JP2019167831A - Exhaust passage structure of internal combustion engine - Google Patents

Exhaust passage structure of internal combustion engine Download PDF

Info

Publication number
JP2019167831A
JP2019167831A JP2018054234A JP2018054234A JP2019167831A JP 2019167831 A JP2019167831 A JP 2019167831A JP 2018054234 A JP2018054234 A JP 2018054234A JP 2018054234 A JP2018054234 A JP 2018054234A JP 2019167831 A JP2019167831 A JP 2019167831A
Authority
JP
Japan
Prior art keywords
exhaust
purification catalyst
combustion engine
internal combustion
rectifying member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018054234A
Other languages
Japanese (ja)
Inventor
伊藤 弘和
Hirokazu Ito
弘和 伊藤
尭之 山内
Takayuki Yamauchi
尭之 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Toyota Motor Corp
Original Assignee
Sango Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd, Toyota Motor Corp filed Critical Sango Co Ltd
Priority to JP2018054234A priority Critical patent/JP2019167831A/en
Publication of JP2019167831A publication Critical patent/JP2019167831A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

To suppress the elongation of a warmup time of an exhaust emission purification catalyst at a cold time, in an exhaust passage structure of an internal combustion engine in which a rectification member is arranged in an exhaust passage at an upstream side rather than the exhaust emission purification catalyst.SOLUTION: In the exhaust passage structure of an internal combustion engine having a plurality of branch pipes, a collection pipe having an exhaust emission purification catalyst therein, and a rectification member arranged at the collection pipe at an upstream-side rather than the exhaust emission purification catalyst, the rectification member is formed of an annular porous plate material whose center portion is opened. Then, in each of the branch pipes, two curved parts are arranged which are formed so that most of the exhaust emission flowing out to the collection pipe from each branch part passes an opening part in the center portion of the rectification member when an exhaust emission flow rate is small, and on the other hand, when the exhaust emission flow rate is large, most of the exhaust emission flowing out to the collection pipe from the branch pipe collides with the porous plate material of the rectification member.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関の排気通路構造に関する。   The present invention relates to an exhaust passage structure for an internal combustion engine.

内燃機関の排気通路構造として、排気浄化触媒より上流の排気通路に、排気の流れを整流するための整流部材が設けられる構造が知られている。例えば、排気の流れを所望の方向へ案内するための傾斜板が併設された複数のスリットを具備するとともに、排気浄化触媒の上流側端面を覆うように配置される整流部材を備えた、排気通路構造が知られている(例えば、特許文献1を参照。)。   As an exhaust passage structure of an internal combustion engine, a structure is known in which a rectifying member for rectifying the flow of exhaust gas is provided in an exhaust passage upstream of an exhaust purification catalyst. For example, an exhaust passage having a plurality of slits provided with inclined plates for guiding the flow of exhaust gas in a desired direction, and a rectifying member arranged to cover the upstream end surface of the exhaust purification catalyst The structure is known (see, for example, Patent Document 1).

特開2012−193719号公報JP 2012-193719 A

上記した従来の排気通路構造によれば、排気が排気浄化触媒へ流入する直前に、該排気の流れが整流部材によって整流されることで、排気浄化触媒の上流側端面における広い範囲に均一に排気を流入させることができる。しかしながら、内燃機関が冷間始動された直後のように、排気浄化触媒を暖機させる必要があるときであっても、排気が整流部材に接触することになるため、排気の熱が整流部材に奪われることで、排気から排気浄化触媒へ伝達される熱量が少なくなる。その結果、排気浄化触媒の暖機に要する時間が長くなる可能性がある。   According to the above-described conventional exhaust passage structure, the exhaust flow is rectified by the rectifying member immediately before the exhaust flows into the exhaust purification catalyst, so that the exhaust gas is uniformly exhausted over a wide range on the upstream end face of the exhaust purification catalyst. Can be introduced. However, even when it is necessary to warm up the exhaust purification catalyst, such as immediately after the internal combustion engine is cold-started, the exhaust comes into contact with the rectifying member. By being deprived, the amount of heat transferred from the exhaust to the exhaust purification catalyst is reduced. As a result, the time required for warming up the exhaust purification catalyst may become longer.

