JP2007085824A - Magnetism detection system - Google Patents

Magnetism detection system Download PDF

Info

Publication number
JP2007085824A
JP2007085824A JP2005273486A JP2005273486A JP2007085824A JP 2007085824 A JP2007085824 A JP 2007085824A JP 2005273486 A JP2005273486 A JP 2005273486A JP 2005273486 A JP2005273486 A JP 2005273486A JP 2007085824 A JP2007085824 A JP 2007085824A
Authority
JP
Japan
Prior art keywords
magnetic field
external magnetic
magnetic detection
output
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005273486A
Other languages
Japanese (ja)
Inventor
Moichi Kawai
茂一 川合
Yutaka Saito
豊 斉藤
Toshiharu Hayashi
俊春 林
Akira Matsuzaki
顕 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005273486A priority Critical patent/JP2007085824A/en
Publication of JP2007085824A publication Critical patent/JP2007085824A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetism detection system which can be configured without the use of a high-frequency power source and without the use of a complex designed MI element, and that is small, and has the same sensitivity as those of conventional magnetism detection systems that use high-frequency power sources. <P>SOLUTION: The magnetism detection system 10 comprises a pulse generation section 1 for generating a rectangular-wave pulse voltage, a magnetism detection section 2 having a circuit which electrically responds to an external magnetic field independently in the three-axial directions, a differential amplifier section 3 for outputting the difference, with respect to the output of the magnetism detection section 2, and a peak hold section 4 having the function of maintaining the peak of the output of the differential amplifier section 3 for a certain period of time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気抵抗素子とそのインピーダンスを検出する測定部とで構成される、磁気検出装置に関する。   The present invention relates to a magnetic detection device including a magnetoresistive element and a measurement unit that detects its impedance.

従来の技術として、MI(Magneto-Impedance)素子を使用した磁気検出装置が知られている。MI素子は、微小な外部磁界の変化に基づいてインピーダンスが変化する特性を有し、外部磁界の変化を電圧の出力信号として検出する磁気抵抗素子として小型の地磁気検出方位センサーや姿勢制御用センサーの用途が見込まれている(例えば、特許文献1)。   As a conventional technique, a magnetic detection device using an MI (Magneto-Impedance) element is known. The MI element has a characteristic that the impedance changes based on a minute change in the external magnetic field, and is a small geomagnetic detection direction sensor or attitude control sensor as a magnetoresistive element that detects the change in the external magnetic field as a voltage output signal. Applications are expected (for example, Patent Document 1).

この磁気検出装置は、外部磁界に基づいたインピーダンスを示すMI素子と、MI素子に交流磁気バイアスをかけるためのバイアスコイルと、MI素子のインピーダンス変化を測定するための、10〜100MHzの高周波ドライブ電流を発生するコルピッツ発振回路と、検波回路、およびコンパレータを有する。
特開平9−127218号公報
This magnetic detection device includes an MI element that exhibits an impedance based on an external magnetic field, a bias coil for applying an AC magnetic bias to the MI element, and a high-frequency drive current of 10 to 100 MHz for measuring an impedance change of the MI element. A Colpitts oscillation circuit, a detection circuit, and a comparator.
JP-A-9-127218

しかし、従来の磁気検出装置によると、磁気検出のために高周波電源が必要であり、検波回路、コンパレータ共に複雑な回路を要し、装置の小型化が困難であるという問題がある。また、MI素子の特性上、高周波を使用する場合には設計や、製造工程が複雑になるという問題がある。   However, according to the conventional magnetic detection device, a high-frequency power source is required for magnetic detection, and both the detection circuit and the comparator require complicated circuits, which makes it difficult to reduce the size of the device. Further, due to the characteristics of the MI element, there is a problem that the design and the manufacturing process become complicated when a high frequency is used.

