JP2007085601A - Operation method of refrigerating machine and equipment comprising the same - Google Patents

Operation method of refrigerating machine and equipment comprising the same Download PDF

Info

Publication number
JP2007085601A
JP2007085601A JP2005273257A JP2005273257A JP2007085601A JP 2007085601 A JP2007085601 A JP 2007085601A JP 2005273257 A JP2005273257 A JP 2005273257A JP 2005273257 A JP2005273257 A JP 2005273257A JP 2007085601 A JP2007085601 A JP 2007085601A
Authority
JP
Japan
Prior art keywords
refrigerator
refrigerators
power consumption
approximate expression
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005273257A
Other languages
Japanese (ja)
Other versions
JP4579805B2 (en
Inventor
Takao Hanzawa
隆夫 半澤
Yasushi Harada
泰志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2005273257A priority Critical patent/JP4579805B2/en
Publication of JP2007085601A publication Critical patent/JP2007085601A/en
Application granted granted Critical
Publication of JP4579805B2 publication Critical patent/JP4579805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy of power saving technology as operation technology of a plurality of refrigerating machines in air conditioning equipment. <P>SOLUTION: An approximate expression modeling relationship between refrigerating capacity and electric power consumption of each of the plurality of refrigerating machines corresponding to characteristics of each portion, is determined, centers of gravity of operation result data of the plurality of refrigerating machines are compared, the approximate expression is corrected on the basis of changed portion of a relative value, the total electric power consumption of the plurality of refrigerating machines are calculated on the basis of the corrected approximate expression, the refrigerating capacity of each refrigerating machine in a case of reducing the calculated total electric power consumption is determined, and an operating state of each refrigerating machine is controlled on the basis of the determined refrigerating capacity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍、冷却または冷房用の設備に係り、特に、それに用いる複数の冷凍機の運転技術に関する。   The present invention relates to equipment for refrigeration, cooling or cooling, and in particular, to a technique for operating a plurality of refrigerators used therefor.

従来、冷凍機を用いた設備としては、冷凍冷蔵設備や空調設備などがある。これらの設備中において冷凍機は、インバータ等電力変換装置から供給される電力によって駆動され、該設備中の負荷部に対して水等の所定温度の流体を供給するようになっている。従って、これら設備の省エネルギー化は、一般には、冷凍機の駆動電力の低減化によって図られる。
冷凍機の駆動電力の低減化に関する従来技術で、文献に記載されたものとしては例えば特開平9−145176号公報(特許文献1)に記載された技術がある。該公報には、複数台の冷凍装置を用いるシステムにおいて、該システム全体のエネルギー消費効率を最大限に引き出すために、システム全体が部分負荷となった時、該システム全体のエネルギー消費効率を最大にするポイントを演算し、該最大ポイントで各冷凍装置を運転するとした技術が記載されている。
Conventionally, as a facility using a refrigerator, there are a freezer / refrigerator facility and an air conditioner. In these facilities, the refrigerator is driven by electric power supplied from a power converter such as an inverter, and supplies a fluid having a predetermined temperature such as water to a load section in the facility. Therefore, energy saving of these facilities is generally achieved by reducing the driving power of the refrigerator.
As a conventional technique related to reduction of driving power of a refrigerator, a technique described in the literature includes, for example, a technique described in Japanese Patent Application Laid-Open No. 9-145176 (Patent Document 1). In this publication, in a system using a plurality of refrigeration apparatuses, in order to maximize the energy consumption efficiency of the entire system, when the entire system becomes a partial load, the energy consumption efficiency of the entire system is maximized. The technique which calculates the point to perform and operates each refrigeration apparatus with this maximum point is described.

特開平9−145176号公報JP-A-9-145176

従来技術も含め、省エネルギー化を図るにおいては、何らかの設備のモデル化が必要とされる。上記従来技術では冷凍機の部分負荷特性のモデル化を行っているが、人手による分析等を経てシステム開発時に組み込まれるため、システム完成後のモデル見直しは行われにくい。また、モデル化の方法としては、カタログ値の使用や稼働実績データの使用等があり、該モデル化の方法により、得られる省エネルギー効果の精度も異なってくる。カタログ値を用いた場合は、理想値の特性であるため、実際の空調設備に組み込んでの稼働特性とは異なる場合が多い。例えば、一般に冬期の稼働においては定格以上の能力を発揮する運転状態となるため、その特性はカタログ値とはかなり異なっている。また、稼働実績データを元にした場合には、冷凍機の特性が、外気に触れる冷却水の影響で変化するため、初期モデルとの差が生じてしまう。また、必要とされるデータ全てについて計測値が得られない場合があり、このような場合には、計測できないデータは固定値等の定数を用いて演算で求めることになる。かかる演算に基づき求めたデータは、通常の場合誤差を含み、正確な値にならない場合が多い。
本発明の課題点は、上記従来技術の状況に鑑み、冷凍、冷却または冷房用の設備に用いられる複数の冷凍機(冷凍装置)の運転技術において、それぞれの冷凍機を各冷凍機の特性や外気条件など周囲の状況などに対応した制御状態で運転し、複数の冷凍機全体の消費電力を低減可能にすることである。
本発明の目的は、かかる課題点を解決して、上記冷凍機(冷凍装置)の運転技術において、より一層の省電力化を図れる運転技術を提供することにある。
In order to save energy, including conventional technology, some kind of equipment modeling is required. In the above prior art, the partial load characteristics of the refrigerator are modeled. However, since they are incorporated at the time of system development through manual analysis and the like, it is difficult to review the model after completion of the system. The modeling method includes the use of catalog values and the use of operation result data, and the accuracy of the energy saving effect obtained varies depending on the modeling method. When the catalog value is used, since it is an ideal value characteristic, it is often different from the operation characteristic incorporated in the actual air conditioning equipment. For example, in general, during operation in winter, since the driving state exhibits a capacity exceeding the rating, the characteristics are considerably different from the catalog values. In addition, when the operation result data is used, the characteristics of the refrigerator change due to the influence of the cooling water that comes into contact with the outside air, so that a difference from the initial model occurs. In addition, measurement values may not be obtained for all necessary data. In such a case, data that cannot be measured is obtained by calculation using constants such as fixed values. Data obtained based on such calculation usually includes an error and often does not have an accurate value.
The problem of the present invention is that, in view of the state of the prior art described above, in the operation technology of a plurality of refrigerators (refrigeration devices) used for refrigeration, cooling, or cooling equipment, each refrigerator has characteristics of each refrigerator, It is to operate in a control state corresponding to ambient conditions such as outside air conditions, and to reduce the power consumption of a plurality of refrigerators as a whole.
An object of the present invention is to solve such problems and provide an operation technique capable of further reducing power consumption in the operation technique of the refrigerator (refrigeration apparatus).