本発明は、上記したような種々の実情に鑑みてなされたものであり、その目的は、排気浄化触媒より上流の排気通路に整流部材が配置される、内燃機関の排気通路構造において、冷間時における排気浄化触媒の暖機時間の増加を抑制することができる技術を提供することにある。   The present invention has been made in view of various circumstances as described above, and an object of the present invention is to provide an internal combustion engine exhaust passage structure in which a rectifying member is disposed in an exhaust passage upstream of an exhaust purification catalyst. It is an object of the present invention to provide a technology capable of suppressing an increase in warm-up time of an exhaust purification catalyst at the time.

本発明は、上記した課題を解決するために、以下のような手段を採用した。すなわち、本発明は、内燃機関の各気筒から排出される排気を流通させるための複数の枝管と、前記複数の枝管から排出される排気を合流させて流通させるための管であって、その途中に排気浄化触媒が配置される集合管と、前記排気浄化触媒より上流の前記集合管に配置され、該集合管を流通する排気の流れ方向を調整するための整流部材と、を備える、内燃機関の排気通路構造である。前記整流部材は、中心部分が開口した環状の多孔性板材で形成される。また、前記各枝管は、前記各枝管における下流側端部より手前の部位が、湾曲方向の相違する2つの湾曲部を有する略S字状に形成される。そして、前記各枝管における2つの湾曲部は、前記各枝管の出口部分における軸線の延長線が前記整流部材の中心部分における開口部を通るように形成されるとともに、該2つの湾曲部の各々における湾曲部内側に位置する内壁面を相互に結ぶ直線の延長線上が前記整流部材における前記多孔性板材と交差するように形成されるようにした。   The present invention employs the following means in order to solve the above-described problems. That is, the present invention is a plurality of branch pipes for circulating the exhaust discharged from each cylinder of the internal combustion engine, and a pipe for circulating the exhaust discharged from the plurality of branch pipes, A collecting pipe in which an exhaust purification catalyst is arranged, and a rectifying member arranged in the collecting pipe upstream from the exhaust purification catalyst and for adjusting the flow direction of the exhaust gas flowing through the collecting pipe, 2 is an exhaust passage structure of an internal combustion engine. The rectifying member is formed of an annular porous plate having an open central portion. In addition, each branch pipe is formed in a substantially S shape in which a portion in front of the downstream end portion of each branch pipe has two curved portions having different bending directions. The two bent portions in each branch pipe are formed such that an extension line of the axis at the outlet portion of each branch pipe passes through the opening in the central portion of the rectifying member, and Each of the straight lines extending between the inner wall surfaces located on the inner side of the curved portion is formed so as to intersect with the porous plate member in the rectifying member.

本発明によれば、排気浄化触媒より上流の排気通路に整流部材が配置される、内燃機関の排気通路構造において、冷間時における排気浄化触媒の暖機時間の増加を抑制することができる。   According to the present invention, in the exhaust passage structure of the internal combustion engine in which the rectifying member is disposed in the exhaust passage upstream of the exhaust purification catalyst, it is possible to suppress an increase in the warm-up time of the exhaust purification catalyst when it is cold.