従って、本発明の目的は、高周波電源を用いることなく、また複雑な設計のMI素子を用いずとも構成可能で、小型で、かつ従来の高周波電源を用いた磁気検出装置と同等の感度を有する高感度な磁気検出装置を提供することにある。   Accordingly, an object of the present invention is to be configured without using a high-frequency power supply or without using a MI element with a complicated design, and is small in size and has the same sensitivity as a magnetic detection device using a conventional high-frequency power supply. The object is to provide a highly sensitive magnetic detection device.

本発明は上記目的を達成するため、パルス電圧を発生するパルス発生部と、外部磁界を検出するMI(Magneto-Impedace)素子と、前記外部磁界に不感の抵抗とを有し、前記外部磁界を少なくとも1軸方向で検出し、1軸あたり少なくとも一対の対向配置された前記MI素子と、一対の対向配置された前記抵抗とでブリッジ回路を構成してなる磁気検出部と、前記外部磁界の変化に応じた前記磁気検出部の出力を検出する差動増幅部とを有することを特徴とする磁気検出装置を提供する。   In order to achieve the above object, the present invention includes a pulse generator that generates a pulse voltage, an MI (Magneto-Impedace) element that detects an external magnetic field, and a resistor that is insensitive to the external magnetic field. A magnetic detection unit configured to form a bridge circuit with at least one pair of the MI elements arranged opposite to each other and a pair of the resistors arranged opposite to each other, and a change in the external magnetic field; And a differential amplifying unit for detecting the output of the magnetic detection unit according to the above.

また、本発明は上記目的を達成するため、立ち上がり時間2〜10ns、パルス幅10〜100nsで周波数1kHz〜10MHzのパルス電圧を発生するパルス発生部と、外部磁界を検出するMI素子と、前記外部磁界に不感の抵抗とを有し、前記外部磁界を少なくとも1軸方向で検出し、1軸あたり少なくとも一対の対向配置された前記MI素子と、一対の対向配置された前記抵抗とでブリッジ回路を構成してなる磁気検出部と、前記外部磁界の変化に応じた前記磁気検出部の出力を検出する差動増幅部とを有することを特徴とする磁気検出装置を提供する。   In order to achieve the above object, the present invention achieves the above-mentioned object, a pulse generator for generating a pulse voltage having a rise time of 2 to 10 ns, a pulse width of 10 to 100 ns and a frequency of 1 kHz to 10 MHz, an MI element for detecting an external magnetic field, and the external A resistance insensitive to a magnetic field, detecting the external magnetic field in at least one axial direction, and forming a bridge circuit with at least a pair of the opposed MI elements and a pair of the opposed resistors per axis. There is provided a magnetic detection device comprising: a magnetic detection unit configured; and a differential amplification unit that detects an output of the magnetic detection unit according to a change in the external magnetic field.

また、本発明は上記目的を達成するため、立ち上がり時間2〜10ns、パルス幅10〜100nsで周波数1kHz〜10MHzのパルス電圧を発生するパルス発生部と、外部磁界を検出するMI素子と、前記外部磁界に不感の抵抗とを有し、前記外部磁界を少なくとも1軸方向で検出し、1軸あたり少なくとも一対の対向配置された前記MI素子と、一対の対向配置された前記抵抗とでブリッジ回路を構成してなる磁気検出部と、前記外部磁界の変化に応じた前記磁気検出部の出力を検出する差動増幅部と、前記差動増幅部の出力をピークホールドするためのピークホールド部とを有することを特徴とする磁気検出装置を提供する。   In order to achieve the above object, the present invention achieves the above-mentioned object, a pulse generator for generating a pulse voltage having a rise time of 2 to 10 ns, a pulse width of 10 to 100 ns and a frequency of 1 kHz to 10 MHz, an MI element for detecting an external magnetic field, and the external A resistance insensitive to a magnetic field, detecting the external magnetic field in at least one axial direction, and forming a bridge circuit with at least a pair of the opposed MI elements and a pair of the opposed resistors per axis. A magnetic detection unit configured; a differential amplification unit that detects an output of the magnetic detection unit according to a change in the external magnetic field; and a peak hold unit for peak-holding the output of the differential amplification unit. There is provided a magnetic detection device characterized by comprising:

前記ピークホールド部は、BiCMOS(Bipolar Complementary Metal Oxide Semiconductor)を用いて構成することが好ましい。   The peak hold unit is preferably configured using BiCMOS (Bipolar Complementary Metal Oxide Semiconductor).