上記課題点を解決するために本発明では、空調設備における複数の冷凍機の運転技術として、複数の冷凍機それぞれの冷凍容量と消費電力との関係を各部の特性に対応してモデル化した近似式を求め、該近似式に基づき、該複数の冷凍機の全体の消費電力を求め、該求めた全体の消費電力を小さくする場合の各冷凍機の冷凍容量を設定し、該設定した冷凍容量で各冷凍機の運転状態を制御する構成とする。上記モデルは、例えば、複数の冷凍機それぞれにおける1ヶ月単位の稼働実績データに着目し、冷却水入口温度の同じ条件で稼働実績データから抽出して、基準とするデータ(以下、これを重心という)を求め、該求めた重心を同じ抽出条件での1ヶ月前の重心と比較し、その差分を相対値として、その変化比率で近似式を補正する。また、重心を求めた抽出条件以外の他の冷却水入口温度の近似式にも上記変化分を適用して近似式を見直す。該モデルの見直し補正は、例えば1ヶ月分(毎正時24点×30または31の個数)を単位として、自動的に繰り返す。見直しの周期は、開始日を1日ずつシフトしながら毎日行うか、1週間ずつシフトするか、月単位で行うか等、特性の変化量に応じて対応可能とする。   In order to solve the above problems, in the present invention, as an operation technique of a plurality of refrigerators in an air conditioning facility, an approximation obtained by modeling the relationship between the refrigeration capacity and power consumption of each of the plurality of refrigerators according to the characteristics of each part. Obtaining the formula, obtaining the overall power consumption of the plurality of refrigerators based on the approximate expression, setting the freezing capacity of each refrigerator when the obtained overall power consumption is reduced, and the set freezing capacity Thus, the operation state of each refrigerator is controlled. The above model, for example, focuses on the operation result data in units of one month in each of a plurality of refrigerators, is extracted from the operation result data under the same condition of the cooling water inlet temperature, and is used as a reference data (hereinafter referred to as the center of gravity). ) Is compared, and the calculated center of gravity is compared with the center of gravity of the previous month under the same extraction condition, and the approximate expression is corrected with the change ratio using the difference as a relative value. Further, the above approximation is applied to the approximate expression of the cooling water inlet temperature other than the extraction condition for obtaining the center of gravity, and the approximate expression is reviewed. The revision of the model is automatically repeated, for example, in units of one month (24 points × 30 or 31 on the hour). The review cycle can be handled according to the amount of change in characteristics, such as whether the start date is shifted daily, shifting every day, shifting every week, or monthly.

本願発明によれば、それぞれの冷凍機を各冷凍機の特性や外気温度など周囲条件などの実態に対応した制御状態で運転することができ、該運転条件下で複数の冷凍機全体の消費電力の低減を図ることができる。   According to the present invention, each refrigerator can be operated in a controlled state corresponding to the actual conditions such as ambient conditions such as the characteristics of each refrigerator and the outside air temperature, and the power consumption of the entire plurality of refrigerators under the operating conditions. Can be reduced.

以下、本発明の実施例につき、図面を用いて説明する。
図1〜図5は、本発明の実施例の説明図である。図1は、本発明の実施例としての冷凍用設備の構成図、図2は、図1の設備中の複数の冷凍機と複数の冷水2次ポンプの運転動作手順の説明図、図3は、図1の設備中の複数の冷凍機の最適計算に用いる機器特性モデルの補正手順の説明図、図4は、図1の設備中の複数の冷水2次ポンプの最適計算に用いる機器特性モデルの補正手順の説明図、図5は、図1の設備中の複数の冷凍機の機器特性モデル補正の一例を示す図、図6は、図1の冷凍設備中の冷水2次ポンプの機器特性モデル補正の一例を示す図である。
Embodiments of the present invention will be described below with reference to the drawings.
1-5 is explanatory drawing of the Example of this invention. FIG. 1 is a configuration diagram of a refrigeration facility as an embodiment of the present invention, FIG. 2 is an explanatory diagram of an operation procedure of a plurality of refrigerators and a plurality of cold water secondary pumps in the facility of FIG. 1, and FIG. FIG. 4 is an explanatory view of a procedure for correcting an equipment characteristic model used for optimal calculation of a plurality of refrigerators in the facility of FIG. 1, and FIG. 4 is an equipment characteristic model used for optimal calculation of a plurality of cold water secondary pumps in the equipment of FIG. FIG. 5 is a diagram illustrating an example of device characteristic model correction of a plurality of refrigerators in the facility of FIG. 1, and FIG. 6 is a device characteristic of a cold water secondary pump in the refrigeration facility of FIG. It is a figure which shows an example of model correction.

