JP2007084400A - Material for use in concrete reinforcement - Google Patents

Material for use in concrete reinforcement Download PDF

Info

Publication number
JP2007084400A
JP2007084400A JP2005277522A JP2005277522A JP2007084400A JP 2007084400 A JP2007084400 A JP 2007084400A JP 2005277522 A JP2005277522 A JP 2005277522A JP 2005277522 A JP2005277522 A JP 2005277522A JP 2007084400 A JP2007084400 A JP 2007084400A
Authority
JP
Japan
Prior art keywords
fiber
fibers
reinforcing material
concrete reinforcing
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005277522A
Other languages
Japanese (ja)
Inventor
Hajime Izawa
一 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2005277522A priority Critical patent/JP2007084400A/en
Publication of JP2007084400A publication Critical patent/JP2007084400A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a material for use in concrete reinforcement as is capable of maintaining the mechanical characteristics over a long period of time. <P>SOLUTION: The material comprises a fiber bundle in which the fibers are impregnated with a thermoplastic resin and/or thermosetting resin; the fiber bundle contains the fibers having a length of 4 mm or more and a cross-sectional diameter of 100 μm or less and has a volume ratio of the fiber of 20-60%, and the fiber bundle has a water absorption rate of 20% or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、コンクリート補強用材料に関するものである。さらに詳しくは、繊維に熱可塑性樹脂及び/又は熱硬化性樹脂が含浸された繊維収束物からなるコンクリート補強用材料に関するものである。   The present invention relates to a concrete reinforcing material. More specifically, the present invention relates to a concrete reinforcing material composed of a fiber converging material in which fibers are impregnated with a thermoplastic resin and / or a thermosetting resin.

従来からモルタルやコンクリート材料の曲げ強度、耐衝撃強度等の機械的特性を向上させるために、アスベスト、ガラス繊維、スチール繊維、及び、炭素繊維等の無機繊維が用いられてきた。   Conventionally, inorganic fibers such as asbestos, glass fiber, steel fiber, and carbon fiber have been used to improve mechanical properties such as bending strength and impact strength of mortar and concrete materials.

その中でアスベストは、古くから使用されてきたが、発ガン性の問題等から現在は使用が規制されるようになってきた。また、ガラス繊維は、耐アルカリ性のものでも、セメント中のアルカリにより劣化し、長期的に補強効果を維持することが困難であるため、大量使用には至っていない。スチール繊維は、コンクリート中で腐食が生じ、これによってコンクリート材料にひび割れが生じるという問題がある。また、スチール繊維に防錆処理を施しても長期的には腐食に耐えられず、しかも防錆処理にコストがかかり有用ではない。炭素繊維は、セメント中に分散させるための混練処理中に折れて短くなり、必要な長さが維持できないので期待通りの補強効果が得られなくなるという問題があった。   Among them, asbestos has been used for a long time, but its use is now regulated due to carcinogenic problems. Further, even if the glass fiber is alkali resistant, it has not been used in large quantities because it is deteriorated by alkali in the cement and it is difficult to maintain the reinforcing effect in the long term. Steel fibers have a problem that corrosion occurs in concrete, which causes cracks in the concrete material. Further, even if the steel fiber is subjected to rust prevention treatment, it cannot withstand long-term corrosion, and the rust prevention treatment is costly and not useful. The carbon fiber is broken during the kneading process for dispersing in the cement, and the required length cannot be maintained, so that the expected reinforcing effect cannot be obtained.

一方、繊維に樹脂を含浸して収束させた繊維収束物をカットした補強材も用いられている(例えば、特開平7−139093号公報、特開2001−328853号公報など)。
しかし、これらの補強材は、繊維束に樹脂を含浸した際に繊維問に空隙が残っているので、未硬化のコンクリートなどの水硬性材料に混ぜた際に、毛細管現象によって繊維間に水が吸収され、流動性が低下したり、配合量が変化したりするという問題点があった。
On the other hand, a reinforcing material obtained by cutting a fiber converging product obtained by impregnating a fiber with a resin and converging is also used (for example, Japanese Patent Laid-Open Nos. 7-139093 and 2001-328853).
However, since these reinforcing materials leave voids in the fiber when the fiber bundle is impregnated with resin, when mixed with a hydraulic material such as uncured concrete, water is caused between the fibers by capillary action. There is a problem in that it is absorbed and the fluidity is lowered or the blending amount is changed.

