non-uniformity of the water content. Also, as shown in Patent Document 8, the amount of water contained in the recording paper is detected from the change in transmittance of the infrared light reflected from the recording paper, and the fixing temperature of the fixing device and the paper conveyance path are detected based on the detected amount of water. The roller pressure is controlled. Also, as shown in Patent Document 9, a moisture meter that measures the absorption rate of microwaves detects the amount of moisture contained in a recording sheet, and the detected amount of moisture and the type of recording sheet, that is, the strength of the recording sheet (high stiffness) The curl state of the recording paper is predicted from the above and the like, and the curl is corrected according to the predicted curl state.
Japanese Patent Laid-Open No. 3-78648 Japanese Patent No. 2801156 Japanese Patent Laid-Open No. 1-127942 JP-A-4-1288643 JP 2004-66927 A Japanese Patent No. 3292523 JP 2005-170525 A JP 2001-301273 A Japanese Patent No. 2902130

特許文献1に示された結露検出装置においては、VTR回転シリンダ装置の回転シリンダにおける結露生成の特性にあわせて結露センサを回転シリンダに取り付ける必要があり、単に結露センサを取り付けるだけの汎用的なセンサの使い方では結露検出ができないうえに、結露センサを回転シリンダへ取り付けるに当たり、磁気ヘッドの機能や回転体への電気信号の受給のために制限がある。   In the dew condensation detection device disclosed in Patent Document 1, it is necessary to attach a dew condensation sensor to the rotating cylinder in accordance with the dew generation characteristic in the rotating cylinder of the VTR rotating cylinder device, and a general-purpose sensor that simply attaches the dew condensation sensor. In addition, it is not possible to detect dew condensation with this method, and there are restrictions on the function of the magnetic head and the reception of electrical signals to the rotating body when the dew condensation sensor is attached to the rotating cylinder.

また、特許文献2に示された方法で結露を検出する場合や特許文献3や特許文献4に示された装置は、センサの温度を外部加熱したり、周囲温度よりも低くしているため、センサで計測する雰囲気は結露対象の雰囲気とは異なる温度状態になり、この結露対象の雰囲気とは異なる温度の雰囲気の湿度を検出しているため検出精度が悪くなってしまう。   In addition, in the case where dew condensation is detected by the method shown in Patent Literature 2 and the devices shown in Patent Literature 3 and Patent Literature 4 externally heat the sensor temperature or lower than the ambient temperature, The atmosphere measured by the sensor is in a temperature state different from the atmosphere to be condensed, and the humidity of the atmosphere having a temperature different from the atmosphere to be condensed is detected, so that the detection accuracy is deteriorated.

特許文献5に示された結露推定方法は、測定対象である結露面にセンサを装着する必要があり、汎用的ではないという短所がある。また特許文献6に示された非接触温度測定装置は気体の温度勾配を計測することによって非接触で遠隔の物体温度を計測できるが、結露のような気液相変化を計測する方法ではない。   The dew condensation estimation method disclosed in Patent Document 5 requires a sensor to be attached to the dew condensation surface, which is a measurement target, and is disadvantageous in that it is not versatile. The non-contact temperature measuring device disclosed in Patent Document 6 can measure the temperature of a remote object in a non-contact manner by measuring the temperature gradient of the gas, but is not a method for measuring a gas-liquid phase change such as condensation.

いずれの場合も物体表面において結露測定するとき、結露センサは、結露センサ自体に結露が発生したことを検出するものであり、対象物そのものの結露の発生を検知することはできない。   In any case, when measuring the dew condensation on the object surface, the dew condensation sensor detects the occurrence of dew condensation on the dew condensation sensor itself, and cannot detect the occurrence of dew condensation on the object itself.

また、結露センサは対象物の結露生成の特性にあわせて熱的構造に特別の工夫が必要であり、簡単に結露センサを対象物に取り付けたり、その近傍に配置するだけの汎用的なセンサの使い方では対象物の結露発生を検出することはできない。   In addition, the dew condensation sensor requires special devices in the thermal structure according to the characteristics of the dew generation of the object, and it is a general-purpose sensor that can be easily attached to the object or placed near it. It is not possible to detect the occurrence of condensation on the target object.

さらに、結露予測機能があっても、装置内の特定箇所の温度検出を加えて設定された結露予測アルゴリズムを用いシステムとして働いているので、特定の装置への適用に限られ普遍的に利用できる結露予測方式ではない。   In addition, even if there is a condensation prediction function, it works as a system using a condensation prediction algorithm that is set by detecting the temperature at a specific location in the device, so it can be used universally only for application to a specific device. It is not a condensation prediction method.

また、測定対象である物体から離れて結露を測定するとき、鏡面冷却式露点計のような光学的手段による場合は、測定表面状態が鏡面に限られ、どのような表面に対しても汎用的に用いることができない。また、雰囲気状態を検出する湿度センサと物体温度を測定する赤外線放射温度計の組み合わせによって結露現象を検出する方式が考えられるが、表面状態によって放射率が異なるので温度が正確に得られず、既知の放射率の表面温度の部分しか測定することができないとともに測定対象である物体表面の湿度を検出しているかどうかは定かではないという短所がある。   In addition, when measuring condensation away from the object to be measured, when using optical means such as a mirror-cooled dew point meter, the measurement surface state is limited to the mirror surface, and it is universal for any surface. It cannot be used for. In addition, a method of detecting the dew condensation phenomenon using a combination of a humidity sensor that detects the atmospheric state and an infrared radiation thermometer that measures the object temperature can be considered, but since the emissivity varies depending on the surface state, the temperature cannot be obtained accurately and is known. Only the portion of the surface temperature of the emissivity can be measured, and it is not certain whether the humidity of the surface of the object to be measured is detected.

また、画像形成装置において、記録用紙に発生するカール等の変形は、記録用紙が急激に乾燥することにより引き起こすものであって乾燥速度が直接の原因である。この記録用紙の乾燥速度は、記録用紙に含まれる水分の蒸散挙動における蒸散速度に支配される。この蒸散挙動は記録用紙の質や構造の要素や、質や構造による強度の要素が反映される。したがって特許文献7から特許文献9に示すように、記録用紙に含まれる水分量を検出しても記録用紙に生じるカール等の変形を高い精度で予測することは困難である。   Further, in the image forming apparatus, deformation such as curling that occurs on the recording paper is caused by abrupt drying of the recording paper, and the drying speed is a direct cause. The drying speed of the recording paper is governed by the transpiration rate in the transpiration behavior of moisture contained in the recording paper. This transpiration behavior reflects the quality and structure of the recording paper and the strength of the quality and structure. Therefore, as shown in Patent Document 7 to Patent Document 9, it is difficult to predict with high accuracy deformation such as curl occurring on the recording paper even if the amount of moisture contained in the recording paper is detected.

この発明は、これらの短所を改善し、測定対象物に結露センサを直接取り付けずに、測定対象物に接する連続空間である周囲雰囲気の物理的状態変化から測定対象物表面への気体の凝集ならびに蒸散を、物体表面に非接触で遠隔個所で検出することができるとともに、測定対象物表面への結露が形成される過程を迅速に検出して測定対象物表面の結露をより正確に予測することができる非接触結露検出方法及び非接触結露検出装置を提供することを目的とするものである。   The present invention improves these disadvantages, and does not attach a dew condensation sensor directly to the measurement object, but also causes agglomeration of gas from the physical state change of the ambient atmosphere, which is a continuous space in contact with the measurement object, to the surface of the measurement object. Transpiration can be detected at a remote location without contact with the surface of the object, and the process of forming condensation on the surface of the measurement object can be quickly detected to more accurately predict the condensation on the surface of the measurement object. It is an object of the present invention to provide a non-contact dew condensation detection method and a non-contact dew condensation detection device.

また、この発明の非接触結露検出装置を使用して画像を形成する記録用紙に含まれる水分の蒸散速度をリアルタイムで検出して、急激に乾燥することにより引き起こされる記録用紙のカール等の変形を高精度で予測し、記録用紙の変形を防止することができる用紙変形抑制方法並びに画像形成装置を提供することを目的とするものである。   In addition, the non-contact dew condensation detection device of the present invention is used to detect the evaporation rate of moisture contained in the recording paper for forming an image in real time and to prevent deformation such as curling of the recording paper caused by rapid drying. An object of the present invention is to provide a sheet deformation suppressing method and an image forming apparatus capable of predicting with high accuracy and preventing deformation of a recording sheet.

この発明の非接触結露検出方法は、物体表面の周囲雰囲気における気体の温度と湿度と流方向又は流速と圧力及び成分の各要素のいずれか又は各要素を組み合わせて周囲雰囲気の物体表面に対する分布状態及び輸送過程を測定し、測定した周囲雰囲気の物体表面に対する分布状態及び輸送過程により、物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出することを特徴とする。   The non-contact dew condensation detection method according to the present invention is a distribution state of the ambient atmosphere with respect to the object surface by combining any one or each element of the temperature, humidity, flow direction, flow velocity, pressure, and component of the atmosphere in the ambient atmosphere of the object surface. And the behavior of the ambient atmosphere on the object surface and the behavior of the ambient atmosphere adsorbing and agglomerating on the object surface and the behavior of the agglomerated liquid evaporating on the object surface. It is characterized by detecting.

前記周囲雰囲気における気体の各要素を、少なくとも物体表面の近傍と物体表面から離れた遠隔の2個所で測定する。   Each element of the gas in the ambient atmosphere is measured at least at two locations near the object surface and at a distance from the object surface.

また、前記周囲雰囲気における気体の各要素を測定する個所に、周囲雰囲気の気体に対して摩擦抵抗を有する壁面を、物体表面に対して近接し、かつ周囲雰囲気の気体が流れる方向に配置することが望ましい。   In addition, a wall having a frictional resistance against the ambient atmosphere gas should be placed close to the object surface and in a direction in which the ambient atmosphere gas flows at the location where each element of the ambient atmosphere gas is measured. Is desirable.

さらに、前記周囲雰囲気における気体の各要素を測定する個所を、重力に沿った気体の輸送成分が相反する方向でそれぞれ測定し、重力に沿った気体の輸送成分が相反する方向で計測した測定値の差分により、物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出すると良い。   Further, the measurement points for measuring each element of the gas in the ambient atmosphere are measured in the direction in which the transport components of the gas along the gravity are opposite to each other, and are measured in the directions in which the transport components of the gas along the gravity are in conflict. It is preferable to detect the behavior in which the gas in the ambient atmosphere adsorbs and aggregates on the object surface and the behavior in which the liquid aggregated on the object surface evaporates.

また、前記周囲雰囲気における気体の各要素を測定する個所に、周囲雰囲気の気体に対して摩擦抵抗を有する壁面を、物体表面に対して近接し、かつ周囲雰囲気の気体が流れる方向に配置し、前記周囲雰囲気における気体の各要素を少なくとも前記壁面の近傍と物体表面から離れた遠隔の2個所で測定しても良い。   Further, at the place where each element of the gas in the ambient atmosphere is measured, a wall surface having a frictional resistance against the gas in the ambient atmosphere is arranged close to the object surface and in a direction in which the gas in the ambient atmosphere flows, Each element of the gas in the ambient atmosphere may be measured at at least two locations in the vicinity of the wall surface and remote from the object surface.

さらに、前記壁面を円筒状に形成された整流管で形成して、整流空間で測定することが望ましい。この整流管の一部の内径を小さくして整流空間の流速を早くすると良い。   Furthermore, it is desirable that the wall surface is formed of a rectifying tube formed in a cylindrical shape and measured in a rectifying space. It is preferable to reduce the inner diameter of a part of the rectifying pipe to increase the flow velocity of the rectifying space.

この発明の非接触結露検出装置は、計測手段と処理装置とを有し、前記計測手段は、少なくとも物体表面の近傍と物体表面から離れた遠隔の2個所に配置され、物体表面の周囲雰囲気における気体の温度と湿度を測定する温度湿度センサと、物体表面の周囲雰囲気における気体の流方向又は流速を測定するフローセンサとを有し、前記処理装置は、前記温度湿度センサとフローセンサの測定結果により周囲雰囲気の物体表面に対する分布状態及び輸送過程を判定して物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出することを特徴とする。   The non-contact dew condensation detection apparatus according to the present invention includes a measurement unit and a processing unit, and the measurement unit is disposed at least at two locations in the vicinity of the object surface and remote from the object surface. A temperature / humidity sensor that measures the temperature and humidity of the gas, and a flow sensor that measures the flow direction or flow velocity of the gas in the ambient atmosphere around the object surface, and the processing device is a measurement result of the temperature / humidity sensor and the flow sensor. It is characterized by detecting the distribution state and transport process of the ambient atmosphere on the object surface and detecting the behavior of the ambient atmosphere gas adsorbing and agglomerating on the object surface and the behavior of the agglomerated liquid evaporating on the object surface. To do.

前記計測手段を物体表面に対して近接して配置する整流管内に設けると良い。   The measuring means may be provided in a rectifying tube arranged close to the object surface.

この発明の他の非接触結露検出装置は、計測手段と処理装置とを有し、前記計測手段は、物体表面に対して近接して配置する整流管と、該整流管の壁面の近傍と壁面からら離れた2個所に配置され、物体表面の周囲雰囲気における気体の温度と湿度を測定する温度湿度センサと、前記整流管内における気体の流方向又は流速を測定するフローセンサとを有し、前記処理装置は、前記温度湿度センサとフローセンサの測定結果により周囲雰囲気の物体表面に対する分布状態及び輸送過程を判定して物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出することを特徴とする。   Another non-contact dew condensation detection apparatus of the present invention includes a measuring unit and a processing unit, and the measuring unit includes a rectifying pipe disposed close to the object surface, a vicinity of the wall surface of the rectifying pipe, and a wall surface. A temperature / humidity sensor which is disposed at two locations away from the object and which measures the temperature and humidity of the gas in the ambient atmosphere around the object surface; and a flow sensor which measures the flow direction or flow velocity of the gas in the rectifying pipe, The processing device determines the distribution state of the ambient atmosphere on the object surface and the transport process based on the measurement results of the temperature and humidity sensor and the flow sensor, and the behavior of the ambient atmosphere gas adsorbing and aggregating on the object surface and on the object surface. It is characterized by detecting the behavior of agglomerated liquid evaporating.

前記計測手段に物体表面の周囲雰囲気における気体の圧力及び成分を測定するセンサを有しても良い。   The measuring means may include a sensor for measuring the pressure and components of the gas in the ambient atmosphere around the object surface.

この発明の用紙変形抑制方法は、前記いずれかに記載の非接触結露検出方法により各種用紙に含まれる揮発成分の蒸散量を測定し、測定した蒸発量から単位時間当たりの蒸散量である蒸散速度を算出し、前記算出した蒸散速度があらかじめ設定した前記用紙に変形が生じるまでの一定時間までの蒸散速度の基準値を超えないように前記用紙の乾燥条件を設定することを特徴とする。   The paper deformation suppression method of the present invention is a transpiration rate which is a transpiration rate per unit time from a measured evaporation amount by measuring the transpiration amount of a volatile component contained in various papers by the non-contact dew condensation detection method described above. And the drying condition of the paper is set so that the calculated transpiration rate does not exceed the preset reference value of the transpiration rate until a predetermined time until the paper is deformed.

前記用紙を搬送しているときに、前記用紙の搬送路に沿った複数個所で前記用紙の先端部に含まれる揮発成分の蒸散量を測定することが望ましい。   When transporting the paper, it is desirable to measure the transpiration amount of the volatile component contained in the front end of the paper at a plurality of locations along the paper transport path.

この発明の画像形成装置は、前記いずれかに記載の非接触結露検出装置を有し、画像を形成する記録用紙を搬送中に記録用紙に含まれる水分の蒸散量を測定し、測定した蒸発量から単位時間当たりの蒸散量である蒸散速度を算出し、前記算出した蒸散速度があらかじめ設定した前記記録用紙に変形が生じるまでの一定時間までの蒸散速度の基準値を超えないように前記記録用紙の乾燥条件を設定することを特徴とする。   An image forming apparatus according to the present invention includes the non-contact dew condensation detection device according to any one of the above, and measures a transpiration amount of moisture contained in the recording sheet while conveying the recording sheet on which an image is formed, and measures the evaporation amount The transpiration rate, which is the amount of transpiration per unit time, is calculated from the recording paper so that the calculated transpiration rate does not exceed a preset reference value of the transpiration rate until a predetermined time until the recording paper is deformed. The drying conditions are set.

前記画像形成装置において、記録用紙の搬送路に沿った複数個所で前記記録用紙の先端部に含まれる水分の蒸散量を測定することが望ましい。   In the image forming apparatus, it is desirable to measure the transpiration amount of moisture contained in the leading end portion of the recording paper at a plurality of locations along the recording paper conveyance path.

この発明の第2の画像形成装置は、前記いずれかに記載の非接触結露検出装置の複数の計測手段と変形予知制御装置とを有し、前記複数の計測手段は、記録用紙の搬送路に沿った複数個所に配置され、前記変形予知制御装置は、蒸散挙動演算処理部と変形予知処理部及び変形回避制御部を有し、前記蒸散挙動演算処理部は前記複数の計測手段から出力する計測信号に基づいて前記記録用紙の先端部に含まれる水分の蒸散挙動を検出して蒸散量を演算し、演算した蒸散量から単位時間当たりの蒸散量である蒸散速度を算出し、前記変形予知処理部は前記蒸散挙動演算処理部で演算した蒸散速度とあらかじめ設定された前記記録用紙に変形が生じるまでの一定時間までの蒸散速度の基準値とを比較し、演算した蒸散速度が基準値を超えたとき、搬送されている記録用紙に変形が生じると判定して変形予知情報を生成し、前記変形回避制御部は前記変形予知処理部で生成した変形予知情報により前記記録用紙の搬送速度と定着温度のいずれか一方又は両方を可変制御することを特徴とする。   A second image forming apparatus according to the present invention includes a plurality of measurement units and a deformation prediction control unit of the non-contact dew condensation detection device according to any one of the above, and the plurality of measurement units are arranged on a recording paper conveyance path. The deformation prediction control device includes a transpiration behavior calculation processing unit, a deformation prediction processing unit, and a deformation avoidance control unit, and the transpiration behavior calculation processing unit is a measurement output from the plurality of measurement means. Detecting the transpiration behavior of moisture contained in the leading edge of the recording paper based on the signal, calculating the transpiration amount, calculating the transpiration rate per unit time from the calculated transpiration amount, and the deformation prediction processing The transpiration rate calculated by the transpiration behavior calculation processing unit is compared with the reference value of the transpiration rate until a predetermined time until the recording paper is deformed, and the calculated transpiration rate exceeds the reference value. When carrying It is determined that deformation occurs in the recording sheet that has been generated, and deformation prediction information is generated, and the deformation avoidance control unit generates either the recording sheet conveyance speed or the fixing temperature based on the deformation prediction information generated by the deformation prediction processing unit. One or both are variably controlled.