図1において、100は冷凍用設備、1は、複数の冷凍機R、…、Rを備えて成る冷凍機部、2は、冷凍機部1の運転を制御する運転制御部、3は負荷部、4は冷水槽、5は、冷水槽4から冷水を汲み上げる複数の冷水2次ポンプP、…、Pを備えて成る冷水2次ポンプ部、6は、冷水の流量の調整を行う冷水ヘッダ、7は調相器、11は第1の温度・流量監視点、12は第2の温度・流量監視点、13は、冷水ヘッダ6の冷水の圧力を監視するヘッダ圧力監視点、Tは、第1の温度・流量監視点11における冷水の温度、Qは、第1の温度・流量監視点11における冷水の送水量、Tは、第2の温度・流量監視点12における冷水の戻り温度、Hは、ヘッダ圧力監視点13におけるヘッダ圧力である。冷凍機部1は、各冷凍機R、…、Rが、駆動用電動機(図示なし)により冷媒を所定の流量・速度でそれぞれの冷凍機内を循環させるとともに、冷水槽4中の水を、該冷凍槽4との間で循環させながら該冷媒により冷却する。調相器7は例えばエアコンで構成される。上記構成において、冷凍機部1の各冷凍機R、…、Rはそれぞれ、運転制御部2により制御され、所定の条件すなわち所定の冷凍容量、所定の駆動用電動機入力、所定の消費電力などの運転条件とされる。該運転条件で運転された冷凍機部1の各冷凍機R、…、Rは、冷水槽4中の高温槽側の水の一部を汲み上げ、該汲み上げた水を冷媒により冷凍容量に対応して冷却し、再び冷水槽4中の冷温槽側に戻す。これが繰り返される。冷水2次ポンプ部5の各冷水2次ポンプP、…、Pはそれぞれ、運転制御部2により制御され、冷水ヘッダ6のヘッダ圧力監視点13のヘッダ圧力を一定の条件の下、第1の温度・流量監視点11における流量(送水量)に見合った台数の各冷水2次ポンプP、…、Pが、冷水槽4中の低温槽側の水の一部を汲み上げ、冷水ヘッダ6へ送水する。 In FIG. 1, 100 is a refrigeration facility, 1 is a refrigerator unit comprising a plurality of refrigerators R 1 ,..., R n , 2 is an operation control unit that controls the operation of the refrigerator unit 1, The load section 4 is a cold water tank, 5 is a cold water secondary pump section comprising a plurality of cold water secondary pumps P 1 ,..., Pn that pumps cold water from the cold water tank 4, and 6 is an adjustment of the flow rate of the cold water. A cold water header to be performed, 7 is a phase adjuster, 11 is a first temperature / flow rate monitoring point, 12 is a second temperature / flow rate monitoring point, 13 is a header pressure monitoring point for monitoring the pressure of the cold water in the cold water header 6, T 1 is the temperature of the chilled water at the first temperature / flow rate monitoring point 11, Q 1 is the amount of chilled water delivered at the first temperature / flow rate monitoring point 11, and T 2 is the second temperature / flow rate monitoring point 12. The cold water return temperature, H, is the header pressure at the header pressure monitoring point 13. Refrigerator unit 1, each refrigerator R 1, ..., R n is, a refrigerant by the driving motor (not shown) together with the circulating each refrigerator at a predetermined flow rate and speed, the water of the cold water tank 4 Then, the refrigerant is cooled by the refrigerant while being circulated with the freezing tank 4. The phase adjuster 7 is composed of, for example, an air conditioner. In the above configuration, each of the refrigerators R 1 ,..., R n of the refrigerator unit 1 is controlled by the operation control unit 2, and is subjected to a predetermined condition, that is, a predetermined refrigeration capacity, a predetermined drive motor input, and a predetermined power consumption. And so on. Each of the refrigerators R 1 ,..., R n of the refrigerator unit 1 operated under the operating conditions pumps a part of the water on the high-temperature tank side in the cold water tank 4 and converts the pumped water into a freezing capacity by the refrigerant. Correspondingly, it is cooled and returned to the cold / warm tank side in the cold water tank 4 again. This is repeated. Each of the chilled water secondary pumps P 1 ,..., P n of the chilled water secondary pump unit 5 is controlled by the operation control unit 2, and the header pressure at the header pressure monitoring point 13 of the chilled water header 6 is adjusted under a certain condition. Each of the chilled water secondary pumps P 1 ,..., P n in accordance with the flow rate (water supply amount) at the temperature / flow rate monitoring point 11 of 1 pumps a part of the water on the low temperature tank side in the chilled water tank 4, Water is fed to the header 6.