本発明によれば、高周波電源を用いることなく、また複雑な設計のMI素子を用いずとも構成可能で、小型で、かつ従来の高周波電源を用いた磁気検出装置と同等の感度を有する高感度な磁気検出装置を構成することができる。   According to the present invention, it is possible to configure without using a high-frequency power source or without using a complicatedly designed MI element, and it is small in size and has a sensitivity equivalent to that of a magnetic detection device using a conventional high-frequency power source. A simple magnetic detection device can be configured.

以下に、本発明の磁気検出装置の実施の形態を図面を参考にして詳細に説明する。   Embodiments of a magnetic detection device of the present invention will be described below in detail with reference to the drawings.

(磁気検出装置の構成)
図1は本発明の実施の形態に係る磁気検出装置の概略構成図である。
(Configuration of magnetic detection device)
FIG. 1 is a schematic configuration diagram of a magnetic detection device according to an embodiment of the present invention.

この磁気検出装置10は、矩形波のパルス電圧を発生するパルス発生部1と、外部磁界に対し3軸方向独立して電気的に応答する回路を有する磁気検出部2と、各軸方向毎に設けられて磁気検出部2の2つの出力に対してその差分を出力する差動増幅部3と、各差動増幅部3の出力に対しその出力のピークを一定時間維持する機能を有するピークホールド部4とを有する。磁気検出装置10の外部には、ピークホールド部4の出力を、磁気検出装置10を搭載する電子機器に対応した所望の出力に変換する信号処理部5が設置される。   The magnetic detection device 10 includes a pulse generator 1 that generates a pulse voltage of a rectangular wave, a magnetic detector 2 having a circuit that electrically responds to an external magnetic field independently in three axial directions, and for each axial direction. A differential amplifying unit 3 that is provided and outputs a difference between the two outputs of the magnetic detection unit 2, and a peak hold having a function of maintaining a peak of the output with respect to the output of each differential amplifying unit 3 for a predetermined time. Part 4. A signal processing unit 5 that converts the output of the peak hold unit 4 into a desired output corresponding to an electronic device on which the magnetic detection device 10 is mounted is installed outside the magnetic detection device 10.

ピークホールド部4は、差動増幅部3からの出力に対し時間的に十分に応答することができるBiCMOS(Bipolar Complementary Metal Oxide Semiconductor)を使用して構成する。   The peak hold unit 4 is configured using a BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) that can sufficiently respond to the output from the differential amplifier unit 3 in terms of time.

図2は本発明の実施の形態に関する磁気検出装置の磁気検出部の回路図である。図2は3軸方向のうちの1軸に関するものであり、全く同様の回路が残り2軸に対しても適用される。   FIG. 2 is a circuit diagram of a magnetic detection unit of the magnetic detection device according to the embodiment of the present invention. FIG. 2 relates to one of the three axes, and the same circuit is applied to the remaining two axes.

磁気検出部2は、対向配置された2つのMI素子20と、対向配置された2つの抵抗21を有し、ブリッジ回路にて構成されている。Iinはパルス発生部1に接続され、V1とV2は差動増幅部3に接続される。   The magnetic detection unit 2 includes two MI elements 20 arranged opposite to each other and two resistors 21 arranged opposite to each other, and is configured by a bridge circuit. Iin is connected to the pulse generator 1, and V1 and V2 are connected to the differential amplifier 3.