この発明の第3の画像形成装置は、前記いずれかに記載の非接触結露検出装置の複数の計測手段とCPUとを有し、前記複数の計測手段は、記録用紙の搬送路に沿った複数個所に配置され、前記CPUは、前記複数の計測手段から出力する計測信号に基づいて前記記録用紙の先端部に含まれる水分の蒸散挙動を検出して蒸散量を演算し、演算した蒸散量から単位時間当たりの蒸散量である蒸散速度を算出し、演算した蒸散速度とあらかじめ設定された前記記録用紙に変形が生じるまでの一定時間までの蒸散速度の基準値とを比較し、演算した蒸散速度が基準値を超えたとき、搬送されている記録用紙に変形が生じると判定して前記記録用紙の搬送速度と定着温度のいずれか一方又は両方を可変制御することを特徴とする。   A third image forming apparatus of the present invention includes a plurality of measurement units and a CPU of the non-contact dew condensation detection device according to any one of the above, and the plurality of measurement units include a plurality of measurement units along a conveyance path of a recording sheet. The CPU is arranged at a location, and the CPU detects the transpiration behavior of moisture contained in the front end portion of the recording paper based on the measurement signals output from the plurality of measuring means, calculates the transpiration amount, and calculates the transpiration amount from the calculated transpiration amount. Calculate the transpiration rate, which is the amount of transpiration per unit time, and compare the calculated transpiration rate with the preset reference value of the transpiration rate until a certain time until the recording paper is deformed. When the value exceeds a reference value, it is determined that the recording paper being conveyed is deformed, and either or both of the recording paper conveyance speed and the fixing temperature are variably controlled.

前記計測手段に前記記録用紙の先端を検出する位置センサを有すると良い。   It is preferable that the measuring unit has a position sensor for detecting the leading edge of the recording paper.

この発明は、物体表面の挙動により影響を受けている周囲雰囲気の物体表面に対する分布状態及び輸送過程を測定して無接触で物体表面における結露や蒸散の挙動を検出することにより、汎用性を高めることができる。   The present invention improves versatility by measuring the distribution and transport process of the surrounding atmosphere affected by the behavior of the object surface and detecting the behavior of condensation and transpiration on the object surface without contact. be able to.

周囲雰囲気における気体の各要素を、少なくとも物体表面の近傍と物体表面から離れた遠隔の2個所で測定することにより、周囲雰囲気の物体表面に対する分布状態及び輸送過程を正確の測定することができ、物体表面における結露や蒸散の挙動をリアルタイムで精度良く検出することができる。   By measuring each element of the gas in the ambient atmosphere at least two locations near the object surface and remote from the object surface, it is possible to accurately measure the distribution state and transport process of the ambient atmosphere to the object surface, It is possible to accurately detect the behavior of condensation and transpiration on the surface of an object in real time.

さらに、周囲雰囲気における気体の各要素を測定する個所に、周囲雰囲気の気体に対して摩擦抵抗を有する壁面や整流空間を設けることにより、周囲雰囲気の輸送方向に沿った測定個所の距離を短くできるとともに、物体表面近傍の外界からの揺らぎの少ない雰囲気を測定することができ、周囲雰囲気の物体表面に対する分布状態及び輸送過程を精度良く測定することができる。   Furthermore, by providing a wall or rectifying space that has a frictional resistance against the gas in the ambient atmosphere at the location where each element of the gas in the ambient atmosphere is measured, the distance of the measurement location along the transport direction of the ambient atmosphere can be shortened. At the same time, it is possible to measure an atmosphere with little fluctuation from the outside in the vicinity of the object surface, and to accurately measure the distribution state of the surrounding atmosphere with respect to the object surface and the transport process.

また、周囲雰囲気における気体の各要素を測定する個所を、重力に沿った気体の輸送成分が相反する方向でそれぞれ測定してその差を求めることにより、外界からの揺らぎの影響を除去でき、周囲雰囲気の物体表面に対する分布状態及び輸送過程を精度良く測定することができる。   In addition, by measuring the location where each element of gas in the ambient atmosphere is measured in the opposite direction of the transport component of the gas along gravity, the influence of fluctuations from the outside world can be eliminated, and the surroundings can be removed. The distribution state of the atmosphere with respect to the object surface and the transport process can be accurately measured.

さらに、対象物に直接結露センサを取り付けず、物体表面の結露が形成される過程等を物体表面に非接触で検出することができ、物体表面の結露や蒸散をより正確に予測して結露防止等を効率よく制御することができる。   In addition, the process of forming condensation on the object surface can be detected without contact with the object surface without attaching a condensation sensor directly to the object, preventing condensation by more accurately predicting condensation and transpiration on the object surface. Etc. can be controlled efficiently.

また、各種用紙に含まれる揮発成分の蒸散量を測定し、測定した蒸発量から蒸散速度を算出し、算出した蒸散速度があらかじめ設定した用紙に変形が生じるまでの一定時間までの蒸散速度の基準値を超えないように用紙の乾燥条件を設定することにより、用紙に含まれる水分の蒸散により生じる用紙が変形することを防止することができる。   In addition, the transpiration rate of volatile components contained in various papers is measured, the transpiration rate is calculated from the measured evaporation rate, and the calculated transpiration rate is a standard for the transpiration rate up to a certain time until the preset paper is deformed. By setting the drying condition of the sheet so as not to exceed the value, it is possible to prevent the sheet from being deformed due to evaporation of moisture contained in the sheet.

また、画像を形成する記録用紙を搬送中に記録用紙に含まれる水分の蒸散量を測定し、測定した蒸発量から蒸散速度を算出し、算出した蒸散速度があらかじめ設定した記録用紙に変形が生じるまでの一定時間までの蒸散速度の基準値を超えないように記録用紙の乾燥条件を設定することにより、記録用紙に変形が生じることを防いで、記録用紙を安定して搬送することができる。   In addition, the amount of moisture contained in the recording sheet is measured while the recording sheet on which the image is formed is measured, the evaporation rate is calculated from the measured evaporation amount, and the calculated evaporation rate is deformed in the preset recording sheet. By setting the drying condition of the recording paper so as not to exceed the reference value of the transpiration rate up to a certain period of time, the recording paper can be stably conveyed while preventing deformation of the recording paper.

さらに、記録用紙の搬送路に沿った複数個所で記録用紙の先端部に含まれる水分の蒸散量を測定することにより、記録用紙の変形に大きく影響する部分の水分蒸散により乾燥状態を検出して、記録用紙の変形を確実に抑制することができる。   Furthermore, by measuring the amount of transpiration of the moisture contained in the leading edge of the recording paper at a plurality of locations along the recording paper conveyance path, the dry state is detected by the transpiration of the portion that greatly affects the deformation of the recording paper. Thus, deformation of the recording paper can be reliably suppressed.

また、記録用紙の搬送路に沿った複数個所で記録用紙の先端部に含まれる水分の蒸散量を測定することにより、記録用紙の同一個所で蒸散挙動を測定して正確な蒸散速度を得ることができる。   Also, by measuring the amount of transpiration of moisture contained in the leading edge of the recording paper at multiple locations along the recording paper conveyance path, the transpiration behavior can be measured at the same location on the recording paper to obtain an accurate transpiration rate. Can do.

さらに、記録用紙の蒸散挙動を計測する計測手段に記録用紙の先端を検出する位置センサを設けることにより、記録用紙の先端部に含まれる水分の蒸散量を確実に測定することができ、正確な蒸散速度を得ることができる。   Furthermore, by providing a position sensor for detecting the leading edge of the recording paper in the measuring means for measuring the transpiration behavior of the recording paper, the amount of transpiration of moisture contained in the leading edge of the recording paper can be reliably measured. The transpiration rate can be obtained.

まず、物体表面に周囲雰囲気の気体が吸着して凝集して結露し、凝集した液体が蒸散するとき、物体の周囲雰囲気の状態変化について説明する。物体1の表面に周囲雰囲気2の気体が吸着して凝集するとき、図1に示すように、物体1表面から遠隔の雰囲気2の気体が物体1の表面近傍方向に流れ、物体1表面に吸着した気体が脱着するときや、物体1の表面に凝集した液体が蒸散するとき、物体1の表面近傍の雰囲気2が物体1表面から遠隔方向に流れる。   First, the state change of the ambient atmosphere of the object will be described when the gas in the ambient atmosphere is adsorbed on the surface of the object and aggregates and condenses, and the aggregated liquid evaporates. When the gas in the ambient atmosphere 2 is adsorbed and aggregated on the surface of the object 1, the gas in the atmosphere 2 remote from the surface of the object 1 flows in the direction near the surface of the object 1 and is adsorbed on the surface of the object 1 as shown in FIG. When the gas is desorbed or when the liquid condensed on the surface of the object 1 evaporates, the atmosphere 2 near the surface of the object 1 flows from the surface of the object 1 in the remote direction.

この物体1の表面への吸着・凝集に伴う周囲雰囲気2は輸送方向に沿って温度分布や密度分布が生じる。この物体1の表面温度に対する周囲雰囲気2の物体1表面からの距離に応じて変化する周囲雰囲気2の温度分布と相対湿度分布を図2(a),(b)に示す。図2(a),(b)は、遠隔場所にある周囲雰囲気2の温度がT1で物体1の表面温度がT1,T2,T3,T4、但し、T1>T2>T3>T4で、雰囲気露点温度Tdは温度T2と温度T3の間にある場合を示す。また、図2(a)は横軸に温度を示し、縦軸に物体1の表面からの距離を示し、図2(b)は横軸に相対湿度は相対を示し、縦軸に物体1の表面からの距離を示す。   The ambient atmosphere 2 accompanying the adsorption / aggregation on the surface of the object 1 has a temperature distribution and a density distribution along the transport direction. FIGS. 2A and 2B show the temperature distribution and the relative humidity distribution of the ambient atmosphere 2 that change according to the distance from the surface of the object 1 to the surface temperature of the object 1. 2 (a) and 2 (b) show that the ambient ambient temperature 2 at the remote location is T1 and the surface temperature of the object 1 is T1, T2, T3, T4, where T1> T2> T3> T4 and the atmospheric dew point. The temperature Td indicates a case where the temperature is between the temperature T2 and the temperature T3. 2A shows the temperature on the horizontal axis, the distance from the surface of the object 1 on the vertical axis, FIG. 2B shows the relative humidity on the horizontal axis, and the vertical axis of the object 1. Indicates the distance from the surface.

物体1表面が温度T1と周囲雰囲気2の温度T1とが同一である場合、周囲雰囲気2の相対湿度はどこでも均一に分布する。また、周囲雰囲気2の温度T1に対して物体1の表面の温度が相対的に低く温度T2になると、物体1表面の近傍では、空気や水蒸気の気体分子は物体1表面との熱力学的相互作用により物体1表面近傍の周囲雰囲気2の温度が低下する。このように物体1表面近傍の周囲雰囲気2の温度が低下すると飽和水蒸気圧が小さくなるので、水蒸気圧//飽和水蒸気圧で示される相対湿度は上昇することになる。
物体表面の近傍では遠隔に比べて相対湿度が高くなる。この段階では、物体1表面で水蒸気分子を吸着する量が増えるが、物体1表面から脱着する量はまだあるので、物体1表面に水分子が形成される結露には至っていない。
When the temperature of the object 1 is the same as the temperature T1 of the ambient atmosphere 2, the relative humidity of the ambient atmosphere 2 is uniformly distributed everywhere. Further, when the temperature of the surface of the object 1 is relatively low with respect to the temperature T1 of the ambient atmosphere 2, the air and water vapor gas molecules interact with the surface of the object 1 in the vicinity of the object 1 surface. Due to the action, the temperature of the ambient atmosphere 2 near the surface of the object 1 is lowered. Thus, when the temperature of the ambient atmosphere 2 near the surface of the object 1 is decreased, the saturated water vapor pressure is decreased, and therefore the relative humidity indicated by the water vapor pressure // saturated water vapor pressure is increased.
In the vicinity of the object surface, the relative humidity is higher than in the remote area. At this stage, the amount of water vapor molecules adsorbed on the surface of the object 1 is increased, but since there is still an amount of desorption from the surface of the object 1, dew condensation that forms water molecules on the surface of the object 1 has not been achieved.

周囲雰囲気の温度T1に対して物体1表面の温度がさらに低下して雰囲気露点温度Tdより低い温度T3になると、物体1表面から脱着する量よりも物体1表面で水蒸気分子を吸着する量が多くなり、物体1表面では水蒸気分子が水分子のクラスターを形成して結露に至る。物体1表面より遠隔個所から物体1表面への水蒸気分子の輸送が増すにしても、物体1表面の近傍における周囲雰囲気2の温度にもよるが、物体1表面の近傍で1mol、22400ccの水蒸気は18ccの体積の水へ凝集するので、1/1244になり物体1表面の近傍では水蒸気分子が欠乏する。したがって物体1表面が温度T3と低くなったにもかかわらず、物体1表面の近傍の周囲雰囲気2は遠隔に比べて相対湿度が低くなる。なお、物体1表面近傍と遠隔の中間の周囲雰囲気2は、図2に示すように、温度が低下するので相対湿度が高くなる。周囲雰囲気の温度T1に対して物体1表面の温度がさらに低下して温度T4になると、結露が進行し、物体1表面温度T3の場合と比較して、さらに物体1表面の近傍の周囲雰囲気2は遠隔に比べて相対湿度が低くなる。   When the temperature of the surface of the object 1 is further lowered with respect to the temperature T1 of the ambient atmosphere and becomes a temperature T3 lower than the atmospheric dew point temperature Td, the amount of water vapor molecules adsorbed on the surface of the object 1 is larger than the amount desorbed from the surface of the object 1. Thus, on the surface of the object 1, water vapor molecules form a cluster of water molecules, resulting in dew condensation. Even if the transport of water vapor molecules from a remote location to the surface of the object 1 from the surface of the object 1 increases, depending on the temperature of the ambient atmosphere 2 in the vicinity of the surface of the object 1, 1 mol of 22400 cc of water vapor near the surface of the object 1 Since it aggregates into 18 cc of water, it becomes 1/1244, and water vapor molecules are deficient in the vicinity of the surface of the object 1. Therefore, although the surface of the object 1 is lowered to the temperature T3, the ambient atmosphere 2 in the vicinity of the surface of the object 1 has a lower relative humidity than the remote. In addition, as shown in FIG. 2, the ambient atmosphere 2 near the surface of the object 1 and the remote intermediate atmosphere 2 has a high relative humidity because the temperature decreases. When the temperature of the surface of the object 1 is further lowered to the temperature T4 with respect to the temperature T1 of the ambient atmosphere, dew condensation proceeds, and the ambient atmosphere 2 near the surface of the object 1 is further compared with the case of the object 1 surface temperature T3. Has a lower relative humidity than remote.

物体1表面温度が露点Td以下である限り結露は進行するが、物体1表面温度が露点Tdを越えると蒸散して物体1表面から遠隔個所へ水蒸気分子の輸送が行われる。このように、物体1表面への周囲雰囲気2の吸着・凝集過程・平衡状態・蒸散過程を、周囲雰囲気2の温度勾配,湿度勾配、流れの状態の変化を計測することにより物体1表面から離れた場所において非接触で物体1表面の結露挙動や蒸散挙動の遠隔検出を実現することができる。   Condensation proceeds as long as the surface temperature of the object 1 is equal to or lower than the dew point Td. However, when the surface temperature of the object 1 exceeds the dew point Td, it evaporates and transports water vapor molecules from the surface of the object 1 to a remote location. In this manner, the adsorption / aggregation process / equilibrium / transpiration process of the ambient atmosphere 2 on the surface of the object 1 is separated from the surface of the object 1 by measuring changes in the temperature gradient, humidity gradient, and flow state of the ambient atmosphere 2. It is possible to realize remote detection of the dew condensation behavior and the transpiration behavior of the surface of the object 1 in a non-contact manner.

この非接触で物体1表面の結露と蒸散の挙動を遠隔検出する非接触結露検出装置3の構成を図3のブロック図に示す。図3に示すように、非接触結露検出装置3は、複数の温度湿度センサ4a,4b,4cとフローセンサ5及び処理装置6を有する。温度湿度センサ4aは、図4に示すように、物体1の表面近傍で表面から距離hだけ隔てた位置に配置され、物体1表面近傍の周囲雰囲気2の温度Taと湿度Haを検出し、温度湿度センサ4bは物体1表面近傍と遠隔の中間位置に配置され、中間位置にある周囲雰囲気2の温度Tbと湿度Hbを検出し、温度湿度センサ4cは物体1表面から遠隔の位置に配置され、物体1表面から遠隔にある周囲雰囲気2の温度Tcと湿度Hcを検出する。フローセンサ5は物体1表面近傍と遠隔の中間位置に配置され、周囲雰囲気2の流れ方向Fzや流速Waを検出する。処理装置6は操作部7と演算処理部8と記憶部9及び警報出力部10を有する。演算処理部8はあらかじめ設定された一定時間毎に温度湿度センサ4a〜4cとフローセンサ5で検出している周囲雰囲気2の温度と周囲雰囲気2の流れ方向や流速を入力し、入力した温度と湿度や輸送方向を記憶部9に記憶させるとともに、入力した温度と湿度及び流れ方向の変化から物体1表面の結露や蒸散の挙動を判定する。警報出力部10は演算処理部8から結露信号や蒸散信号が出力されたとき、結露警報信号や蒸散信号を温度湿度制御装置に出力する。   The block diagram of FIG. 3 shows the configuration of the non-contact dew condensation detection device 3 that remotely detects the behavior of dew condensation and transpiration on the surface of the object 1 without contact. As shown in FIG. 3, the non-contact dew condensation detection device 3 includes a plurality of temperature / humidity sensors 4 a, 4 b, 4 c, a flow sensor 5, and a processing device 6. As shown in FIG. 4, the temperature / humidity sensor 4a is disposed near the surface of the object 1 at a distance h from the surface, detects the temperature Ta and the humidity Ha of the ambient atmosphere 2 near the surface of the object 1, The humidity sensor 4b is disposed at an intermediate position in the vicinity of the surface of the object 1, and detects the temperature Tb and the humidity Hb of the ambient atmosphere 2 at the intermediate position. The temperature / humidity sensor 4c is disposed at a position remote from the surface of the object 1. The temperature Tc and humidity Hc of the ambient atmosphere 2 remote from the surface of the object 1 are detected. The flow sensor 5 is arranged in the middle of the object 1 near the surface and remotely, and detects the flow direction Fz and the flow velocity Wa of the ambient atmosphere 2. The processing device 6 includes an operation unit 7, an arithmetic processing unit 8, a storage unit 9, and an alarm output unit 10. The arithmetic processing unit 8 inputs the temperature of the ambient atmosphere 2 detected by the temperature / humidity sensors 4a to 4c and the flow sensor 5 and the flow direction and flow velocity of the ambient atmosphere 2 every predetermined time set in advance. The humidity and the transport direction are stored in the storage unit 9, and the behavior of dew condensation and transpiration on the surface of the object 1 is determined from changes in the input temperature, humidity, and flow direction. When the dew condensation signal or transpiration signal is output from the arithmetic processing unit 8, the alarm output unit 10 outputs the dew condensation alarm signal or transpiration signal to the temperature and humidity control device.

この非接触結露検出装置3で物体1の表面の結露発生を検出するときの処理を図5のフローチャートと図4(a),(b)を参照して説明する。   Processing when the non-contact dew condensation detection device 3 detects the occurrence of dew condensation on the surface of the object 1 will be described with reference to the flowchart of FIG. 5 and FIGS. 4 (a) and 4 (b).