冷水ヘッダ6の冷水は、第1の温度・流量監視点11を通って負荷部3に供給される。ヘッダ圧力監視点13ではヘッダ内の圧力が検出される。第1の温度・流量監視点11では冷水の温度Tと送水量Qが検出される。負荷部3内では、冷水は調相器7に供給される。調相器7では、吸込んだ空気を該冷水の状態に対応して冷却し、冷凍用の空気として所定の対象空間に放出する。調相器7において空気からの熱を受け温度上昇した冷水は、第2の温度・流量監視点12を経て、負荷部3から再び冷水槽4に戻される。第2の温度・流量監視点12では冷水の温度T(T>T)が検出される。第1の温度・流量監視点11における温度と送水量検出結果の情報及び第2の温度・流量監視点12における温度検出結果の情報、及びヘッダ圧力監視点13におけるヘッダ圧力はともに、運転制御部2に入力される。運転制御部2は、該情報に基づき、冷凍機部1の各冷凍機R、…、Rが所定の冷凍容量となるように該冷凍機部1を制御する。例えば、負荷部3が部分負荷となって、冷水流量が少なくてもよい場合は、各冷凍機R、…、Rの全部または一部のものにつき、その冷凍容量を小さくするように制御する。また、運転制御部2は、各冷水2次ポンプP、…、Pの運転周波数を可変として、少ない運転台数でかつ運転周波数を下げるように制御する。運転制御部2による冷凍機部1の制御は、基本的に、所定の冷凍容量ができるだけ少ない消費電力で達成されるようにする。このために、運転制御部2は冷凍機部1を以下のように制御する。すなわち、運転制御部2は、冷凍機部1の各冷凍機R、…、Rのうち運転されるものの所定の複数の組合せを設定し、負荷部の目標冷凍容量を、該組合せのそれぞれにおいて、該運転される冷凍機それぞれの定格冷凍容量に基づいて冷凍機毎に分配し、該配分冷凍容量を、冷凍容量と消費電力の関係を示すモデル化した近似式に代入して、上記運転される冷凍機それぞれの消費電力を上記冷凍機の組合せの全てについて求め、さらに該求めた各消費電力の総和を上記組合せ毎に演算し、該総和値が最小となる組合せまたは他に比べて低い値となる組合せを選択して設定し、該設定した組合せの複数の冷凍機をそれぞれ、上記配分冷凍容量に等しい冷凍容量値またはこれに近い冷凍容量値で運転するように制御する。 The cold water in the cold water header 6 is supplied to the load unit 3 through the first temperature / flow rate monitoring point 11. The header pressure monitoring point 13 detects the pressure in the header. At the first temperature / flow rate monitoring point 11, the temperature T 1 of the cold water and the amount Q 1 of water are detected. In the load unit 3, the cold water is supplied to the phase adjuster 7. The phase adjuster 7 cools the sucked air in accordance with the state of the cold water, and discharges it as a freezing air to a predetermined target space. The chilled water whose temperature has risen due to heat from the air in the phase adjuster 7 is returned to the chilled water tank 4 again from the load section 3 via the second temperature / flow rate monitoring point 12. At the second temperature / flow rate monitoring point 12, the temperature T 2 (T 2 > T 1 ) of the cold water is detected. Both the information on the temperature and flow rate detection result at the first temperature / flow rate monitoring point 11, the information on the temperature detection result at the second temperature / flow rate monitoring point 12, and the header pressure at the header pressure monitoring point 13 are both operated. 2 is input. Based on this information, the operation control unit 2 controls the refrigerator unit 1 so that each of the refrigerators R 1 ,..., R n of the refrigerator unit 1 has a predetermined refrigeration capacity. For example, the load unit 3 is a partial load, if may be less coolant flow rate, the refrigerator R 1, ..., per that of all or part of R n, control so as to reduce the refrigeration capacity To do. Further, the operation control unit 2, the chilled water secondary pump P 1, ..., a variable operation frequency of P n, and controls to decrease the a and operation frequency smaller number of operating. The control of the refrigerator unit 1 by the operation control unit 2 is basically made to achieve a predetermined refrigeration capacity with as little power consumption as possible. For this purpose, the operation control unit 2 controls the refrigerator unit 1 as follows. That is, the operation control unit 2 sets a predetermined plurality of combinations of the refrigerators R 1 ,..., R n to be operated, and sets the target refrigeration capacity of the load unit to each of the combinations. And distributing to each refrigerator based on the rated refrigeration capacity of each of the operated refrigerators, substituting the allocated refrigeration capacity into a modeled approximate expression indicating the relationship between the refrigeration capacity and power consumption, and The power consumption of each refrigerator is calculated for all the combinations of the refrigerators, and the total of the calculated power consumptions is calculated for each combination, and the total value is the minimum or lower than the other combination A combination to be a value is selected and set, and a plurality of refrigerators of the set combination are controlled to operate at a refrigeration capacity value equal to or close to the above-mentioned distributed refrigeration capacity.

さらに、運転制御部2による冷水2次ポンプ部5の制御は、所定の送水量に見合ってできるだけ少ない消費電力で達成されるようにする。このために、運転制御部2は冷水2次ポンプ部5を以下のように制御する。すなわち、運転制御部2は、同じ定格の各冷水2次ポンプP、…、Pについて、1台からn台運転した場合、1台当たりの送水量に見合うポンプ回転数を割り出して、その1台当たりの消費電力から、1台からn台運転時の合計消費電力を比較して、最も消費電力の小さい運転台数と、その時のポンプ回転数で運転するように制御する。各冷水2次ポンプの送水量に見合うポンプ回転数は、各冷水2次ポンプが50Hzで運転されるときの機器特性(Q−H特性)をモデル化した近似式を使用する。 Furthermore, the control of the cold water secondary pump unit 5 by the operation control unit 2 is achieved with as little power consumption as possible in accordance with a predetermined water supply amount. For this purpose, the operation control unit 2 controls the cold water secondary pump unit 5 as follows. That is, the operation control unit 2, the chilled water secondary pump P 1 of the same rating, ..., the P n, when the plant is operated n stand from one, and indexing the pump speed commensurate with the water supply amount per one, its From the power consumption per unit, the total power consumption during the operation of one to n units is compared, and control is performed so that the number of operating units with the lowest power consumption and the pump rotation speed at that time are operated. The pump rotational speed corresponding to the amount of water delivered by each chilled water secondary pump uses an approximate expression that models equipment characteristics (QH characteristics) when each chilled water secondary pump is operated at 50 Hz.

図2は、図1の設備中の複数の冷凍機と複数の冷水2次ポンプの運転動作手順の説明図である。
図2において、
(1)先ず、運用制御部2により冷凍機部1と冷水2次ポンプ部5の制御動作がスタートする(ステップS201)。
(2)仕様の異なる各冷凍機の部分負荷特性、同一仕様の冷水2次ポンプの機器特性を近似式として数式化したモデルデータが予め保存されている。運転制御部2はこれらのデータを読み出して計算に使用するために、メモリ等へ常駐させる(ステップS202)。
(3)冷凍機の最適計算は、負荷側の現時点の需要を要求された冷凍の負荷として、複数冷凍機の運転組合せに冷凍負荷を配分した場合、最も省エネ(消費電力が小さい)運転パターンを冷凍機のモデルを用いて計算して決定する。また、冷水2次ポンプの最適計算では現時点の送水量をまかなうために、運転台数毎に1台当たりの送水量から、ポンプの回転数をモデルを用いて算出し、その回転数から消費電力が導き出され、合計消費電力が最も小さい冷水2次ポンプの運転台数を決定する(ステップS203)。
(4)最適計算は定周期(例えば5分周期)で実行されて、冷凍機と冷水2次ポンプの計算結果がガイダンス表示されて、オペレータに知らしめる(ステップS204)。
(5)最適計算に必要になった各種設備の計測データや、設備状態をモニタしたデータは毎正時の単位で磁気ディスク等へ保存されて、別途トレンド表示等からの参照を可能にしている(ステップS205)。
FIG. 2 is an explanatory diagram of an operation procedure of a plurality of refrigerators and a plurality of cold water secondary pumps in the facility of FIG.
In FIG.
(1) First, the operation control unit 2 starts control operations of the refrigerator unit 1 and the cold water secondary pump unit 5 (step S201).
(2) Model data obtained by formulating the partial load characteristics of the refrigerators having different specifications and the equipment characteristics of the cold water secondary pump having the same specifications as approximate expressions are stored in advance. The operation control unit 2 reads these data and makes them resident in a memory or the like in order to use them for calculation (step S202).
(3) The optimal calculation of the refrigerator is the most energy-saving (low power consumption) operation pattern when the refrigeration load is allocated to the operation combination of multiple refrigerators as the refrigeration load required for the current demand on the load side. Calculated using a refrigerator model. Moreover, in order to cover the current water supply in the optimal calculation of the cold water secondary pump, the number of pump rotations is calculated for each unit of operation using the model, and the power consumption is calculated from the number of rotations. The number of chilled water secondary pumps that are derived and have the smallest total power consumption is determined (step S203).
(4) The optimal calculation is executed at a fixed cycle (for example, a cycle of 5 minutes), and the calculation results of the refrigerator and the chilled water secondary pump are displayed as guidance to inform the operator (step S204).
(5) Measurement data of various facilities required for optimal calculation and data monitoring the equipment status are saved to the magnetic disk etc. in hourly units, making it possible to separately refer to the trend display etc. (Step S205).