特開平7−139093号公報Japanese Patent Laid-Open No. 7-139093 特開2001−328853号公報JP 2001-328853 A

本発明の目的は、上記従来技術の有する問題を解消し、長期にわたり機械的特性が維持できるコンクリート補強用材料を提供することにある。   An object of the present invention is to provide a concrete reinforcing material that can solve the above-described problems of the prior art and maintain mechanical properties over a long period of time.

本発明者らは、前記課題を解決する為に、鋭意検討した結果、補強用材料に使用される繊維の形状と樹脂の含浸状態を制御するとき、所望のコンクリート補強用材料が得られることを究明し、本発明に至った。   As a result of intensive studies in order to solve the above problems, the present inventors have found that a desired concrete reinforcing material can be obtained when controlling the shape of the fibers used in the reinforcing material and the resin impregnation state. As a result, the present invention has been completed.

すなわち、本発明によれば、繊維に熱可塑性樹脂及び/又は熱硬化性樹脂が含浸された繊維収束物からなり、該繊維収束物が長さ4mm以上、断面直径100μm以下の繊維を含み、繊維の体積比率が20〜60%であって、且つ該繊維収束物の吸水率が20%以下であることを特徴とするコンクリート補強用材料が提供される。   That is, according to the present invention, the fiber converging product is composed of a fiber converging material in which a fiber is impregnated with a thermoplastic resin and / or a thermosetting resin, and the fiber converging material includes a fiber having a length of 4 mm or more and a cross-sectional diameter of 100 μm or less. The concrete reinforcing material is characterized in that the volume ratio is 20 to 60% and the water absorption of the fiber convergent is 20% or less.

本発明によれば、長期にわたり機械的特性が維持できるコンクリート補強用材料が得られるので、モルタルやコンクリート材料の補強用途などに好適に使用することができる。   According to the present invention, a concrete reinforcing material that can maintain mechanical properties over a long period of time can be obtained, and therefore, it can be suitably used for mortar and concrete material reinforcement applications.

以下、本発明の実施の形態について詳細に説明する。
本発明でいうコンクリート補強用材料とは、砂等の骨材とセメントとを混練して作成されるコンクリートや、主としてセメントにより作成され、小さな骨材を含むか若しくは骨材を含まないモルタル等の補強用に使用することが出来る材料を意味する。
本発明のコンクリート補強用材料は、繊維に樹脂が含浸され、収束された繊維収束物からなる。
Hereinafter, embodiments of the present invention will be described in detail.
The concrete reinforcing material referred to in the present invention is a concrete made by kneading an aggregate such as sand and cement, or a mortar made mainly of cement and containing a small aggregate or no aggregate. It means a material that can be used for reinforcement.
The concrete reinforcing material of the present invention comprises a fiber converging product in which fibers are impregnated with a resin and converged.

上記繊維収束物における繊維の体積比率は20〜60%であることが必要である。該比率が20%未満の場合は、繊維収束物の引張強力や弾性率が低くなるため、充分なコンクリートの補強効果が得られない。一方、該比率が60%を越える場合は、繊維の収束状態が悪くなり、混練時などに余分の水を吸ったりすることがある。   The volume ratio of the fibers in the fiber convergence product needs to be 20 to 60%. When the ratio is less than 20%, the tensile strength and elastic modulus of the fiber converging material are low, so that a sufficient concrete reinforcing effect cannot be obtained. On the other hand, when the ratio exceeds 60%, the convergence state of the fibers deteriorates, and extra water may be sucked during kneading.