処理装置6の演算処理部8は、あらかじめ設定された一定時間毎に温度湿度センサ4a〜4cとフローセンサ5で検出している周囲雰囲気2の温度Tと湿度H及び周囲雰囲気2の流れ方向Fzを入力し、入力した温度Hと湿度H及び輸送方向Fzを記憶部9に記憶させる(ステップS1)。この状態で時刻t(n)から時刻t(n+1)に達すると(ステップS2)、演算処理部8は時刻t(n+1)で温度湿度センサ4aから入力した近傍温度Ta(n+1)と温度湿度センサ4cから入力した遠隔温度Tc(n+1)と温度湿度センサ4aから入力した近傍湿度Ha(n+1)と温度湿度センサ4cから入力した遠隔湿度Hc(n+1)を比較し(ステップS3)、近傍温度Ta(n+1)と遠隔温度Tc(n+1)が同じときは、図4(a)に示すように、物体1の表面温度T1と遠隔温度Tc(n+1)が同じであって物体1表面に対する周囲雰囲気2の水蒸気分子の吸着量が少ないと判断する(ステップS7)。また、温度湿度センサ4aで入力した近傍温度Ta(n+1)が温度湿度センサ4cで入力した遠隔温度Tc(n+1)より低く、温度湿度センサ4aで入力した近傍湿度Ha(n+1)が温度湿度センサ4cで入力した遠隔湿度Hc(n+1)より高いときは、物体1表面において周囲雰囲気2の水蒸気分子を吸着する可能性がありと判定して、一定時間前である時刻t(n)と時刻t(n+1)に温度湿度センサ4aと温度湿度センサ4cで入力した湿度を比較し(ステップS4)、温度湿度センサ4aから時刻t(n+1)で入力した近傍湿度Ha(n+1)が時刻t(n)で入力した近傍湿度Ha(n)より小さく、温度湿度センサ4cから時刻t(n+1)で入力した遠隔湿度Hc(n+1)が時刻t(n)で入力した遠隔湿度Hc(n)より大きく、時刻t(n+1)でフローセンサ5から入力した周囲雰囲気2の流れ方向Fzが、図4(b)に示すように、物体1の表面側であるときは、物体1表面に対する周囲雰囲気2の水蒸気分子の吸着量が大きく凝集すると判定し、演算処理部8は警報出力部10に物体1の表面に結露が生じる可能性があることを示す結露信号を出力する(ステップS5)。警報出力部10は演算処理部8から結露信号が送られると、結露警報信号を例えば除湿装置等の温度湿度制御装置に出力する(ステップS6)。また、一定時間前である時刻t(n)と時刻t(n+1)に温度湿度センサ4aと温度湿度センサ4cで入力した湿度を比較した結果(ステップS4)、時刻t(n+1)で入力した近傍湿度Ha(n+1)が時刻t(n)で入力した近傍湿度Ha(n)と同じか大きく、時刻t(n+1)で入力した遠隔湿度Hc(n+1)が時刻t(n)で入力した遠隔湿度Hc(n)と同じか大きく、時刻t(n+1)でフローセンサ5から入力した周囲雰囲気2の流れ方向Fzが物体1の表面側でない場合は物体1表面に対する周囲雰囲気2の水蒸気分子の吸着量が少ないと判断する(ステップS7)。この処理を、測定を継続している間繰り返す(ステップS8、S2)。   The arithmetic processing unit 8 of the processing device 6 includes the temperature T and humidity H of the ambient atmosphere 2 and the flow direction Fz of the ambient atmosphere 2 detected by the temperature / humidity sensors 4a to 4c and the flow sensor 5 at predetermined time intervals. And the inputted temperature H, humidity H, and transport direction Fz are stored in the storage unit 9 (step S1). In this state, when the time t (n) reaches the time t (n + 1) (step S2), the arithmetic processing unit 8 detects the neighborhood temperature Ta (n + 1) and the temperature / humidity sensor input from the temperature / humidity sensor 4a at the time t (n + 1). The remote temperature Tc (n + 1) input from 4c, the near humidity Ha (n + 1) input from the temperature / humidity sensor 4a and the remote humidity Hc (n + 1) input from the temperature / humidity sensor 4c are compared (step S3). When the n + 1) and the remote temperature Tc (n + 1) are the same, the surface temperature T1 of the object 1 and the remote temperature Tc (n + 1) are the same as shown in FIG. It is determined that the amount of adsorbed water vapor molecules is small (step S7). Further, the near temperature Ta (n + 1) input by the temperature / humidity sensor 4a is lower than the remote temperature Tc (n + 1) input by the temperature / humidity sensor 4c, and the near humidity Ha (n + 1) input by the temperature / humidity sensor 4a is the temperature / humidity sensor 4c. If it is higher than the remote humidity Hc (n + 1) input in step 1, it is determined that there is a possibility of adsorbing water vapor molecules in the surrounding atmosphere 2 on the surface of the object 1, and time t (n) and time t ( n + 1) is compared with the humidity input by the temperature / humidity sensor 4a and the temperature / humidity sensor 4c (step S4), and the neighboring humidity Ha (n + 1) input from the temperature / humidity sensor 4a at time t (n + 1) is determined at time t (n). The remote humidity Hc (n + 1) input at the time t (n + 1) from the temperature / humidity sensor 4c, which is smaller than the input nearby humidity Ha (n), is input at the time t (n). When the flow direction Fz of the surrounding atmosphere 2 input from the flow sensor 5 at time t (n + 1) is larger than (n) and is on the surface side of the object 1 as shown in FIG. It is determined that the amount of adsorbed water vapor molecules in the ambient atmosphere 2 is greatly agglomerated, and the arithmetic processing unit 8 outputs a dew condensation signal indicating that dew condensation may occur on the surface of the object 1 to the alarm output unit 10 (step S5). ). When the dew condensation signal is sent from the arithmetic processing unit 8, the alarm output unit 10 outputs the dew condensation alarm signal to a temperature / humidity control device such as a dehumidifying device (step S6). Further, as a result of comparing the humidity input by the temperature / humidity sensor 4a and the temperature / humidity sensor 4c at the time t (n) and the time t (n + 1), which are a predetermined time before (step S4), the vicinity input at the time t (n + 1) The remote humidity Hc (n + 1) input at time t (n) is the same as or greater than the neighboring humidity Ha (n) input at time t (n) and the remote humidity Hc (n + 1) input at time t (n + 1). If the flow direction Fz of the ambient atmosphere 2 input from the flow sensor 5 at time t (n + 1) is not the surface side of the object 1 at the time t (n + 1), the amount of water vapor molecules adsorbed in the ambient atmosphere 2 on the surface of the object 1 (Step S7). This process is repeated while the measurement is continued (steps S8 and S2).

次に、非接触結露検出装置3で物体1表面からの蒸散発生を検出するときの処理を図6のフローチャートと図4(c)を参照して説明する。   Next, processing when the non-contact dew condensation detection device 3 detects the occurrence of transpiration from the surface of the object 1 will be described with reference to the flowchart of FIG. 6 and FIG.

演算処理部8は、あらかじめ設定された一定時間毎に温度湿度センサ4a〜4cとフローセンサ5で検出している周囲雰囲気2の温度Tと湿度H及び周囲雰囲気2の流れ方向Fzを入力し、入力した温度Hと湿度H及び輸送方向Fzを記憶部9に記憶させる(ステップS11)。この状態で時刻t(n)から時刻t(n+1)に達すると(ステップS12)、演算処理部8は時刻t(n+1)で温度湿度センサ4aから入力した近傍湿度Ha(n+1)と温度湿度センサ4cから入力した遠隔湿度Hc(n+1)を比較し(ステップS13)、近傍湿度Ha(n+1)が遠隔湿度Hc(n+1)より小さいときは物体1表面からの蒸散なしと判定する(ステップS17)。また、近傍湿度Ha(n+1)が遠隔湿度Hc(n+1)より大きいときは、物体1表面から水蒸気分子が蒸散している可能性があると判定し、時刻t(n)と時刻t(n+1)のときにフローセンサ5から入力した周囲雰囲気2の流れ方向Fzが変わって、時刻t(n+1)のときの周囲雰囲気2の流れ方向Fzが物体1表面と逆方向になっているかどうかを判定し(ステップS14)、時刻t(n+1)のときの周囲雰囲気2の流れ方向Fzが、図4(c)に示すように、物体1表面と逆方向になっているときは、物体1表面から水蒸気分子が蒸散していると判定し(ステップS15)、警報出力部10に物体1表面から水蒸気分子が蒸散していることを示す蒸散信号を出力する。警報出力部10は演算処理部8から蒸散信号が送られると、蒸散警報信号を例えば除湿装置等の温度湿度制御装置に出力する(ステップS16)。また、時刻t(n+1)のときの周囲雰囲気2の流れ方向Fzが物体1表面と逆方向になっていないときは、物体1表面からの蒸散なしと判定する(ステップS17)。この処理を測定を継続している間繰り返す(ステップS18、S12)。   The arithmetic processing unit 8 inputs the temperature T and humidity H of the ambient atmosphere 2 and the flow direction Fz of the ambient atmosphere 2 detected by the temperature / humidity sensors 4a to 4c and the flow sensor 5 at predetermined time intervals, The input temperature H, humidity H, and transport direction Fz are stored in the storage unit 9 (step S11). When the time t (n) reaches the time t (n + 1) in this state (step S12), the arithmetic processing unit 8 uses the neighborhood humidity Ha (n + 1) and the temperature / humidity sensor input from the temperature / humidity sensor 4a at the time t (n + 1). The remote humidity Hc (n + 1) input from 4c is compared (step S13). If the near humidity Ha (n + 1) is smaller than the remote humidity Hc (n + 1), it is determined that there is no transpiration from the surface of the object 1 (step S17). Further, when the near humidity Ha (n + 1) is larger than the remote humidity Hc (n + 1), it is determined that there is a possibility that water vapor molecules are evaporated from the surface of the object 1, and the time t (n) and the time t (n + 1) are determined. At this time, the flow direction Fz of the ambient atmosphere 2 input from the flow sensor 5 is changed, and it is determined whether or not the flow direction Fz of the ambient atmosphere 2 at the time t (n + 1) is opposite to the surface of the object 1. (Step S14) When the flow direction Fz of the ambient atmosphere 2 at time t (n + 1) is opposite to the surface of the object 1 as shown in FIG. It is determined that the molecules are transpiration (step S15), and a transpiration signal indicating that water vapor molecules are transpiration from the surface of the object 1 is output to the alarm output unit 10. When the transpiration signal is sent from the arithmetic processing unit 8, the alarm output unit 10 outputs the transpiration alarm signal to a temperature / humidity control device such as a dehumidifying device (step S16). If the flow direction Fz of the ambient atmosphere 2 at time t (n + 1) is not opposite to the surface of the object 1, it is determined that there is no transpiration from the surface of the object 1 (step S17). This process is repeated while the measurement is continued (steps S18 and S12).

このようにして物体1表面に対する周囲雰囲気2の温度勾配と湿度勾配及び流れの状態の変化を計測することにより物体1表面から離れた場所において物体1表面の結露挙動や蒸散挙動を検出することができる。   By measuring the temperature gradient and humidity gradient of the ambient atmosphere 2 with respect to the surface of the object 1 and changes in the flow state in this way, it is possible to detect the dew condensation behavior and the transpiration behavior of the surface of the object 1 at a location away from the surface of the object 1. it can.

前記説明では温度湿度センサ4a〜4cとフローセンサ5を物体1表面に対して垂直方向に配置した場合について説明したが、図7に示すように、物体1表面から距離hだけ隔てた位置に、壁面11を物体1表面と垂直に設け、物体1の表面から壁面11の中間に相当する距離h1だけ隔てた位置に温度湿度センサ4a,4bとフローセンサ5を配置し、温度湿度センサ4aとフローセンサ5を壁面11から離れた位置に配置し、温度湿度センサ4bを壁面11に近くに配置しても良い。温度湿度センサ4a〜4cとフローセンサ5を物体1表面に対して垂直方向に配置した場合、物体1表面近傍の温度湿度センサ4aは物体1の影響を早期に受け、物体1表面より遠隔の温度湿度センサ4cは温度湿度センサ4aより物体1の影響を遅く受ける。この挙動に着目し、図7に示すように、壁面11を配置し、物体1表面から同一距離h1の位置に温度湿度センサ4a,4bとフローセンサ5を配置し、物体1の影響を受ける時刻に差を持たせる。   In the above description, the case where the temperature / humidity sensors 4a to 4c and the flow sensor 5 are arranged in the direction perpendicular to the surface of the object 1 is described, but as shown in FIG. The wall surface 11 is provided perpendicular to the surface of the object 1, and the temperature / humidity sensors 4 a, 4 b and the flow sensor 5 are disposed at a position separated from the surface of the object 1 by a distance h 1 corresponding to the middle of the wall surface 11. The sensor 5 may be disposed at a position away from the wall surface 11, and the temperature / humidity sensor 4 b may be disposed near the wall surface 11. When the temperature / humidity sensors 4a to 4c and the flow sensor 5 are arranged in the direction perpendicular to the surface of the object 1, the temperature / humidity sensor 4a in the vicinity of the surface of the object 1 is affected by the object 1 at an early stage, and the temperature remote from the surface of the object 1 The humidity sensor 4c receives the influence of the object 1 later than the temperature / humidity sensor 4a. Focusing on this behavior, as shown in FIG. 7, the wall surface 11 is arranged, the temperature / humidity sensors 4 a and 4 b and the flow sensor 5 are arranged at the same distance h 1 from the surface of the object 1, and the time affected by the object 1 Make a difference.

このように物体1表面に対して気体の輸送摩擦抵抗となる壁面11を設けた場合、壁面11の上部から壁面11に沿って流れる層流速度が壁面11の摩擦抵抗を受ける境界層の厚さδは、壁面11の上端部から壁面11に沿った距離をx、流速をU、壁面11の摩擦抵抗をνとすると、ストークスの法則により、δ≒5*(νx/U)1/2で得られる。20℃の空気で流速Uを1mm/秒と5mm/秒と10mm/秒と100mm/秒及び1000mm/秒と変えたときの壁面11の上端部から壁面11に沿った距離xに対する境界層の厚さδの変化を図8に示す。流速U=5mm/秒の流れは0.1秒後に0.5mm移動するが、壁端面からの距離X=1mmの地点において、壁面11から離れる距離が9mm、10mm,11mmでは、壁面11の摩擦抵抗により図8の破線円内の流れFで示すようになる。 When the wall surface 11 serving as the gas transport friction resistance is provided on the surface of the object 1 as described above, the thickness of the boundary layer in which the laminar flow velocity flowing along the wall surface 11 from the upper portion of the wall surface 11 receives the friction resistance of the wall surface 11. δ is δ≈5 * (νx / U) 1/2 according to Stokes' law, where x is the distance along the wall surface 11 from the upper end of the wall surface 11, U is the flow velocity, and ν is the frictional resistance of the wall surface 11. can get. The thickness of the boundary layer with respect to the distance x along the wall surface 11 from the upper end of the wall surface 11 when the flow velocity U is changed to 1 mm / second, 5 mm / second, 10 mm / second, 100 mm / second, and 1000 mm / second with air at 20 ° C. FIG. 8 shows the change of the depth δ. The flow at a flow velocity U = 5 mm / second moves 0.5 mm after 0.1 second. However, at a distance X = 1 mm from the wall end surface, when the distance away from the wall surface 11 is 9 mm, 10 mm, or 11 mm, the friction of the wall surface 11 As shown by the flow F in the broken-line circle in FIG.

そこで温度湿度センサ4aとフローセンサ5を壁面11から離れた位置に配置し、温度湿度センサ4bを壁面11に近くに配置すると、ある時刻tにおいて、温度湿度センサ4aが検出する雰囲気2のほうが壁面11から離れているので、図7に示すように、流れが先行し、その時刻tで温度湿度センサ4bは壁面11に近いため、摩擦抵抗により流れが遅くなり、物体1表面に対する影響の到達時刻が遅く、物体1表面から離れた雰囲気2を検出することと同等になり、温度湿度センサ4a,4bで検出した雰囲気温度Ta,Tbとフローセンサ5で検出した流れ方向Fzにより、物体1表面に対する周囲雰囲気2の温度勾配と湿度勾配及び流れの状態の変化を計測することにより物体1表面から離れた場所において物体1表面の結露挙動や蒸散挙動を検出することができる。   Therefore, when the temperature / humidity sensor 4a and the flow sensor 5 are arranged at positions away from the wall surface 11 and the temperature / humidity sensor 4b is arranged near the wall surface 11, the atmosphere 2 detected by the temperature / humidity sensor 4a at the certain time t is more wall surface. 7, since the flow precedes and the temperature / humidity sensor 4b is close to the wall surface 11 as shown in FIG. 7, the flow slows down due to frictional resistance, and the arrival time of the influence on the surface of the object 1 This is equivalent to detecting the atmosphere 2 that is slow and away from the surface of the object 1, and is based on the ambient temperatures Ta and Tb detected by the temperature / humidity sensors 4 a and 4 b and the flow direction Fz detected by the flow sensor 5. Condensation behavior on the surface of the object 1 at a location away from the surface of the object 1 by measuring changes in the temperature gradient, humidity gradient, and flow state of the ambient atmosphere 2 It is possible to detect the evaporation behavior.

物体1表面への吸着・凝集に伴う気体の輸送に沿って温度湿度センサ4を配置するに当たり、検出分解能を得るため輸送距離を長くする必要があり設置構造も大きくなる。これに対して図7に示すように物体1の表面に対して壁面11を設け、温度湿度センサ4a,4bとフローセンサ5を壁面11の中間に相当する距離h1だけ隔てた位置に配置することにより、計測機構をコンパクトにすることができる。   In disposing the temperature / humidity sensor 4 along the transportation of the gas accompanying the adsorption / aggregation on the surface of the object 1, it is necessary to lengthen the transportation distance in order to obtain the detection resolution, and the installation structure becomes large. On the other hand, as shown in FIG. 7, a wall surface 11 is provided on the surface of the object 1, and the temperature / humidity sensors 4 a and 4 b and the flow sensor 5 are arranged at a position separated by a distance h 1 corresponding to the middle of the wall surface 11. Thus, the measurement mechanism can be made compact.

また、気体の輸送のメカニズムによっては、輸送速度によって雰囲気状態が緩やかな勾配で変化する場合もあり、このような場合には測定が困難になるが、図7に示すように物体1の表面に対して気体の輸送摩擦抵抗となる壁面11を設けることにより、雰囲気状態に急峻な勾配を与えることができる。   Further, depending on the transport mechanism of the gas, the atmospheric state may change with a gentle gradient depending on the transport speed. In such a case, measurement becomes difficult, but as shown in FIG. On the other hand, a steep gradient can be given to the atmospheric state by providing the wall surface 11 which becomes the gas transport friction resistance.

さらに、物体1表面から離れた2個所に温度湿度センサ4a,4bを設置した場合、周辺雰囲気2を形成する気体の温度勾配、粘性、密度、熱伝導率、重力、の蒸気圧などの要素により、物体1表面に至る距離に応じて微小空間に密度勾配が生ずる場合もある。このような場合、物体1表面から離れると、物体1表面の影響力が小さくなり、周囲環境の揺らぎの影響が大きくなる。この現象に対して、図7に示すように、物体1の表面に対して壁面11を設け、温度湿度センサ4a,4bとフローセンサ5を物体1表面から一定距離h1だけ隔てた位置に配置して計測機構をコンパクトにすると、周囲環境の揺らぎの影響を小さくすることができる。   Furthermore, when the temperature / humidity sensors 4a and 4b are installed at two locations away from the surface of the object 1, depending on factors such as the temperature gradient, viscosity, density, thermal conductivity, gravity, and vapor pressure of the gas forming the ambient atmosphere 2. Depending on the distance to the surface of the object 1, a density gradient may occur in the minute space. In such a case, the distance from the surface of the object 1 decreases the influence of the surface of the object 1 and increases the influence of fluctuations in the surrounding environment. For this phenomenon, as shown in FIG. 7, a wall surface 11 is provided on the surface of the object 1, and the temperature / humidity sensors 4a and 4b and the flow sensor 5 are arranged at a position separated from the surface of the object 1 by a certain distance h1. If the measurement mechanism is made compact, the influence of fluctuations in the surrounding environment can be reduced.