図3(a)は本発明に係るMI素子の構成を示す平面図である。(b)は(a)におけるMI素子の等価回路図である。   FIG. 3A is a plan view showing the configuration of the MI element according to the present invention. (B) is an equivalent circuit diagram of the MI element in (a).

図3(a)に示すように、MI素子20は、シリコン等の材質からなる平面状の基板200と、基板200の表面に高周波スパッタリングによって形成されるNiFe等の高透磁率材料からなるセンサ素子201と、センサ素子201間を電気的に接続するCuからなる素子接合部202と、センサ素子201を外部と電気的に接続するCuからなる電極203とを有する。   As shown in FIG. 3A, the MI element 20 includes a planar substrate 200 made of a material such as silicon, and a sensor element made of a high permeability material such as NiFe formed on the surface of the substrate 200 by high-frequency sputtering. 201, an element joint portion 202 made of Cu that electrically connects the sensor elements 201, and an electrode 203 made of Cu that electrically connects the sensor element 201 to the outside.

MI素子20は、図3(b)に示すように、インダクタ204と、抵抗205を直列接続し、それらとコンデンサ206を並列接続した等価回路を構成する。   As shown in FIG. 3B, the MI element 20 constitutes an equivalent circuit in which an inductor 204 and a resistor 205 are connected in series, and a capacitor 206 is connected in parallel.

(磁気検出装置の動作)
以下に、本発明の実施の形態における磁気検出装置の動作を図1から図5を参照しつつ説明する。
(Operation of magnetic detector)
The operation of the magnetic detection device according to the embodiment of the present invention will be described below with reference to FIGS.

MI素子20のインピーダンスは、外部磁界の強さに比例して変化する。図3(b)の等価回路において、インダクタ204とコンデンサ206の特性は磁界に基づいて変化せず、抵抗205の特性は磁界に基づいて変化する。その結果、MI素子20全体としてのインピーダンスが変化する。   The impedance of the MI element 20 changes in proportion to the strength of the external magnetic field. In the equivalent circuit of FIG. 3B, the characteristics of the inductor 204 and the capacitor 206 do not change based on the magnetic field, and the characteristic of the resistor 205 changes based on the magnetic field. As a result, the impedance of the entire MI element 20 changes.

パルス電圧は、パルス発生部1から入力され、図2に示す磁気検出部2において、パルス電圧に基づく電流がブリッジ回路の右側と左側を流れる。ブリッジ回路の右側を流れる電流は、左側を流れる電流に対し、MI素子20のインピーダンスに基づいて位相差が生じたものになる。その結果、ブリッジ回路の左側における電圧V1は、右側におけるV2のものより立ち上がりがなだらかなものとなる。   The pulse voltage is input from the pulse generator 1, and in the magnetic detector 2 shown in FIG. 2, a current based on the pulse voltage flows on the right side and the left side of the bridge circuit. The current flowing on the right side of the bridge circuit has a phase difference based on the impedance of the MI element 20 with respect to the current flowing on the left side. As a result, the voltage V1 on the left side of the bridge circuit has a smoother rise than the voltage V2 on the right side.

図4は本発明の実施の形態に関する磁気検出部の入力、および出力波形と、差動増幅部の出力波形の模式図である。(a)は外部磁界Bが弱い場合、(b)は外部磁界Bが強い場合を示している。   FIG. 4 is a schematic diagram of the input and output waveforms of the magnetic detection unit and the output waveform of the differential amplification unit according to the embodiment of the present invention. (A) shows a case where the external magnetic field B is weak, and (b) shows a case where the external magnetic field B is strong.