図3は、図1の設備中の複数の冷凍機の最適計算に用いる機器特性モデルの補正手順の説明図である。
以下の手順の制御は冷凍機1台に着目して実施するもので、同様な手順にて稼動中の全ての冷凍機に対しても同様に制御する。また、以下の手順は定期的に例えば、1ヶ月スパンのデータで、1日ずつ開始日をずらして行うか、1週間開始日をずらすか、1ヶ月単位で行うか等で見直しを繰り返す。
FIG. 3 is an explanatory diagram of a procedure for correcting an equipment characteristic model used for optimal calculation of a plurality of refrigerators in the facility of FIG.
The control of the following procedure is performed paying attention to one refrigerator, and the same control is performed for all the refrigerators operating in the same procedure. In addition, the following procedure is periodically reviewed, for example, by shifting the start date one day at a time, shifting the start date for one week, or performing it in units of one month, for example, with data of one month span.

(1)冷凍機1台の1ヶ月分の稼働実績から部分負荷特性データ(当該冷凍機の製造熱量とその消費電力)を、当該冷凍機が稼動した時の冷却水入口温度毎に分類して抽出保存する(ステップS302)。1ヶ月分のデータは、毎正時のデータを1点として、24時×31日分の744点のデータ量を対象としている。
(2)各冷却水入口温度毎に抽出分類されたデータの点数(標本数)が、評価に充分な点数かどうかを信頼係数と標準正規分布の数表の値と比べて判断する(ステップS303)。評価に値する十分な標本数があるものを次の処理対象とする。
(3)冷却水入口温度毎に分類抽出したデータから重心を求める。さらに、重心と各データ1点ずつを比較した標準偏差を求める。標準偏差の3σ(標準偏差×3)以上のかけ離れているデータは、バッドデータとして評価対象のデータから除外して棄却検定とする。棄却検定後のデータを用いて再度重心を求めて、この重心を正とする(ステップS304)。
(4)上記(3)で求めた重心が偏ったデータかまたは一様に分布したデータを調べて、その信頼性を確認する。信頼性の確認は、ブートストラップ法(元のデータベースから復元抽出を行い、評価したいパラメータや統計量の分布を推定するために必要なデータベースを作成し、推定した分布を用いてモデルの予測精度や安定性を検証する方法)にて行う。その手法は例えば、サンプルの2/3を部分集合としてその重心を求め、残りの1/3の部分集合で重心との標準偏差を求める、さらに、再度ランダム選択した部分集合から、同様に、重心と標準偏差を求めて複数回繰り返す。上記(3)で棄却検定した重心の信頼性を繰り返し求めた標準偏差の大小により判断する。上記(3)の棄却検定で求めた重心が信頼できる場合のみ保存して残す(ステップS305)。
(5)上記(3)及び上記(4)の処理を各冷却水入口温度のデータについて、繰り返す(ステップS306)。
(6)今月分と先月分から信頼性が高い重心を選択する。選択した中で同じ冷却水入口温度の重心があれば、その重心を用いて、比較した差分から部分負荷特性データの変化量を求める(ステップS307)。この変化量は近似式に反映して補正する値となる。
(7)上記(6)で求めた変化量は、当該冷凍機の各冷却水入口温度の近似式にも反映して補正する(ステップS308)。
(1) The partial load characteristic data (production heat quantity and power consumption of the refrigerator) is classified according to the cooling water inlet temperature when the refrigerator is operated from the operation results for one month of the refrigerator. Extracted and stored (step S302). The data for one month covers the data amount of 744 points for 24 hours × 31 days, with the data on the hour as one point.
(2) It is determined whether the score (number of samples) of the data extracted and classified for each cooling water inlet temperature is a score sufficient for evaluation by comparing with the reliability coefficient and the value in the number table of the standard normal distribution (step S303). ). A sample with a sufficient number of samples worthy of evaluation is considered as the next processing target.
(3) The center of gravity is obtained from the data classified and extracted for each cooling water inlet temperature. Further, a standard deviation obtained by comparing the center of gravity and one point of each data is obtained. Data that is far from the standard deviation of 3σ (standard deviation × 3) or more is excluded from the data to be evaluated as bad data and used as a rejection test. The center of gravity is obtained again using the data after the rejection test, and this center of gravity is made positive (step S304).
(4) The reliability obtained by checking the data obtained by the above (3) in which the center of gravity is biased or uniformly distributed is checked. The reliability is confirmed by the bootstrap method (reconstruction extraction from the original database, creation of a database necessary for estimating the distribution of parameters and statistics to be evaluated, and using the estimated distribution, (Method of verifying stability) For example, 2/3 of the sample is used as a subset, the center of gravity is obtained, the standard deviation from the center of gravity is obtained using the remaining 1/3 subset, and the center of gravity is similarly obtained from the subset selected again at random. And the standard deviation is repeated several times. The reliability of the center of gravity subjected to the rejection test in (3) above is judged by the magnitude of the standard deviation obtained repeatedly. Only when the center of gravity obtained by the rejection test in (3) is reliable, it is stored and left (step S305).
(5) The processes of (3) and (4) are repeated for each cooling water inlet temperature data (step S306).
(6) Select the center of gravity with high reliability from the current month and last month. If there is a center of gravity of the same cooling water inlet temperature in the selected one, the amount of change in the partial load characteristic data is obtained from the compared difference using the center of gravity (step S307). This amount of change is a value to be corrected by reflecting it in the approximate expression.
(7) The amount of change obtained in (6) above is also reflected and corrected in the approximate expression of each cooling water inlet temperature of the refrigerator (step S308).