なお、摩擦抵抗を有する壁面11と温度湿度センサ4a,4b及びフローセンサ5は、周囲雰囲気2の熱的状態に影響を与えないように、熱容量が極めて小さいか、熱伝導率が周囲雰囲気2に近い材料を使用することが望ましい。   The wall surface 11 having frictional resistance, the temperature / humidity sensors 4a and 4b, and the flow sensor 5 have a very small heat capacity or a thermal conductivity of the ambient atmosphere 2 so as not to affect the thermal state of the ambient atmosphere 2. It is desirable to use similar materials.

図7では温度湿度センサ4a,4b及びフローセンサ5を壁面11の中間部に配置した場合について説明したが、図9(a)に示すように、温度湿度センサ4a,4b及びフローセンサ5を壁面11の物体1表面と反対側の端部近傍に配置したり、図9(b)に示すように、温度湿度センサ4a,4b及びフローセンサ5を壁面11の物体1表面の近くに配置しても良い。図9(a)に示すように、温度湿度センサ4a,4b及びフローセンサ5を壁面11の物体1表面と反対側の端部近傍に配置して、壁面11に沿った壁端面の距離xが零に近いほど、流速範囲が広くても境界層が壁に近くなるので、境界層の厚さδが狭い距離にまとまり、壁面11に対して温度湿度センサ4a,4b及びフローセンサ5を近くに配置でき、計測機構をよりコンパクトにして広い流速範囲を計測することができる。また、図9(b)に示すように、温度湿度センサ4a,4b及びフローセンサ5を壁面11の物体1表面と反対側の端部近傍に配置することにより、壁面11の長さを短くでき、凝集と蒸散で互いに逆方向の流れる周囲雰囲気2の測定を容易に行なうことができる。   FIG. 7 illustrates the case where the temperature / humidity sensors 4a, 4b and the flow sensor 5 are arranged in the middle of the wall surface 11, but the temperature / humidity sensors 4a, 4b and the flow sensor 5 are disposed on the wall surface as shown in FIG. 11 near the surface of the object 1 opposite to the surface of the object 1, or as shown in FIG. 9B, the temperature / humidity sensors 4a, 4b and the flow sensor 5 are disposed near the surface of the object 1 on the wall surface 11. Also good. As shown in FIG. 9A, the temperature / humidity sensors 4a and 4b and the flow sensor 5 are arranged in the vicinity of the end of the wall 11 opposite to the surface of the object 1, and the distance x of the wall end surface along the wall 11 is set. The closer to zero, the boundary layer is closer to the wall even if the flow velocity range is wider, so the thickness δ of the boundary layer is reduced to a narrow distance, and the temperature / humidity sensors 4a, 4b and the flow sensor 5 are closer to the wall surface 11. It can be arranged, and the measuring mechanism can be made more compact to measure a wide flow velocity range. Further, as shown in FIG. 9B, the temperature and humidity sensors 4a and 4b and the flow sensor 5 are arranged in the vicinity of the end of the wall 11 opposite to the surface of the object 1, so that the length of the wall 11 can be shortened. The ambient atmosphere 2 flowing in opposite directions due to aggregation and transpiration can be easily measured.

また、物体1表面の周囲雰囲気2は温度が低くなるほど比重が大きくなり、重力の影響により上昇しにくく下降しやすくなり、それに伴って温度勾配も変化する。逆に、物体1表面の周囲雰囲気2の温度が高く、湿度が低いほど比重は小さく軽くなる。この物体1表面の温度条件により物体1表面からの距離と雰囲気の温度と湿度の分布が物体1の上面と下面で相違する状態を図10(a)に示す。物体1表面の上方の周囲雰囲気2は、物体表面温度が雰囲雰囲気温度より低い場合には、物体1近傍の周囲雰囲気2が物体1表面により冷やされ、比重を増して重力によって下降して物体1表面からの熱影響を受ける距離が短くなる。物体1表面の下方の周囲雰囲気2は、物体表面温度が雰囲気温度より低い場合には、物体1近傍の周囲雰囲気2は物体1表面により冷やされ、比重を増して重力によって下降し、物体1表面からの熱影響を受ける距離が広がる。物体1表面への吸着・凝集に伴う気体の輸送方向に沿って輸送速度が微小であると外界の揺らぎの影響の方が大きい場合がある。この物体1両面の外界の揺らぎと表面状態、比熱、容量が比較的同一であって、同様な結露現象を発生させるような結露面に限定した場合、図10(b)に示すように、結露面の上面と下面でのそれぞれの結露挙動の差を得ることによって外界の揺らぎの影響を取り除くことができる。   In addition, the specific gravity of the ambient atmosphere 2 on the surface of the object 1 increases as the temperature decreases, and is less likely to rise due to the influence of gravity and is likely to fall, and the temperature gradient changes accordingly. On the contrary, the specific gravity becomes smaller and lighter as the temperature of the ambient atmosphere 2 on the surface of the object 1 is higher and the humidity is lower. FIG. 10A shows a state in which the distance from the surface of the object 1, the temperature of the atmosphere, and the humidity distribution are different between the upper surface and the lower surface of the object 1 depending on the temperature condition of the surface of the object 1. When the object surface temperature is lower than the ambient atmosphere temperature, the ambient atmosphere 2 above the surface of the object 1 is cooled by the surface of the object 1, the specific gravity increases, and the object is lowered by gravity. The distance affected by heat from one surface is shortened. The ambient atmosphere 2 below the surface of the object 1 is cooled by the surface of the object 1 when the object surface temperature is lower than the ambient temperature. Increases the distance affected by heat. If the transport speed is very small along the gas transport direction accompanying adsorption / aggregation on the surface of the object 1, the influence of fluctuations in the outside world may be greater. When the surface fluctuation, surface condition, specific heat, and capacity of both surfaces of the object 1 are relatively the same and are limited to a dew condensation surface that causes a similar dew condensation phenomenon, as shown in FIG. By obtaining the difference in the dew condensation behavior between the upper surface and the lower surface of the surface, it is possible to eliminate the influence of fluctuations in the outside world.

そこで図11(a)に示すように、物体1の上方に温度湿度センサ4a,4b及びフローセンサ5を配置すると共に、物体1の下方にも温度湿度センサ41a,41b及びフローセンサ51を配置し、物体1の上方と下方の両方における測定値の差分により物体1表面に気体が吸着して凝集したり、凝集した液体が蒸散する挙動を検出すると、外界の揺らぎの影響を取り除くことができる。   Therefore, as shown in FIG. 11A, the temperature / humidity sensors 4a, 4b and the flow sensor 5 are arranged above the object 1, and the temperature / humidity sensors 41a, 41b and the flow sensor 51 are also arranged below the object 1. If the behavior of the gas 1 adsorbed and aggregated on the surface of the object 1 due to the difference in measured values both above and below the object 1 or the behavior of the condensed liquid evaporating is detected, the influence of fluctuations in the external world can be eliminated.

また、例えば物体1の上方に配置したフローセンサ5により周囲雰囲気の流れ方向Fzは検出できるので、図11(b)に示すように、物体1の一方の表面側、例えば上方側だけにフローセンサ5を配置しても良い。さらに、図11(c)に示すように、物体1表面が傾斜していても重力方向に沿った周囲雰囲気2の輸送の影響を利用して外界の揺らぎの影響を取り除くことができる。なお、物体1表面である結露面の下面は上面より重力による輸送距離が長く、測定間隔が長くなって高感度になるので、輸送速度が微小であっても外界の揺らぎの程度によっては、結露面の下面だけでも結露挙動を検出することができる。   Further, for example, the flow direction Fz of the surrounding atmosphere can be detected by the flow sensor 5 disposed above the object 1, and therefore, as shown in FIG. 11 (b), the flow sensor only on one surface side of the object 1, for example, the upper side. 5 may be arranged. Furthermore, as shown in FIG. 11 (c), even if the surface of the object 1 is inclined, the influence of fluctuations in the outside world can be removed by using the influence of the transport of the surrounding atmosphere 2 along the direction of gravity. Note that the lower surface of the dew condensation surface, which is the surface of the object 1, has a longer transport distance due to gravity than the upper surface, and the measurement interval is longer, resulting in higher sensitivity. Therefore, even if the transport speed is very small, depending on the degree of fluctuation in the external environment, dew condensation may occur. Condensation behavior can be detected only on the lower surface.

また、外界の雰囲気の揺らぎに影響されず、外乱を排除できるように温度湿度センサ4a,4bとフローセンサ5を配置した他の計測手段について説明する。この計測手段12は、図12に示すように、円筒状に形成された整流管13の内部の流路に温度湿度センサ4a,4bとフローセンサ5を配置し、物体1表面に対する周囲雰囲気2を整流管13で外界から隔離して、外界の雰囲気の揺らぎや外乱を排除する。ここで図12(a)は整流管13の壁面に沿って温度湿度センサ4a,4b及びフローセンサ5を配置した計測手段12aを示し、図12(b)は整流管13の壁面と直交して温度湿度センサ4a,4b及びフローセンサ5を配置した計測手段12bを示す。この図12(b)に示した計測手段12bは、整流管13の壁面で、図7に示す壁面11と同様に雰囲気状態に急峻な勾配を与えるとともに、整流管13で外界の雰囲気の揺らぎの影響を除去して外乱を排除する。この整流管13も、雰囲気の熱的状態に影響を与えないように、熱容量が小さいか熱伝導率が雰囲気に近い材料、例えば樹脂材料やセラミック材料で形成することが望ましい   Further, another measuring means in which the temperature / humidity sensors 4a and 4b and the flow sensor 5 are arranged so as to eliminate disturbance without being influenced by fluctuations in the atmosphere of the outside world will be described. As shown in FIG. 12, this measuring means 12 arranges temperature / humidity sensors 4a and 4b and a flow sensor 5 in a flow path inside a rectifying tube 13 formed in a cylindrical shape, and creates an ambient atmosphere 2 with respect to the surface of the object 1. Isolation from the outside by the rectifier 13 eliminates fluctuations and disturbances in the outside atmosphere. Here, FIG. 12A shows the measuring means 12a in which the temperature / humidity sensors 4a and 4b and the flow sensor 5 are arranged along the wall surface of the rectifying tube 13, and FIG. 12B is orthogonal to the wall surface of the rectifying tube 13. The measurement means 12b which arrange | positioned the temperature / humidity sensors 4a and 4b and the flow sensor 5 is shown. The measuring means 12b shown in FIG. 12 (b) gives a steep gradient to the atmospheric state at the wall surface of the rectifying tube 13 as with the wall surface 11 shown in FIG. Remove the influence and eliminate the disturbance. The rectifying tube 13 is also preferably formed of a material having a small heat capacity or a thermal conductivity close to the atmosphere, such as a resin material or a ceramic material, so as not to affect the thermal state of the atmosphere.

また、物体1表面の周囲雰囲気2が流れるときの流速が極めて小さい場合には、整流管13を周囲雰囲気2が流れる状態を検出する温度湿度センサ4a,4b及びフローセンサ5で得られる測定値を大きく取り出す必要がある。そこで図13(a)の斜視図と(b)の断面図に示すように、整流管13の物体1表面と反対側の断面積を物体1表面側の断面積より小さくして流速を大きくし、その領域に温度湿度センサ4bとフローセンサ5を設けて測定精度を高めると良い。   Further, when the flow velocity when the ambient atmosphere 2 on the surface of the object 1 flows is extremely small, the measurement values obtained by the temperature / humidity sensors 4a and 4b and the flow sensor 5 that detect the state in which the ambient atmosphere 2 flows through the rectifier tube 13 are obtained. It is necessary to take out large. Therefore, as shown in the perspective view of FIG. 13A and the cross-sectional view of FIG. 13B, the cross-sectional area of the rectifying tube 13 opposite to the object 1 surface is made smaller than the cross-sectional area of the object 1 surface side to increase the flow velocity. It is preferable to provide a temperature / humidity sensor 4b and a flow sensor 5 in the region to increase the measurement accuracy.

このように物体1表面に対する周囲雰囲気2の温度勾配と湿度勾配及び流れの状態の変化を計測するとき、温度湿度センサ4とフローセンサ5は、気体の輸送過程を迅速に検出でき、微細な空間分解能を有する検出能力を有するセンサを使用することが望ましい。このようなセンサとしては、例えば特許第2889909号公報や特許第2621982号公報や特許第2780911号公報あるいは特開平6−18465号公報等に記載された薄膜で微細構造に形成された抵抗体を使用したセンサを使用すれば良い。   Thus, when measuring changes in the temperature gradient and humidity gradient of the ambient atmosphere 2 relative to the surface of the object 1 and the flow state, the temperature / humidity sensor 4 and the flow sensor 5 can quickly detect the gas transport process, and the minute space It is desirable to use a sensor having a detection capability with resolution. As such a sensor, for example, a resistor formed in a fine structure with a thin film described in Japanese Patent No. 2889909, Japanese Patent No. 2621982, Japanese Patent No. 2780911 or Japanese Patent Laid-Open No. 6-18465 is used. What is necessary is just to use the sensor which it did.

図14は、薄膜で微細構造に形成された抵抗体を使用した温度湿度センサ4とフローセンサ5を整流管13と一体に形成した計測手段12cを示し、(a)は斜視図、(b)は(a)の水平方向の断面図、(c)は(a)の垂直方向の断面図である。この計測手段12cは、(b)の断面図に示すように、縦方向の中央部に溝14を有する基板15の溝14を横切って薄膜で微細構造に形成された抵抗体16を有する複数のセンサ感応部17を配置し、このセンサ感応部17の上に縦方向の中央部に溝18を有するカバー19を接合し、基板15の溝14とカバー19の溝18を流路として基板15とカバー19で整流管13を構成したものである。この基板15とセンサ感応部17やカバー19は、集積回路微細加工技術を用いたいわゆるMEMS(Micro Electro Mechanical System)技術により、高精度に大量生産によって容易に作製することができる。この計測手段12cは、センサ感応部17を複数アレイ状に並べることにより物体1表面から異なる距離にそれぞれ設置でき、能力範囲や異なる機能が混載できるので、広い温度湿度範囲の条件や結露挙動の速さに対応できるとともに小型化でき、周囲雰囲気2の状態に与える影響が少なく、測定個所の設置位置精度が高く、高精度な測定値を得ることができる。また、適用場所の制限が広がり汎用性を向上することができる。さらに、同じ種類で同程度のレベルの出力信号を出力するセンサに統一できて処理装置6の処理を簡略化することができる。   FIG. 14 shows a measuring means 12c in which a temperature / humidity sensor 4 and a flow sensor 5 using a thin-film resistor formed in a fine structure are formed integrally with a rectifying tube 13, wherein (a) is a perspective view and (b). (A) is a horizontal sectional view of (a), (c) is a vertical sectional view of (a). As shown in the cross-sectional view of (b), the measuring means 12c includes a plurality of resistors 16 formed in a fine structure with a thin film across the groove 14 of the substrate 15 having the groove 14 in the central portion in the vertical direction. A sensor sensitive part 17 is arranged, a cover 19 having a groove 18 is joined to the sensor sensitive part 17 in the center in the vertical direction, and the groove 15 of the substrate 15 and the groove 18 of the cover 19 are used as flow paths. The rectifying tube 13 is constituted by a cover 19. The substrate 15, the sensor sensitive portion 17 and the cover 19 can be easily manufactured by mass production with high accuracy by a so-called MEMS (Micro Electro Mechanical System) technology using an integrated circuit microfabrication technology. This measuring means 12c can be installed at different distances from the surface of the object 1 by arranging a plurality of sensor sensitive portions 17 in an array, and can be loaded with different capability ranges and different functions. Therefore, the size of the measurement can be reduced, the influence on the state of the surrounding atmosphere 2 is small, the installation position accuracy of the measurement location is high, and highly accurate measurement values can be obtained. Moreover, the restriction of the application location is widened, and versatility can be improved. Furthermore, it can unify into the sensor which outputs the output signal of the same level with the same kind, and the process of the processing apparatus 6 can be simplified.

図14に示した計測手段12cは整流管13すなわち基板15とカバー19の溝14,18に沿って温度湿度センサ4a〜4cとフローセンサ5を配置した場合について説明したが、図12(b)に示すように、整流管13の壁面と直交して温度湿度センサ4a,4b及びフローセンサ5を配置した場合も、薄膜で微細構造に形成された抵抗体を使用した温度湿度センサ4a,4bとフローセンサ5を整流管13と一体に形成することができる。この計測手段12dは、図15(a)の平面図と(b)の断面図に示すように、壁20の中央に、一定断面積を有する複数の貫通孔21を有するセンサ基板22を形成し、センサ基板22の貫通孔21の上に抵抗体16を有する複数のセンサ感応部17を配置して、温度湿度センサ4a,4b及びフローセンサ5を形成したものである。この計測手段12dにおいても、図7や図12(b)に示した場合と同様に、フローセンサ5は気体の輸送摩擦抵抗となる壁20から離れた位置に設けて、測定感度を高めると良い。例えば、長さ2mmの壁20の中央に、幅1mm、長さ5mm、厚さ0.5mmのセンサ基板22を設置し、温度湿度センサ4bを壁20から距離0.5mmの位置に配置し、温度湿度センサ4aを壁20から距離3mmの位置に配置すると、20℃の空気について図8に示す境界層の厚さδの変化から、10mm/秒〜100mm/秒の雰囲気の状態を測定することができる。   The measuring means 12c shown in FIG. 14 has been described with respect to the case where the temperature / humidity sensors 4a to 4c and the flow sensor 5 are arranged along the grooves 14 and 18 of the rectifying tube 13, that is, the substrate 15 and the cover 19, but FIG. As shown in FIG. 4, even when the temperature / humidity sensors 4a, 4b and the flow sensor 5 are arranged orthogonal to the wall surface of the rectifying tube 13, the temperature / humidity sensors 4a, 4b using resistors formed in a thin film with a fine structure are used. The flow sensor 5 can be formed integrally with the rectifying tube 13. As shown in the plan view of FIG. 15A and the cross-sectional view of FIG. 15B, the measuring means 12d forms a sensor substrate 22 having a plurality of through holes 21 having a constant cross-sectional area at the center of the wall 20. The temperature / humidity sensors 4a and 4b and the flow sensor 5 are formed by disposing a plurality of sensor sensitive portions 17 each having the resistor 16 on the through hole 21 of the sensor substrate 22. Also in this measuring means 12d, as in the case shown in FIG. 7 and FIG. 12B, the flow sensor 5 is preferably provided at a position away from the wall 20 which becomes the gas transport friction resistance to increase the measurement sensitivity. . For example, a sensor substrate 22 having a width of 1 mm, a length of 5 mm, and a thickness of 0.5 mm is installed at the center of the wall 20 having a length of 2 mm, and the temperature / humidity sensor 4b is disposed at a distance of 0.5 mm from the wall 20, When the temperature / humidity sensor 4a is arranged at a distance of 3 mm from the wall 20, the atmospheric state of 10 mm / second to 100 mm / second is measured from the change in the thickness δ of the boundary layer shown in FIG. Can do.

また、この計測手段12dを、図16(a)の平面図と(b)の側面断面図に示すように積層して計測手段12eを形成することにより、整流機能をより向上させることができる。そして計測手段12d,12eも集積回路微細加工技術を用いたいわゆるMEMS技術により容易に作製することができる。   Further, the measuring means 12d is formed by laminating the measuring means 12d as shown in the plan view of FIG. 16A and the side sectional view of FIG. 16B, whereby the rectifying function can be further improved. The measuring means 12d and 12e can also be easily manufactured by so-called MEMS technology using integrated circuit microfabrication technology.