また、上記繊維収束物には、長さ4mm以上、断面直径100μm以下の繊維が含まれていることが必要である。該長さが4mm未満の場合は、モルタル、又はコンクリート材料中において引抜抵抗値を充分に大きくすることができず、また、モルタル、又はコンクリート材料中に使用される砂等の骨材の大きさや発泡コンクリート中に形成される気泡の大きさに比べて短すぎるために補強材として機能しない恐れがある。好ましい繊維長さは10mm以上である。   Moreover, it is necessary for the said fiber convergence thing to contain the fiber of length 4mm or more and cross-sectional diameter of 100 micrometers or less. When the length is less than 4 mm, the drawing resistance value cannot be sufficiently increased in the mortar or the concrete material, and the size of the aggregate such as sand used in the mortar or the concrete material Since it is too short compared with the size of the air bubbles formed in the foamed concrete, it may not function as a reinforcing material. A preferable fiber length is 10 mm or more.

上記繊維の断面形状は、通常の円型形状や、長方形、偏平形状、その他異型断面形状のものも使用し得るが、円型形状若しくは円型形状に近い形状のものが取り扱い上は好ましい。   As the cross-sectional shape of the fiber, a normal circular shape, a rectangular shape, a flat shape, and other irregular cross-sectional shapes can be used, but a circular shape or a shape close to a circular shape is preferable in handling.

上記繊維の具体例としては、炭素繊維、ガラス繊維、セラミック繊維、スチール繊維等の無機繊維、及び、アラミド繊維、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリメチルペンテン繊維、ポリアリレート繊維、PBO繊維、ナイロン繊維、ポリエステル繊維、アクリル繊維、塩化ビニル繊維、セルロース繊維、パルプ繊維等の有機繊維を任意に使用することが出来る。1種のみ使用することも複数種を併用することも可能である。   Specific examples of the fibers include carbon fibers, glass fibers, ceramic fibers, steel fibers, and the like, and aramid fibers, vinylon fibers, polypropylene fibers, polyethylene fibers, polymethylpentene fibers, polyarylate fibers, PBO fibers, Organic fibers such as nylon fibers, polyester fibers, acrylic fibers, vinyl chloride fibers, cellulose fibers, and pulp fibers can be arbitrarily used. It is possible to use only one type or to use a plurality of types in combination.

上記繊維のうち、アラミド繊維は、高い引張強度と耐薬品性を有し、且つ、軽量であるため、近年セメント薄板等の補強用材料として用いられるようになってきた。すなわち、セメント材料にアラミド短繊維を添加し、ルーダーを用いて混練し、これを押出成形することにより得られる薄板は、曲げ強度、耐衝撃強度が青しく向上して薄板をより薄くする
ことが可能となる。
Of the above fibers, aramid fibers have high tensile strength and chemical resistance and are light in weight, and have recently been used as reinforcing materials for cement thin plates and the like. In other words, a thin plate obtained by adding aramid short fibers to a cement material, kneading using a ruder, and extruding the same may improve the bending strength and impact strength blue and make the thin plate thinner. It becomes possible.

さらに、アラミド繊維の中でもパラ型アラミド繊維が好ましく例示される。パラ型アラミド繊維としては、例えば、ポリパラフェニレンテレフタラミドや共重合体であるコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維等をあげることが出来る。特に、コポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維を用いた場合には、優れた引抜き特性を有するために他の繊維に比べ特に補強効果が優れているだけでなく、耐アルカリ性にも優れているため、長期にわたって高性能を保持することが出来る。
さらに、この繊維は、耐アルカリ性にも優れていることから、温度200℃程度のオートクレーブ養生にも耐えられる。
Furthermore, para type | mold aramid fiber is illustrated preferably among the aramid fibers. Examples of the para-type aramid fibers include polyparaphenylene terephthalamide and copolymers such as copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber. In particular, when copolyparaphenylene / 3,4 ′ / oxydiphenylene / terephthalamide fiber is used, it has an excellent pulling characteristic, so it not only has an excellent reinforcing effect compared to other fibers, but also has alkali resistance. Therefore, it is possible to maintain high performance over a long period of time.
Furthermore, since this fiber is also excellent in alkali resistance, it can withstand autoclave curing at a temperature of about 200 ° C.