磁気検出部2に矩形波のパルス電圧を入力すると、出力される電圧V1、V2はMI素子20のインピーダンスに比例してそれぞれ立ち上がりがなだらかな矩形波になる。例えば、図4(a)と(b)に示すように、磁気検出部2が異なる強さの磁界中にある場合、(a)に対して(b)の出力電圧V1、V2は、よりなだらかな立ち上がりの矩形波を示す。   When a rectangular wave pulse voltage is input to the magnetic detection unit 2, the output voltages V 1 and V 2 become rectangular waves having a gentle rise in proportion to the impedance of the MI element 20. For example, as shown in FIGS. 4A and 4B, when the magnetic detection unit 2 is in a magnetic field of different strength, the output voltages V1 and V2 of (b) are more gentle than (a). A square wave with a large rise is shown.

上記した磁気検出部2の特徴に基づいて、差動増幅部3より出力されるV1とV2の差は、図4に示すように磁界が強いときに大きく、磁界が弱いときに小さくなる。   Based on the characteristics of the magnetic detection unit 2 described above, the difference between V1 and V2 output from the differential amplification unit 3 is large when the magnetic field is strong and small when the magnetic field is weak, as shown in FIG.

差動増幅部3の出力は、ピーク幅が短いためにエネルギーが小さい。そのため、ピークホールド部4は、差動増幅部3の出力のピークを一定時間維持し、十分なエネルギーを有する信号として信号処理部5に対して出力する。信号処理部5は、ピークホールド部4より受け取った信号を所望の命令信号へと変換する。   The output of the differential amplifying unit 3 has a small energy because the peak width is short. Therefore, the peak hold unit 4 maintains the output peak of the differential amplification unit 3 for a certain period of time and outputs it to the signal processing unit 5 as a signal having sufficient energy. The signal processing unit 5 converts the signal received from the peak hold unit 4 into a desired command signal.

図5は一般的な矩形波を示す模式図である。   FIG. 5 is a schematic diagram showing a general rectangular wave.

磁気検出部2の特徴に基づき、磁気検出装置10の外部磁界に対する線形性は、図5に示すように、立ち上がり時間がTr、パルス幅がTwの矩形波において、Tr=2〜10ns、Tw=10〜100nsの場合に良好であり、特にTr=5ns、Tw=30nsの場合に最適となる。また、本実施の形態では、パルス信号の周波数を250kHzとしており、特に高周波を用いずとも良好な線形性が得られることを確認している。   Based on the characteristics of the magnetic detection unit 2, the linearity of the magnetic detection device 10 with respect to the external magnetic field is as follows: Tr = 2-10 ns, Tw = It is good when 10 to 100 ns, and is particularly optimal when Tr = 5 ns and Tw = 30 ns. In this embodiment, the frequency of the pulse signal is 250 kHz, and it has been confirmed that good linearity can be obtained without using a high frequency.

なお、以上に説明した動作は3軸空間のx軸、y軸、z軸に対して同様に適用できるものである。   The operations described above can be similarly applied to the x-axis, y-axis, and z-axis in the triaxial space.

また、MI素子は、良好な感度を得るために、また磁界方向を判断するために図示しないコイル等で直流電流による磁気バイアスを与えている。   Further, the MI element is given a magnetic bias by a direct current with a coil or the like (not shown) in order to obtain good sensitivity and to determine the direction of the magnetic field.

また、信号処理部5は磁気検出装置10内に設置しても、搭載する電子機器に設置してもよい。   Further, the signal processing unit 5 may be installed in the magnetic detection device 10 or in an electronic device to be mounted.

(磁気検出装置の効果)
上記した実施の形態によると、磁気検出装置10は磁気検出部2からの出力は入力するパルス電圧の立ち上がり時間、およびパルス幅に依存し、その波形には依存しない。また、実施の形態の説明では250kHzのパルス電圧を用いたが、周波数1kHz〜10MHz程度のパルス電圧であれば、その入力に基づいて磁界の微小な変化を検出できるので、高周波を必要とせず、パルス発生部1として高性能なものを使用することなく構成できる。
(Effect of magnetic detector)
According to the above-described embodiment, in the magnetic detection device 10, the output from the magnetic detection unit 2 depends on the rise time and pulse width of the input pulse voltage, and does not depend on the waveform. In the description of the embodiment, a pulse voltage of 250 kHz is used. However, if the pulse voltage has a frequency of about 1 kHz to 10 MHz, a minute change in the magnetic field can be detected based on the input, so a high frequency is not required. The pulse generator 1 can be configured without using a high-performance one.