前記説明では物体1の表面に水蒸気分子が凝集して結露したりする場合について説明したが、温度湿度センサの代わりにガス成分センサやガス濃度センサを使用して気体の成分や密度や濃度を検出することにより、多成分のガスの精製分離技術等各種分野にも適用することができる。   In the above description, the case where water vapor molecules aggregate and condense on the surface of the object 1 has been described. However, instead of the temperature / humidity sensor, a gas component sensor or gas concentration sensor is used to detect a gas component, density or concentration. By doing so, it can be applied to various fields such as purification and separation technology of multi-component gas.

例えば図12に示す計測手段12に準じて、整流管13をアクリル樹脂で内径11mm、長さ30mmで形成し、この整流管13を物体1表面から間隔1mmを隔てて配置し、温度湿度センサ4aを整流管13の下端部から2mmの位置に装着し、温度湿度センサ4bを整流管13の下端部から15mmの位置に装着し、温度湿度センサ4cを整流管13の下端部から28mmの位置に装着し、フローセンサ5を温度湿度センサ4aと温度湿度センサ4bの中間位置に配置して測定した結果を図17〜図19に示す。また、同時に、性能比較のため従来から用いられている計測手段の吸着水による電極間電気抵抗値変化を検出する原理の表面接触型結露センサを物体1の表面に装着して測定した。   For example, in accordance with the measuring means 12 shown in FIG. 12, the rectifying tube 13 is formed of acrylic resin with an inner diameter of 11 mm and a length of 30 mm, and this rectifying tube 13 is arranged at a distance of 1 mm from the surface of the object 1, and the temperature / humidity sensor 4a Is mounted at a position 2 mm from the lower end of the rectifying tube 13, the temperature / humidity sensor 4 b is mounted at a position 15 mm from the lower end of the rectifying tube 13, and the temperature / humidity sensor 4 c is positioned 28 mm from the lower end of the rectifying tube 13. FIG. 17 to FIG. 19 show the results obtained by mounting and measuring the flow sensor 5 at an intermediate position between the temperature / humidity sensor 4a and the temperature / humidity sensor 4b. At the same time, a surface contact type dew condensation sensor based on the principle of detecting a change in electrical resistance value between electrodes due to adsorbed water of a measuring means conventionally used for performance comparison was mounted on the surface of the object 1 and measured.

図17は、整流管13の外界雰囲気を25℃、80%RH(露点=21.3℃)一定にし、10分経過後、物体1の表面温度を25℃から2℃ずつ階段状に降下させた場合で、28分経過時点には物体1の表面温度は外界雰囲気の露点21.3℃で、さらに降下していく状態である。温度湿度センサ4aと温度湿度センサ4bでは、物体1の表面温度の低下に影響され、物体1の表面温度が外界雰囲気の露点以上では、より温度が低下し相対湿度がより増加し、物体1の表面温度が外界雰囲気の露点以下になると相対湿度が減少する反応を示す。さらに、温度湿度センサ4aは温度湿度センサ4bよりも物体1の表面により近いので、物体1の表面温度が外界雰囲気の露点以上では、より温度が低下し相対湿度がより増加し、物体1の表面温度が外界雰囲気の露点以下になると相対湿度がより減少する反応を示す。また、フローセンサ5の挙動では、露点前後の傾向から、物体1の表面方向への流れが増加していることを示す。温度湿度センサ4cは物体1の表面から離れているので、物体1の表面温度の降下に影響されにくく外界雰囲気の影響が大きい。
これらの温度湿度センサ4a,4b,4cとフローセンサ5の挙動から結露発生現象が観測できることがわかる。物体1の表面の結露発生で、温度湿度センサ4aと温度湿度センサ4bの反応開始は29〜30分であり、表面接触型結露センサの反応開始が32分であるのより早い。したがって表面接触型結露センサより応答が早く、非接触で検出することができ、微量な結露挙動も検出することができる。
FIG. 17 shows that the ambient atmosphere of the rectifier tube 13 is kept constant at 25 ° C. and 80% RH (dew point = 21.3 ° C.), and after 10 minutes, the surface temperature of the object 1 is lowered stepwise from 25 ° C. by 2 ° C. In this case, after 28 minutes, the surface temperature of the object 1 is at a dew point of 21.3 ° C. in the ambient atmosphere and is further lowered. The temperature / humidity sensor 4a and the temperature / humidity sensor 4b are affected by a decrease in the surface temperature of the object 1, and when the surface temperature of the object 1 is equal to or higher than the dew point of the external atmosphere, the temperature is further decreased and the relative humidity is further increased. When the surface temperature falls below the dew point of the ambient atmosphere, the relative humidity decreases. Further, since the temperature / humidity sensor 4a is closer to the surface of the object 1 than the temperature / humidity sensor 4b, when the surface temperature of the object 1 is equal to or higher than the dew point of the ambient atmosphere, the temperature is further decreased and the relative humidity is increased. When the temperature falls below the dew point of the ambient atmosphere, the reaction shows a decrease in relative humidity. Further, the behavior of the flow sensor 5 indicates that the flow toward the surface of the object 1 is increasing from the tendency before and after the dew point. Since the temperature / humidity sensor 4c is away from the surface of the object 1, it is not easily affected by a decrease in the surface temperature of the object 1 and is greatly influenced by the ambient atmosphere.
From the behavior of these temperature / humidity sensors 4a, 4b, 4c and the flow sensor 5, it can be seen that the phenomenon of dew condensation can be observed. With the occurrence of condensation on the surface of the object 1, the reaction start of the temperature / humidity sensor 4a and the temperature / humidity sensor 4b is 29 to 30 minutes, and the reaction start of the surface contact type condensation sensor is 32 minutes earlier. Therefore, the response is faster than that of the surface contact type dew condensation sensor, it can be detected in a non-contact manner, and a minute amount of dew condensation behavior can also be detected.

また、図18は、物体1の表面温度を20℃に保持し、整流管13の外界雰囲気を9分経過後25℃、60%RH(露点=16.7℃)から、5%RHずつ階段状に増加させた場合で、38分経過時点で外界雰囲気の露点が20℃になり、さらに増加していく状態である。温度湿度センサ4cは物体1の表面から離れているので影響されにくく,外界雰囲気の湿度影響を大きく受け相対湿度が増加していることを示す。温度湿度センサ4aと温度湿度センサ4bでは、物体1の表面により近いので、外界雰囲気の露点が物体1の表面温度以上になると、物体1の表面に結露が発生すると水蒸気が凝集し、水蒸気密度が減少するため影響を受け、温度湿度センサ4cに比べ相対湿度が増加しない反応を示す。また、フローセンサ5の挙動では、露点前後の傾向から、物体1の表面方向への流れが増加していることを示す。
これらの温度湿度センサ4a,4b,4cとフローセンサ5の挙動から結露発生現象が観測できることがわかる。物体1の表面の結露発生で、温度湿度センサ4aと温度湿度センサ4bの反応開始は38分であり、表面接触型結露センサの反応開始が40分であるのより早い。したがって表面接触型結露センサより応答が早く、非接触で検出することができ、微量な結露挙動も検出することができる。
Further, FIG. 18 shows that the surface temperature of the object 1 is kept at 20 ° C., and the ambient atmosphere of the rectifying tube 13 is stepped by 5% RH from 25 ° C. and 60% RH (dew point = 16.7 ° C.) after 9 minutes. In this case, the dew point of the ambient atmosphere reaches 20 ° C. when 38 minutes have passed, and the temperature further increases. The temperature / humidity sensor 4c is not easily affected because it is away from the surface of the object 1, and shows that the relative humidity is increased due to the large influence of the humidity of the outside atmosphere. Since the temperature / humidity sensor 4a and the temperature / humidity sensor 4b are closer to the surface of the object 1, if the dew point of the outside atmosphere is equal to or higher than the surface temperature of the object 1, the water vapor is condensed when condensation occurs on the surface of the object 1, and the water vapor density is increased. The reaction is affected by the decrease and the relative humidity does not increase compared to the temperature / humidity sensor 4c. Further, the behavior of the flow sensor 5 indicates that the flow toward the surface of the object 1 is increasing from the tendency before and after the dew point.
From the behavior of these temperature / humidity sensors 4a, 4b, 4c and the flow sensor 5, it can be seen that the phenomenon of dew condensation can be observed. With the occurrence of condensation on the surface of the object 1, the reaction start of the temperature / humidity sensor 4a and the temperature / humidity sensor 4b is 38 minutes, and the reaction start of the surface contact type condensation sensor is 40 minutes earlier. Therefore, the response is faster than that of the surface contact type dew condensation sensor, it can be detected in a non-contact manner, and a minute amount of dew condensation behavior can also be detected.

図19は、整流管13の外界雰囲気を25℃、80%RH(露点=21.3℃)で一定にし、物体1の表面温度を19℃に保持することにより結露を生成しておき、7分経過後、物体1の表面温度を25℃に上昇させると結露水が水蒸気として蒸散される場合を示す。
物体1の表面温度を19℃から25℃へ上昇し始めると水蒸気脱着が促進され、温度湿度センサ4aと温度湿度センサ4bでは相対湿度が増加する反応を示し、蒸散が観測される。温度湿度センサ4aでは温度湿度センサ4bよりも物体1の表面により近いので、時間当たりの増加率が高い。フローセンサ5の挙動では、物体1の表面温度の上昇前後の傾向から、物体1の表面と逆方向への流れが増加していることを示す。
これらの温度湿度センサ4a,4b,4cとフローセンサ5の挙動から蒸散現象が観測できることがわかる。また、温度湿度センサ4aと温度湿度センサ4bでは、40分経過まで相対湿度の増加を示し、結露状態であって、7分から40分までの33分間が蒸散過程であることを示す。なお、温度湿度センサ4cの温度湿度挙動からも明らかで、物体1の表面温度上昇に伴う温度湿度センサ4aと温度湿度センサ4bの温度も上昇するので、蒸散過程の開始時よりも終了時の相対湿度の値は減少することを示している。物体1の表面からの蒸散発生は、温度湿度センサ4aと温度湿度センサ4bの反応開始は8分であり、表面接触型結露センサの反応開始が12分であるのより早い。但し、12分での表面接触型結露センサの反応は結露がなくなったことを示しているが、実際には40分まで結露状態であった。したがって表面接触型結露センサより応答が早く、非接触で検出することができ、微量な蒸散挙動もリアルタイムで検出することができる。
FIG. 19 shows that the external atmosphere of the rectifying tube 13 is kept constant at 25 ° C. and 80% RH (dew point = 21.3 ° C.), and the surface temperature of the object 1 is maintained at 19 ° C. to generate condensation. When the surface temperature of the object 1 is increased to 25 ° C. after a lapse of minutes, the condensed water is evaporated as water vapor.
When the surface temperature of the object 1 starts to rise from 19 ° C. to 25 ° C., water vapor desorption is promoted, and the temperature / humidity sensor 4a and the temperature / humidity sensor 4b show a reaction of increasing relative humidity, and transpiration is observed. Since the temperature / humidity sensor 4a is closer to the surface of the object 1 than the temperature / humidity sensor 4b, the rate of increase per hour is high. The behavior of the flow sensor 5 indicates that the flow in the direction opposite to the surface of the object 1 increases from the tendency before and after the surface temperature of the object 1 increases.
It can be seen that the transpiration phenomenon can be observed from the behavior of the temperature and humidity sensors 4a, 4b, 4c and the flow sensor 5. The temperature / humidity sensor 4a and the temperature / humidity sensor 4b show an increase in relative humidity until 40 minutes have elapsed, indicating that condensation has occurred, and 33 minutes from 7 minutes to 40 minutes is a transpiration process. It is obvious from the temperature / humidity behavior of the temperature / humidity sensor 4c, and the temperatures of the temperature / humidity sensor 4a and the temperature / humidity sensor 4b increase as the surface temperature of the object 1 increases. It shows that the humidity value decreases. The occurrence of transpiration from the surface of the object 1 is 8 minutes when the reaction of the temperature / humidity sensor 4a and the temperature / humidity sensor 4b starts, and is earlier than the reaction of the surface contact type condensation sensor is 12 minutes. However, the reaction of the surface contact type dew condensation sensor at 12 minutes showed that the dew condensation disappeared, but in actuality, the dew condensation state was maintained until 40 minutes. Therefore, the response is faster than the surface contact type dew condensation sensor, it can be detected in a non-contact manner, and a very small amount of transpiration behavior can be detected in real time.

このように水分の蒸散挙動をリアルタイムで検出することができる非接触結露検出装置3を使用して画像が転写された記録用紙から水分が蒸散する挙動を検出して、定着装置で加熱加圧させるときに記録用紙に生じるカール等の変形を防止する画像形成装置について説明する。   In this way, using the non-contact dew condensation detection device 3 capable of detecting the moisture transpiration behavior in real time, the behavior of moisture transpiration from the recording paper onto which the image has been transferred is detected and heated and pressurized by the fixing device. An image forming apparatus that prevents deformation such as curling that sometimes occurs on recording paper will be described.

画像形成装置の画像形成ユニット30は、図20の構成図に示すように、感光体ドラム31の周囲に配置された帯電装置32とレーザ光源やポリゴンミラー等が設けられ、感光体ドラム31にレーザビームを照射して画像を書き込む書込装置33と現像装置34と転写装置35及びクリーニング装置36と、加熱ローラ37と加圧ローラ38とを有し、記録用紙39に転写されたトナー像を定着する定着装置40を有する。   As shown in the configuration diagram of FIG. 20, the image forming unit 30 of the image forming apparatus is provided with a charging device 32 disposed around the photosensitive drum 31, a laser light source, a polygon mirror, and the like. A writing device 33 for writing an image by irradiating a beam, a developing device 34, a transfer device 35, a cleaning device 36, a heating roller 37 and a pressure roller 38, and fixing the toner image transferred to the recording paper 39. The fixing device 40 is provided.

この画像形成ユニット30は、帯電装置32で帯電した感光体ドラム31表面に書込装置33でレーザビームを照射して静電潜像を形成し、形成した静電潜像を現像装置34で可視化してトナー像を形成する。感光体ドラム31に形成されたトナー像は、転写装置35で給紙装置あるいは手差しトレイから給紙された記録用紙39に転写される。記録用紙39にトナー像を転写した感光体ドラム31に残留しているトナーはクリーニング装置36で除去される。トナー像が転写された記録用紙39は定着装置40に送られ、熱と圧力が加えられてトナー像を定着する。画像が定着された記録用紙39は排紙装置に排出される。この定着装置40で記録用紙39に熱と圧力を加えてトナー像を定着するとき、記録用紙39は急激に乾燥してカール等の変形が生じる。この記録用紙39の乾燥速度は、記録用紙39に含まれる水分の蒸散挙動に支配される。   The image forming unit 30 forms an electrostatic latent image by irradiating the surface of the photosensitive drum 31 charged by the charging device 32 with a laser beam by the writing device 33, and the formed electrostatic latent image is visualized by the developing device 34. Thus, a toner image is formed. The toner image formed on the photosensitive drum 31 is transferred by the transfer device 35 to the recording paper 39 fed from the paper feeding device or the manual feed tray. The toner remaining on the photosensitive drum 31 having the toner image transferred to the recording paper 39 is removed by the cleaning device 36. The recording paper 39 onto which the toner image has been transferred is sent to a fixing device 40 where heat and pressure are applied to fix the toner image. The recording paper 39 on which the image is fixed is discharged to a paper discharge device. When the fixing device 40 applies heat and pressure to the recording paper 39 to fix the toner image, the recording paper 39 is drastically dried and deformation such as curling occurs. The drying speed of the recording paper 39 is governed by the transpiration behavior of moisture contained in the recording paper 39.

この記録用紙39に含まれる水分の蒸散挙動により記録用紙39が変形する状態について説明する。図21の模式図に示すように、高温度の加熱部材401上を記録用紙39が移動するとき、加熱部材401の温度を変えて、非接触結露検出装置3により記録用紙39に含まれる水分の蒸散挙動を調べて結果を図22及び図23に示す。図22において、蒸散A特性は加熱部材401と記録用紙39の接触温度差が60℃の場合、蒸散B特性は加熱部材401と記録用紙39の接触温度差が70℃の場合、蒸散C特性は加熱部材401と記録用紙39の接触温度差が80℃の場合、蒸散D特性は加熱部材401と記録用紙39の接触温度差が90℃の場合を示し、図22(a)は記録用紙39の加熱時間に対する記録用紙39の温度上昇の変化を示し,図22(b)は記録用紙39の加熱時間に対する記録用紙39に含まれる水分蒸散増加量の変化を示す、図22(c)は記録用紙39の加熱時間に対する記録用紙39の変位量δの変化を示す。図23(a)〜(d)は蒸散A特性と蒸散B特性と蒸散C特性及び蒸散D特性毎に記録用紙39の温度上昇と水分蒸散増加量及び変位量の変化を示す。   A state in which the recording paper 39 is deformed by the evaporation behavior of moisture contained in the recording paper 39 will be described. As shown in the schematic diagram of FIG. 21, when the recording paper 39 moves on the high temperature heating member 401, the temperature of the heating member 401 is changed, and the non-contact dew condensation detection device 3 detects the moisture contained in the recording paper 39. The transpiration behavior was examined and the results are shown in FIGS. In FIG. 22, the transpiration A characteristic is when the contact temperature difference between the heating member 401 and the recording paper 39 is 60 ° C., and the transpiration B characteristic is when the contact temperature difference between the heating member 401 and the recording paper 39 is 70 ° C. When the contact temperature difference between the heating member 401 and the recording paper 39 is 80 ° C., the transpiration D characteristic indicates that the contact temperature difference between the heating member 401 and the recording paper 39 is 90 ° C. FIG. FIG. 22 (b) shows a change in the temperature rise of the recording paper 39 with respect to the heating time, FIG. 22 (b) shows a change in the amount of increase in moisture evaporation contained in the recording paper 39 with respect to the heating time of the recording paper 39, and FIG. The change of the displacement amount δ of the recording paper 39 with respect to the heating time of 39 is shown. FIGS. 23A to 23D show changes in the temperature rise, moisture transpiration increase, and displacement of the recording paper 39 for each transpiration A characteristic, transpiration B characteristic, transpiration C characteristic, and transpiration D characteristic.

図22(a)と(b)に示すように、記録用紙39が加熱されて温度上昇すると、記録用紙39に含まれる水分が蒸散し、加熱部材401と記録用紙39の接触温度差が60℃から90℃と大きくなるにしたがって蒸散量と蒸散速度(時間当たりの蒸散量)が次第に大きくなり、ある程度蒸散すると蒸散量は低下してくる。そして図22(b)と(c)に示すように、水分蒸散速度が大きいほど、記録用紙39の変位量δが大きく、変形量が早く推移する。このことから、記録用紙39に含まれる水分量が記録用紙39の変形の大きさに影響し、その水分の蒸散速度により記録用紙39の変形量が定まる。   As shown in FIGS. 22A and 22B, when the recording paper 39 is heated and the temperature rises, the moisture contained in the recording paper 39 evaporates, and the contact temperature difference between the heating member 401 and the recording paper 39 is 60 ° C. As the temperature increases to 90 ° C., the transpiration rate and transpiration rate (transpiration rate per hour) gradually increase, and the transpiration rate decreases when transpiration to some extent. Then, as shown in FIGS. 22B and 22C, the displacement amount δ of the recording paper 39 is larger and the deformation amount is faster as the moisture evaporation rate is larger. For this reason, the amount of moisture contained in the recording paper 39 affects the magnitude of deformation of the recording paper 39, and the deformation amount of the recording paper 39 is determined by the moisture evaporation rate.