本発明を適用する内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which this invention is applied, and its exhaust system. 枝管と集合管との接続部分における拡大断面図である。It is an expanded sectional view in the connection part of a branch pipe and a collecting pipe. 整流部材の平面図である。It is a top view of a baffle member. 内燃機関が冷間始動された場合における排気浄化触媒の床温の経時変化を示す図である。It is a figure which shows the time-dependent change of the bed temperature of an exhaust gas purification catalyst when an internal combustion engine is cold-started.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本発明に係る内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、複数の気筒2を備える。なお、図1に示す例では、内燃機関1は、4つの気筒2を有しているが、3つ以下の気筒を有していてもよく、又は5つ以上の気筒を有していてもよい。この内燃機関1には、エキゾーストマニホールド3が接続されている。エキゾーストマニホールド3は、各気筒2から排出される排気を流通させるための複数の枝管30と、それら枝管30から排出される排気を合流させて流通させるための集合管31と、を備える。集合管31の途中には、排気中に含まれる有害ガス成分を浄化するための排気浄化触媒4が配置される。ここでいう排気浄化触媒4とは、触媒担体と該触媒担体に担持される触媒との総称であり、触媒担体に担持される触媒としては、例えば、酸化触媒、三元触媒、NO吸蔵還元型触媒(NSR(NOX Storage Reduction)触媒)、又は選択
還元型触媒(SCR(Selective Catalytic Reduction)触媒)等を用いることができる
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its exhaust system according to the present invention. An internal combustion engine 1 shown in FIG. 1 includes a plurality of cylinders 2. In the example shown in FIG. 1, the internal combustion engine 1 has four cylinders 2. However, the internal combustion engine 1 may have three or less cylinders, or may have five or more cylinders. Good. An exhaust manifold 3 is connected to the internal combustion engine 1. The exhaust manifold 3 includes a plurality of branch pipes 30 for circulating the exhaust discharged from each cylinder 2 and a collecting pipe 31 for combining and flowing the exhaust discharged from the branch pipes 30. An exhaust purification catalyst 4 for purifying harmful gas components contained in the exhaust is disposed in the middle of the collecting pipe 31. The exhaust purification catalyst 4 here is a general term for a catalyst carrier and a catalyst carried on the catalyst carrier. Examples of the catalyst carried on the catalyst carrier include an oxidation catalyst, a three-way catalyst, and NO X storage reduction. A type catalyst (NSR (NO X Storage Reduction) catalyst), a selective reduction type catalyst (SCR (Selective Catalytic Reduction) catalyst), or the like can be used.

図2は、エキゾーストマニホールド3における枝管30と集合管31との接続部分の拡大断面図である。なお、図2においては、便宜上1つの枝管のみを図示しているが、他の不図示の枝管も同様に構成されるものとする。図2に示すように、集合管31における排気浄化触媒4より上流の部位には、整流部材310が配置される。整流部材310は、図3に示すように、複数の細孔310aを有する多孔性板材を、中心部分が開口した環状に成形したものである。その際、整流部材310の外径は、集合管31の内径と略同径に形成されるものとする。なお、図2に示す例では、整流部材310は、中心部分から径方向外側へ向かうにつれて排気浄化触媒4に近づくように傾斜したテーパ状に形成されているが、排気浄化触媒4の上流側端面と平行に形成されてもよい。上記したように構成される整流部材310は、排気浄化触媒4より上流の集合管31において、集合管31及び排気浄化触媒4と同軸に配置される。   FIG. 2 is an enlarged cross-sectional view of a connection portion between the branch pipe 30 and the collecting pipe 31 in the exhaust manifold 3. In FIG. 2, only one branch pipe is illustrated for convenience, but other branch pipes (not shown) are configured in the same manner. As shown in FIG. 2, a rectifying member 310 is disposed in a portion of the collecting pipe 31 upstream of the exhaust purification catalyst 4. As shown in FIG. 3, the rectifying member 310 is formed by forming a porous plate having a plurality of pores 310 a into an annular shape having an open central portion. At this time, the outer diameter of the rectifying member 310 is formed to be substantially the same as the inner diameter of the collecting pipe 31. In the example shown in FIG. 2, the rectifying member 310 is formed in a tapered shape that is inclined so as to approach the exhaust purification catalyst 4 from the central portion toward the radially outer side, but the upstream end face of the exhaust purification catalyst 4 And may be formed in parallel. The rectifying member 310 configured as described above is disposed coaxially with the collecting pipe 31 and the exhaust purification catalyst 4 in the collecting pipe 31 upstream of the exhaust purification catalyst 4.