図4は、図1の設備中の複数の冷水2次ポンプの最適計算に用いる機器特性モデルの補正手順の説明図である。冷凍機と異なり、複数台の冷水2次ポンプは全て同一定格、同一仕様のモータから構成されるため、全ポンプの稼働実績であるQ−H特性データを一緒に扱う。
図4において、
(1)2次ポンプ全台の1ヶ月分の稼働実績から、Q−H特性データをポンプ運転周波数毎に分類して抽出する(ステップS402)。データ点数は744点(正時×24時×31日)のポンプ台数倍となる。
(2)上記(1)で周波数毎に抽出したデータに対してさらにその時のヘッダ圧力毎に細分して保存する(ステップS403)。
(3)上記(2)で細分したデータ点数が、評価に充分な点数かどうかを信頼係数と標準正規分布の数表の値と比べて判断する(ステップS404)。評価に値する十分な標本数があるものを次の処理対象とする。
(4)細分したデータから重心を求める。さらに、重心と各データ1点ずつを比較した標準偏差を求める。標準偏差の3σ(標準偏差×3)以上のかけ離れているデータは、バッドデータとして評価対象のデータから除外して棄却検定とする。棄却検定後のデータを用いて再度重心を求め、この重心を正とする(ステップS405)。
(5)ブートストラップ法にて重心と標準偏差を求めて、棄却検定後の重心の信頼性を確認し、棄却検定で求めた重心の使用可否を判断する(ステップS406)。
(6)当該周波数の他のヘッダ圧力のデータに対しても上記(4)、上記(5)を実施し、同様に他の周波数のヘッダ圧力毎の抽出データに対しても計算を繰り返す(ステップS407)。
(7)今月分の各周波数のヘッダ圧力毎の重心から、最も信頼性の高い重心を選択にする。ポンプの50Hz特性を同じ周波数と揚程にスライドさせた場合の流量と重心を比較して、差分から変化量を求め、これをポンプの50Hz特性の近似式に反映して補正する(ステップS408)。
FIG. 4 is an explanatory diagram of a procedure for correcting a device characteristic model used for optimal calculation of a plurality of cold water secondary pumps in the facility of FIG. Unlike chillers, multiple chilled water secondary pumps are all composed of motors with the same rating and specifications, so Q-H characteristic data, which is the operational performance of all pumps, is handled together.
In FIG.
(1) The QH characteristic data is classified and extracted for each pump operating frequency from the operation results for one month of all the secondary pumps (step S402). The number of data points is 744 points (on the hour x 24:00 x 31 days).
(2) The data extracted for each frequency in the above (1) is further subdivided and stored for each header pressure at that time (step S403).
(3) It is determined whether or not the number of data points subdivided in (2) above is sufficient for evaluation by comparing the reliability coefficient with the values in the number table of the standard normal distribution (step S404). A sample with a sufficient number of samples worthy of evaluation is considered as the next processing target.
(4) Find the center of gravity from the subdivided data. Further, a standard deviation obtained by comparing the center of gravity and one point of each data is obtained. Data that is far from the standard deviation of 3σ (standard deviation × 3) or more is excluded from the data to be evaluated as bad data and used as a rejection test. The center of gravity is obtained again using the data after the rejection test, and this center of gravity is made positive (step S405).
(5) The center of gravity and the standard deviation are obtained by the bootstrap method, the reliability of the center of gravity after the rejection test is confirmed, and it is determined whether or not the center of gravity obtained by the rejection test can be used (step S406).
(6) The above (4) and (5) are carried out for other header pressure data of the frequency, and the calculation is repeated for the extracted data for each header pressure of the other frequency (step) S407).
(7) The most reliable centroid is selected from the centroid for each header pressure of each frequency for this month. The flow rate and the center of gravity when the 50 Hz characteristic of the pump is slid to the same frequency and head are compared, the amount of change is obtained from the difference, and this is reflected in the approximate expression of the 50 Hz characteristic of the pump and corrected (step S408).

図5は、図1の設備中の複数の冷凍機における機器特性モデルの補正の一例を示す図である。本図は、2ヶ月分の部分負荷特性データの重心を比較し、その差分を変化量としてモデルの近似式を補正する場合を示す。図中、Aは、ある冷却水入口温度時のモデル特性、Bは、上記変化量を反映して補正した場合の特性である。   FIG. 5 is a diagram showing an example of correction of the device characteristic model in the plurality of refrigerators in the facility of FIG. This figure shows a case where the center of gravity of partial load characteristic data for two months is compared, and the approximate expression of the model is corrected using the difference as a change amount. In the figure, A is a model characteristic at a certain cooling water inlet temperature, and B is a characteristic when correction is performed to reflect the amount of change.

図6は、図1の設備中の冷水2次ポンプの機器特性モデル補正の一例を示す図である。ポンプのQ−H特性は50Hzの場合のモデル特性のみを示す(特性C)。重心を算出した同じ周波数にこの特性をスライドさせて(特性E)、同じヘッダ圧を示す揚程から流量を求める。重心の流量と特性の流量を比較して、差分を変化量として、ポンプのモデルを補正する(補正特性D)。   FIG. 6 is a diagram illustrating an example of device characteristic model correction of the cold water secondary pump in the facility of FIG. The QH characteristic of the pump shows only the model characteristic at 50 Hz (characteristic C). This characteristic is slid to the same frequency at which the center of gravity is calculated (characteristic E), and the flow rate is obtained from the head showing the same header pressure. The flow rate of the center of gravity is compared with the flow rate of the characteristic, and the pump model is corrected using the difference as the amount of change (correction characteristic D).