次に、本発明のコンクリート補強用材料に使用する樹脂は、耐アルカリ性の熱可塑性樹脂、及び/又は熱硬化性樹脂であれば特に制限なく使用されるが、好ましくは、エポキシ系樹脂、ビニールエステル系樹脂、フェノール系樹脂、ポリウレタン系樹脂、メラミン系樹脂、ホルムアルデヒド系樹脂、フルオロ重合体系樹脂等の熱硬化性樹脂が使用され、中でも、エポキシ系樹脂やビニールエステル系樹脂が特に好ましく使用される。
これらの樹脂は、浸漬法やスプレー法により前記の基材となる繊維表面に付与し、乾燥及び必要により熱処理することにより繊維収束物とすることが出来る。
Next, the resin used for the concrete reinforcing material of the present invention is not particularly limited as long as it is an alkali-resistant thermoplastic resin and / or a thermosetting resin. Preferably, an epoxy resin, a vinyl ester is used. Thermosetting resins such as epoxy resins, phenol resins, polyurethane resins, melamine resins, formaldehyde resins, and fluoropolymer resins are used, and epoxy resins and vinyl ester resins are particularly preferably used.
These resins can be applied to the surface of the fiber serving as the base material by dipping or spraying, dried, and heat-treated as necessary to obtain a fiber convergent.

かくして得られた繊維収束物の、後述の方法により測定される吸水率は20%以下であることが必要である。該吸水率が20%を越える場合は、繊維の収束状態が悪くなり、横方向からの圧縮により容易に変形、潰れが起こり、充分な補強効果が発揮されない。好ましい吸水率の値は5%以下である。   It is necessary that the water absorption measured by the method described later of the fiber convergence product thus obtained is 20% or less. When the water absorption rate exceeds 20%, the convergence state of the fibers is deteriorated, and deformation and crushing easily occur due to compression from the lateral direction, and a sufficient reinforcing effect cannot be exhibited. A preferable water absorption value is 5% or less.

以下、実施例により本発明をさらに詳細に説明する。なお、実施例で用いた物性の測定方法は下記の通りである。
(1)吸水率
1リットルの水中に繊維収束物を約10g秤量(この値をAとする)して投入した後、静置して1時間後に取り出し、吸水性のある紙や布で繊維収束物の表面付着水を十分に除いた重量を秤量(この値をBとする)して、(B−A)/A×100より吸水率(%)を算出した。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the measuring method of the physical property used in the Example is as follows.
(1) Water absorption rate About 10 g of fiber converging material is weighed into 1 liter of water (this value is A), and then allowed to stand and taken out after 1 hour, and the fiber is converged with water-absorbing paper or cloth. The weight obtained by sufficiently removing the water adhering to the surface of the product was weighed (this value is designated as B), and the water absorption (%) was calculated from (BA) / A × 100.

(2)曲げ強度
コンクリート曲げ強度容量10トンの引張圧縮試験機(Toyo Ba1dwwin 社製、Universa1 Testing Instrument Mode1 UTM 1O-ton)を用い、4cm×4cm×16cmの試験片の3点曲げ法にて、支点から距離10cmの点を2mm/分で圧縮し、応力の最高点より曲げ強度を求めた。
なお、試験片は、早強ポルトランドセメント:1174g、試験に供する補強用材料:5.9g、水:493gをモルタルミキサー中に投入した後、粘剤としてメチルセルロース:11.7gを加えて、400rpmの条件で7分間混練を行った後、4cm×4cm×16cmの型枠に流し込み、室温にて30日間養生を行い試験片とした。
(2) Bending strength Using a tensile and compression tester (Universal 1 Testing Instrument Mode 1 UTM 1O-ton made by Toyo Ba1dwwin) with a concrete bending strength capacity of 10 tons, a 3 cm bending method of a 4 cm × 4 cm × 16 cm test piece, A point 10 cm from the fulcrum was compressed at 2 mm / min, and the bending strength was determined from the highest point of stress.
In addition, after test specimens, 17.4 g of early strength Portland cement, 5.9 g of reinforcing material to be used for the test, and 493 g of water were put into a mortar mixer, then 11.7 g of methylcellulose as a viscosity agent was added, and 400 rpm was added. After kneading for 7 minutes under the conditions, it was poured into a 4 cm × 4 cm × 16 cm mold and cured at room temperature for 30 days to obtain a test piece.

[実施例1]
繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維(帝人テクノプロダクツ(株)製、「テクノーラ」)を、ビニールエステル樹脂中に浸漬した後、温度170℃で乾燥させ、長さ30mmにカットして繊維収束物を得た。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 1]
Copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber (“Technola” manufactured by Teijin Techno Products Co., Ltd.) with a fineness of 1670 dtex and a filament count of 1000 (fiber cross-sectional diameter of 12 μm) is vinyl ester After being immersed in the resin, it was dried at a temperature of 170 ° C. and cut to a length of 30 mm to obtain a fiber convergent.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例2]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が440dtex、フィラメント数が267本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維を使用する以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 2]
In Example 1, instead of copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber having a fineness of 1670 dtex and a filament number of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 440 dtex and the filament number is 267. The same procedure as in Example 1 was carried out except that a copolyparaphenylene • 3,4′′oxydiphenylene • terephthalamide fiber (the cross-sectional diameter of the fiber was 12 μm) was used.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例3]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が220dtex、フィラメント数が133本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維を使用し、得られた繊維収束物を長さ40mmにカットする以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 3]
In Example 1, in place of the copolyparaphenylene-3,4′-oxydiphenylene-terephthalamide fiber having a fineness of 1670 dtex and a filament number of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 220 dtex and the filament number is 133. The same as in Example 1 except that the copolyparaphenylene • 3,4′′oxydiphenylene • terephthalamide fiber (with a fiber cross-sectional diameter of 12 μm) is used and the resulting fiber convergent is cut to a length of 40 mm. Carried out.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例4]
実施例1において、得られた繊維収束物を長さ4mmにカットする以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 4]
In Example 1, it implemented like Example 1 except cutting the obtained fiber convergence thing into length 4mm.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[比較例1]
実施例1において、得られた繊維収束物を長さ3mmにカットする以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Comparative Example 1]
In Example 1, it implemented like Example 1 except cutting the obtained fiber convergence thing into length 3mm.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例5]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が3300dtex、フィラメント数が1000本(繊維の断面直径が18μm)のポリビニルアルコール繊維を使用する以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 5]
In Example 1, instead of the copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber having a fineness of 1670 dtex and a filament number of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 3300 dtex and the filament number is 1000. The same procedure as in Example 1 was performed except that polyvinyl alcohol fibers having a fiber cross-sectional diameter of 18 μm were used.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例6]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が1670dtex、フィラメント数が500本(繊維の断面直径が22μm)のポリプロピレン繊維を使用する以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 6]
In Example 1, instead of copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber having a fineness of 1670 dtex and a filament number of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 1670 dtex and the number of filaments is 500. This was carried out in the same manner as in Example 1 except that this polypropylene fiber (with a fiber cross-sectional diameter of 22 μm) was used.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例7]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が3300dtex、フィラメント数が500本(繊維の断面直径が27μm)のナイロン6繊維を使用する以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 7]
In Example 1, instead of copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber having a fineness of 1670 dtex and a filament number of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 3300 dtex and the filament number is 500. The same procedure as in Example 1 was performed except that nylon 6 fiber having a fiber cross-sectional diameter of 27 μm was used.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例8]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が3300dtex、フィラメント数が56本(繊維の断面直径が81μm)のナイロン6繊維を使用する以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 8]
In Example 1, in place of copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber having a fineness of 1670 dtex and a filament number of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 3300 dtex and the number of filaments is 56. This was carried out in the same manner as in Example 1 except that nylon 6 fiber having a fiber cross section of 81 μm was used.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[比較例2]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が3300dtex、フィラメント数が16本(繊維の断面直径が108μm)のポリビニルアルコール繊維を使用する以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Comparative Example 2]
In Example 1, instead of copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber having a fineness of 1670 dtex and a filament number of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 3300 dtex and the filament number is 16 The same procedure as in Example 1 was performed except that polyvinyl alcohol fibers having a fiber cross-sectional diameter of 108 μm were used.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例9]
実施例1において、繊度が1670dtex、フィラメント数が1000本(繊維の断面直径が12μm)のコポリパラフェニレン・3,4’・オキシジフェニレン・テレフタラミド繊維に代えて、繊度が660dtex、フィラメント数が100本(繊維の断面直径が7μm)の炭素繊維繊維を使用する以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 9]
In Example 1, instead of copolyparaphenylene 3,4′-oxydiphenylene terephthalamide fiber having a fineness of 1670 dtex and a filament count of 1000 (fiber cross-sectional diameter of 12 μm), the fineness is 660 dtex and the filament count is 100. The same operation as in Example 1 was performed except that carbon fibers having a cross section of 7 μm were used.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

[実施例10、比較例3]
実施例1において、ビニールエステル樹脂をアセトンで薄め、吸水率の値を表1に示す如く変化させる以外は実施例1と同様に実施した。
得られた繊維収束物及び該繊維収束物を補強材として使用したコンクリートの曲げ強度を表1に示す。
[Example 10, Comparative Example 3]
In Example 1, it implemented like Example 1 except having diluted vinyl ester resin with acetone and changing the value of a water absorption as shown in Table 1.
Table 1 shows the obtained fiber convergence and the bending strength of concrete using the fiber convergence as a reinforcing material.

Figure 2007084400
Figure 2007084400

本発明によれば、長期にわたり機械的特性が維持できるコンクリート補強用材料が得られるので、モルタルやコンクリート材料の補強用途などに好適に使用することができる。   According to the present invention, a concrete reinforcing material that can maintain mechanical properties over a long period of time can be obtained, and therefore, it can be suitably used for mortar and concrete material reinforcement applications.

Claims (13)

繊維に熱可塑性樹脂及び/又は熱硬化性樹脂が含浸された繊維収束物からなり、該繊維収束物が長さ4mm以上、断面直径100μm以下の繊維を含み、繊維の体積比率が20〜60%であって、且つ該繊維収束物の吸水率が20%以下であることを特徴とするコンクリート補強用材料。   It consists of a fiber converging product in which a fiber is impregnated with a thermoplastic resin and / or a thermosetting resin. The fiber converging material contains a fiber having a length of 4 mm or more and a cross-sectional diameter of 100 μm or less, and the volume ratio of the fiber is 20 to 60%. And the water absorption rate of this fiber convergence thing is 20% or less, The concrete reinforcing material characterized by the above-mentioned. 繊維がアラミド繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fibers are aramid fibers. 繊維がポリビニルアルコール系繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fibers are polyvinyl alcohol fibers. 繊維が脂肪族ポリアミド系繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fiber is an aliphatic polyamide fiber. 繊維がポリオレフィン系繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fibers are polyolefin fibers. ポリオレフィン系繊維がポリエチレン繊維である請求項5記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 5, wherein the polyolefin fiber is a polyethylene fiber. ポリオレフィン系繊維がポリプロピレン繊維である請求項5記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 5, wherein the polyolefin fiber is a polypropylene fiber. ポリオレフィン系繊維がポリメチルペンテン繊維である請求項5記載のコンクリート補強用材料。   6. The concrete reinforcing material according to claim 5, wherein the polyolefin fiber is polymethylpentene fiber. 繊維が芳香族ポリエステル繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fiber is an aromatic polyester fiber. 繊維が脂肪族ポリエステル繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fiber is an aliphatic polyester fiber. 繊維がポリパラフェニレンベンゾビスオキサゾール(PBO)繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fibers are polyparaphenylene benzobisoxazole (PBO) fibers. 繊維がガラス繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fiber is glass fiber. 繊維が炭素繊維である請求項1記載のコンクリート補強用材料。   The concrete reinforcing material according to claim 1, wherein the fibers are carbon fibers.
JP2005277522A 2005-09-26 2005-09-26 Material for use in concrete reinforcement Pending JP2007084400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277522A JP2007084400A (en) 2005-09-26 2005-09-26 Material for use in concrete reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277522A JP2007084400A (en) 2005-09-26 2005-09-26 Material for use in concrete reinforcement