また、記録用紙39から水分は蒸散するが、蒸散A特性のように記録用紙39に変位が生じない場合がある。これは記録用紙39の強度(コシの強さ)によることを示している。すなわち、記録用紙39の強度により変形が阻止されて水分が蒸散してもすぐには変形が生じないことを示す。したがって記録用紙39に含まれる水分量が多くても、その蒸散速度を緩やかにする、すなわち記録用紙39をゆっくり乾燥することにより変形量を小さくすることができる。   Further, although the moisture evaporates from the recording paper 39, the recording paper 39 may not be displaced like the transpiration A characteristic. This indicates that it depends on the strength (stiffness) of the recording paper 39. In other words, the deformation is prevented by the strength of the recording paper 39, and the deformation does not occur immediately even when moisture evaporates. Therefore, even if the amount of moisture contained in the recording paper 39 is large, the amount of deformation can be reduced by slowing the transpiration rate, that is, by slowly drying the recording paper 39.

また、記録用紙39に含まれる水分の蒸散挙動による記録用紙39の変形は、図23(a)〜(d)に示すように、記録用紙39の変形開始は記録用紙39の強度により形状が維持され、水分の蒸散開始以後に発生し、蒸散速度が大きい順に変形量が大きくなる。したがって記録用紙39に変形が生じる以前の蒸散速度を測定することにより、記録用紙39の変形量を予測することができる。そこで記録用紙39に含まれる水分の蒸散開始時刻から0.1秒までの記録用紙39に変形が発生する以前の蒸散速度に対する変形開始時刻から0.1秒までの記録用紙39の変形量を図24に示す。図24に示すように、記録用紙39に変形が生じる以前の蒸散開始開始から0.1秒までの蒸散速度を測定すると、記録用紙39の変形の程度を明らかになる。   Further, the deformation of the recording paper 39 due to the transpiration behavior of the moisture contained in the recording paper 39 is maintained by the strength of the recording paper 39 at the start of the deformation of the recording paper 39 as shown in FIGS. It occurs after the start of transpiration of moisture, and the amount of deformation increases in descending order of transpiration rate. Therefore, the deformation amount of the recording paper 39 can be predicted by measuring the evaporation rate before the recording paper 39 is deformed. Therefore, the deformation amount of the recording paper 39 from the deformation start time to 0.1 seconds with respect to the transpiration rate before the deformation of the recording paper 39 from the time when the moisture contained in the recording paper 39 starts to 0.1 seconds is shown in FIG. 24. As shown in FIG. 24, the degree of deformation of the recording paper 39 is clarified by measuring the transpiration rate from the start of transpiration before the recording paper 39 is deformed to 0.1 second.

以上のことから記録用紙39の蒸散速度を測定することにより記録用紙39の変形量を判定できるし、記録用紙39に与えられる温度に対して蒸散開始時刻と変形前の蒸散速度を測定すれば、記録用紙39の変形を予知することができる。   From the above, the deformation amount of the recording paper 39 can be determined by measuring the transpiration rate of the recording paper 39. If the transpiration start time and the transpiration rate before deformation are measured with respect to the temperature given to the recording paper 39, The deformation of the recording paper 39 can be predicted.

次に、図25に加熱部材401と記録用紙39の接触温度差が70℃の場合、種類が異なる記録用紙39の水分蒸散量と変位量の変化を示す。図25において蒸散E特性は蒸散B特性より記録用紙39の厚さが薄く、熱容量が小さく水分が蒸散しやすい紙質の場合である。図25(a),(b)に示すように、蒸散E特性の方が蒸散B特性より早く蒸散し、早く変形している。すなわち記録用紙39が厚い分だけ(コシの強さ)が大きいことも示している。したがって、記録用紙39に含まれる水分の蒸散挙動、すなわち蒸散速度と蒸散開始時刻及び温度を検出することにより、コート紙のような特殊紙を除いた普通紙は例えば再生紙であっても、記録用紙39の種類を判別する必要なしに、記録用紙39の変形を予知できるとともに変形量も判定することができる。   Next, FIG. 25 shows changes in the amount of moisture transpiration and displacement of different types of recording paper 39 when the contact temperature difference between the heating member 401 and the recording paper 39 is 70 ° C. In FIG. 25, the transpiration E characteristic is a case in which the recording paper 39 is thinner than the transpiration B characteristic, and the paper has a small heat capacity and water easily evaporates. As shown in FIGS. 25A and 25B, the transpiration E characteristic evaporates earlier than the transpiration B characteristic and deforms faster. That is, it shows that the recording paper 39 is thicker (the strength of the stiffness). Therefore, by detecting the transpiration behavior of moisture contained in the recording paper 39, that is, the transpiration rate, the transpiration start time and the temperature, even if the plain paper excluding special paper such as coated paper is recycled paper, for example, It is possible to predict the deformation of the recording paper 39 and determine the deformation amount without having to determine the type of the paper 39.

そこで画像形成ユニット30の用紙搬送経路には、記録用紙39の蒸散挙動を検出するために、図20に示すように、転写装置35より上流側に第1の位置センサ41aと非接触結露検出装置3の例えば図14に示す計測手段12cと同じ第1の計測手段42aを有し、用紙搬送経路の転写装置35より下流側に第2の位置センサ41bと第2の計測手段42bを有し、定着装置40に第3の計測手段42cを有する。第1の位置センサ41aと第1の計測手段42aは略同じ位置に配置され、第2の位置センサ41bと第2の計測手段42bも略同じ位置に配置されている。   Therefore, in order to detect the transpiration behavior of the recording paper 39 in the paper conveyance path of the image forming unit 30, the first position sensor 41a and the non-contact dew condensation detection device are located upstream of the transfer device 35 as shown in FIG. 3 has the same first measuring means 42a as the measuring means 12c shown in FIG. 14, for example, and has a second position sensor 41b and a second measuring means 42b on the downstream side of the transfer device 35 in the paper transport path, The fixing device 40 includes a third measuring unit 42c. The first position sensor 41a and the first measuring means 42a are arranged at substantially the same position, and the second position sensor 41b and the second measuring means 42b are also arranged at substantially the same position.

画像形成装置の制御装置には、図26のブロック図に示すように、各位置センサ41a,41bと計測手段42a〜42cの検出結果により記録用紙39の変形を予測する変形予知制御部43を有する。変形予知制御部43は蒸散挙動演算処理部44と計時部45と基準情報記憶部46と変形予知処理部47及び変形回避制御部48を有する。蒸散挙動演算処理部44は第1の計測手段42aと第2の計測手段42bと第3の計測手段42cから出力する計測信号に基づいて記録用紙39に含まれる水分の蒸散挙動を検出して蒸散量を演算し、演算した蒸散量と、第1の位置センサ41aと第2の位置センサ41bで記録用紙の先端を検出したときの時刻差から記録用紙39からの水分の蒸散速度を算出する。基準情報記憶部46には、図23に示すような記録用紙39の加熱時間に対する温度上昇と蒸散増加量及び変位量を示す基準特性と、図24に示すように記録用紙39に変形が生じる以前の蒸散開始開始から変形が生じるまでの一定時間例えば0.1秒までの蒸散速度の基準値があらかじめ格納されている。変形予知処理部47は蒸散挙動演算処理部44で算出した蒸散速度と基準情報記憶部46に格納された基準値とを比較して記録用紙39の変形を予測するとともに定着装置40で水分蒸散量がどの程度増えるかを判定する。変形回避制御部48は記録用紙39の搬送速度情報と定着装置40の定着温度情報を入力し、入力した搬送速度情報と定着温度情報を、変形予知処理部46から送られる記録用紙39の変形予測情報及び基準情報記憶部46に格納した加熱時間に対する温度上昇と蒸散増加量及び変位量を示す基準特性により可変して記録用紙39の搬送速度と定着温度の制御情報を生成して記録用紙39の搬送速度制御部49や定着温度制御部50に出力し、変形予知処理部47から送られる記録用紙39の変形予測情報と蒸散量及び搬送速度と定着温度の制御情報に異常がある場合、記録用紙39の搬送を停止させ警報部51に警報信号を出力する。   As shown in the block diagram of FIG. 26, the control device of the image forming apparatus includes a deformation prediction control unit 43 that predicts deformation of the recording sheet 39 based on the detection results of the position sensors 41a and 41b and the measuring units 42a to 42c. . The deformation prediction control unit 43 includes a transpiration behavior calculation processing unit 44, a timer unit 45, a reference information storage unit 46, a deformation prediction processing unit 47, and a deformation avoidance control unit 48. The transpiration behavior calculation processing unit 44 detects the transpiration behavior of moisture contained in the recording paper 39 based on the measurement signals output from the first measurement means 42a, the second measurement means 42b, and the third measurement means 42c, and transpiration. The amount is calculated, and the transpiration rate of moisture from the recording paper 39 is calculated from the calculated transpiration amount and the time difference when the leading edge of the recording paper is detected by the first position sensor 41a and the second position sensor 41b. In the reference information storage section 46, reference characteristics indicating the temperature rise, transpiration increase amount and displacement amount with respect to the heating time of the recording paper 39 as shown in FIG. 23, and before the recording paper 39 is deformed as shown in FIG. The reference value of the transpiration rate is stored in advance for a certain period of time from the start of transpiration until deformation occurs, for example, 0.1 seconds. The deformation prediction processing unit 47 compares the transpiration rate calculated by the transpiration behavior calculation processing unit 44 with the reference value stored in the reference information storage unit 46 to predict the deformation of the recording paper 39 and at the fixing device 40 the moisture transpiration amount. Determine how much will increase. The deformation avoidance control unit 48 inputs the conveyance speed information of the recording paper 39 and the fixing temperature information of the fixing device 40, and predicts the deformation of the recording paper 39 sent from the deformation prediction processing unit 46 using the input conveyance speed information and fixing temperature information. The control information of the conveyance speed and the fixing temperature of the recording paper 39 is generated by varying the reference characteristics indicating the temperature rise, the transpiration increase amount and the displacement amount with respect to the heating time stored in the information and reference information storage unit 46. If there is an abnormality in the deformation prediction information of the recording paper 39 output from the deformation prediction processing section 47 and sent from the deformation prediction processing section 47, the amount of transpiration, and the control information of the conveyance speed and the fixing temperature, the recording paper is output. 39 is stopped and an alarm signal is output to the alarm unit 51.

この変形予知制御部43で、画像形成ユニット30に送られて感光体ドラム31に形成されたトナー像を転写して定着装置40に搬送される記録用紙39に生じる変形を予知して変形を回避する処理を図27のフローチャートを参照して説明する。   The deformation prediction control unit 43 predicts the deformation that occurs in the recording paper 39 that is transferred to the fixing device 40 by transferring the toner image that is sent to the image forming unit 30 and formed on the photosensitive drum 31 and avoids the deformation. The processing to be performed will be described with reference to the flowchart of FIG.

画像形成ユニット30で画像形成処理が開始して搬送された記録用紙39の先端部を第1の位置センサ41aで検出すると(ステップS21)、蒸散挙動演算処理部44は、そのとき計時部45から出力している時刻t0を入力し(ステップS22)、第1の位置センサ41aと第1の計測手段42aの配置で定まる所定のタイミングをおいて第1の計測手段42aで計測した記録用紙39の先端部に含まれる水分の蒸散挙動を示す計測情報から蒸散量H0を算出する(ステップS23)。この状態で搬送されている記録用紙39には転写装置35でトナー像が転写されて定着装置40に送られるとき、トナー像が転写された記録用紙39の先端部を第2の位置センサ41bで検出すると(ステップS24)、蒸散挙動演算処理部44は計時部45からそのときの時刻t1を入力し(ステップS25)、所定のタイミングをおいて第2の計測手段42bで計測した記録用紙39の先端部に含まれる水分の蒸散挙動を示す計測情報から蒸散量H1を算出する(ステップS26)。蒸散挙動演算処理部44は第2の計測手段42bで計測した計測情報から蒸散量H1を算出すると、先に算出した蒸散量H0と今回算出した蒸散量H1及び第1の位置センサ41aと第2の位置センサ41aで記録用紙39の先端部を検出したときの時刻t0と時刻t1から蒸散速度Vを、
V=(H1−H0)/(t1−t0)
で演算し、演算した蒸散速度Vを変形予知処理部47に送る(ステップS27)。
When the first position sensor 41a detects the leading end of the recording paper 39 that has been transported after the image forming process is started in the image forming unit 30 (step S21), the transpiration behavior calculation processing unit 44 then starts from the time measuring unit 45. The output time t0 is input (step S22), and the recording sheet 39 measured by the first measuring unit 42a at a predetermined timing determined by the arrangement of the first position sensor 41a and the first measuring unit 42a. The transpiration amount H0 is calculated from the measurement information indicating the transpiration behavior of the moisture contained in the tip (step S23). When the toner image is transferred to the recording paper 39 conveyed in this state by the transfer device 35 and sent to the fixing device 40, the leading end of the recording paper 39 to which the toner image has been transferred is detected by the second position sensor 41b. When detected (step S24), the transpiration behavior calculation processing unit 44 inputs the time t1 at that time from the time measuring unit 45 (step S25), and the recording sheet 39 measured by the second measuring means 42b at a predetermined timing. The transpiration amount H1 is calculated from the measurement information indicating the transpiration behavior of the water contained in the tip (step S26). When the transpiration behavior calculation processing unit 44 calculates the transpiration amount H1 from the measurement information measured by the second measuring means 42b, the previously calculated transpiration amount H0, the transpiration amount H1 calculated this time, the first position sensor 41a and the second position sensor 41a. The transpiration rate V from time t0 and time t1 when the position sensor 41a detects the leading edge of the recording paper 39,
V = (H1-H0) / (t1-t0)
And the calculated transpiration rate V is sent to the deformation prediction processing unit 47 (step S27).

このように記録用紙39の先端部に含まれる水分の蒸散挙動を計測するのは、画像形成ユニット30に搬送される記録用紙39の端部は換気性がよく、周囲雰囲気への蒸散が多いうえ、乾燥が進みやすいとともに端部への水分供給が不足がちになるため、乾燥への挙動が迅速に現れ、記録用紙39の変形に大きく影響するためである。また、記録用紙39の先端部が第1の位置センサ41aと第2の位置センサ41bの位置に達したとき蒸散挙動を計測するのは、記録用紙39が搬送されているので記録装置39の同一個所で蒸散挙動を計測して正確な蒸散速度を得るためである。   In this way, the transpiration behavior of the moisture contained in the leading end portion of the recording paper 39 is measured because the end portion of the recording paper 39 conveyed to the image forming unit 30 has good ventilation and transpiration to the surrounding atmosphere is large. This is because the drying tends to proceed and the water supply to the end tends to be insufficient, so that the drying behavior appears quickly and greatly affects the deformation of the recording paper 39. The transpiration behavior is measured when the leading end of the recording paper 39 reaches the position of the first position sensor 41a and the second position sensor 41b, because the recording paper 39 is being conveyed. This is to measure the transpiration behavior at a point to obtain an accurate transpiration rate.

変形予知処理部47は送られた蒸散速度Vと基準情報記憶部46に格納されている記録用紙39に変形が生じる以前の蒸散開始開始から変形が生じるまでの一定時間までの蒸散速度の基準値とを比較し、蒸散速度Vが基準値より小さいときは、搬送されている記録用紙39に変形が生じないと判定し、蒸散速度Vが基準値以上のときは、搬送されている記録用紙39に変形が生じると判定して変形予知情報を変形回避制御部48に送る(ステップS28)。変形回避制御部48は、変形予知情報が送られると、記録用紙39の搬送速度情報と定着装置40の定着温度情報を入力し、入力した搬送速度情報と定着温度情報を送られる記録用紙39の変形予測情報及び基準情報記憶部46に格納した加熱時間に対する温度上昇と蒸散増加量及び変位量を示す基準特性により可変して記録用紙39の搬送速度と定着温度の制御情報を生成して記録用紙39の搬送速度制御部49や定着温度制御部50に出力する(ステップS29)。搬送速度制御部49と定着温度制御部50は送られた搬送速度と定着温度の制御情報により記録用紙39の搬送速度を制御し定着装置40の定着温度を制御する。この搬送速度と定着温度を記録用紙39の変形回避のために制御しているとき、搬送速度と定着温度の制御情報に異常がある場合、記録用紙39の搬送を停止させ警報部51に警報信号を出力する(ステップS30,S31)。   The deformation prediction processing unit 47 sends the transpiration rate V and the reference value of the transpiration rate from the start of transpiration before the deformation of the recording paper 39 stored in the reference information storage unit 46 to a certain time until the deformation occurs. When the transpiration speed V is smaller than the reference value, it is determined that the recording paper 39 being conveyed is not deformed. When the transpiration speed V is equal to or higher than the reference value, the recording paper 39 being conveyed is determined. It is determined that deformation will occur, and deformation prediction information is sent to the deformation avoidance control unit 48 (step S28). When the deformation prediction information is sent, the deformation avoidance control unit 48 inputs the conveyance speed information of the recording paper 39 and the fixing temperature information of the fixing device 40, and the recording paper 39 of the recording paper 39 to which the input conveyance speed information and the fixing temperature information are sent. Control information for the conveyance speed and fixing temperature of the recording paper 39 is generated by varying the reference characteristics indicating the temperature rise, the transpiration increase amount, and the displacement amount with respect to the heating time stored in the deformation prediction information and reference information storage unit 46 to generate the recording paper. 39 is output to the conveyance speed controller 49 and the fixing temperature controller 50 (step S29). The conveyance speed control unit 49 and the fixing temperature control unit 50 control the conveyance speed of the recording paper 39 and control the fixing temperature of the fixing device 40 based on the sent conveyance speed and fixing temperature control information. When the conveyance speed and the fixing temperature are controlled to avoid deformation of the recording paper 39, if there is an abnormality in the control information of the conveyance speed and the fixing temperature, the conveyance of the recording paper 39 is stopped and an alarm signal is sent to the alarm unit 51. Is output (steps S30 and S31).

このように記録用紙39を定着装置40に送る前に記録用紙39に含まれる水分の蒸散速度Vを演算して変形の有無を予知して変形回避処理を行うから、定着装置40で記録用紙39が加熱されたときに変形することを防止して用紙ジャムは発生することを抑制することができる。   Thus, before the recording paper 39 is sent to the fixing device 40, the evaporation rate V of the moisture contained in the recording paper 39 is calculated to predict the presence or absence of deformation and the deformation avoiding process is performed. It is possible to prevent the sheet jam from occurring by preventing the sheet from being deformed when heated.

記録用紙39の先端部が定着装置40に達して第3の計測手段42cから記録用紙39の先端部に含まれる水分の蒸散挙動を示す計測情報が蒸散挙動演算部44に入力すると、蒸散挙動演算部44は入力した計測情報から蒸散量H2を算出して変形回避制御部48に送る。変形回避制御部48は送られた蒸散量H2と基準情報記憶部46に格納した加熱時間に対する温度上昇と蒸散増加量及び変位量を示す基準特性を比較し、蒸散量H2が所定以上に増加している場合は警報部51に警報信号を出力する。   When the leading end of the recording paper 39 reaches the fixing device 40 and the measurement information indicating the transpiration behavior of moisture contained in the leading end of the recording paper 39 is input from the third measuring means 42c to the transpiration behavior calculating unit 44, the transpiration behavior calculation is performed. The unit 44 calculates the transpiration amount H2 from the input measurement information and sends it to the deformation avoidance control unit 48. The deformation avoidance control unit 48 compares the transpiration amount H2 sent with the reference characteristics indicating the temperature rise, the transpiration increase amount and the displacement amount with respect to the heating time stored in the reference information storage unit 46, and the transpiration amount H2 increases more than a predetermined value. If so, an alarm signal is output to the alarm unit 51.