なお、上記実施例では、評価対象のデータを除外するにおいて、標準偏差の3σ(標準偏差×3)以上のかけ離れていることを目安とするとして説明した。しかしながら、本発明の実施においては、この標準偏差の3σに限定されるものではなく、σや2σ等でもよく、適宜、選択するものであってもよい。
また、上記実施例では、重心と標準偏差を求めるにおいて、ブートストラップ法を用いるとして説明したが、これも、他の方法を用いてもよい。
In the above-described embodiment, it has been described that the standard deviation is 3σ (standard deviation × 3) or more when the data to be evaluated is excluded. However, in the practice of the present invention, the standard deviation is not limited to 3σ but may be σ, 2σ, or the like, and may be appropriately selected.
In the above embodiment, the bootstrap method is used to obtain the center of gravity and the standard deviation. However, another method may be used.

本発明の実施例としての冷凍用設備の構成例図である。It is an example of composition of refrigeration equipment as an example of the present invention. 図1の設備における複数の冷凍機と複数の冷水2次ポンプの運転動作手順の説明図である。It is explanatory drawing of the operation | movement operation procedure of the some refrigerator in the installation of FIG. 1, and a some cold water secondary pump. 図1の設備における複数の冷凍機の最適計算に用いる機器特性モデルの補正手順の説明図である。It is explanatory drawing of the correction | amendment procedure of the apparatus characteristic model used for the optimal calculation of the some refrigerator in the installation of FIG. 図1の設備における複数の冷水2次ポンプの最適計算に用いる機器特性モデルの補正手順の説明図である。It is explanatory drawing of the correction | amendment procedure of the apparatus characteristic model used for the optimal calculation of the some cold water secondary pump in the installation of FIG. 図1の設備における複数の冷凍機の機器特性モデル補正の一例を示す図である。It is a figure which shows an example of the apparatus characteristic model correction | amendment of the some refrigerator in the installation of FIG. 図1の設備における冷水2次ポンプの機器特性モデル補正の一例を示す図である。It is a figure which shows an example of the apparatus characteristic model correction | amendment of the cold water secondary pump in the installation of FIG.

符号の説明Explanation of symbols

1…冷凍機部、
2…運転制御部、
3…負荷部、
4…冷水槽、
5…冷水2次ポンプ部、
6…冷水ヘッダ、
7…調相器、
11…第1の温度・流量監視点、
12…第2の温度・流量監視点、
13…ヘッダ圧力監視点、
100…冷凍機用設備。
1 ... Refrigerator part,
2 ... Operation control part,
3 ... load section,
4 ... cold water tank,
5 ... Cold water secondary pump part,
6 ... Cold water header,
7 ... Phase adjuster,
11: First temperature / flow rate monitoring point,
12 ... Second temperature / flow rate monitoring point,
13 ... Header pressure monitoring point,
100: Equipment for refrigerators.

Claims (6)

空調設備における複数の冷凍機の運転方法であって、
上記複数の冷凍機それぞれの冷凍容量と消費電力との関係を各部の特性に対応してモデル化した近似式を求める第1のステップと、
上記近似式に基づき、複数の冷凍機の全体の消費電力を求める第2のステップと、
上記求めた全体の消費電力を小さくする場合の各冷凍機の冷凍容量を設定する第3のステップと、
上記設定した冷凍容量で各冷凍機の運転状態を制御する第4のステップと、
を備え、上記各冷凍機を運転することを特徴とする冷凍機の運転方法。
A method of operating a plurality of refrigerators in an air conditioning facility,
A first step of obtaining an approximate expression in which the relationship between the refrigeration capacity and the power consumption of each of the plurality of refrigerators is modeled corresponding to the characteristics of each part;
A second step of determining the overall power consumption of the plurality of refrigerators based on the approximate expression;
A third step of setting the refrigeration capacity of each refrigerator when reducing the total power consumption obtained above;
A fourth step of controlling the operating state of each refrigerator with the set refrigeration capacity;
And operating each of the above refrigerators.
上記第1のステップでは、上記複数の冷凍機の稼働実績データの重心を比較し相対値の変化分に基づき上記近似式を補正する請求項1に記載の冷凍機の運転方法。   The operation method of the refrigerator according to claim 1, wherein in the first step, the gravity centers of the operation results data of the plurality of refrigerators are compared, and the approximate expression is corrected based on a change in relative value. 上記第1のステップでは、上記複数の冷凍機の稼働実績データの変化分を特性変化として上記近似式を補正する請求項1に記載の冷凍機の運転方法。   The operating method of the refrigerator according to claim 1, wherein in the first step, the approximate expression is corrected with a change in the operation result data of the plurality of refrigerators as a characteristic change. 上記第3のステップでは、複数の冷凍機の全体の消費電力を最小にするときの各冷凍機の冷凍容量を設定する請求項1に記載の冷凍機の運転方法。   The method of operating a refrigerator according to claim 1, wherein, in the third step, the refrigerating capacity of each refrigerator when the overall power consumption of the plurality of refrigerators is minimized is set. 上記第1のステップでは、上記モデル化した近似式の定期的な見直しを行い、上記第2のステップでは、上記見直した近似式により複数の冷凍機の全体の消費電力を求める請求項1に記載の冷凍機の運転方法。   The said 1st step WHEREIN: The said modeled approximate expression is regularly reviewed, The said 2nd step calculates | requires the whole power consumption of several refrigerator with the said approximated formula. How to operate the refrigerator. 冷凍機を用い、冷凍、冷却または冷房を行う設備であって、
冷凍、冷却または冷房用の流体の冷却を行う複数の冷凍機と、
上記複数の冷凍機それぞれの冷凍容量と消費電力との関係を各部の特性に対応してモデル化した近似式を求めかつ複数の冷凍機の稼働実績データの重心を比較し相対値の変化分に基づき該近似式を補正し、該補正した近似式に基づき複数の冷凍機の全体の消費電力を演算し、該演算した全体の消費電力を小さくする場合の各冷凍機の冷凍容量を設定し、該設定した冷凍容量で各冷凍機の運転状態を制御する運転制御部と、
を備えて成ることを特徴とする設備。
A facility that uses a refrigerator to perform freezing, cooling or cooling,
A plurality of refrigerators for cooling the fluid for freezing, cooling or cooling;
Obtain an approximate expression that models the relationship between the refrigeration capacity and power consumption of each of the multiple refrigerators according to the characteristics of each part, and compare the centroids of the operation data of the multiple refrigerators to change the relative value. Correcting the approximate expression based on the calculation, calculating the overall power consumption of the plurality of refrigerators based on the corrected approximate expression, setting the refrigerating capacity of each refrigerator when reducing the calculated overall power consumption, An operation control unit for controlling the operation state of each refrigerator with the set refrigeration capacity;
A facility characterized by comprising.
JP2005273257A 2005-09-21 2005-09-21 How to operate the refrigerator Active JP4579805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273257A JP4579805B2 (en) 2005-09-21 2005-09-21 How to operate the refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273257A JP4579805B2 (en) 2005-09-21 2005-09-21 How to operate the refrigerator