Publications (1)

Publication Number Publication Date
JP2007084400A true JP2007084400A (en) 2007-04-05

Family

ID=37971780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277522A Pending JP2007084400A (en) 2005-09-26 2005-09-26 Material for use in concrete reinforcement

Country Status (1)

Country Link
JP (1) JP2007084400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116274A (en) * 2008-11-11 2010-05-27 Teijin Techno Products Ltd Short fiber-reinforced cement formed body
KR101887814B1 (en) * 2017-05-26 2018-08-10 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete and fiber Reinforced concrete using thereof
KR101887815B1 (en) * 2017-05-26 2018-08-10 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete using conjugate fiber and fiber Reinforced concrete using thereof
KR101952069B1 (en) * 2018-02-20 2019-02-25 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete using steel conjugate fiber and fiber Reinforced concrete using thereof
KR101963081B1 (en) * 2018-02-20 2019-03-28 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete using p-aramid conjugate fiber and fiber Reinforced concrete using thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328853A (en) * 2000-05-16 2001-11-27 Teijin Ltd Reinforcing material for concrete, etc.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328853A (en) * 2000-05-16 2001-11-27 Teijin Ltd Reinforcing material for concrete, etc.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116274A (en) * 2008-11-11 2010-05-27 Teijin Techno Products Ltd Short fiber-reinforced cement formed body
KR101887814B1 (en) * 2017-05-26 2018-08-10 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete and fiber Reinforced concrete using thereof
KR101887815B1 (en) * 2017-05-26 2018-08-10 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete using conjugate fiber and fiber Reinforced concrete using thereof
KR101952069B1 (en) * 2018-02-20 2019-02-25 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete using steel conjugate fiber and fiber Reinforced concrete using thereof
KR101963081B1 (en) * 2018-02-20 2019-03-28 한국섬유개발연구원 bundle-type short fibers for fiber reinforced concrete using p-aramid conjugate fiber and fiber Reinforced concrete using thereof

Similar Documents

Publication Publication Date Title
JP2010116274A (en) Short fiber-reinforced cement formed body
KR100857475B1 (en) Fiber reinforcement making method and cement composite including this that dispersibility and adhesion performance improve
JPS62297265A (en) Carbon fiber composite high strength refractories
KR101253249B1 (en) Manufacturing methods of ultra-high performance fiber reinforecd concrete mixing the steel fiber of wave and straight type
JP2007084400A (en) Material for use in concrete reinforcement
CN109400026A (en) New type chemical material for building
JP4252369B2 (en) Reinforcing short fibers with excellent defibration properties
JP2018111631A (en) Fiber material for cement reinforcement
JPH09295877A (en) Staple fiber-reinforced concrete
JP5758597B2 (en) Reinforcing material and molded article containing the reinforcing material
KR20050042553A (en) Concrete composition reinforced by fiber coated with thermoset resin and preparation method thereof
JP4372379B2 (en) Short fiber reinforced cement-based extrusion molding material
JP2018111632A (en) Fiber material for cement reinforcement
JP2001328853A (en) Reinforcing material for concrete, etc.
JP2007131464A (en) Material for reinforcing concrete
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
JP5823698B2 (en) Polymer cement composition
JP5275906B2 (en) Fiber for reinforcing cement molding
JP5519437B2 (en) Short fibers for cement molding reinforcement
JP5829459B2 (en) Cement hardener reinforcement
JP3433081B2 (en) Fiber reinforced lightweight cellular concrete
KR101887814B1 (en) bundle-type short fibers for fiber reinforced concrete and fiber Reinforced concrete using thereof
JP3839698B2 (en) High tough nonwoven fabric mat for hydraulic material reinforcement
JPH07100357B2 (en) Fiber reinforced cement mortar molding
Calis Investigation Effect of Fiber Type on Compressive Strength of Concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

A131 Notification of reasons for refusal

Effective date: 20111115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321