JP2007085266A - Heat exchange apparatus of exhaust system - Google Patents

Heat exchange apparatus of exhaust system Download PDF

Info

Publication number
JP2007085266A
JP2007085266A JP2005276072A JP2005276072A JP2007085266A JP 2007085266 A JP2007085266 A JP 2007085266A JP 2005276072 A JP2005276072 A JP 2005276072A JP 2005276072 A JP2005276072 A JP 2005276072A JP 2007085266 A JP2007085266 A JP 2007085266A
Authority
JP
Japan
Prior art keywords
exhaust
heat exchange
heat
heat medium
exhaust system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005276072A
Other languages
Japanese (ja)
Inventor
Tomoki Mabuchi
知樹 馬渕
Masakatsu Tsubouchi
正克 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005276072A priority Critical patent/JP2007085266A/en
Publication of JP2007085266A publication Critical patent/JP2007085266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heat exchange apparatus of an exhaust system which can efficiently exchange heat between exhaust gas and a heat medium. <P>SOLUTION: An exhaust heat recovery section 36 applied to the exhaust system 10 for a vehicle has a construction such that a cooling water pipe 38 is installed in a downstream-side conical portion 34 of a catalyst case 28 through which the exhaust gas flows. The cooling water pipe 38 includes a spiral heat exchange section 38A, as viewed in the axial direction, so that the curvature of the heat exchange section continuously varies from the upstream side to the downstream side in the direction of a flow of the exhaust gas. The heat exchange section 38A is coaxially disposed within the downstream-side conical portion 34. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば内燃機関エンジンの排気ガスが有する排気熱を回収等するための排気系熱交換装置に関する。   The present invention relates to an exhaust heat exchanger for recovering exhaust heat of exhaust gas of an internal combustion engine, for example.

内燃機関エンジンの排気管内に螺旋状を成す通水管を配設した構成が知られている(例えば、特許文献1参照)。
特開平2−136507号公報 特開平7−259548号公報 特開2002−115802号公報
A configuration in which a spiral water passage pipe is disposed in an exhaust pipe of an internal combustion engine is known (for example, see Patent Document 1).
JP-A-2-136507 Japanese Patent Laid-Open No. 7-259548 JP 2002-115802 A

しかしながら、上記の如き従来の技術では、通水管が排気管の軸心部に配置されているため、該排気管の軸心部分を通過する排気の排気熱しか回収することができない。   However, in the conventional technology as described above, since the water pipe is disposed at the axial center portion of the exhaust pipe, only the exhaust heat of the exhaust gas passing through the axial center portion of the exhaust pipe can be recovered.

本発明は上記事実を考慮して、排気と熱媒体との熱交換を効率的に行うことができる排気系熱交換装置を得ることが目的である。   In view of the above fact, an object of the present invention is to obtain an exhaust system heat exchange device capable of efficiently performing heat exchange between exhaust and a heat medium.

上記目的を達成するために請求項1記載の発明に係る排気系熱交換装置は、排気系内に熱媒体配管を配置して該熱媒体配管を流れる熱媒体と排気との熱交換を行う排気系熱交換装置であって、前記熱媒体配管は、排気流方向の上流側から下流側に向けて曲率が連続的に変化するように軸方向視で渦巻状に形成された熱交換部が、前記排気系を構成する排気流路内に同軸的に配置されている。   In order to achieve the above object, an exhaust system heat exchanging device according to the first aspect of the present invention is an exhaust system in which a heat medium pipe is arranged in the exhaust system and heat exchange between the heat medium flowing through the heat medium pipe and the exhaust gas is performed. In the heat exchanger system, the heat medium pipe has a heat exchange part formed in a spiral shape in an axial view so that the curvature continuously changes from the upstream side to the downstream side in the exhaust flow direction. It arrange | positions coaxially in the exhaust flow path which comprises the said exhaust system.

請求項1記載の排気系熱交換装置では、排気流路を流れる排気と熱媒体配管の熱交換部を流れる熱媒体との熱交換が、熱媒体配管が配置されている排気流路内で行われる。   In the exhaust heat exchanger according to claim 1, heat exchange between the exhaust flowing through the exhaust flow path and the heat medium flowing through the heat exchange section of the heat medium pipe is performed in the exhaust flow path where the heat medium pipe is disposed. Is called.

ここで、熱媒体配管の熱交換部が軸方向視で渦巻状に形成されているため、排気流路内の広い領域で熱媒体流路が排気流方向上流側を向き、効率的に熱交換が行われる。また、熱媒体配管の熱交換部は、熱媒体流れ方向の一端側が排気流方向の上流側に位置し他端側が下流側に位置するため、換言すれば、熱媒体配管がテーパ螺旋状を成しているため、熱媒体配管を単に排気流路の軸直角断面に沿う渦巻状に形成した構成と比較して、背圧(排気抵抗)の増大が抑制される。   Here, since the heat exchange part of the heat medium pipe is formed in a spiral shape when viewed in the axial direction, the heat medium channel faces the upstream side in the exhaust flow direction in a wide area in the exhaust channel, and efficiently exchanges heat. Is done. In addition, the heat exchange part of the heat medium pipe has one end side in the heat medium flow direction located upstream in the exhaust flow direction and the other end side located in the downstream side.In other words, the heat medium pipe has a tapered spiral shape. Therefore, an increase in back pressure (exhaust resistance) is suppressed as compared with a configuration in which the heat medium pipe is simply formed in a spiral shape along the cross section perpendicular to the axis of the exhaust flow path.

このように、請求項1記載の排気系熱交換装置では、排気と熱媒体との熱交換を効率的に行うことができる。   Thus, in the exhaust heat exchanger according to claim 1, heat exchange between the exhaust and the heat medium can be performed efficiently.

請求項2記載の発明に係る排気系熱交換装置は、排気系内に熱媒体配管を配置して該熱媒体配管を流れる熱媒体と排気との熱交換を行う排気系熱交換装置であって、前記排気系は、排気流を整流する整流部と、該整流部の排気流方向の下流側に連続する熱交換流路とを有し、前記熱媒体配管は、排気流方向の上流側から下流側に向けて曲率が連続的に変化するように軸方向視で渦巻状に形成された熱交換部が、前記熱交換流路内に同軸的に配置されている。   An exhaust system heat exchanging device according to a second aspect of the present invention is an exhaust system heat exchanging device in which a heat medium pipe is arranged in the exhaust system and heat exchange is performed between the heat medium flowing through the heat medium pipe and the exhaust gas. The exhaust system includes a rectification unit that rectifies the exhaust flow, and a heat exchange passage that is continuous downstream of the rectification unit in the exhaust flow direction, and the heat medium pipe extends from the upstream side in the exhaust flow direction. A heat exchange section formed in a spiral shape in an axial view so that the curvature continuously changes toward the downstream side is coaxially disposed in the heat exchange flow path.