Publications (2)

Publication Number Publication Date
JP2007085601A true JP2007085601A (en) 2007-04-05
JP4579805B2 JP4579805B2 (en) 2010-11-10

Family

ID=37972745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273257A Active JP4579805B2 (en) 2005-09-21 2005-09-21 How to operate the refrigerator

Country Status (1)

Country Link
JP (1) JP4579805B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232610A (en) * 2007-02-19 2008-10-02 Matsushita Electric Works Ltd Schedule generation device
JP2011012839A (en) * 2009-06-30 2011-01-20 Taikisha Ltd Method and device of evaluating performance of heat source system and air-conditioning system
EP2314942A2 (en) 2009-10-21 2011-04-27 Mitsubishi Electric Corporation Air-conditioning apparatus control device and refrigerating apparatus control device
JP2014115010A (en) * 2012-12-10 2014-06-26 Mitsubishi Electric Corp Demand control apparatus and its method
JP2014145493A (en) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd Pump operation unit number decision control method in two-pump type heat source equipment
JP2016176611A (en) * 2015-03-18 2016-10-06 株式会社東芝 Air conditioning control device, control method, and program
CN109750872A (en) * 2019-02-26 2019-05-14 财拓云计算(上海)有限公司 Based on prefabricated data center and its building method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145176A (en) * 1995-11-28 1997-06-06 Hitachi Ltd Control for operation of plurality of refrigerating devices
JP2003120982A (en) * 2001-10-16 2003-04-23 Hitachi Ltd System for operating air conditioning facility and supporting system for design of air conditioning facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145176A (en) * 1995-11-28 1997-06-06 Hitachi Ltd Control for operation of plurality of refrigerating devices
JP2003120982A (en) * 2001-10-16 2003-04-23 Hitachi Ltd System for operating air conditioning facility and supporting system for design of air conditioning facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232610A (en) * 2007-02-19 2008-10-02 Matsushita Electric Works Ltd Schedule generation device
JP2011012839A (en) * 2009-06-30 2011-01-20 Taikisha Ltd Method and device of evaluating performance of heat source system and air-conditioning system
EP2314942A2 (en) 2009-10-21 2011-04-27 Mitsubishi Electric Corporation Air-conditioning apparatus control device and refrigerating apparatus control device
US8655492B2 (en) 2009-10-21 2014-02-18 Mitsubishi Electric Corporation Air-conditioning apparatus control device and refrigerating apparatus control device
JP2014115010A (en) * 2012-12-10 2014-06-26 Mitsubishi Electric Corp Demand control apparatus and its method
JP2014145493A (en) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd Pump operation unit number decision control method in two-pump type heat source equipment
JP2016176611A (en) * 2015-03-18 2016-10-06 株式会社東芝 Air conditioning control device, control method, and program
CN109750872A (en) * 2019-02-26 2019-05-14 财拓云计算(上海)有限公司 Based on prefabricated data center and its building method

Also Published As

Publication number Publication date
JP4579805B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4579805B2 (en) How to operate the refrigerator
US8904814B2 (en) System and method for detecting a fault condition in a compressor
EP3919841A1 (en) Systems and methods for a refrigeration or hvac system
RU2432591C2 (en) Control procedure for technical installation cooling
CN113266972A (en) Maintenance and diagnostics for refrigeration systems
US20170336119A1 (en) On board chiller capacity calculation
US11609010B2 (en) Detection of refrigerant side faults
Hydeman et al. Optimizing chilled water plant control
JP2005098642A (en) Refrigeration air conditioner and refrigeration air conditioning system
JP4857051B2 (en) Refrigerator equipment operation method and equipment comprising a refrigerator
JP2005133980A (en) Air conditioning system
CN111380184A (en) Compressor operation control method and device and heat exchange system
ES2656211T3 (en) Method for providing energy saving service, and freezing / air conditioning device
EP3421904A1 (en) Compressor cycling control for variable flow systems
CN114427742B (en) Central air-conditioning cold station energy efficiency control method, device, equipment and storage medium
JP2006207855A (en) Operating method of refrigerating machine and equipment provided with refrigerating machine
CN110966709B (en) Method and device for determining initial opening degree of electronic expansion valve
CN110966712B (en) Method and device for determining target exhaust temperature of electronic expansion valve of air conditioner
JP2010091126A (en) Refrigerating machine
CN104976119B (en) Temperature control system and method of compressor
JP3979232B2 (en) Failure diagnosis apparatus and failure diagnosis method
Hoess Design and Commissioning of a Test Stand to Conduct Performance Degradation Studies and Accelerated Life Testing on Water-Cooled Variable-Speed Screw Compressor Chillers
CN115077062B (en) Fluorine-deficiency prompting control method and device for multi-connected air conditioner and air conditioner
CN110966710B (en) Method and device for determining initial opening degree of electronic expansion valve of air conditioner
Berglof Predictive Maintenance Based on Performance Analysis Using System Efficiency Index and Sub-Efficiencies is the Future

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150