また、高周波電源を使用せずに構成したため、高周波に対応した複雑な設計のMI素子を使用する必要がなく、検波回路や、高周波に対応したコンパレータ等も必要としない。その結果、磁気検出装置10の設計における制約が減少し、小型に設計することが容易になると同時に、コストを抑えることができる   In addition, since it is configured without using a high-frequency power supply, it is not necessary to use an MI element with a complicated design corresponding to a high frequency, and a detection circuit, a comparator corresponding to a high frequency, and the like are not required. As a result, restrictions on the design of the magnetic detection device 10 are reduced, and it is easy to design a small size, and at the same time, the cost can be reduced.

また、MI素子をブリッジ構成したことにより、MI素子の磁界に対する微小な応答を精度良く検出することができ、従来の高周波電源を用いた磁気検出装置と同等の感度を得ることができる。   In addition, since the MI element is configured as a bridge, a minute response to the magnetic field of the MI element can be detected with high accuracy, and sensitivity equivalent to that of a magnetic detection device using a conventional high-frequency power source can be obtained.

本発明の実施の形態に係る磁気検出装置の概略構成図である。It is a schematic block diagram of the magnetic detection apparatus which concerns on embodiment of this invention. 本発明の実施の形態に関する磁気検出装置の磁気検出部の回路図である。It is a circuit diagram of the magnetic detection part of the magnetic detection apparatus regarding embodiment of this invention. (a)は本発明に係るMI素子の構成を示す平面図である。(b)は(a)におけるMI素子の等価回路図である。(A) is a top view which shows the structure of MI element based on this invention. (B) is an equivalent circuit diagram of the MI element in (a). 本発明の実施の形態に関する磁気検出部の入力、および出力波形と、差動増幅部の出力波形の模式図である。(a)は外部磁界が弱い場合、(b)は外部磁界が強い場合を示している。It is a schematic diagram of the input and output waveforms of the magnetic detection unit and the output waveform of the differential amplification unit according to the embodiment of the present invention. (A) shows a case where the external magnetic field is weak, and (b) shows a case where the external magnetic field is strong. 一般的な矩形波を示す模式図である。It is a schematic diagram which shows a general rectangular wave.

符号の説明Explanation of symbols

1…パルス発生部、2…磁気検出部、3…差動増幅部、4…ピークホールド部、
5…信号処理部、10…磁気検出装置、20…MI素子、21…抵抗、200…基板、
201…センサ素子、202…素子接合部、203…電極、204…インダクタ
205…抵抗、206…コンデンサ
DESCRIPTION OF SYMBOLS 1 ... Pulse generation part, 2 ... Magnetic detection part, 3 ... Differential amplification part, 4 ... Peak hold part,
DESCRIPTION OF SYMBOLS 5 ... Signal processing part, 10 ... Magnetic detection apparatus, 20 ... MI element, 21 ... Resistance, 200 ... Substrate,
DESCRIPTION OF SYMBOLS 201 ... Sensor element 202 ... Element junction part 203 ... Electrode 204 ... Inductor 205 ... Resistance, 206 ... Capacitor

Claims (4)