このように定着装置40で定着される記録用紙39の蒸散量H2を第3の計測手段42cの計測情報で算出することにより、最終的に記録用紙39の変形の有無を確認することができる。すなわち画像形成ユニット30に搬送された記録用紙39は定着装置40に搬送されるにしたがって次第に温度上昇し、この温度上昇により記録用紙39に含まれる水分の蒸散量が次第に多くなり、定着装置40を通過するとき最も温度が高くなり蒸散量が多くなる。そこで第3の計測手段42cの計測情報により、定着装置40に入った記録用紙39の蒸散量H2を算出して定着装置40で蒸散量がどの程度増加するかを推測できる。   Thus, by calculating the transpiration amount H2 of the recording paper 39 fixed by the fixing device 40 with the measurement information of the third measuring means 42c, the presence or absence of deformation of the recording paper 39 can be finally confirmed. In other words, the recording paper 39 conveyed to the image forming unit 30 gradually increases in temperature as it is conveyed to the fixing device 40, and due to this temperature increase, the amount of transpiration of moisture contained in the recording paper 39 gradually increases. When passing, the temperature becomes highest and the amount of transpiration increases. Therefore, from the measurement information of the third measuring means 42c, the transpiration amount H2 of the recording paper 39 that has entered the fixing device 40 can be calculated to estimate how much the transpiration amount increases in the fixing device 40.

また、第1の計測手段42a〜第3の計測手段42cとして非接触結露検出装置3の例えば図14に示す計測手段12cを使用することにより、記録用紙39に非接触で蒸散挙動を計測するから、記録用紙39に転写されたトナー像に影響を与えずに蒸散挙動を計測することができるとともにリアルタイムで蒸散量を得ることができる。さらに、非接触結露検出装置3の例えば図14に示す計測手段12cは整流管13を構成しているから、搬送される記録用紙39により計測位置における蒸散の流れに揺らぎを与えないで精度良く蒸散挙動を計測することができる。   Further, by using, for example, the measuring means 12c shown in FIG. 14 of the non-contact dew condensation detecting device 3 as the first measuring means 42a to the third measuring means 42c, the transpiration behavior is measured in a non-contact manner on the recording paper 39. The transpiration behavior can be measured without affecting the toner image transferred to the recording paper 39, and the transpiration amount can be obtained in real time. Furthermore, since the measuring means 12c shown in FIG. 14 of the non-contact dew condensation detection device 3, for example, constitutes the rectifying tube 13, the transpiration is accurately performed without giving fluctuation to the transpiration flow at the measurement position by the recording paper 39 conveyed. The behavior can be measured.

この第1の計測手段42aと第2の計測手段42bは、図28に示すように、記録用紙39の搬送経路の搬送ローラ52に組み込むことにより、記録用紙39との間隔を精度良く保つことができる。また、第1の計測手段42aと第2の計測手段42bを搬送ローラ52の近傍に設けても良いし、搬送手段として搬送ベルトを使用した場合には、搬送ベルトから一定位置だけ隔てた位置に第1の計測手段42aと第2の計測手段42bを設けても良い。   As shown in FIG. 28, the first measuring unit 42a and the second measuring unit 42b are incorporated in the conveying roller 52 in the conveying path of the recording paper 39, so that the distance from the recording paper 39 can be accurately maintained. it can. Further, the first measuring means 42a and the second measuring means 42b may be provided in the vicinity of the conveying roller 52. When a conveying belt is used as the conveying means, the first measuring means 42a and the second measuring means 42b are separated from the conveying belt by a certain position. A first measuring unit 42a and a second measuring unit 42b may be provided.

さらに、前記説明では第1の計測手段42a〜第3の計測手段42cとして例えば図14に示す計測手段12cを使用した場合について説明したが、図12に示す計測手段12aや図13に示す計測手段12bあるいは図15に示す計測手段12dを使用しても良い。   Furthermore, in the above description, the case where the measurement means 12c shown in FIG. 14 is used as the first measurement means 42a to the third measurement means 42c, for example, has been described. However, the measurement means 12a shown in FIG. 12 or the measurement means shown in FIG. 12b or measuring means 12d shown in FIG. 15 may be used.

また、図29(a)の正面図と(b)の断面図に示すように、温度湿度センサ4a,4b及びフローセンサ5の取り付け位置に空洞53を有するセンサ基板22に、温度湿度センサ4a,4b及びフローセンサ5を水分蒸散の流れ方向に沿って設け、センサ基板22の両側に蒸散の流れの揺らぎを抑制する流路板54を有する計測手段12fを第1の計測手段42a〜第3の計測手段42cに使用しても良い。   Further, as shown in the front view of FIG. 29 (a) and the cross-sectional view of FIG. 29 (b), the temperature / humidity sensors 4a, 4b and the flow sensor 5 are mounted on the sensor substrate 22 having the cavity 53 at the mounting position. 4b and the flow sensor 5 are provided along the flow direction of moisture transpiration, and the measurement means 12f having flow path plates 54 for suppressing fluctuation of the transpiration flow on both sides of the sensor substrate 22 is provided as the first measurement means 42a to the third measurement means 42a. You may use for the measurement means 42c.

また、図30(a)の斜視図と(b)の断面図に示すように、センサ基板22の上面22aに記録用紙39の搬送方向に沿ってサーモパイルや焦電構造の赤外線センサ等の焦電素子54と温度湿度センサ4a,4b及びフローセンサ5を配置し、センサ基板22の下面22bの焦電素子54と対向する位置に放熱素子55を配置し、センサ基板22の中央をエッチング等により除去して記録用紙39の側端部を通す空隙56を設けた計測手段12gを第1の計測手段42a〜第3の計測手段42cに使用しても良い。この計測手段12gを第1の計測手段42a〜第3の計測手段42cに使用した場合、放熱素子55から放射された熱は空隙56を横切って焦電素子54で検出される。この空隙56に記録用紙39が搬送されていると、放熱素子55から短時間例えば数10msec放射された微小熱量例えば数10mW程度の熱により、記録用紙39の端部の微小範囲で僅かな温度例えば0.1℃程度上昇し、微小範囲の水分が蒸散する。この蒸散の挙動を温度湿度センサ4a,4b及びフローセンサ5で測定することにより蒸散量や温度を測定することができる。また、空隙56に記録用紙39が搬送されたとき、焦電素子54で記録用紙39を透過する赤外線量を検出することにより、記録用紙39の質(繊維密度)や含有水分量が測定でき、用紙変形の予知精度を高めることができる。   Further, as shown in the perspective view of FIG. 30A and the cross-sectional view of FIG. 30B, pyroelectric elements such as a thermopile and an infrared sensor having a pyroelectric structure are formed on the upper surface 22a of the sensor substrate 22 along the conveyance direction of the recording paper 39. The element 54, the temperature / humidity sensors 4a and 4b, and the flow sensor 5 are arranged, the heat radiating element 55 is arranged at a position facing the pyroelectric element 54 on the lower surface 22b of the sensor substrate 22, and the center of the sensor substrate 22 is removed by etching or the like. Thus, the measuring means 12g provided with the gap 56 through which the side end portion of the recording paper 39 passes may be used for the first measuring means 42a to the third measuring means 42c. When this measuring means 12g is used for the first measuring means 42a to the third measuring means 42c, the heat radiated from the heat radiating element 55 is detected by the pyroelectric element 54 across the gap 56. When the recording paper 39 is transported into the gap 56, a slight temperature, for example, in a minute range at the end of the recording paper 39 due to the heat of a small amount of heat radiated from the heat radiating element 55, for example, several tens of msec, for example several tens of mW. The temperature rises by about 0.1 ° C, and a minute range of water evaporates. By measuring the behavior of this transpiration with the temperature / humidity sensors 4a and 4b and the flow sensor 5, the transpiration amount and temperature can be measured. Further, when the recording paper 39 is conveyed to the gap 56, the pyroelectric element 54 detects the amount of infrared light transmitted through the recording paper 39, whereby the quality (fiber density) and moisture content of the recording paper 39 can be measured. Prediction accuracy of sheet deformation can be increased.

また、センサ基板22に位置センサ41を設けても良い。このようにセンサ基板22に位置センサ41を設けることにより、記録用紙39の先端部の蒸散挙動を確実に検出することができる。   Further, the position sensor 41 may be provided on the sensor substrate 22. By providing the position sensor 41 on the sensor substrate 22 in this way, it is possible to reliably detect the transpiration behavior of the front end portion of the recording paper 39.

前記説明では変形予知制御部43に蒸散挙動演算処理部44と変形予知処理部47及び変形回避制御部48を設けた場合について説明したが、図31のブロック図に示すように、蒸散挙動演算処理部44と変形予知処理部47及び変形回避制御部48の機能をCPU57で処理するようにしても良い。この場合は各位置センサ41a,41bや計測手段42a〜42cの計測情報を入力部58からCPU57に入力し、CPU57で蒸散挙動算出処理や変形予知処理及び変形回避処理を行い、その処理結果を出力部59から搬送速度制御部49や定着温度制御部50に送り、記録用紙39の搬送速度や定着温度を補正して記録用紙39が変形を防ぐ。   In the above description, the case where the transpiration behavior calculation processing unit 44, the deformation prediction processing unit 47, and the deformation avoidance control unit 48 are provided in the deformation prediction control unit 43 has been described. However, as shown in the block diagram of FIG. The functions of the unit 44, the deformation prediction processing unit 47, and the deformation avoidance control unit 48 may be processed by the CPU 57. In this case, the measurement information of the position sensors 41a and 41b and the measuring means 42a to 42c is input from the input unit 58 to the CPU 57, and the CPU 57 performs transpiration behavior calculation processing, deformation prediction processing, and deformation avoidance processing, and outputs the processing results. The sheet 59 is sent to the conveyance speed control unit 49 and the fixing temperature control unit 50 to correct the conveyance speed and fixing temperature of the recording paper 39 to prevent the recording paper 39 from being deformed.

また、第1の計測手段42aと第2の計測手段42bを記録用紙39の搬送経路の上側に設けた場合について説明したが、非接触結露検出装置3の各計測手段12は小型で高速応答であるから、記録用紙39の搬送経路の下側に配置して、記録用紙39の下側から蒸散する蒸散挙動を検出して蒸散量を求めるようにしても良い。   Further, although the case where the first measuring unit 42a and the second measuring unit 42b are provided on the upper side of the conveyance path of the recording paper 39 has been described, each measuring unit 12 of the non-contact dew condensation detection device 3 is small and has a high-speed response. Therefore, the transpiration amount may be obtained by detecting the transpiration behavior that evaporates from the lower side of the recording paper 39 by arranging it below the conveyance path of the recording paper 39.

前記説明では電子写真方式の画像形成装置について説明したが、インクジェット方式等他の方式の画像形成装置にも同様に適用して用紙ジャム等の記録用紙搬送障害の防止を行うことができる。   In the above description, the electrophotographic image forming apparatus has been described. However, the present invention can be similarly applied to other types of image forming apparatuses such as an ink jet system to prevent a recording paper conveyance failure such as a paper jam.

物体表面に対する周囲雰囲気の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the surrounding atmosphere with respect to the object surface. 物体の表面温度に対する周囲雰囲気の物体表面からの距離に応じて変化する周囲雰囲気の温度と相対湿度の分布図である。It is a distribution map of the temperature and relative humidity of the ambient atmosphere that changes according to the distance from the object surface of the ambient atmosphere to the surface temperature of the object. この発明の非接触結露検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact dew condensation detection apparatus of this invention. 物体表面に対して温度湿度センサとフローセンサを配置した第1番目の計測手段の構成図である。It is a block diagram of the 1st measurement means which has arrange | positioned the temperature humidity sensor and the flow sensor with respect to the object surface. 物体表面の結露発生を検出するときの処理を示すフローチャートである。It is a flowchart which shows a process when detecting the dew condensation generation | occurrence | production of the object surface. 物体表面からの蒸散発生を検出するときの処理を示すフローチャートである。It is a flowchart which shows a process when detecting transpiration | evaporation generation | occurrence | production from an object surface. 第2番目の計測手段の構成図である。It is a block diagram of the 2nd measurement means. 壁面に沿った距離に対する境界層の厚さの変化特性図である。It is a change characteristic figure of the thickness of a boundary layer with respect to the distance along a wall surface. 第3番目の計測手段の構成図である。It is a block diagram of the 3rd measurement means. 物体表面上下における周囲雰囲気の温度と湿度の分布図である。It is a distribution map of the temperature and humidity of the ambient atmosphere above and below the object surface. 第4番目の計測手段の構成図である。It is a block diagram of the 4th measurement means. 第5番目の計測手段と第6の計測手段の構成を示す断面図である。It is sectional drawing which shows the structure of a 5th measurement means and a 6th measurement means. 第7番目の計測手段の構成図である。It is a block diagram of the 7th measurement means. 第8番目の計測手段の構成図である。It is a block diagram of the 8th measurement means. 第9番目の計測手段の構成図である。It is a block diagram of the 9th measurement means. 第10番目の計測手段の構成図である。It is a block diagram of the 10th measuring means. 第5番目の計測手段により計測した温度と湿度の変化特性図である。It is a change characteristic figure of temperature and humidity measured by the 5th measurement means. 第5番目の計測手段により第2の条件のもとで計測した温度と湿度の変化特性図である。It is a temperature-humidity change characteristic view measured on the 2nd condition by the 5th measurement means. 第5番目の計測手段により第3の条件のもとで計測した温度と湿度の変化特性図である。It is a temperature-humidity change characteristic view measured on the 3rd condition by the 5th measurement means. この発明の画像形成装置の画像形成ユニットを示す構成図である。It is a block diagram showing an image forming unit of the image forming apparatus of the present invention. 記録用紙に含まれる水分の蒸散による変形を示す模式図である。It is a schematic diagram which shows the deformation | transformation by the evaporation of the water | moisture content contained in a recording paper. 記録用紙の加熱時間に対する用紙温度上昇と変位量及び水分蒸散増加量の変化特性図である。FIG. 6 is a change characteristic diagram of a sheet temperature rise, a displacement amount, and a moisture transpiration increase amount with respect to a recording sheet heating time. 異なる蒸散特性毎の記録用紙加熱時間に対する用紙温度上昇と変位量及び水分蒸散増加量の変化特性図である。It is a change characteristic figure of the paper temperature rise with respect to the recording paper heating time for every different transpiration characteristic, the amount of displacement, and the amount of moisture transpiration increase. 異なる蒸散特性毎の記録用紙加熱時間に対する用紙温度上昇と変位量及び水分蒸散増加量の変化特性図である。It is a change characteristic figure of the paper temperature rise with respect to the recording paper heating time for every different transpiration characteristic, the amount of displacement, and the amount of moisture transpiration increase. 蒸散速度に対する記録用紙の変位量の変化特性図である。It is a change characteristic view of the displacement amount of the recording paper with respect to the transpiration rate. 種類の異なる記録用紙の記録用紙加熱時間に対する変位量と水分蒸散増加量の変化特性図である。It is a change characteristic view of the amount of displacement and the amount of increase in water evaporation with respect to the recording paper heating time of different types of recording paper. 変形予知制御部の構成を示すブロック図である。It is a block diagram which shows the structure of a deformation | transformation prediction control part. 画像形成ユニットにおける記録用紙の変形予知・回避処理を示すフローチャートである。6 is a flowchart illustrating a recording sheet deformation prediction / avoidance process in the image forming unit. 記録用紙に対する計測手段の配置を示す斜視図である。It is a perspective view which shows arrangement | positioning of the measurement means with respect to a recording paper. 第11番目の計測手段の構成図である。It is a block diagram of the 11th measurement means. 第12番目の計測手段の構成図である。It is a block diagram of the 12th measurement means. 他の変形予知制御部の構成を示すブロック図である。It is a block diagram which shows the structure of another deformation | transformation prediction control part.

符号の説明Explanation of symbols

1;物体、2;周囲雰囲気、3;非接触結露検出装置、4;温度湿度センサ、
5;フローセンサ、6;、7;操作部、8;演算処理部、9;記憶部、
10;警報出力部、11;壁面、12;計測手段、13;整流管、15;基板、
16;抵抗体、17;センサ感応部、19;カバー、20;壁、21;貫通孔、
22;センサ基板、30;画像形成ユニット、31;感光体ドラム、
32;帯電装置、33;書込装置、34;現像装置、35;転写装置、
36;クリーニング装置、39;記録用紙、40;定着装置、41;位置センサ、
42;計測手段、43;変形予知制御部、44;蒸散挙動演算処理部、
45;計時部、46;基準情報記憶部、47;変形予知処理部、
48;変形回避制御部、49;搬送速度制御部、50;定着温度制御部、
51;警報部、52;搬送ローラ、53;54;焦電素子、55;放熱素子、
57;CPU。
DESCRIPTION OF SYMBOLS 1; Object, 2; Ambient atmosphere, 3; Non-contact dew condensation detection apparatus, 4; Temperature humidity sensor,
5; flow sensor, 6 ;, 7; operation unit, 8; arithmetic processing unit, 9; storage unit,
10; Alarm output unit, 11; Wall surface, 12; Measuring means, 13; Rectifier tube, 15;
16; Resistor, 17; Sensor sensitive part, 19; Cover, 20; Wall, 21;
22; sensor substrate, 30; image forming unit, 31; photosensitive drum,
32; Charging device; 33; Writing device; 34; Developing device; 35; Transfer device;
36; Cleaning device; 39; Recording paper; 40; Fixing device; 41; Position sensor;
42; measurement means, 43; deformation prediction control unit, 44; transpiration behavior calculation processing unit,
45; time measuring unit, 46; reference information storage unit, 47; deformation prediction processing unit,
48; deformation avoidance control unit; 49; transport speed control unit; 50; fixing temperature control unit;
51; alarm unit, 52; transport roller, 53; 54; pyroelectric element, 55; heat dissipation element,
57; CPU.