ここで、各枝管30から集合管31へ流入した排気が上記の整流部材310に衝突すると、先ず、整流部材310の表面上を径方向外向きに排気が案内される。続いて、整流部材310の表面上を径方向外向きに案内された排気が集合管31の内壁面に到達すると、その排気の流れ方向が径方向外向きから周方向へ転換される。つまり、各枝管30から集合管31へ流入した排気が整流部材310に衝突すると、該排気が径方向及び周方向へ拡散されることになる。また、上記の如く排気が流れる過程では、その排気の一部が整流部材310の細孔310aを通って排気浄化触媒4の上流側端面に流入することになるため、排気浄化触媒4の上流側端面における広い範囲に排気を流入させることが可能となる。   Here, when the exhaust gas flowing into the collecting pipe 31 from each branch pipe 30 collides with the rectifying member 310, the exhaust gas is first guided radially outward on the surface of the rectifying member 310. Subsequently, when the exhaust gas guided radially outward on the surface of the rectifying member 310 reaches the inner wall surface of the collecting pipe 31, the flow direction of the exhaust gas is changed from the radially outward direction to the circumferential direction. That is, when the exhaust gas flowing into the collecting pipe 31 from each branch pipe 30 collides with the rectifying member 310, the exhaust gas is diffused in the radial direction and the circumferential direction. Further, in the process in which the exhaust flows as described above, a part of the exhaust flows into the upstream end face of the exhaust purification catalyst 4 through the pores 310a of the rectifying member 310, and therefore the upstream side of the exhaust purification catalyst 4 Exhaust gas can be allowed to flow into a wide range at the end face.

ところで、内燃機関1が冷間始動された直後のように、排気浄化触媒4の暖機が必要な場合に、各枝管30から集合管31へ流入した排気の大部分が整流部材310に衝突すると、それらの排気の持つ熱が整流板や集合管31の壁面に奪われることになるため、排気
から排気浄化触媒4へ伝達される熱量が少なくなってしまう。それにより、内燃機関1が冷間始動されてから排気浄化触媒4が活性温度以上に昇温するまでに要する時間が長くなることで、排気浄化触媒4で浄化されない有害ガス成分の量が多くなる虞がある。
By the way, when the exhaust purification catalyst 4 needs to be warmed up immediately after the internal combustion engine 1 is cold-started, most of the exhaust gas flowing into the collecting pipe 31 from each branch pipe 30 collides with the rectifying member 310. Then, since the heat of the exhaust is lost to the wall of the rectifying plate and the collecting pipe 31, the amount of heat transferred from the exhaust to the exhaust purification catalyst 4 is reduced. As a result, the time required for the exhaust purification catalyst 4 to rise to the activation temperature or higher after the internal combustion engine 1 is cold started increases, so that the amount of harmful gas components that are not purified by the exhaust purification catalyst 4 increases. There is a fear.

これに対し、本実施例に係る排気通路構造では、内燃機関1が高負荷運転される場合のように排気流量が多い場合には、各枝管30から集合管31へ流入した排気の大部分を整流部材310に衝突させる一方で、内燃機関1が冷間始動完了直後のファーストアイドル運転される場合のように排気流量が少ない場合には、各枝管30から集合管31へ流入した排気の大部分が整流部材310に接触せずに排気浄化触媒4の上流側端面に直接流入するようにした。   On the other hand, in the exhaust passage structure according to the present embodiment, most of the exhaust gas flowing into the collecting pipe 31 from each branch pipe 30 when the exhaust gas flow rate is large as in the case where the internal combustion engine 1 is operated at a high load. When the exhaust gas flow rate is small as in the case where the internal combustion engine 1 is operated in the first idle immediately after the cold start is completed, the exhaust gas flowing from the branch pipes 30 into the collecting pipe 31 is reduced. Most of them flow directly into the upstream end face of the exhaust purification catalyst 4 without contacting the flow regulating member 310.