パルス電圧を発生するパルス発生部と、
外部磁界を検出するMI(Magneto-Impedace)素子と、前記外部磁界に不感の抵抗とを有し、前記外部磁界を少なくとも1軸方向で検出し、1軸あたり少なくとも一対の対向配置された前記MI素子と、一対の対向配置された前記抵抗とでブリッジ回路を構成してなる磁気検出部と、
前記外部磁界の変化に応じた前記磁気検出部の出力を検出する差動増幅部とを有することを特徴とする磁気検出装置。
A pulse generator for generating a pulse voltage;
An MI (Magneto-Impedace) element for detecting an external magnetic field and a resistance insensitive to the external magnetic field, the external magnetic field is detected in at least one axial direction, and at least a pair of opposingly arranged MI per axis A magnetic detection unit comprising a bridge circuit with the element and a pair of opposed resistors,
And a differential amplifying unit that detects an output of the magnetic detection unit according to a change in the external magnetic field.
立ち上がり時間2〜10ns、パルス幅10〜100nsで周波数1kHz〜10MHzのパルス電圧を発生するパルス発生部と、
外部磁界を検出するMI素子と、前記外部磁界に不感の抵抗とを有し、前記外部磁界を少なくとも1軸方向で検出し、1軸あたり少なくとも一対の対向配置された前記MI素子と、一対の対向配置された前記抵抗とでブリッジ回路を構成してなる磁気検出部と、
前記外部磁界の変化に応じた前記磁気検出部の出力を検出する差動増幅部とを有することを特徴とする磁気検出装置。
A pulse generator for generating a pulse voltage having a frequency of 1 kHz to 10 MHz with a rise time of 2 to 10 ns and a pulse width of 10 to 100 ns;
An MI element for detecting an external magnetic field; a resistance insensitive to the external magnetic field; detecting the external magnetic field in at least one axial direction; and at least a pair of opposingly arranged MI elements per axis; A magnetic detection unit comprising a bridge circuit with the resistors arranged opposite to each other;
And a differential amplifying unit that detects an output of the magnetic detection unit according to a change in the external magnetic field.
立ち上がり時間2〜10ns、パルス幅10〜100nsで周波数1kHz〜10MHzのパルス電圧を発生するパルス発生部と、
外部磁界を検出するMI素子と、前記外部磁界に不感の抵抗とを有し、前記外部磁界を少なくとも1軸方向で検出し、1軸あたり少なくとも一対の対向配置された前記MI素子と、一対の対向配置された前記抵抗とでブリッジ回路を構成してなる磁気検出部と、
前記外部磁界の変化に応じた前記磁気検出部の出力を検出する差動増幅部と、
前記差動増幅部の出力をピークホールドするためのピークホールド部とを有することを特徴とする磁気検出装置。
A pulse generator for generating a pulse voltage having a frequency of 1 kHz to 10 MHz with a rise time of 2 to 10 ns and a pulse width of 10 to 100 ns;
An MI element for detecting an external magnetic field; a resistance insensitive to the external magnetic field; detecting the external magnetic field in at least one axial direction; and at least a pair of opposingly arranged MI elements per axis; A magnetic detection unit comprising a bridge circuit with the resistors arranged opposite to each other;
A differential amplifier for detecting the output of the magnetic detector in response to a change in the external magnetic field;
And a peak hold unit for peak-holding the output of the differential amplifier.
前記ピークホールド部は、BiCMOS(Bipolar Complementary Metal Oxide Semiconductor)を用いて構成される請求項3に記載の磁気検出装置。   The magnetic detection device according to claim 3, wherein the peak hold unit is configured using a BiCMOS (Bipolar Complementary Metal Oxide Semiconductor).
JP2005273486A 2005-09-21 2005-09-21 Magnetism detection system Pending JP2007085824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273486A JP2007085824A (en) 2005-09-21 2005-09-21 Magnetism detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273486A JP2007085824A (en) 2005-09-21 2005-09-21 Magnetism detection system

Publications (1)

Publication Number Publication Date
JP2007085824A true JP2007085824A (en) 2007-04-05

Family

ID=37972950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273486A Pending JP2007085824A (en) 2005-09-21 2005-09-21 Magnetism detection system

Country Status (1)