請求項2記載の排気系熱交換装置では、整流部を通過することで整流され熱交換流路に導入された排気と、熱媒体配管における上記熱交換流路に配置された熱交換部を流れる熱媒体との熱交換が行われる。   In the exhaust system heat exchange device according to claim 2, the exhaust gas rectified by passing through the rectification unit and introduced into the heat exchange channel flows through the heat exchange unit disposed in the heat exchange channel in the heat medium pipe. Heat exchange with the heat medium is performed.

ここで、熱媒体配管の熱交換部が軸方向視で渦巻状に形成されているため、熱交換流路内の広い領域で熱媒体流路が排気流方向上流側を向き、効率的に熱交換が行われる。特に、排気が整流部を通過して整流され、熱交換流路(断面)内での流れが均一化されるので、排気と熱媒体との熱交換を一層効率的に行うことができる。   Here, since the heat exchange part of the heat medium pipe is formed in a spiral shape when viewed in the axial direction, the heat medium channel faces the upstream side in the exhaust flow direction in a wide area in the heat exchange channel, and heat is efficiently generated. Exchange is performed. In particular, the exhaust gas is rectified by passing through the rectification unit, and the flow in the heat exchange flow path (cross section) is made uniform, so that heat exchange between the exhaust gas and the heat medium can be performed more efficiently.

このように、請求項2記載の排気系熱交換装置では、排気と熱媒体との熱交換を効率的に行うことができる。また、熱媒体配管の熱交換部は、熱媒体流れ方向の一端側が排気流方向の上流側に位置し他端側が下流側に位置するため、換言すれば、熱媒体配管がテーパ螺旋状を成しているため、熱媒体配管を単に排気流路の軸直角断面に沿う渦巻状に形成した構成と比較して、背圧(排気抵抗)の増大が抑制される。   Thus, in the exhaust system heat exchange device according to the second aspect, heat exchange between the exhaust and the heat medium can be performed efficiently. In addition, the heat exchange part of the heat medium pipe has one end side in the heat medium flow direction located upstream in the exhaust flow direction and the other end side located in the downstream side.In other words, the heat medium pipe has a tapered spiral shape. Therefore, an increase in back pressure (exhaust resistance) is suppressed as compared with a configuration in which the heat medium pipe is simply formed in a spiral shape along the cross section perpendicular to the axis of the exhaust flow path.

請求項3記載の発明に係る排気系熱交換装置は、請求項2記載の排気系熱交換装置において、前記整流部は、排気流方向に沿う直線状の細流路が多数並列された触媒である。   An exhaust heat exchanger according to a third aspect of the present invention is the exhaust heat exchanger according to the second aspect, wherein the rectifying unit is a catalyst in which a large number of linear narrow channels along the exhaust flow direction are arranged in parallel. .

請求項3記載の排気系熱交換装置では、排気は、触媒(触媒を担持する担持体)の多数の細流路を通過することで整流される。触媒部の下流に熱媒体配管の熱交換部を配設することで、専用の整流部に頼ることなく良好な熱交換効率を得ることができる。   In the exhaust system heat exchange device according to the third aspect, the exhaust gas is rectified by passing through a large number of narrow flow paths of the catalyst (supporting body supporting the catalyst). By disposing the heat exchange part of the heat medium pipe downstream of the catalyst part, good heat exchange efficiency can be obtained without relying on a dedicated rectifying part.

上記目的を達成するために請求項4記載の発明に係る排気系熱交換装置は、排気系内に熱媒体配管を配置して該熱媒体配管を流れる熱媒体と排気との熱交換を行う排気系熱交換装置であって、前記排気系は、排気流方向に沿う直線状の細流路が多数並列された触媒を収容する触媒ケースを有し、前記触媒ケースは、前記触媒を収容する触媒部と、該触媒部の排気流方向の下流側に連続しテーパ状に形成されたテーパ部とを含み、前記熱媒体配管は、排気流方向の上流側から下流側に向けて曲率が連続的に変化するように軸方向視で渦巻状を成すテーパ螺旋状に形成された熱交換部が、前記触媒ケースのテーパ部内に同軸的かつテーパ方向が一致するように配置されている。   In order to achieve the above object, an exhaust system heat exchanging device according to a fourth aspect of the present invention is an exhaust system that arranges a heat medium pipe in the exhaust system and performs heat exchange between the heat medium flowing in the heat medium pipe and the exhaust gas. The exhaust system has a catalyst case that contains a catalyst in which a large number of linear narrow channels along the exhaust flow direction are arranged in parallel, and the catalyst case contains a catalyst part that contains the catalyst And a taper portion formed in a taper shape continuous to the downstream side in the exhaust flow direction of the catalyst portion, and the heat medium pipe has a curvature continuously from the upstream side to the downstream side in the exhaust flow direction. A heat exchanging portion formed in a spiral shape having a spiral shape as viewed in the axial direction so as to change is arranged coaxially and in a taper direction within the taper portion of the catalyst case.

請求項4記載の排気系熱交換装置では、触媒ケース内の触媒(触媒を担持する担持体)の多数の細流路を通過することで整流され該触媒ケースのテーパ部に排出された排気と、熱媒体配管における上記テーパ部に配置された熱交換部を流れる熱媒体との熱交換が行われる。   In the exhaust system heat exchange device according to claim 4, the exhaust gas rectified by passing through a number of narrow channels of the catalyst in the catalyst case (the carrier carrying the catalyst) and discharged to the taper portion of the catalyst case; Heat exchange with the heat medium flowing through the heat exchange part arranged in the tapered part in the heat medium pipe is performed.

ここで、熱媒体配管の熱交換部が軸方向視で渦巻状に形成されているため、排気流路内の広い領域で熱媒体流路が排気流方向上流側を向き、効率的に熱交換が行われる。特に、排気が触媒を通過して整流されテーパ部の径方向各部で排気流れが均一化されるので、排気と熱媒体との熱交換が一層効率的になる。   Here, since the heat exchange part of the heat medium pipe is formed in a spiral shape when viewed in the axial direction, the heat medium channel faces the upstream side in the exhaust flow direction in a wide area in the exhaust channel, and efficiently exchanges heat. Is done. In particular, exhaust gas passes through the catalyst and is rectified, and the exhaust flow is made uniform at each radial portion of the tapered portion, so that heat exchange between the exhaust gas and the heat medium becomes more efficient.

このように、請求項4記載の排気系熱交換装置では、排気と熱媒体との熱交換を効率的に行うことができる。また、熱媒体配管の熱交換部は、熱媒体配管がテーパ螺旋状を成しているため、熱媒体配管を単に排気流路の軸直角断面に沿う渦巻状に形成した構成やテーパ部の最小径部に対応する円筒面に沿う螺旋状に形成した構成と比較して、背圧(排気抵抗)の増大が抑制される。   Thus, in the exhaust system heat exchange device according to the fourth aspect, heat exchange between the exhaust and the heat medium can be performed efficiently. In addition, since the heat medium pipe has a taper spiral shape in the heat exchange part of the heat medium pipe, the heat medium pipe is simply formed in a spiral shape along the cross section perpendicular to the axis of the exhaust flow path, or the taper part is the most. Compared with the configuration formed in a spiral shape along the cylindrical surface corresponding to the small diameter portion, an increase in back pressure (exhaust resistance) is suppressed.

請求項5記載の発明に係る排気系熱交換装置は、請求項4記載の排気系熱交換装置において、前記熱媒体配管の熱交換部は、テーパ角が前記触媒ケースのテーパ部内周面のテーパ角に一致している。   An exhaust system heat exchange device according to a fifth aspect of the present invention is the exhaust system heat exchange device according to the fourth aspect, wherein the heat exchange portion of the heat medium pipe has a taper angle of a taper portion inner peripheral surface of the catalyst case. It matches the corner.

請求項5記載の排気系熱交換装置では、熱媒体配管の熱交換部のテーパ角(円錐角)が触媒ケースのテーパ部のテーパ角に略一致するため、テーパ螺旋状に形成された熱媒体配管の熱交換部の径方向内外を排気が略均一に流れ、熱交換効率が一層向上する。   6. The exhaust heat exchanger according to claim 5, wherein the taper angle (cone angle) of the heat exchange part of the heat medium pipe substantially coincides with the taper angle of the taper part of the catalyst case. Exhaust flows substantially uniformly inside and outside the heat exchange part of the pipe, and the heat exchange efficiency is further improved.

請求項6記載の発明に係る排気系熱交換装置は、請求項1乃至請求項5の何れか1項記載の排気系熱交換装置において、前記熱媒体配管の熱交換部は、周方向の同じ位置で大径側部分の内径が小径側部分の外径よりも大とされている。   The exhaust heat exchanger according to claim 6 is the exhaust heat exchanger according to any one of claims 1 to 5, wherein the heat exchange portion of the heat medium pipe is the same in the circumferential direction. At the position, the inner diameter of the large diameter side portion is larger than the outer diameter of the small diameter side portion.

請求項6記載の排気系熱交換装置では、熱媒体配管の熱交換部は、軸方向から見て上流側部分と下流側部分とがオーバラップしない渦巻状を成している。このため、熱交換部の各部が排気流れに対し影にならず、排気が熱交換部に略均一にむらなく接触する。これにより、熱交換効率がより一層向上する。   In the exhaust system heat exchange device according to the sixth aspect, the heat exchange part of the heat medium pipe has a spiral shape in which the upstream part and the downstream part do not overlap each other when viewed from the axial direction. For this reason, each part of a heat exchange part does not become a shadow with respect to an exhaust flow, but exhaust_gas | exhaustion contacts a heat exchange part substantially uniformly. Thereby, heat exchange efficiency improves further.

請求項7記載の発明に係る排気系熱交換装置は、請求項1乃至請求項6の何れか1項記載の排気系熱交換装置において、前記熱媒体配管の熱交換部は、曲率が大きい側から熱媒体が導入されるようになっている。   The exhaust heat exchanger according to claim 7 is the exhaust heat exchanger according to any one of claims 1 to 6, wherein the heat exchange part of the heat medium pipe has a larger curvature side. The heat medium is introduced from.

請求項7記載の排気系熱交換装置では、排気流路(熱交換流路、触媒ケースのテーパ部)における排気温が高い軸心部に熱媒体が導入されるので、換言すれば、高温の排気が低温の熱媒体と熱交換を行うので、熱媒体の昇温又は排気の高温を早期に行うことができる。また、排気流路の径方向各部における温度分布が一層均一化される。   In the exhaust system heat exchange device according to the seventh aspect, the heat medium is introduced into the shaft center portion having a high exhaust temperature in the exhaust passage (heat exchange passage, taper portion of the catalyst case). Since the exhaust performs heat exchange with a low-temperature heat medium, the temperature of the heat medium can be increased or the temperature of the exhaust can be increased quickly. Further, the temperature distribution in each part in the radial direction of the exhaust flow path is made more uniform.

請求項8記載の発明に係る排気系熱交換装置は、請求項1乃至請求項7の何れか1項記載の排気系熱交換装置において、前記熱媒体配管は、少なくとも前記熱交換流路内、又は前記触媒ケースのテーパ部内に位置する部分が単一の熱媒体流路を形成する。   The exhaust heat exchanger according to claim 8 is the exhaust heat exchanger according to any one of claims 1 to 7, wherein the heat medium pipe is at least in the heat exchange flow path. Or the part located in the taper part of the said catalyst case forms a single heat carrier flow path.

請求項8記載の排気系熱交換装置では、排気流路内に位置する熱媒体配管の熱交換部を含む部分には分岐等がないので、空気抜きのために熱媒体出口を鉛直方向上向きにする等の制約がなくなる。このため、排気流路に対する熱媒体配管の配設自由度が高くなる。   In the exhaust system heat exchanging device according to claim 8, since there is no branching or the like in the portion including the heat exchanging portion of the heat medium pipe located in the exhaust passage, the heat medium outlet is directed upward in the vertical direction for air venting. Eliminate restrictions such as. For this reason, the arrangement | positioning freedom degree of heat-medium piping with respect to an exhaust flow path becomes high.

以上説明したように本発明に係る排気系熱交換装置は、排気と熱媒体との熱交換を効率的に行うことができるという優れた効果を有する。   As described above, the exhaust system heat exchange device according to the present invention has an excellent effect that heat exchange between the exhaust and the heat medium can be performed efficiently.

本発明の一実施形態に係る排気系熱交換装置が適用された車両用排気系10について、図1乃至図3に基づいて説明する。   A vehicle exhaust system 10 to which an exhaust system heat exchanger according to an embodiment of the present invention is applied will be described with reference to FIGS. 1 to 3.

図1には、車両用排気系10の概略全体構成が斜視図にて示されている。この図に示される如く、車両用排気系10では、排気としての排気ガスが排出される流れ方向の上流側から順に、触媒コンバータ12、メインマフラ14、サブマフラ16、テールパイプ18が配設されている。なお、サブマフラ16を触媒コンバータ12とメインマフラ14との間に配設した構成としたり、サブマフラ16を備えない構成としたりしても良い。以下の説明では、単に上流、下流というときは、排気ガスの流れ方向における上流、下流を示している。   FIG. 1 is a perspective view showing a schematic overall configuration of a vehicle exhaust system 10. As shown in this figure, in the vehicle exhaust system 10, a catalytic converter 12, a main muffler 14, a sub muffler 16, and a tail pipe 18 are arranged in order from the upstream side in the flow direction in which exhaust gas as exhaust gas is discharged. Yes. The sub muffler 16 may be configured to be disposed between the catalytic converter 12 and the main muffler 14 or may be configured not to include the sub muffler 16. In the following description, the terms “upstream” and “downstream” indicate upstream and downstream in the flow direction of the exhaust gas.

触媒コンバータ12は、排気管20を介して図示しない内燃機関エンジンの排気マニホルドに連通して接続されている。触媒コンバータ12とメインマフラ14とは、排気管22によって互いに連通して接続されている。メインマフラ14とサブマフラ16とは、排気管24によって互いに連通して接続されている。テールパイプ18は、サブマフラ16に連通して接続されており、その下流開口端から車外に排気ガス排出するようになっている。   The catalytic converter 12 is connected via an exhaust pipe 20 to an exhaust manifold of an internal combustion engine (not shown). The catalytic converter 12 and the main muffler 14 are connected to each other by an exhaust pipe 22. The main muffler 14 and the sub muffler 16 are connected to each other by an exhaust pipe 24. The tail pipe 18 is connected to the sub muffler 16 so as to discharge exhaust gas from the downstream opening end to the outside of the vehicle.

また、図2に示される如く、触媒コンバータ12は、排気ガスを浄化するための触媒を担持した触媒キャリア26と、触媒キャリア26を収容する触媒ケース28とを含んで構成されている。触媒キャリア26は、例えばハニカム状又はメッシュ状の断面形状を有し、排気ガス流れ方向(矢印A参照)に沿った直線状(柱状)の多数の細流路26Aを備えている。この触媒キャリア26は、各細流路26A内に担持した触媒に該各細流路26Aを通過する排気ガスを接触させて、排気ガスを浄化するようになっている。この触媒は、例えば排気ガス中に含まれる燃焼生成物である一酸化炭素(CO)、窒素酸化物(NOx)、未燃の燃料である炭化水素(HC)等の一部又は全部を除去する反応を促進するものが選択される。   As shown in FIG. 2, the catalytic converter 12 includes a catalyst carrier 26 that supports a catalyst for purifying exhaust gas, and a catalyst case 28 that houses the catalyst carrier 26. The catalyst carrier 26 has, for example, a honeycomb-like or mesh-like cross-sectional shape, and includes a large number of linear (columnar) narrow channels 26A along the exhaust gas flow direction (see arrow A). The catalyst carrier 26 purifies the exhaust gas by bringing the exhaust gas passing through each narrow channel 26A into contact with the catalyst carried in each narrow channel 26A. This catalyst removes a part or all of, for example, carbon monoxide (CO), nitrogen oxide (NOx), which is a combustion product contained in exhaust gas, and hydrocarbon (HC), which is unburned fuel. Those that promote the reaction are selected.

触媒ケース28は、排気管20、22よりも大径とされ触媒キャリア26を収容する触媒部としてのキャリア保持部30と、キャリア保持部30の上流側に設けられた上流側コニカル部32と、キャリア保持部30の下流側に設けられた下流側コニカル部34とを含んで構成されている。上流側コニカル部32は、上流側から下流側に向けて連続的に拡径されたテーパ筒状に形成され、排気管20の下流端とキャリア保持部30の上流端とを滑らかに連結している。下流側コニカル部34は、上流側から下流側に向けて連続的に縮径されたテーパ筒状に形成され、キャリア保持部30の下流端と排気管22の上流端とを滑らかに連結している。   The catalyst case 28 has a larger diameter than the exhaust pipes 20 and 22, a carrier holding part 30 as a catalyst part that accommodates the catalyst carrier 26, an upstream conical part 32 provided on the upstream side of the carrier holding part 30, And a downstream conical part 34 provided on the downstream side of the carrier holding part 30. The upstream conical part 32 is formed in a tapered cylindrical shape having a diameter continuously increased from the upstream side toward the downstream side, and smoothly connects the downstream end of the exhaust pipe 20 and the upstream end of the carrier holding part 30. Yes. The downstream conical part 34 is formed in a tapered cylindrical shape continuously reduced in diameter from the upstream side toward the downstream side, and smoothly connects the downstream end of the carrier holding part 30 and the upstream end of the exhaust pipe 22. Yes.

触媒ケース28内では、キャリア保持部30に収容された触媒キャリア26の各細流路26Aは、それぞれ上流端が上流側コニカル部32内に開口すると共に、下流端が下流側コニカル部34内に開口している。これにより、触媒ケース28内では、触媒キャリア26の多数の細流路26Aに分散されて細流路26Aを通過することで排気ガスが整流されるようになっている。すなわち、下流側コニカル部34内には、矢印A方向に沿う直線的な流れ(速度ベクトル)を有する排気ガスが導入されるようになっている。   In the catalyst case 28, each narrow channel 26 </ b> A of the catalyst carrier 26 accommodated in the carrier holding unit 30 has an upstream end opened in the upstream conical portion 32 and a downstream end opened in the downstream conical portion 34. is doing. Thus, in the catalyst case 28, the exhaust gas is rectified by being dispersed in the numerous fine channels 26A of the catalyst carrier 26 and passing through the fine channels 26A. That is, exhaust gas having a linear flow (velocity vector) along the direction of arrow A is introduced into the downstream conical portion 34.

この車両用排気系10には、排気ガスの持つ排気熱を回収するための排気熱回収部36が設けられている。排気熱回収部36は、排気ガスの流路である触媒ケース28の下流側コニカル部34内に、熱媒体配管としての冷却水配管38を配設して構成されている。冷却水配管38は、上記内燃機関エンジンを冷却するためのエンジン冷却水を流通させる配管であり、排気熱回収部36は、内燃機関エンジンの始動直後等の場合に、排気ガスの排気熱をエンジン冷却水によって回収し、内燃機関エンジンの暖機性能を向上するようになっている。   The vehicle exhaust system 10 is provided with an exhaust heat recovery unit 36 for recovering the exhaust heat of the exhaust gas. The exhaust heat recovery part 36 is configured by disposing a cooling water pipe 38 as a heat medium pipe in a downstream conical part 34 of the catalyst case 28 which is an exhaust gas flow path. The cooling water pipe 38 is a pipe through which the engine cooling water for cooling the internal combustion engine is circulated, and the exhaust heat recovery unit 36 uses the exhaust heat of the exhaust gas in the engine immediately after the start of the internal combustion engine. It is recovered by cooling water to improve the warm-up performance of the internal combustion engine.

図2に示される如く、冷却水配管38は、主に34内に配設された熱交換部38Aが、上流側で巻き径(曲率半径)が大きく下流側に向かうほど巻く径が小さくなるテーパ螺旋状に形成されている。したがって、冷却水配管38を軸線方向上流側から見ると、図3に示される如く下流側ほど曲率が大きい渦巻状を成している。   As shown in FIG. 2, the cooling water pipe 38 is a taper in which the heat exchanging portion 38 </ b> A mainly disposed in 34 has a larger winding diameter (curvature radius) on the upstream side and a smaller winding diameter toward the downstream side. It is formed in a spiral shape. Therefore, when the cooling water pipe 38 is viewed from the upstream side in the axial direction, a spiral shape having a larger curvature toward the downstream side is formed as shown in FIG.

この実施形態では、冷却水配管38の熱交換部38Aは、下流側コニカル部34内において、上流側に位置する部分が下流側に位置する部分にオーバラップしない(影を作らない)構成とされている。具体的には、図3に示される如く、熱交換部38Aの周方向の各位置おいて、大径側(排気ガス上流側)部分の内側曲率半径である内径Riが小径側部分の外側曲率半径である外径Roよりも大とされている。   In this embodiment, the heat exchanging portion 38A of the cooling water pipe 38 is configured such that, in the downstream side conical portion 34, the portion located on the upstream side does not overlap the portion located on the downstream side (does not create a shadow). ing. Specifically, as shown in FIG. 3, at each position in the circumferential direction of the heat exchanging portion 38 </ b> A, the inner radius Ri that is the inner radius of curvature of the large-diameter side (exhaust gas upstream) portion is the outer curvature of the small-diameter portion. It is larger than the outer diameter Ro, which is a radius.

図2に示される如く、側面視で、冷却水配管38が円錐であると仮定した場合の仮想母線Cと、下流側コニカル部34の内周面34A(母線)とは互いに略平行とされている。すなわち、冷却水配管38は、下流側コニカル部34内に同軸的かつテーパ方向が一致するように配設されており、かつ下流側コニカル部34の円錐角(テーパ角)と冷却水配管38の円錐角とが略一致している。   As shown in FIG. 2, in a side view, the virtual bus C when the cooling water pipe 38 is assumed to be a cone and the inner peripheral surface 34 </ b> A (bus) of the downstream conical portion 34 are substantially parallel to each other. Yes. That is, the cooling water pipe 38 is disposed in the downstream conical part 34 so as to be coaxial and in the same taper direction, and the conical angle (taper angle) of the downstream conical part 34 and the cooling water pipe 38 The cone angle is approximately the same.

冷却水配管38は、テーパ螺旋状に形成された熱交換部38Aの小径側端部に連続する導入部38Bと、熱交換部38Aの大径側端部に連続する導出部38Cとを有する。導入部38Bは、下流側コニカル部34の下流端側に設けられたボス部40を貫通して触媒ケース28の外部から下流側コニカル部34内に導入されている。一方、導出部38Cは、下流側コニカル部34の上流端側に設けられたボス部42を貫通して下流側コニカル部34内から触媒ケース28の外部に導出されている。   The cooling water pipe 38 has an introduction part 38B that is continuous with the small-diameter side end of the heat exchange part 38A that is formed in a tapered spiral shape, and a lead-out part 38C that is continuous with the large-diameter side end of the heat exchange part 38A. The introduction portion 38B penetrates the boss portion 40 provided on the downstream end side of the downstream side conical portion 34 and is introduced into the downstream side conical portion 34 from the outside of the catalyst case 28. On the other hand, the lead-out portion 38 </ b> C passes through the boss portion 42 provided on the upstream end side of the downstream-side conical portion 34 and is led out from the downstream-side conical portion 34 to the outside of the catalyst case 28.

そして、冷却水配管38は、各図に矢印Bにて示される如く、導入部38Bからエンジン冷却水が導入されて熱交換部38Aを通過し、導出部38Cからエンジン冷却水が排出されるようになっている。また、この冷却水配管38は、熱交換部38A、導入部38B、導出部38Cが一体に形成されて単一(単独)の流路を成し、下流側コニカル部34内には分岐が形成されない構成とされている。この実施形態では、パイプ材の曲げ加工によって冷却水配管38を形成している。   Then, as indicated by an arrow B in each figure, the cooling water pipe 38 is configured so that the engine cooling water is introduced from the introduction portion 38B, passes through the heat exchange portion 38A, and the engine cooling water is discharged from the outlet portion 38C. It has become. Further, in this cooling water pipe 38, a heat exchange part 38A, an introduction part 38B, and a lead-out part 38C are integrally formed to form a single (single) flow path, and a branch is formed in the downstream conical part 34. It is set to not be. In this embodiment, the cooling water pipe 38 is formed by bending the pipe material.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

上記構成の車両用排気系10では、内燃機関エンジンの排気ガスが、排気管20、触媒コンバータ12、排気管22、メインマフラ14、排気管24、サブマフラ16を通じてテールパイプ18から排出される。   In the vehicle exhaust system 10 configured as described above, the exhaust gas of the internal combustion engine is discharged from the tail pipe 18 through the exhaust pipe 20, the catalytic converter 12, the exhaust pipe 22, the main muffler 14, the exhaust pipe 24, and the sub muffler 16.

このとき、触媒コンバータ12を構成する触媒ケース28内では、排気ガスが触媒キャリア26の多数の細流路26Aを通過することで整流され、この整流された排気ガス流が下流側コニカル部34に流入する。そして、下流側コニカル部34内では、該下流側コニカル部34を上流側から下流側に流れる排気ガスと、該下流側コニカル部34内に配設された冷却水配管38内を流れるエンジン冷却水とで熱交換が行われる。これにより、内燃機関エンジンの始動後、該エンジンが早期に暖気される。   At this time, in the catalyst case 28 constituting the catalytic converter 12, the exhaust gas is rectified by passing through a large number of narrow channels 26 </ b> A of the catalyst carrier 26, and this rectified exhaust gas flow flows into the downstream conical part 34. To do. In the downstream conical portion 34, exhaust gas that flows from the upstream side to the downstream side in the downstream conical portion 34 and engine cooling water that flows in the cooling water pipe 38 disposed in the downstream side conical portion 34. And heat exchange is performed. Thereby, after the internal combustion engine engine is started, the engine is warmed up early.

ここで、車両用排気系10の排気熱回収部36では、冷却水配管38におけるテーパ螺旋状に形成された熱交換部38Aは、下流側コニカル部34内の広い領域で排気ガス流の上流側を向くため、排気ガスとエンジン冷却水との熱交換が効率的に行われて排気ガスの排気熱がエンジン冷却水に回収される。しかも、触媒キャリア26を通過して整流され直線的に流れる排気ガスが、下流側コニカル部34の径方向各部において略均一に熱交換部38Aに接触するため、排気ガスの排気熱がエンジン冷却水により効率的に回収される。   Here, in the exhaust heat recovery part 36 of the vehicle exhaust system 10, the heat exchange part 38 </ b> A formed in a tapered spiral shape in the cooling water pipe 38 is an upstream side of the exhaust gas flow in a wide area in the downstream side conical part 34. Therefore, the heat exchange between the exhaust gas and the engine coolant is efficiently performed, and the exhaust heat of the exhaust gas is recovered in the engine coolant. In addition, since the exhaust gas that has been rectified and flows linearly through the catalyst carrier 26 contacts the heat exchanging portion 38A substantially uniformly in each radial portion of the downstream conical portion 34, the exhaust heat of the exhaust gas is reduced to the engine cooling water. Can be recovered more efficiently.

特に、熱交換部38Aは、軸方向から見て上流部分が下流部分とオーバラップしない渦巻状を成すため、排気ガスが熱交換部38Aにむらなく略均一に接触して排気ガスの排気熱がエンジン冷却水に一層効率的に回収される。また特に、テーパ螺旋状に形成された熱交換部38Aが対応するテーパ筒状に形成された下流側コニカル部34内に同軸的に配置されているため、換言すれば、熱交換部38Aの径方向外側部分に排気ガスが逃げ難いので、排気ガスの排気熱がより一層効率的にエンジン冷却水に回収される。   In particular, since the heat exchanging portion 38A has a spiral shape in which the upstream portion does not overlap the downstream portion when viewed from the axial direction, the exhaust gas contacts the heat exchanging portion 38A evenly and the exhaust heat of the exhaust gas is reduced. More efficiently recovered in engine cooling water. In particular, since the heat exchanging portion 38A formed in a tapered spiral shape is coaxially disposed in the corresponding downstream conical portion 34 formed in a tapered cylindrical shape, in other words, the diameter of the heat exchanging portion 38A. Since it is difficult for the exhaust gas to escape to the outside in the direction, the exhaust heat of the exhaust gas is more efficiently recovered into the engine coolant.

さらに、車両用排気系10の排気熱回収部36では、熱交換部38Aにおける下流側コニカル部34の中央(軸心)側に位置する小径側(本実施形態では排気ガス下流側)からエンジン冷却水が導入されるため、下流側コニカル部34の中央部を流れる高温の排気ガスが低温のエンジン冷却水と熱交換を行う。このため、熱回収の効率が向上してエンジン冷却水を短時間で昇温することができる。また、排気ガスは、下流側コニカル部34の中央部で大きく降温して径方向の温度分布が均一化される。同様に、エンジン冷却水は、流れ方向(軸方向から見た渦巻きの径方向)の温度分布が均一化される。   Further, in the exhaust heat recovery unit 36 of the vehicle exhaust system 10, the engine is cooled from the small diameter side (in the present embodiment, the exhaust gas downstream side) located on the center (axial center) side of the downstream conical part 34 in the heat exchange unit 38A. Since water is introduced, the high-temperature exhaust gas flowing through the central portion of the downstream conical portion 34 exchanges heat with the low-temperature engine cooling water. For this reason, the efficiency of heat recovery is improved, and the temperature of the engine coolant can be raised in a short time. Further, the exhaust gas is greatly cooled at the central portion of the downstream conical portion 34, and the temperature distribution in the radial direction is made uniform. Similarly, the engine coolant has a uniform temperature distribution in the flow direction (the radial direction of the spiral viewed from the axial direction).

このように、本実施形態に係る車両用排気系10に適用された排気熱回収部36は、排気ガスとエンジン冷却水との熱交換を効率的に行うことができる。   Thus, the exhaust heat recovery part 36 applied to the vehicle exhaust system 10 according to the present embodiment can efficiently perform heat exchange between the exhaust gas and the engine coolant.

また、車両用排気系10の排気熱回収部36では、上記の通りテーパ螺旋状の熱交換部38Aが対応するテーパ筒状に形成された下流側コニカル部34内に同軸的に配置されているため、下流側コニカル部34の中央部に円筒面に沿う螺旋形状の熱交換配管を配設した構成と比較して、排気流の妨げになることが抑制され、排気抵抗(背圧)を低く抑えることができる。   In the exhaust heat recovery section 36 of the vehicle exhaust system 10, the tapered spiral heat exchange section 38A is coaxially disposed in the corresponding downstream conical section 34 formed in the corresponding tapered cylindrical shape as described above. Therefore, as compared with a configuration in which a spiral heat exchange pipe extending along the cylindrical surface is disposed in the central portion of the downstream conical portion 34, the exhaust flow is prevented from being hindered, and the exhaust resistance (back pressure) is reduced. Can be suppressed.

さらに、車両用排気系10の排気熱回収部36では、冷却水配管38が分岐のない単一の冷却水流路を形成しているため、空気抜きのために導入部38B、導出部38Cを下流側コニカル部34に対し鉛直方向に取り出す等の制約がなくなる。このため、下流側コニカル部34に対する冷却水配管38の配設自由度が高くなる。   Furthermore, in the exhaust heat recovery part 36 of the vehicle exhaust system 10, the cooling water pipe 38 forms a single cooling water flow path without branching, so that the introduction part 38B and the outlet part 38C are arranged on the downstream side in order to vent the air. There is no restriction such as taking out the conical part 34 in the vertical direction. For this reason, the arrangement | positioning freedom degree of the cooling water piping 38 with respect to the downstream conical part 34 becomes high.

また、車両用排気系10の排気熱回収部36では、排気ガスの整流作用を奏する触媒キャリア26の直下流に冷却水配管38の熱交換部38Aを配設したため、別途整流装置を設けることなく上記の通り効率の良い排気熱回収を行うことができる。   Further, in the exhaust heat recovery part 36 of the vehicle exhaust system 10, the heat exchange part 38A of the cooling water pipe 38 is disposed immediately downstream of the catalyst carrier 26 that exerts the exhaust gas rectifying action, so that a separate rectifier is not provided. As described above, efficient exhaust heat recovery can be performed.

なお、上記実施形態では、熱交換部38Aを、配設される下流側コニカル部34に対応するテーパ螺旋状に形成した例を示したが、本発明はこれに限定されず、例えば、図4(A)に示される如くテーパ螺旋状の熱交換部38Aを円筒状の排気管50内に配設しても良い。また例えば、円筒状の排気管50内に熱交換部38Aを配設する構成において、排気ガス上流側に熱交換部38Aの小径側が位置する配置としても良い。これらにより、本発明は、熱交換部38Aのテーパ角が下流側コニカル部34のテーパ角と一致していなくても良いことがわかる。   In the above embodiment, an example in which the heat exchanging portion 38A is formed in a tapered spiral shape corresponding to the arranged downstream conical portion 34 is shown, but the present invention is not limited to this, and for example, FIG. As shown in (A), a tapered spiral heat exchange section 38 </ b> A may be disposed in the cylindrical exhaust pipe 50. Further, for example, in the configuration in which the heat exchanging portion 38A is disposed in the cylindrical exhaust pipe 50, the small diameter side of the heat exchanging portion 38A may be positioned upstream of the exhaust gas. From these, it is understood that the taper angle of the heat exchanging part 38A does not have to coincide with the taper angle of the downstream conical part 34 according to the present invention.

本発明の実施形態に係る車両用排気系を示す斜視図である。It is a perspective view which shows the exhaust system for vehicles which concerns on embodiment of this invention. 本発明の実施形態に係る車両用排気系を構成する排気熱回収部を示す側断面図である。It is a sectional side view which shows the exhaust heat recovery part which comprises the exhaust system for vehicles which concerns on embodiment of this invention. 本発明の実施形態に係る車両用排気系の排気熱回収部を構成する冷却水配管における熱交換部を軸方向上流側から見た正面図である。It is the front view which looked at the heat exchange part in the cooling water piping which comprises the exhaust-heat recovery part of the exhaust system for vehicles which concerns on embodiment of this invention from the axial direction upstream. 本発明の実施形態に係る車両用排気系を構成する排気熱回収部の変形例を示す図であって、(A)は第1変形例を示す断面図、(B)は第2変形例を示す断面図である。It is a figure which shows the modification of the exhaust heat recovery part which comprises the exhaust system for vehicles which concerns on embodiment of this invention, Comprising: (A) is sectional drawing which shows a 1st modification, (B) is a 2nd modification. It is sectional drawing shown.

符号の説明Explanation of symbols

10 車両用排気系(排気系)
26 触媒キャリア(触媒)
26A 細流路
28 触媒ケース
30 キャリア保持部(触媒部)
34 下流側コニカル部(排気流路、熱交換流路、テーパ部)
36 排気熱回収部(排気系熱交換装置)
38 冷却水配管(熱媒体配管)
38A 熱交換部
50 排気管(排気流路、熱交換流路)
10 Vehicle exhaust system (exhaust system)
26 Catalyst carrier (catalyst)
26A Narrow channel 28 Catalyst case 30 Carrier holding part (catalyst part)
34 Downstream conical part (exhaust flow path, heat exchange flow path, taper part)
36 Exhaust heat recovery unit (exhaust heat exchanger)
38 Cooling water piping (heat medium piping)
38A Heat exchange section 50 Exhaust pipe (exhaust flow path, heat exchange flow path)

Claims (8)

排気系内に熱媒体配管を配置して該熱媒体配管を流れる熱媒体と排気との熱交換を行う排気系熱交換装置であって、
前記熱媒体配管は、排気流方向の上流側から下流側に向けて曲率が連続的に変化するように軸方向視で渦巻状に形成された熱交換部が、前記排気系を構成する排気流路内に同軸的に配置されている排気系熱交換装置。
An exhaust system heat exchange device that arranges a heat medium pipe in the exhaust system and performs heat exchange between the heat medium flowing through the heat medium pipe and the exhaust,
In the heat medium pipe, the heat exchange part formed in a spiral shape in an axial view so that the curvature continuously changes from the upstream side to the downstream side in the exhaust flow direction is an exhaust flow that constitutes the exhaust system. An exhaust system heat exchange device arranged coaxially in the road.
排気系内に熱媒体配管を配置して該熱媒体配管を流れる熱媒体と排気との熱交換を行う排気系熱交換装置であって、
前記排気系は、排気流を整流する整流部と、該整流部の排気流方向の下流側に連続する熱交換流路とを有し、
前記熱媒体配管は、排気流方向の上流側から下流側に向けて曲率が連続的に変化するように軸方向視で渦巻状に形成された熱交換部が、前記熱交換流路内に同軸的に配置されている排気系熱交換装置。
An exhaust system heat exchange device that arranges a heat medium pipe in the exhaust system and performs heat exchange between the heat medium flowing through the heat medium pipe and the exhaust,
The exhaust system includes a rectification unit that rectifies the exhaust flow, and a heat exchange channel that is continuous downstream of the rectification unit in the exhaust flow direction,
In the heat medium pipe, a heat exchange part formed in a spiral shape in an axial view so that the curvature continuously changes from the upstream side to the downstream side in the exhaust flow direction is coaxial with the heat exchange channel. Exhaust system heat exchanger.
前記整流部は、排気流方向に沿う直線状の細流路が多数並列された触媒である請求項2記載の排気系熱交換装置。   The exhaust system heat exchange device according to claim 2, wherein the rectifying unit is a catalyst in which a large number of linear narrow channels along the exhaust flow direction are arranged in parallel. 排気系内に熱媒体配管を配置して該熱媒体配管を流れる熱媒体と排気との熱交換を行う排気系熱交換装置であって、
前記排気系は、排気流方向に沿う直線状の細流路が多数並列された触媒を収容する触媒ケースを有し、
前記触媒ケースは、前記触媒を収容する触媒部と、該触媒部の排気流方向の下流側に連続しテーパ状に形成されたテーパ部とを含み、
前記熱媒体配管は、排気流方向の上流側から下流側に向けて曲率が連続的に変化するように軸方向視で渦巻状を成すテーパ螺旋状に形成された熱交換部が、前記触媒ケースのテーパ部内に同軸的かつテーパ方向が一致するように配置されている排気系熱交換装置。
An exhaust system heat exchange device that arranges a heat medium pipe in the exhaust system and performs heat exchange between the heat medium flowing through the heat medium pipe and the exhaust,
The exhaust system has a catalyst case that contains a catalyst in which a large number of linear narrow channels along the exhaust flow direction are arranged in parallel,
The catalyst case includes a catalyst portion that accommodates the catalyst, and a tapered portion that is formed continuously in a taper shape on the downstream side in the exhaust flow direction of the catalyst portion,
In the catalyst case, the heat exchange pipe is formed in a spiral spiral shape having a spiral shape as viewed in the axial direction so that the curvature continuously changes from the upstream side to the downstream side in the exhaust flow direction. An exhaust system heat exchange device arranged coaxially and in a taper direction within the taper portion.
前記熱媒体配管の熱交換部は、テーパ角が前記触媒ケースのテーパ部内周面のテーパ角に一致している請求項4記載の排気系熱交換装置。   The exhaust heat exchanger according to claim 4, wherein the heat exchange part of the heat medium pipe has a taper angle that matches a taper angle of an inner peripheral surface of the taper part of the catalyst case. 前記熱媒体配管の熱交換部は、周方向の同じ位置で大径側部分の内径が小径側部分の外径よりも大とされている請求項1乃至請求項5の何れか1項記載の排気系熱交換装置。   6. The heat exchange part of the heat medium pipe according to claim 1, wherein the inner diameter of the large-diameter side portion is larger than the outer diameter of the small-diameter side portion at the same position in the circumferential direction. Exhaust system heat exchanger. 前記熱媒体配管の熱交換部は、曲率が大きい側から熱媒体が導入されるようになっている請求項1乃至請求項6の何れか1項記載の排気系熱交換装置。   The exhaust heat exchanger according to any one of claims 1 to 6, wherein a heat medium is introduced into a heat exchanging part of the heat medium pipe from a side having a large curvature. 前記熱媒体配管は、少なくとも前記熱交換流路内、又は前記触媒ケースのテーパ部内に位置する部分が単一の熱媒体流路を形成する請求項1乃至請求項7の何れか1項記載の排気系熱交換装置。   8. The heat medium pipe according to claim 1, wherein at least a portion of the heat medium pipe located in the heat exchange flow path or in the taper portion of the catalyst case forms a single heat medium flow path. Exhaust system heat exchanger.
JP2005276072A 2005-09-22 2005-09-22 Heat exchange apparatus of exhaust system Pending JP2007085266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276072A JP2007085266A (en) 2005-09-22 2005-09-22 Heat exchange apparatus of exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276072A JP2007085266A (en) 2005-09-22 2005-09-22 Heat exchange apparatus of exhaust system

Publications (1)

Publication Number Publication Date
JP2007085266A true JP2007085266A (en) 2007-04-05

Family

ID=37972493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276072A Pending JP2007085266A (en) 2005-09-22 2005-09-22 Heat exchange apparatus of exhaust system

Country Status (1)

Country Link
JP (1) JP2007085266A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500930A (en) * 2008-08-28 2012-01-12 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Combination of heat exchanger and catalytic converter as components of exhaust system
CN103154451A (en) * 2010-04-28 2013-06-12 特科根公司 Assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines
WO2015052837A1 (en) * 2013-10-11 2015-04-16 三菱重工業株式会社 Engine system provided with intake bypass device
JP2015121171A (en) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 Drainage system of internal combustion engine
JP2021116712A (en) * 2020-01-23 2021-08-10 フタバ産業株式会社 Integrated type exhaust heat recovery device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161265U (en) * 1984-09-27 1986-04-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161265U (en) * 1984-09-27 1986-04-24

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500930A (en) * 2008-08-28 2012-01-12 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Combination of heat exchanger and catalytic converter as components of exhaust system
CN103154451A (en) * 2010-04-28 2013-06-12 特科根公司 Assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines
WO2015052837A1 (en) * 2013-10-11 2015-04-16 三菱重工業株式会社 Engine system provided with intake bypass device
JP6072277B2 (en) * 2013-10-11 2017-02-01 三菱重工業株式会社 Engine system with intake bypass device
US9797320B2 (en) 2013-10-11 2017-10-24 Mitsubishi Heavy Industries, Ltd. Engine system with intake bypass device
JP2015121171A (en) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 Drainage system of internal combustion engine
JP2021116712A (en) * 2020-01-23 2021-08-10 フタバ産業株式会社 Integrated type exhaust heat recovery device
JP7453003B2 (en) 2020-01-23 2024-03-19 フタバ産業株式会社 Integrated exhaust heat recovery device

Similar Documents

Publication Publication Date Title
CN101650137B (en) Exhaust gas heat exchanger
JP2007315370A (en) Exhaust heat recovery exhaust emission control device
JP4647571B2 (en) Catalytic device
JP6079531B2 (en) Engine exhaust system
JP2007085266A (en) Heat exchange apparatus of exhaust system
US10837337B2 (en) Component of an exhaust gas system and method for exhaust gas after-treatment
JP2011214537A (en) Exhaust gas heat recovery device
US11098633B2 (en) Exhaust gas aftertreatment system for an internal combustion engine
WO1996037691A1 (en) Exhaust emission control device for internal combustion engines
JP2007278156A (en) Exhaust device for engine
JPH11294153A (en) New catalytic element for treating internal combustion engine exhaust gas
JP4542915B2 (en) Exhaust heat recovery device
CN219061808U (en) Tightly coupled aftertreatment structure and diesel engine
JP2000345925A (en) Egr cooler
JP2015059558A (en) Engine exhaust device
JP2004068654A (en) Exhaust gas purifying system
JP2019199851A (en) Exhaust emission control device
JP2019167831A (en) Exhaust passage structure of internal combustion engine
US11834980B2 (en) Exhaust-gas guiding housing
CN112824660B (en) Lean burn engine aftertreatment system
JP2010159719A (en) Exhaust gas passage structure
JP2015098796A (en) Exhaust gas emission control system for internal combustion engine
JP2011074774A (en) Six-way catalyst
JP2009024499A (en) Egr cooler
JPH0598957A (en) Catalyst muffler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824