具体的には、図2に示すように、各枝管30を、集合管31との接続部分(下流側端部)より手前で、略S字状に湾曲させる。すなわち、各枝管30における下流側端部より手前の部位に、湾曲方向の相違する2つの湾曲部を形成する。その際、各枝管30における2つの湾曲部は、各枝管30の出口部分30cにおける軸線の延長線(図2中の一点鎖線L1)が整流部材310の中心部分における開口部を通るように形成される。さらに、各枝管30における2つの湾曲部は、上流側の湾曲部の湾曲部内側(すなわち、湾曲方向側(図2中の左側))に位置する内壁面30aと、下流側の湾曲部の湾曲部内側(図2中の右側)に位置する内壁面30bと、を結ぶ直線の延長線(図2中の二点鎖線L2)が整流部材310の多孔性板材と交差するように形成される。   Specifically, as shown in FIG. 2, each branch pipe 30 is bent in a substantially S-shape before a connection portion (downstream end portion) with the collecting pipe 31. That is, two bending portions having different bending directions are formed at a site before the downstream end portion of each branch pipe 30. At that time, the two curved portions in each branch pipe 30 are arranged such that the extension line of the axis (the one-dot chain line L1 in FIG. It is formed. Further, the two curved portions in each branch pipe 30 are an inner wall surface 30a located inside the curved portion of the upstream curved portion (that is, the curved direction side (left side in FIG. 2)) and the downstream curved portion. A straight extension line (two-dot chain line L2 in FIG. 2) connecting the inner wall surface 30b located on the inner side of the curved portion (right side in FIG. 2) is formed so as to intersect the porous plate material of the rectifying member 310. .

上記したように各枝管30の形状が定められると、内燃機関1が冷間始動完了直後のファーストアイドル運転される場合のように排気流量が少ない場合には、排気の流速が小さくなることで、各枝管30を流通する排気が枝管30の内壁面に沿って流れ易い。そのため、各枝管30から集合管31へ流入する排気の大部分は、各枝管30の出口部分30cにおける軸線方向を指向して流れるようになる。つまり、各枝管30から集合管31へ流入した排気の大部分は、図2中の一点鎖線L1に沿って流れることになる。その結果、各枝管30から集合管31へ流入した排気の大部分は、整流部材310の中心部分における開口部を通過して、排気浄化触媒4の上流側端面に直接流入することになる。それにより、排気から整流部材310や集合管31の壁面へ奪われる熱量が少なくなるため、排気から排気浄化触媒4へ伝達される熱量を多くすることができる。   When the shape of each branch pipe 30 is determined as described above, when the exhaust flow rate is small as in the case where the internal combustion engine 1 is operated in a fast idle immediately after the cold start is completed, the flow rate of the exhaust gas is reduced. The exhaust gas flowing through each branch pipe 30 easily flows along the inner wall surface of the branch pipe 30. Therefore, most of the exhaust gas flowing from each branch pipe 30 into the collecting pipe 31 flows in the axial direction at the outlet portion 30 c of each branch pipe 30. That is, most of the exhaust gas flowing into the collecting pipe 31 from each branch pipe 30 flows along the one-dot chain line L1 in FIG. As a result, most of the exhaust gas flowing into the collecting pipe 31 from each branch pipe 30 passes through the opening in the central portion of the rectifying member 310 and directly flows into the upstream end face of the exhaust purification catalyst 4. As a result, the amount of heat taken from the exhaust gas to the flow regulating member 310 and the wall surface of the collecting pipe 31 is reduced, so that the amount of heat transferred from the exhaust gas to the exhaust purification catalyst 4 can be increased.

ここで、内燃機関1の冷間始動された場合における排気浄化触媒4の床温(触媒床温)の経時変化を図4に示す。図4中の実線は、本実施例に係る排気通路構造における触媒床温の経時変化を示し、図4中の一点鎖線は、各枝管から集合管へ流入した排気の大部分が整流部材に衝突するように構成された比較例における触媒床温の経時変化を示す。図4に示すように、内燃機関1が始動されてから触媒床温が活性開始温度に上昇するまでに要する時間は、比較例よりも本実施例に係る排気通路構造の方が、短くなっている。よって、本実施例に係る排気通路構造によれば、整流部材310を設けることに起因して、排気浄化触媒4の暖機に要する時間が長くなることを抑制することができる。その結果、内燃機関1が冷間始動されてから触媒床温が活性開始温度へ上昇するまでの期間に、大気中へ排出される有害ガス成分の量を少なく抑えることが可能となる。   Here, FIG. 4 shows a change with time of the bed temperature (catalyst bed temperature) of the exhaust purification catalyst 4 when the internal combustion engine 1 is cold-started. The solid line in FIG. 4 shows the change over time of the catalyst bed temperature in the exhaust passage structure according to the present embodiment, and the one-dot chain line in FIG. 4 shows that most of the exhaust gas flowing from the branch pipes into the collecting pipe is the rectifying member. The time-dependent change of the catalyst bed temperature in the comparative example comprised so that it may collide is shown. As shown in FIG. 4, the time required for the catalyst bed temperature to rise to the activation start temperature after the internal combustion engine 1 is started is shorter in the exhaust passage structure according to this embodiment than in the comparative example. Yes. Therefore, according to the exhaust passage structure according to the present embodiment, it is possible to suppress an increase in the time required for warming up the exhaust purification catalyst 4 due to the provision of the rectifying member 310. As a result, during the period from when the internal combustion engine 1 is cold started to when the catalyst bed temperature rises to the activation start temperature, the amount of harmful gas components discharged into the atmosphere can be reduced.

また、内燃機関1が高負荷運転される場合のように排気流量が多い場合には、排気の流速が大きくなることで、各枝管30を流通する排気が各枝管30の内壁面から剥離して流れ易い。そのため、排気が各枝管30における上流側湾曲部の内壁面30aを通過した後に、その排気の大部分が各枝管30の内壁面から剥離して、図2中の二点鎖線L2に沿って流れるようになる。斯様にして各枝管30の内壁面から剥離した排気は、各枝管30における下流側湾曲部の内壁面30bをかすめて流れることで、その指向方向を図2中の二点鎖線L2に沿った方向に保ちつつ、集合管31へ流入する。その結果、各枝管30から
集合管31へ流入した排気の大部分は、整流部材310に衝突することになる。それにより、排気浄化触媒4の上流側端面における広い範囲に均一に排気を流入させることができる。その結果、高温の排気が排気浄化触媒4の一部に集中して流れることに起因する、排気浄化触媒4の局所的な熱劣化や、排気浄化触媒4による有害ガス成分の浄化率の低下等を抑制することができる。
Further, when the exhaust gas flow rate is large as in the case where the internal combustion engine 1 is operated at a high load, the flow rate of the exhaust gas increases so that the exhaust gas flowing through each branch pipe 30 is separated from the inner wall surface of each branch pipe 30. And easy to flow. Therefore, after the exhaust gas passes through the inner wall surface 30a of the upstream curved portion in each branch pipe 30, most of the exhaust gas is peeled off from the inner wall surface of each branch pipe 30, and along the two-dot chain line L2 in FIG. Will begin to flow. The exhaust gas thus peeled off from the inner wall surface of each branch pipe 30 flows through the inner wall surface 30b of the downstream curved portion of each branch pipe 30 so that its directing direction is indicated by a two-dot chain line L2 in FIG. It flows into the collecting pipe 31 while keeping in the direction along. As a result, most of the exhaust gas flowing into the collecting pipe 31 from each branch pipe 30 collides with the rectifying member 310. As a result, the exhaust can be made to uniformly flow into a wide range on the upstream end face of the exhaust purification catalyst 4. As a result, local heat deterioration of the exhaust purification catalyst 4 due to high temperature exhaust gas concentrating on a part of the exhaust purification catalyst 4, reduction in the purification rate of harmful gas components by the exhaust purification catalyst 4, etc. Can be suppressed.

1 内燃機関
2 気筒
3 エキゾーストマニホールド
30 枝管
30a 内壁面
30b 内壁面
30c 出口部分
31 集合管
310 整流部材
4 排気浄化触媒
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Exhaust manifold 30 Branch pipe 30a Inner wall surface 30b Inner wall surface 30c Outlet part 31 Collecting pipe 310 Rectification member 4 Exhaust purification catalyst

Claims (1)

内燃機関の各気筒から排出される排気を流通させるための複数の枝管と、
前記複数の枝管から排出される排気を合流させて流通させるための管であって、その途中に排気浄化触媒が配置される集合管と、
前記排気浄化触媒より上流の前記集合管に配置され、該集合管を流通する排気の流れ方向を調整するための整流部材と、
を備える、内燃機関の排気通路構造であって、
前記整流部材は、中心部分が開口した環状の多孔性板材で形成されており、
前記各枝管は、前記各枝管における下流側端部より手前の部位が、湾曲方向の相違する2つの湾曲部を有する略S字状に形成されており、
前記各枝管における2つの湾曲部は、前記各枝管の出口部分における軸線の延長線が前記整流部材の中心部分における開口部を通るように形成されるとともに、該2つの湾曲部の各々における湾曲部内側に位置する内壁面を相互に結ぶ直線の延長線上が前記整流部材における前記多孔性板材と交差するように形成される、
内燃機関の排気通路構造。
A plurality of branch pipes for circulating the exhaust discharged from each cylinder of the internal combustion engine;
A pipe for joining and circulating the exhaust discharged from the plurality of branch pipes, and a collecting pipe in which an exhaust purification catalyst is disposed,
A rectifying member that is disposed in the collecting pipe upstream of the exhaust purification catalyst and adjusts the flow direction of the exhaust gas flowing through the collecting pipe;
An exhaust passage structure for an internal combustion engine comprising:
The rectifying member is formed of an annular porous plate having an open central portion,
Each of the branch pipes is formed in a substantially S shape in which a portion in front of the downstream end portion of each branch pipe has two curved portions with different bending directions,
The two curved portions in each branch pipe are formed such that an extension of the axis at the outlet portion of each branch pipe passes through the opening in the central portion of the rectifying member, and in each of the two curved portions Formed so that the extension of the straight line connecting the inner wall surfaces located on the inner side of the curved portion intersects the porous plate material in the rectifying member,
An exhaust passage structure for an internal combustion engine.
JP2018054234A 2018-03-22 2018-03-22 Exhaust passage structure of internal combustion engine Pending JP2019167831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054234A JP2019167831A (en) 2018-03-22 2018-03-22 Exhaust passage structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054234A JP2019167831A (en) 2018-03-22 2018-03-22 Exhaust passage structure of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2019167831A true JP2019167831A (en) 2019-10-03

Family

ID=68108273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054234A Pending JP2019167831A (en) 2018-03-22 2018-03-22 Exhaust passage structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2019167831A (en)

Similar Documents

Publication Publication Date Title
US20060107656A1 (en) Exhaust gas after-treatment unit with countercurrent housing and corresponding process for exhaust gas after-treatment
CN1950594A (en) Catalyst carrier body for a catalytic converter to be used close to the motor
US7252809B2 (en) Radial-flow and segmented honeycomb body
JP2008088952A (en) Catalyst device
US7210287B2 (en) Accelerating catalytic conversion
US20150017073A1 (en) Exhaust gas cleaning device
KR20190035865A (en) Parts of the exhaust system and after-treatment of exhaust gases
US20100247408A1 (en) Catalyst for an exhaust gas aftertreatment system for internal combustion engines
US9115627B2 (en) Multiple skewed channel bricks mounted in opposing clocking directions
US20190257330A1 (en) Vortex flow catalytic conversion apparatus and method of vortex flow catalytic conversion
JP2019167831A (en) Exhaust passage structure of internal combustion engine
WO1996037691A1 (en) Exhaust emission control device for internal combustion engines
JPH086582B2 (en) Engine exhaust gas purification catalytic device
US5314665A (en) Catalytic converter
JP4709682B2 (en) Engine exhaust system
JP2005163621A (en) Catalytic converter
JP5051396B2 (en) Exhaust passage structure
JP2005226474A (en) Heat exchange system for engine
US11840951B1 (en) Exhaust gas burner assembly
JP2019199851A (en) Exhaust emission control device
JP2005171823A (en) Catalyst carrier, catalyst device, and engine exhaust device
KR102665463B1 (en) Lean-burn engine aftertreatment system
JP2010144710A (en) Connection structure for hollow double-pipe
JP2800022B2 (en) Exhaust gas purification device for internal combustion engine
JPH0437223Y2 (en)