Country Link
JP (1) JP2007085824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019853A1 (en) * 2019-07-29 2021-02-04 昭和電工株式会社 Magnetic field measurement device and magnetic sensor
EP3951414A1 (en) * 2020-08-06 2022-02-09 Showa Denko K.K. Magnetic sensor circuit and magnetic field detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258517A (en) * 1999-03-10 2000-09-22 Japan Science & Technology Corp Magnetic impedance effect micro-magnetic sensor
JP2001343438A (en) * 2000-05-31 2001-12-14 Uchihashi Estec Co Ltd Magnetic sensor
JP2003004830A (en) * 2001-06-19 2003-01-08 Aichi Micro Intelligent Corp Magnetic field detector
JP2003121517A (en) * 2001-10-12 2003-04-23 Aichi Micro Intelligent Corp Magnetic detector
JP2004117051A (en) * 2002-09-24 2004-04-15 Toyota Central Res & Dev Lab Inc Physical quantity detection device and peak hold device
JP2004153133A (en) * 2002-10-31 2004-05-27 Ricoh Co Ltd Mi sensor, ic chip therefor, and electronic equipment equipped therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258517A (en) * 1999-03-10 2000-09-22 Japan Science & Technology Corp Magnetic impedance effect micro-magnetic sensor
JP2001343438A (en) * 2000-05-31 2001-12-14 Uchihashi Estec Co Ltd Magnetic sensor
JP2003004830A (en) * 2001-06-19 2003-01-08 Aichi Micro Intelligent Corp Magnetic field detector
JP2003121517A (en) * 2001-10-12 2003-04-23 Aichi Micro Intelligent Corp Magnetic detector
JP2004117051A (en) * 2002-09-24 2004-04-15 Toyota Central Res & Dev Lab Inc Physical quantity detection device and peak hold device
JP2004153133A (en) * 2002-10-31 2004-05-27 Ricoh Co Ltd Mi sensor, ic chip therefor, and electronic equipment equipped therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019853A1 (en) * 2019-07-29 2021-02-04 昭和電工株式会社 Magnetic field measurement device and magnetic sensor
EP3951414A1 (en) * 2020-08-06 2022-02-09 Showa Denko K.K. Magnetic sensor circuit and magnetic field detection device
US11940503B2 (en) 2020-08-06 2024-03-26 Resonac Corporation Magnetic sensor circuit and magnetic field detection device

Similar Documents

Publication Publication Date Title
JP3096413B2 (en) Magnetic sensing element, magnetic sensor, geomagnetic detection type azimuth sensor, and attitude control sensor
Chiesi et al. CMOS planar 2D micro-fluxgate sensor
Vopálenský et al. Precise magnetic sensors
US20120306487A1 (en) Electrical current sensing circuit, printed circuit board assembly and electrical current sensor device with the same
JP2002131342A (en) Current sensor
WO2001050308A3 (en) Magneto-resistive signal isolator
JP2001013231A (en) Magnetic sensor formed on semiconductor substrate
JP4160330B2 (en) Magnetic field detection circuit
CN113203885B (en) Current sensor, magnetic sensor and circuit
JP5116433B2 (en) Magnetic detector for detecting variable magnetic fields
US7271587B2 (en) High resolution and low power magnetometer using magnetoresistive sensors
JPH11109008A (en) Magnetic detector
JP2007085824A (en) Magnetism detection system
JP3764834B2 (en) Current sensor and current detection device
JP2000055998A (en) Magnetic sensor device and current sensor device
JP5948105B2 (en) Signal detection circuit, electronic compass, current sensor
EP3255445B1 (en) Magneto-impedance (mi) magnetic sensor
JP5106816B2 (en) Voltage measuring device and power measuring device
JPH02189484A (en) Magnetic sensor
JP2003004830A (en) Magnetic field detector
JP4722717B2 (en) Current sensor
JP2016142652A (en) Power sensor
JP2002006016A (en) Magnetic sensor
JP2000162294A (en) Magnetic field sensor
JP7119695B2 (en) magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405