Claims (18)

物体表面の周囲雰囲気における気体の温度と湿度と流方向又は流速と圧力及び成分の各要素のいずれか又は各要素を組み合わせて周囲雰囲気の物体表面に対する分布状態及び輸送過程を測定し、測定した周囲雰囲気の物体表面に対する分布状態及び輸送過程により、物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出することを特徴とする非接触結露検出方法。   The ambient temperature measured by measuring the distribution and transport process of the ambient atmosphere on the object surface by combining any of the elements of temperature, humidity, flow direction, flow velocity, pressure, and component in the ambient atmosphere of the object surface or a combination of each element. Non-contact dew condensation characterized by detecting the behavior of the ambient atmosphere gas adsorbing and agglomerating on the object surface and the behavior of the agglomerated liquid evaporating on the object surface based on the distribution of the atmosphere on the object surface and the transport process Detection method. 請求項1記載の非接触結露検出方法において、前記周囲雰囲気における気体の各要素を、少なくとも物体表面の近傍と物体表面から離れた遠隔の2個所で測定することを特徴とする非接触結露検出方法。   2. The non-contact dew condensation detection method according to claim 1, wherein each element of the gas in the ambient atmosphere is measured at least at two locations in the vicinity of the object surface and at a distance from the object surface. . 請求項1又は請求項2記載の非接触結露検出方法において、前記周囲雰囲気における気体の各要素を測定する個所に、周囲雰囲気の気体に対して摩擦抵抗を有する壁面を、物体表面に対して近接し、かつ周囲雰囲気の気体が流れる方向に配置したことを特徴とする非接触結露検出方法。   3. The non-contact dew condensation detection method according to claim 1 or 2, wherein a wall surface having a frictional resistance with respect to the gas in the ambient atmosphere is placed close to the object surface at a place where each element of the gas in the ambient atmosphere is measured. And a non-contact dew condensation detection method, which is arranged in the direction in which the gas in the surrounding atmosphere flows. 請求項2記載の非接触結露検出方法において、前記周囲雰囲気における気体の各要素を測定する個所を、重力に沿った気体の輸送成分が相反する方向でそれぞれ測定し、重力に沿った気体の輸送成分が相反する方向で計測した測定値の差分により、物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出することを特徴とする非接触結露検出方法。   3. The non-contact dew condensation detection method according to claim 2, wherein the location where each element of the gas in the ambient atmosphere is measured is measured in a direction in which the transport components of the gas along the gravity oppose each other, and the transport of the gas along the gravity is performed. It is characterized by detecting the behavior of the ambient atmosphere gas adsorbing and aggregating on the object surface and the behavior of the agglomerated liquid evaporating on the object surface based on the difference between the measured values measured in the directions where the components are opposite to each other. Contact condensation detection method. 請求項1記載の非接触結露検出方法において、前記周囲雰囲気における気体の各要素を測定する個所に、周囲雰囲気の気体に対して摩擦抵抗を有する壁面を、物体表面に対して近接し、かつ周囲雰囲気の気体が流れる方向に配置し、前記周囲雰囲気における気体の各要素を少なくとも前記壁面の近傍と物体表面から離れた遠隔の2個所で測定することを特徴とする非接触結露検出方法。   2. The non-contact dew condensation detection method according to claim 1, wherein a wall having a frictional resistance against the gas in the ambient atmosphere is close to the surface of the object at a place where each element of the gas in the ambient atmosphere is measured, A non-contact dew condensation detection method which is arranged in a direction in which an atmospheric gas flows, and measures each element of the gas in the ambient atmosphere at at least two locations in the vicinity of the wall surface and remote from the object surface. 請求項3又は請求項5記載の非接触結露検出方法において、前記壁面を円筒状に形成された整流管で形成することを特徴とする非接触結露検出方法。   6. The non-contact dew condensation detection method according to claim 3 or 5, wherein the wall surface is formed by a rectifier tube formed in a cylindrical shape. 請求項6記載の非接触結露検出方法において、前記整流管の一部の内径を小さくしたことを特徴とする非接触結露検出方法。   7. The non-contact dew condensation detection method according to claim 6, wherein an inner diameter of a part of the rectifying pipe is reduced. 計測手段と処理装置とを有し、
前記計測手段は、少なくとも物体表面の近傍と物体表面から離れた遠隔の2個所に配置され、物体表面の周囲雰囲気における気体の温度と湿度を測定する温度湿度センサと、物体表面の周囲雰囲気における気体の流方向又は流速を測定するフローセンサとを有し、
前記処理装置は、前記温度湿度センサとフローセンサの測定結果により周囲雰囲気の物体表面に対する分布状態及び輸送過程を判定して物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出することを特徴とする非接触結露検出装置。
Having a measuring means and a processing device;
The measurement means is disposed at least at two locations in the vicinity of the object surface and remote from the object surface, and a temperature / humidity sensor for measuring the temperature and humidity of the gas in the ambient atmosphere of the object surface, and the gas in the ambient atmosphere of the object surface A flow sensor for measuring the flow direction or flow velocity of
The processing apparatus determines the distribution state and transport process of the ambient atmosphere on the object surface based on the measurement results of the temperature / humidity sensor and the flow sensor, and adsorbs and aggregates the ambient atmosphere gas on the object surface and on the object surface. A non-contact dew condensation detection device that detects the behavior of transpiration of liquid that has been condensed.
請求項8記載の非接触結露検出装置において、前記計測手段を物体表面に対して近接して配置する整流管内に設けたことを特徴とする非接触結露検出装置。   9. The non-contact dew condensation detection device according to claim 8, wherein the measurement means is provided in a rectifying tube arranged close to the object surface. 計測手段と処理装置とを有し、
前記計測手段は、物体表面に対して近接して配置する整流管と、該整流管の壁面の近傍と壁面からら離れた2個所に配置され、物体表面の周囲雰囲気における気体の温度と湿度を測定する温度湿度センサと、前記整流管内における気体の流方向又は流速を測定するフローセンサとを有し、
前記処理装置は、前記温度湿度センサとフローセンサの測定結果により周囲雰囲気の物体表面に対する分布状態及び輸送過程を判定して物体表面上に対する周囲雰囲気の気体が吸着して凝集する挙動及び物体表面上に凝集した液体が蒸散する挙動を検出することを特徴とする非接触結露検出装置。
Having a measuring means and a processing device;
The measuring means is arranged in two locations, a rectifying tube arranged close to the object surface, a vicinity of the wall surface of the rectifying tube, and a distance from the wall surface, and the temperature and humidity of the gas in the ambient atmosphere of the object surface are measured. A temperature / humidity sensor to be measured, and a flow sensor for measuring the flow direction or flow velocity of gas in the rectifying pipe,
The processing apparatus determines the distribution state and transport process of the ambient atmosphere on the object surface based on the measurement results of the temperature / humidity sensor and the flow sensor, and adsorbs and aggregates the ambient atmosphere gas on the object surface and on the object surface. A non-contact dew condensation detection device that detects the behavior of transpiration of liquid that has been condensed.
請求項8乃至10のいずれかに記載の非接触結露検出装置において、前記計測手段に物体表面の周囲雰囲気における気体の圧力及び成分を測定するセンサを有することを特徴とする非接触結露検出装置。   11. The non-contact dew condensation detection device according to claim 8, wherein the measurement unit includes a sensor for measuring a pressure and a component of a gas in an ambient atmosphere around the object surface. 請求項1乃至7のいずれかに記載の非接触結露検出方法により各種用紙に含まれる揮発成分の蒸散量を測定し、測定した蒸発量から単位時間当たりの蒸散量である蒸散速度を算出し、前記算出した蒸散速度があらかじめ設定した前記用紙に変形が生じるまでの一定時間までの蒸散速度の基準値を超えないように前記用紙の乾燥条件を設定することを特徴とする用紙変形抑制方法。   The transpiration rate of volatile components contained in various papers is measured by the non-contact dew condensation detection method according to any one of claims 1 to 7, and a transpiration rate that is a transpiration rate per unit time is calculated from the measured evaporation amount. A paper deformation suppression method, wherein the drying condition of the paper is set so that the calculated transpiration rate does not exceed a preset reference value of the transpiration rate until a predetermined time until the paper is deformed. 請求項12記載の用紙変形抑制方法において、前記用紙を搬送しているときに、前記用紙の搬送路に沿った複数個所で前記用紙の先端部に含まれる揮発成分の蒸散量を測定することを特徴とする用紙変形抑制方法。   13. The sheet deformation suppressing method according to claim 12, wherein when the sheet is conveyed, the amount of volatile component contained in the leading edge of the sheet is measured at a plurality of locations along the sheet conveyance path. A method for suppressing sheet deformation. 請求項8乃至11のいずれかに記載の非接触結露検出装置を有し、画像を形成する記録用紙を搬送中に記録用紙に含まれる水分の蒸散量を測定し、測定した蒸発量から単位時間当たりの蒸散量である蒸散速度を算出し、前記算出した蒸散速度があらかじめ設定した前記記録用紙に変形が生じるまでの一定時間までの蒸散速度の基準値を超えないように前記記録用紙の乾燥条件を設定することを特徴とする画像形成装置。   12. A non-contact dew condensation detection device according to claim 8, wherein the amount of moisture contained in the recording paper is measured while the recording paper on which an image is to be formed is conveyed, and a unit time is determined from the measured evaporation amount. The transpiration rate, which is the amount of transpiration per unit, is calculated, and the drying condition of the recording paper is set so that the calculated transpiration rate does not exceed the preset reference value of the transpiration rate until a predetermined time until the recording paper is deformed. An image forming apparatus, wherein 請求項14記載の画像形成装置において、前記記録用紙の搬送路に沿った複数個所で前記記録用紙の先端部に含まれる水分の蒸散量を測定することを特徴とする画像形成装置。   15. The image forming apparatus according to claim 14, wherein the amount of transpiration of water contained in the leading end portion of the recording paper is measured at a plurality of locations along a conveyance path of the recording paper. 請求項8乃至11のいずれかに記載の非接触結露検出装置の複数の計測手段と変形予知制御装置とを有し、
前記複数の計測手段は、記録用紙の搬送路に沿った複数個所に配置され、
前記変形予知制御装置は、蒸散挙動演算処理部と変形予知処理部及び変形回避制御部を有し、前記蒸散挙動演算処理部は前記複数の計測手段から出力する計測信号に基づいて前記記録用紙の先端部に含まれる水分の蒸散挙動を検出して蒸散量を演算し、演算した蒸散量から単位時間当たりの蒸散量である蒸散速度を算出し、前記変形予知処理部は前記蒸散挙動演算処理部で演算した蒸散速度とあらかじめ設定された前記記録用紙に変形が生じるまでの一定時間までの蒸散速度の基準値とを比較し、演算した蒸散速度が基準値を超えたとき、搬送されている記録用紙に変形が生じると判定して変形予知情報を生成し、前記変形回避制御部は前記変形予知処理部で生成した変形予知情報により前記記録用紙の搬送速度と定着温度のいずれか一方又は両方を可変制御することを特徴とする画像形成装置。
A plurality of measurement means and a deformation prediction control device of the non-contact dew condensation detection device according to any one of claims 8 to 11,
The plurality of measuring means are arranged at a plurality of locations along the conveyance path of the recording paper,
The deformation prediction control device includes a transpiration behavior calculation processing unit, a deformation prediction processing unit, and a deformation avoidance control unit, and the transpiration behavior calculation processing unit is configured to detect the recording paper based on measurement signals output from the plurality of measurement units. Detecting the transpiration behavior of moisture contained in the tip, calculating the transpiration amount, calculating the transpiration rate that is the transpiration rate per unit time from the calculated transpiration amount, the deformation prediction processing unit is the transpiration behavior calculation processing unit Compare the transpiration rate calculated in step 1 with the reference value of the transpiration rate up to a certain time until the recording paper is deformed in advance, and when the calculated transpiration rate exceeds the reference value, the recording being conveyed It is determined that the sheet is deformed and generates deformation prediction information, and the deformation avoidance control unit generates either the recording sheet conveyance speed or the fixing temperature based on the deformation prediction information generated by the deformation prediction processing unit. Image forming apparatus characterized by variably controlling both.
請求項8乃至11のいずれかに記載の非接触結露検出装置の複数の計測手段とCPUとを有し、
前記複数の計測手段は、記録用紙の搬送路に沿った複数個所に配置され、
前記CPUは、前記複数の計測手段から出力する計測信号に基づいて前記記録用紙の先端部に含まれる水分の蒸散挙動を検出して蒸散量を演算し、演算した蒸散量から単位時間当たりの蒸散量である蒸散速度を算出し、演算した蒸散速度とあらかじめ設定された前記記録用紙に変形が生じるまでの一定時間までの蒸散速度の基準値とを比較し、演算した蒸散速度が基準値を超えたとき、搬送されている記録用紙に変形が生じると判定して前記記録用紙の搬送速度と定着温度のいずれか一方又は両方を可変制御することを特徴とする画像形成装置。
A plurality of measuring means and a CPU of the non-contact dew condensation detecting device according to any one of claims 8 to 11,
The plurality of measuring means are arranged at a plurality of locations along the conveyance path of the recording paper,
The CPU detects a transpiration behavior of moisture contained in the leading end portion of the recording paper based on measurement signals output from the plurality of measuring means, calculates a transpiration amount, and transpiration per unit time from the calculated transpiration amount. Calculate the transpiration rate as a quantity, compare the calculated transpiration rate with the preset reference value of the transpiration rate until a certain time until the recording paper is deformed, and the calculated transpiration rate exceeds the reference value An image forming apparatus comprising: determining that deformation occurs in the recording sheet being conveyed, and variably controlling one or both of the recording sheet conveyance speed and the fixing temperature.
請求項16又は請求項17に記載の画像形成装置において、前記計測手段に前記記録用紙の先端を検出する位置センサを有することを特徴とする画像形成装置。   18. The image forming apparatus according to claim 16, wherein the measuring unit includes a position sensor that detects a leading edge of the recording paper.
JP2006147865A 2005-07-07 2006-05-29 Non-contact dew condensation detection method, non-contact dew condensation detection device, sheet deformation suppression method using the same, and image forming apparatus Expired - Fee Related JP4810312B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006147865A JP4810312B2 (en) 2005-08-24 2006-05-29 Non-contact dew condensation detection method, non-contact dew condensation detection device, sheet deformation suppression method using the same, and image forming apparatus
US11/481,097 US7360416B2 (en) 2005-07-07 2006-07-06 Non-contact condensation detecting apparatus
US12/073,013 US7574910B2 (en) 2005-07-07 2008-02-28 Non-contact condensation detecting method and non-contact condensation detecting apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005241959 2005-08-24
JP2005241959 2005-08-24
JP2006147865A JP4810312B2 (en) 2005-08-24 2006-05-29 Non-contact dew condensation detection method, non-contact dew condensation detection device, sheet deformation suppression method using the same, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2007086054A true JP2007086054A (en) 2007-04-05
JP4810312B2 JP4810312B2 (en) 2011-11-09

Family

ID=37973159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147865A Expired - Fee Related JP4810312B2 (en) 2005-07-07 2006-05-29 Non-contact dew condensation detection method, non-contact dew condensation detection device, sheet deformation suppression method using the same, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4810312B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115554A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Liquid concentration measuring device and liquid concentration measuring method
JP2010112912A (en) * 2008-11-10 2010-05-20 Ricoh Co Ltd Method and apparatus for detecting substance adsorbed/desorbed from surface of object, and image forming device
JP2013137168A (en) * 2011-12-28 2013-07-11 Nissan Motor Co Ltd Electrode drying method, electrode drying control method, electrode drying device, and electrode drying controller
CN109305126A (en) * 2017-07-28 2019-02-05 马自达汽车株式会社 The anti-smog device of vehicle
CN112285148A (en) * 2019-07-22 2021-01-29 刘金晨 Apparatus and method for measuring transpiration of plants
CN112981859A (en) * 2021-03-12 2021-06-18 海信(山东)冰箱有限公司 Washing machine and control method thereof
CN117871590A (en) * 2023-12-21 2024-04-12 中国电建集团北京勘测设计研究院有限公司 Prediction method for water condensation line position of traffic hole wall surface of pumped storage power station

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372250A (en) * 1989-08-11 1991-03-27 Shinei Kk Non-contact type local moisture evaporation amount and heat flow rate measuring apparatus
JPH0378648A (en) * 1989-08-22 1991-04-03 Hitachi Ltd Detecting apparatus of dew condensation
JPH0618465A (en) * 1992-07-02 1994-01-25 Ricoh Co Ltd Complex sensor
JPH0858153A (en) * 1994-08-18 1996-03-05 Fujitsu Ltd Serial electronic photography device and print adjustment
JPH10288383A (en) * 1997-04-15 1998-10-27 Toshiba Corp Air-conditioning equipment
JPH11337261A (en) * 1998-05-29 1999-12-10 Nec Niigata Ltd Method and apparatus for dehumidifying sheet and printer
JP2005170525A (en) * 2003-12-08 2005-06-30 Canon Inc Image forming device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372250A (en) * 1989-08-11 1991-03-27 Shinei Kk Non-contact type local moisture evaporation amount and heat flow rate measuring apparatus
JPH0378648A (en) * 1989-08-22 1991-04-03 Hitachi Ltd Detecting apparatus of dew condensation
JPH0618465A (en) * 1992-07-02 1994-01-25 Ricoh Co Ltd Complex sensor
JPH0858153A (en) * 1994-08-18 1996-03-05 Fujitsu Ltd Serial electronic photography device and print adjustment
JPH10288383A (en) * 1997-04-15 1998-10-27 Toshiba Corp Air-conditioning equipment
JPH11337261A (en) * 1998-05-29 1999-12-10 Nec Niigata Ltd Method and apparatus for dehumidifying sheet and printer
JP2005170525A (en) * 2003-12-08 2005-06-30 Canon Inc Image forming device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115554A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Liquid concentration measuring device and liquid concentration measuring method
JP2010112912A (en) * 2008-11-10 2010-05-20 Ricoh Co Ltd Method and apparatus for detecting substance adsorbed/desorbed from surface of object, and image forming device
JP2013137168A (en) * 2011-12-28 2013-07-11 Nissan Motor Co Ltd Electrode drying method, electrode drying control method, electrode drying device, and electrode drying controller
CN109305126A (en) * 2017-07-28 2019-02-05 马自达汽车株式会社 The anti-smog device of vehicle
JP2019026047A (en) * 2017-07-28 2019-02-21 マツダ株式会社 Defogging control apparatus for vehicle
CN109305126B (en) * 2017-07-28 2022-02-25 马自达汽车株式会社 Anti-fog device for vehicle
CN112285148A (en) * 2019-07-22 2021-01-29 刘金晨 Apparatus and method for measuring transpiration of plants
CN112981859A (en) * 2021-03-12 2021-06-18 海信(山东)冰箱有限公司 Washing machine and control method thereof
CN117871590A (en) * 2023-12-21 2024-04-12 中国电建集团北京勘测设计研究院有限公司 Prediction method for water condensation line position of traffic hole wall surface of pumped storage power station

Also Published As

Publication number Publication date
JP4810312B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
US7360416B2 (en) Non-contact condensation detecting apparatus
JP4810312B2 (en) Non-contact dew condensation detection method, non-contact dew condensation detection device, sheet deformation suppression method using the same, and image forming apparatus
JP5160631B2 (en) Air pollution sensor system
US10747127B2 (en) Lithographic apparatus
CN101561643B (en) Image forming apparatus
US7612799B1 (en) Humidity control systems and methods for infrared cameras
JP5212167B2 (en) Transfer paper characteristic measuring method, measuring apparatus, and image forming apparatus
US20140079458A1 (en) Sheet material identification device and method, and image forming apparatus
US7862689B2 (en) Water content estimation apparatus, sheet material processing apparatus, water content estimation method, and sheet material processing method
US7729652B2 (en) Belt fixing unit
JP4110117B2 (en) Sheet material identification apparatus, sheet material processing apparatus, and sheet material identification method
JP6641701B2 (en) Atmosphere sensor, method for manufacturing the same, and method for manufacturing printed matter
JP5327594B2 (en) Object surface desorbing substance amount measuring apparatus and image forming apparatus
JP5509524B2 (en) Paper moisture content measuring method, paper moisture content measuring device, and image forming apparatus
JP2010002738A (en) Curl determination method and curl determination device for transfer paper, and image forming apparatus using the same
EP3660498B1 (en) Ambient sensor with actuator
JPH04128643A (en) Sensor for predicting change of phase and device to prevent frosting and dewing
US9417606B2 (en) Image forming apparatus having control means to reduce an amount of the water vapor produced in a main assembly thereof or detecting unit configured to detect a value relating to an amount of water vapor in the main assembly
JP2016107423A (en) Pretreatment liquid coating/drying apparatus, printing system including the same, and printer
JP2007240297A (en) Spherical surface acoustic wave element and spherical optical element
JP4178300B2 (en) Coating film drying method and optical functional film
JP2009042389A (en) Paper thickness detection method and image forming device
JP4791916B2 (en) Moisture content measurement structure and image forming apparatus using the same
KR101854175B1 (en) Method and System for Producing a Gas-Sensitive Substrate
JP6442875B2 (en) Liquid ejection device, heating unit control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees